
Value-Based Reinforcement Learning for
Sequence-to-Sequence Models

Fabian Retkowski

fabian.retkowski@kit.edu

Karlsruhe Institute of Technology (KIT)

Alex Waibel

waibel@kit.edu

Karlsruhe Institute of Technology (KIT)

ABSTRACT
This paper demonstrates the theoretical possibility of applying ad-

vanced value-based reinforcement learning methods on sequence-

to-sequence models for the first time. This approach avoids major

issues that have emerged with supervised sequence-to-sequence

models such as loss-evaluation mismatch, exposure bias and search

error. At the same time, when compared to policy gradient meth-

ods, it does not rely on well-trained fully supervised models and is

not restricted to fine-tuning. Specifically, a sequence-to-sequence

model is introduced, which is trained in a Rainbow-like setup.While

such a model is practically still limited by its scalability, the work

contributes towards a more generally applicable approach to rein-

forcement learning in natural language processing which is beyond

the scope of fine-tuning. For this, the paper provides a theoreti-

cal and practical framework, a first baseline, and valuable insights

by studying ablated models and different approaches for utilizing

demonstration data.

KEYWORDS
Reinforcement Learning, Natural Language Processing, Sequence-

to-Sequence

1 INTRODUCTION
Seq2seq models offer great promise for sequence generation prob-

lems such as machine translation, text summarization, or dialogue

generation. Nevertheless, fully supervised trained sequence-to-

sequence (seq2seq) models have several methodological weaknesses

which have not been completely solved. First, such models suffer

from exposure bias as they are usually trained with teacher forcing

[1, 2]. In this method, the model is conditioned on ground-truth

data as input instead of its own outputs. Secondly, word predictions

by these models do not consider the whole sequence, which intro-

duces search error. Thirdly and most importantly, the maximum

likelihood estimation (MLE) objective is often used in approximat-

ing the probability distribution 𝑃 (𝑦 |𝑥), such that the likelihood

of outputs given input is maximized. In many problems such as

machine translation utilizing this distribution may be sufficient.

However, for other problems, it differs substantially from the test

objectives and the real-world goal.

It has been shown by Li et al. [3] that when applied to the task of

dialogue generation, the aforementioned models tend to generate

highly generic, repetitive, and short-sighted responses, with "I don’t

know" among them. This outcome can be ascribed to the high

frequency of such phrases in dialogue corpora, which are then

favoured by the MLE objective.

Reinorcement learning (RL) addresses all of these issues. It al-

lows using any function as a reward, which may include non-

differentiable test metrics, human feedback, or other functions that

are closer to the real-world goal. Furthermore, RL relies on its own

outputs instead of ground-truth data, and it naturally incorporates

future rewards, thus avoiding exposure bias and search error.

However, RL is considered sample inefficient, especially in the

case of reward sparsity and large action spaces, and this is partic-

ularly true for most NLP tasks, which require dealing with huge

vocabulary sizes. Thus, most research in this area has focused on

fine-tuning supervised models. It has, therefore, also been limited to

methods that output softmax probabilities, which makes them easy

to pretrain with supervised approaches. This category includes PG

methods and actor-critic setups. For instance, REINFORCE is still

widely used in this area, although this algorithm is known to have

severe issues, such as a time-consuming training and high variance.

In contrast, value-based learning methods such as Q-learning have

received little attention, since they need to predict future rewards

for every single action and cannot be easily pretrained. However,

value-based methods have made significant progress in recent years.

Advanced methods such as Rainbow and FQFs are state-of-the-art

approaches in many fields (e.g., game-playing) and might overcome

some caveats of Q-learning making it a reasonable choice for the

area of NLP. Thus, this work investigates whether seq2seq mod-

els can be trained with Rainbow [4], which is a Q-learning-based

approach that seeks to combine several improvements made to

Deep Q-Networks (DQNs) in recent years, including prioritized

experience replay (PER) and multi-step learning.

2 RELATEDWORK
Sequence generation using RL. Motivated by the issues of fully

supervised sequence-to-sequence models, Ranzato et al. (2015) [1]

applied RL on different sequence generation problems to align

training and test measurements. The researchers utilized super-

vised training to initialize the policy, and they then introduced the

MIXER algorithm which provides an annealing schedule between

supervised training (i.e., cross-entropy loss and teacher forcing)

and reinforcement learning, using REINFORCE [5] and the model’s

own predictions.

Due to the disadvantages of REINFORCE, which include the time-

consuming training and its high variance, Bahdanau et al. (2017) [6]

took this idea one step further by employing an actor-critic setup

to train encoder-decoder models. To speed up the training process

and deal with the ample action space, the authors used several

techniques such as penalizing the variance of the value predictions

and reward shaping to provide rewards for the whole sequence.

Rennie et al. [7] (2017) introduced another variant, a Self-Critic

(SC) baseline for policy gradient (PG) methods employed in se-

quence generation. The algorithm avoids estimating a normaliza-

tion (cf. REINFORCE) or training a value function (cf. actor-critics)

for the baseline by utilizing the inference outputs.

However, all above mentioned approaches rely on well-trained
supervised models, and the application of RL is limited to �ne-tune
such models. Consequently, this line of research focuses on PG
methods as the provided outputs are alike (i.e., token probabili-
ties based on softmax activations). Practical and more advanced
applications of the presented approaches can be found in [3], [8],
and [9] which embed them in a more complex multi-stage training
procedure while also using multi-component reward functions.

Recurrence and memories in RL.Another related research direc-
tion seeks to equip DQN agents with a memory. The �rst notable
work in this area was conducted by Hausknecht et al. in 2017,
with their proposed Deep Recurrent Q-Network (DRQN) [10]. The
authors argue that most real-world applications fail to meet the
Markov property; that is, their true states are only partially observ-
able. Consequently, they propose replacing the �rst fully-connected
layer with an LSTM layer. With this goal in mind, Hausknecht et
al. consider two possibilities: sequential updates (replaying whole
episodes while violating DQN's random sampling policy) and ran-
dom updates (with zeroing out hidden states). The paper concludes
that both updates work similarly well.

A more recent approach is Recurrent Replay Distributed DQN
(R2D2), developed by Kapturowski et al. (2019) [11]. The authors
store and replay �xed-length sequences (< = 80) using a mix of
mean and max for prioritization of the samples:? = [max8X8¸ ¹ 1�
[ºXwith [= 0”9. They hypothesize two strategies for the hidden
state: storing and replaying such states or applying a burn-in period,
which involves using a part of the replay sequence to produce a
start state.

3 SEQUENCE-TO-SEQUENCE MODELS
The classic seq2seq architecture, also called encoder-decoder ar-
chitecture was �rst proposed by Sutskever et al. (2014) [12]. The
motivation behind this architecture is to map an input sequence
(source) to an output sequence (target), both of which can be of
arbitrary lengths. The architecture is composed of an encoder and
a decoder.

� The encoder RNN compresses the input sequenceG =
¹G1• G2• ” ” ” • G=Gº to a �xed-length vector� (thought vector
or context vector), which is the �nal hidden state vector� =G

of the RNN.
� The decoder's hidden state is initialized with the �xed-length

vector� . The decoder RNN then generates the output se-
quence~ = ¹~1•~2• ” ” ” •~=~ º.

RNN encoders and decoders are typically implemented as LSTM
[13] or GRU [14], either unidirectional or bidirectional. The de-
coder usually adds another linear layer with softmax activation
(the so-calledgenerator) to output a probability distribution over
the vocabulary.

The outputs of the decoder network are fed into the next sequen-
tial unit as input. Consequently, mistakes at the beginning of the
sequence can lead to increasing erroneousness, which ultimately
results in slow convergence. Thus, the most common algorithm
for training the model isteacher forcing, which feeds the actual
correct sequence (the targets) into the model. This algorithm allows
parallelization as it removes the necessity to wait for the sequential

outputs to be used as inputs. The teacher forcing algorithm can also
be derived from the (conditional) maximum likelihood objective,
which is the CE loss:

L �� = � log?¹~1• ” ” ” •~=~ º = � log
=~Ö

C=1

?¹~Cj~1• ” ” ” •~C� 1º

= �
=~Õ

C=1

log?¹~Cj~1• ” ” ” •~C� 1º

(1)

During inference, the next output word is chosen by a greedy
left-to-right process,~Ç 1 = argmax~ ?¹~j~C• � Cº, without consid-
ering the complete sequence. This approach, however, might not
produce the most likely sequence according to the abovementioned
objective, an outcome known assearch error. One way to reduce the
search error is beam search, tracking: word candidates. In addition,
this setup su�ers fromexposure biasbecause of the distribution
mismatch of ground-truth data and the model's predictions.

4 METHODOLOGY
This research aims to apply the Rainbow DQN setup to the seq2seq
architecture. Therefore, this section addresses the question of how
the classic DQN approach can be transferred to this architecture.
With the ful�lment of this requirement, most of the DQN exten-
sions that have been used in Rainbow are also straightforwardly
transferable. Speci�cally, the following extensions are included:

� Double Q-learning [15].
� Prioritized experience replay [16], which is the only exten-

sion that is not transferable without signi�cant methodolog-
ical changes.

� Dueling networks [17].
� Multi-step learning [18].
� Distributional RL; for this paper, the more recent QR-DQN

[19] is chosen over categorical DQNs [20] because it is easier
to implement and has also been shown to yield better results,
though categorical DQNs have been used for Rainbow.

� Noisy nets [21].

4.1 Reinforcement Learning Setting
In this section, the RL environment is described as it varies from
one task to another. In general, the setting is similar to those in
other sequence prediction tasks such as [1], [3], and [6], although
the perspective on the state di�ers substantially as these works use
policy gradient approaches.

Action space.In the context of this work, the action spaceA
is the vocabulary space. At each time stepC, the decoder of the
seq2seq model chooses the next action� C, which is a token in a
sequence.

State space.The state(Cat a speci�c time stepCincludes all the
input data that is required to produce the next action� C. Since the
decoder generates its output depending on the previous hidden state
� C� 1 and the previously chosen action~C� 1, »� C� 1•~C� 1¼may be
used as the state. Alternatively, the input sentence and all previous
actions»G•~1:C� 1¼can be viewed as the state, as it is possible to
reproduce the hidden states with this information.

2

Reward.The reward functionAcan be any user-de�ned function.
For example, advanced dialogue generation models like [3] utilize
rather complex reward functions such as combinations of informa-
tion �ow, semantic coherence, and ease of answering. A unique
characteristic in NLP settings compared to other RL tasks is that
the reward is always and only collected at the end of the sequence.
However, to keep the work as simple, comparable and interpretable
as possible, and to focus on the feasibility of transferring Q-learning
to seq2seq models, BLEU [22] and ROUGE-W [23] are selected as
exemplary reward functions. In addition, with such rewards, it will
be possible to provide a strong baseline for the model. The cross-
entropy (CE) objective is known to approximate these metrics quite
well. Both metrics evaluate a generated sentence against a reference
sentence. Thus, a dataset with sources and targets is required. More
details in regard to BLEU and ROUGE can be found in the appendix,
see Section A.

4.2 Experience Replay for
Sequence-to-Sequence Models

Typically, Q-learning approaches with deep neural nets (i.e., DQNs)
store transitions experienced by the agent in a bu�er called expe-
rience replay. These transitions are reiterated during the training
process. A transition is de�ned by its state(C and action� C at
time stepC, the next state(Ç 1, and the reward' Ç 1 received by
the agent:¹(C• � C• (Ç 1• ' Ç 1º. For seq2seq models, however, this
approach has to be adjusted. As mentioned, the state is de�ned by
the previous hidden state of the decoder and the previous action
»� C� 1•~C� 1¼. However, given that the hidden state representation
is not static, but learned during the training process, it is not suit-
able to be replayed in later phases of training. Here, the alternative
state representation»G•~1:C� 1¼can provide a solution. Rather than
storing single transitions, it allows for storing the entire input and
output sequence¹G•~• ') º to represent the states and actions of the
whole episode4. The entry is completed by a scalar reward') , as
only the �nal transition issues a reward for the full sequence.

Prioritized Experience Replay.This decision has some implica-
tions, especially for PER, one of the extensions, which has been
combined with others in [4]. In the original paper [16] by Schaul et
al., the absolute TD errorXis utilized as the criterion of importance
(i.e., priority?) for the transitions in the bu�er. However, here it is
necessary to deal with whole episodes, which consist of many tran-
sitions. Consequently, there is a need to aggregate the TD errors of
the steps in episode4. For this approach, there are several options,
with summing and averaging being the obvious ones:

� Summing the errors:?4 =
Í)

8 X8

� Averaging the errors:?4 = 1
)

Í)
8 X8

It may be expected that the summation of errors leads to an
advantage of longer sequences at the expense of shorter ones; this
outcome could be disadvantageous for the overall success. In fact,
early experiments have indicated that averaging is superior.

4.3 Teacher Forcing
As discussed, entire episodes must be stored in the experience replay
bu�er to combine it with sequence-to-sequence models. However,
as the name suggests, it is necessary to replay the episodes. This is

where a technique that is widely used in supervised learning for
seq2seq models comes into play: teacher forcing. Instead of feeding
the decoder's output to the input of the next sequential unit (as
in the inference stage), the ground-truth sequence is fed into the
network. The same idea can be applied to replay episodes, but in
place of the ground-truth sequence, the stored output sequence
is inputted into the recurrent units of the decoder. The essential
di�erence is that the output sequence does not necessarily have
to be one of the "good examples". The examples in the experience
replay bu�er are usually collected by the model itself, substantially
reducing the exposure bias caused by the distributional mismatch
of decoder inputs in the training and inference stages. Here, the
model's own predictions are replayed in the training stage, syncing
the input distributions. Consequently, while the algorithm applied is
the same for supervised learning and the RL approach taken in this
study, its aim and motivation is entirely di�erent. Moreover, teacher
forcing has computational bene�ts since it allows parallelization.

4.4 Temporal Di�erence Error
The concrete algorithm for calculating the temporal di�erence error
is depicted in Algorithm 1 and closely resembles the work of Mnih
et al. [24]. The main di�erence is that the algorithm handles a batch
of episodes (i.e., a sequence of transitions) instead of a batch of
transitions. Since these sequences can be of di�erent lengths< ,
padding and masking is required, as well as a normalization with< .
To allow for parallelization, shifting and zero-padding is required.

Algorithm 1 TD error for a basic sequence-to-sequence DQN

Input: SourceG G2 N# � �

(Padded) Output~ ~ 2 N" � �

RewardA) A) 2 R�

Output Lengths< < 2 N�

1: >•�> = seq2seq\ ¹G•~º•seq2seq�\ ¹G•~º >•�> 2 R" � � � �

2: @•�@= @\ ¹>º•@�\ ¹ �>º @•�@2 R" � � � j A j

3: @̂2:"•8 = max00 �@2:"•8 ¹00º•88 @̂2 R" � 1� �

4: @? = mask¹@¹~ºº @?•@̂? 2 R" � �

5: @̂? = concat¹mask¹@̂º•01� � º
6: A= concat¹0" � 1� � •A) º A2 R" � �

Output: 1
�

Í �
9=1

Í "
8=1¹A8•9̧ Ŵ@?8•9� @?8•9º

2

< 9

The presented algorithm does not include the six DQN exten-
sions. However, with the algorithm and methodology presented it is
straightforward to add them. Some more details and aspects, espe-
cially regarding multi-step learning, can be found in the appendix,
see Section B.

4.5 Utilization of Demonstration Data
Although it is highly �exible in de�ning its goals and rewards, RL
also has some downsides: it is usually exceedingly sample ine�cient
and converges much slower than supervised learning. Furthermore,
data collection is time-consuming. This is why, as part of this work,
a methods are explored with which available information can be
utilized to accelerate convergence.

3

Preloading Replay Bu�er.DQNs learn from transitions being col-
lected by the agent and stored in the experience replay bu�er. In
the case of this work, however, it is assumed human demonstra-
tion data is already at hand, as there are many corpora of natural
language available to use. The simplest way to leverage such data
is to preload it into the replay bu�er instead of �lling the bu�er
with random experiences in the beginning. For practical reasons,
the experience replay bu�er typically has a size limit. This is why
older transitions get replaced by more recent experiences. How-
ever, to prevent the displacement of exemplary data, such data is
excluded from the "�rst in, �rst out" replacement policy and instead
is permanently stored in the bu�er.

Tranfer Learning.This approach is inspired by classic transfer
learning. As Yosinski et al. [25] have shown, layers in a deep neural
network for image classi�cation, that were trained on a speci�c
task can be transferred to others to varying degrees. The new model
is then able to train faster. In particular, early layers in the network
are rather general, agnostic regarding the speci�cs of the input, and
therefore easily transferable. Similar work was conducted by [26]
for RNNs and the area of NLP. However, the authors suggest that,
in this domain, a semantic relatedness between the tasks are more
signi�cant than in computer vision. In the context of this work,
this method entails pretraining a typical seq2seq network using
supervised learning. The parameters of this model, or speci�cally,
the parameters of the encoder, decoder, and the embedding layers
while discarding those of the generator, are utilized to initialize the
Q-learning model, which has its own randomly initialized generator.
Thus, the recurrence and embeddings may not have to be learned
from scratch. This approach is similar in conception to those in [1],
[6], and [3]. However, for PG methods, it is not necessary to replace
the generator because both generators produce probabilities for the
de�ned set of tokens. On the contrary, in DQNs, the output layer
utilizes a linear activation function. Additionally, the number of
neurons in the output layer di�er when employing distributional
RL.

Multitask Learning.Transfer learning works optimally when
the training data and training objective of both tasks are similar.
In this study, however, the objectives di�er substantially, as [3]
suggests. On the one hand, there is the MLE criterion; on the other
hand, Q-values, the estimated future rewards, are to be predicted.
Thus, instead of using transfer learning, it would be possible to
treat these objectives as two di�erent tasks, but to employ a shared
"feature extractor", which, in this case, is the encoder RNN, the
decoder RNN and the embedding layers. The general idea is known
as multitask learning, and it has been successfully applied to a broad
range of applications, including NLP [27] and computer vision [28].
Originally, multitask learning was described by [29]: it is usually
implemented by sharing hidden layers between several tasks while
having task-speci�c output layers. These tasks are learned jointly
by alternating the optimization steps for each. The di�erent tasks
bene�t from each other as they introduce regularization and reduce
the hypothesis space.

Vocabulary Size Dataset Size Word Minimum Frequency

111 1•311 900
201 3•484 680
401 9•230 130
806 18•523 50

Table 1: Dataset vocabulary sizes

5 EXPERIMENTS
For subsequent experiments, a basic single-turn dialogue generation
task is assummed, based on the Cornell Movie Dialogue dataset
[30] and evaluated on both, BLEU and ROUGE-W. Four models are
investigated:

� As comparative model, a supervised trained seq2seq model
conditioned on the maximum likelihood objective is em-
ployed. Such a model can be considered a strong baseline
because the CE loss is known to approximate BLEU and
ROUGE quite well.

� A seq2seq network trained purely with RL, based on the
Rainbow method introduced in including the methodological
modi�cations needed presented. In this setup, the replay
bu�er is preloaded with demonstration data.

� A transfer learning model is not fully evaluated because
early experiments have shown it to converge to suboptimal
solutions.

� A multitask network, which jointly trains the supervised
learning and RL models described above.

Multiple experiments have been conducted to assess the scalabil-
ity of the presented model. Generally, four settings are considered
as seen in Table 1. In each case, the action space is approximately
doubled, resulting in vocabulary sizes of 111, 201, 401 and 806. The
dataset size exhibits disproportionate growth ranging from 1,311
to 18,523 examples.

The implementation of the work conducted is available online.1

6 RESULTS
6.1 Scalability
The results, which are displayed in Table 2, demonstrate that it is
possible to train a seq2seq network with the methods of value-based
RL. For limited problem sizes, these methods are able to match or
even surpass ambitious baselines such as supervised trained mod-
els in their stronghold settings. While conducting the experiments,
however, it became evident that the model is subject to scalability
constraints. With the initial parameter setting of# = 21for the
number of quantiles, it was not possible to scale to an action space
size of 401 without a drop in performance. Instead, the hyperpa-
rameter had to be reduced to5, which seems to lift the upper limit
of its scalability to the 806 setting.

6.2 Exemplary Outputs
The evaluation in this section refers to the 401 setting, as this is
the setting for which both RL models are still able to match or

1https://github.com/ScientiaEtVeritas/rainbow-dialogues

4

	Abstract
	1 Introduction
	2 Related Work
	3 Sequence-to-Sequence Models
	4 Methodology
	4.1 Reinforcement Learning Setting
	4.2 Experience Replay for Sequence-to-Sequence Models
	4.3 Teacher Forcing
	4.4 Temporal Difference Error
	4.5 Utilization of Demonstration Data

	5 Experiments
	6 Results
	6.1 Scalability
	6.2 Exemplary Outputs
	6.3 Ablation Study
	6.4 Utilization of Demonstration Data

	7 Conclusion
	8 Future Work
	Acknowledgments
	References
	A Rewards
	A.1 BLEU
	A.2 ROUGE

	B Implementation
	B.1 Episodes
	B.2 Normalization
	B.3 Multi-Step Learning as Convolution

