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Abstract 
Generally speaking, the speaker-dependence of a speech recognition system stems from 
speaker-dependent speech feature. The variation of vocal tract length and/or shape is one 
of the major source of inter-speaker variations. In this paper, we address several methods of 
vocal tract length normalization (VTLN) for large vocabulary continuous speech recognition: 
(1) explore the bilinear warping VTLN in frequency domain; (2) propose a speaker-specific 
Bark/Mel scale VTLN in Bark/Mel domain; (3) investigate adaptation of the normalization 
factor. Our experimental results show that the speaker-specific Bark/Mel scale VTLN is bet- 
ter than the piecewise/bilinear warping VTLN in frequency domain. It can reduce up to 12% 
word error rate for our Spanish and English spontaneous speech scheduling task database. 
For adaptation of the normalization factor, our experimental results show that promising 
result can be obtained by using not more than three utterances from a new speaker to esti- 
mate his/her normalization factor, and the unsupervised adaptation mode works as well as 
the supervised one. Therefore, the computational complexity of VTLN can be avoided by 
learning the normalization factor from very few utterances of a new speaker. 



1    INTRODUCTION 
The variations in speaker, context, and environment are the major challenges to the current 
state-of-the-art speech recognition systems. The performance of a speech recognition system 
could vary largely because of these variations in practical use. Therefore, how to make 
speech recognition systems as accuracy as possible, and meanwhile as robust as possible is 
a major issue in speech recognition. From point view of the present techniques for speech 
recognition, the major speaker-dependent source is from the speech signal. The reason that 
the speech signal is speaker-dependent is very complex. It is not only relating with the 
physiological differences of speakers, such as vocal tract shape and length, but also relating 
with the linguistic differences, such as accent, dialect and stress, etc., or even the physical 
and mental conditions of speakers [1, 2]. But it is generally agreed that one of the source 
of inter-speaker variation is the vocal tract length (VTL). Therefore, the vocal tract length 
normalization (VTLN) technique has been widely investigated recently for eliminating the 
VTL variation [1, 3, 4, 5, 6, 7, 8]. 

In general, two issues are involved in VTLN: (1) Given the speech data from a speaker, 
how to obtain the normalization factor; (2) Given a normalization factor, how to do the nor- 
malization; Strictly speaking, step (1) should be how to obtain the vocal tract length 
from the exact VTLN point of view. Since, with the present VTLN method, one generally 
calculates a factor which reflects the differences in vocal tract between different speakers, 
instead of directly measuring the VTL of each speaker, we refer step (1) as obtain the nor- 
malization factor. We also refer normalization factor as warping factor in this paper, 
since the factor is used to warp the spectrum in frequency axis for the normalization purpose. 
For obtaining the warping factor, there are basically two methods, that is, obtaining the fac- 
tor from calculating VTL or from line search. It has been shown that VTL has relationship 
with formant positions, and hence it could be calculated from the formant frequency based on 
the linear predictive model [3, 4, 7, 9]. The disadvantages of this method are: (a) formant 
frequency and its relationship with VTL are highly dependent on the context, and could 
vary largely with different context for the same speaker [9]. Thus calculation of formant 
frequency based on an UN-constraint context can not reflect the differences of VTL between 
different speakers; (b) it is necessary to separate and select the voiced speech data, since 
it does not make sense to calculate formant frequency based on unvoiced speech data (like 
consonants and noises). However, this could be a serious problem for practical use, especially 
for the highly co-articulated conversational speech signal; (c) the criterion of calculating the 
warping factor is not consistent with the criterion of estimating the other parameters of 
acoustic models which are usually estimated under the maximum likelihood (ML) training 
criterion, and hence can not guarantee that the normalization with such factor can increase 
the ML matching score. Because of the lack of a high accurate, context-independent, and 
robust VTL calculation technique, the method of obtaining warping factor based on VTL 
calculation seems difficult for practical use. 

Given the above reason, the line search method was proposed and investigated in [5, 6, 8]. 
The advantage of the line search is that it does not need to consider either the relationship 
between VTL and the formant frequency or the separation of voiced and unvoiced speech, and 
it is consistent with the acoustic model training criterion. Actually, the VTLN based on the 
line search factor does not exactly mean it is doing vocal tract length normalization, 
because the warping factor is obtained in the way to increase the matching score of the 
acoustic model, and it does not necessarily reflect the difference in vocal tract length (the 
variation in vocal tract shape could also affect on the line search warping factor). The major 
disadvantage of the line search is that it is very expansive in computation, since one needs 
to carry out the decoding process for every possible factors and select the one with which 
the matching score is the best. Fortunately, this exact and very time consuming decoding 
process, could be simplified without significant loss of recognition accuracy. 

For normalizing the speech feature given a warping factor, two methods have been pro- 



posed, that is,_ the frequency warping, and the Bark/Mel scale warping. They warp the 
spectrum at different stage in the front-end, though both of them warp the spectrum in 
frequency axis. It has been proved that lower formant position corresponds to longer VTL 
and vice visa, though this kind of relationship is context-dependent and not purely linear 
[9]. Therefore, a intuitive method of VTLN is to warp the spectrum in frequency axis, so 
that the formant positions in the normalized spectrum will towards the formant positions in 
the standard spectrum (usually the average among many speakers). We referred this kind of 
VTLN as frequency warping (FWP) in [10]. The FWP was also proposed and investigated in 
[5,_ 7, 8], where the spectrum was warped with linear or exponential rule. The problem with 
this method is that there exists bandwidth mismatch, since the bandwidth of the original 
spectrum is fixed. On the other hand, one has to tackle the spectrum interpolation problem, 
since the original spectrum only has values at integer frequency points in the computer pro- 
gram implementation. The one-Bark-shift method was proposed in [4], where, instead of the 
spectrum, the filter banks were shifted one-Bark in Bark domain according to the auditory 
results that the spectral difference between male and female speakers is approximately one 
Bark. However, as mentioned in [4], such difference is dependent on frequency (less than one 
Bark in low frequency). Thus many constraints have been impacted on the one-Bark-shift 
method. Those constraints make the method complex and not easy for use. In addition, the 
shift was not consistent with the training criterion. Another implementation of VTLN in 
Mel domain was reported in [6], where the center frequency and width of each Mel scale filter 
bank was warped according to the warping factor. Our method for implementing VTLN in 
Bark/Mel domain is also warping the filter banks space. But we view the Bark/Mel scale 
for every warpingfactor as a speaker-specific Bark/Mel scale, and do the warping based on 
such speaker-specific scale, so that we can avoid the bandwidth mismatch problem. 

We investigated VTLN in [10], where we implemented VTLN in the Bark scale filter 
bank front-end, obtained the warping factors either from formant or from line search, and 
used the FWP method for normalization. The experiments were carried out on the large 
vocabulary Spanish spontaneous speech scheduling task database. Our experiments showed 
that the FWP VTLN based on the line search warping factors could reduce up to 10% word 
errors. However, there was no improvement with the formant-based VTLN, the exponential 
warping rule was not better than the linear warping rule in our experiments. We found 
that the main reason for the inferior performance of the formant-based VTLN is because of 
the high context-dependence of formant frequency. Since we calculated formant frequency 
with an UN-constraint context, i.e, there is no guarantee of phoneme balance in the context 
among the speakers, the obtained formant frequency could not reflect the real difference of 
VTL among those speakers. 

In this paper, we keep using the line search method to obtain warping factor, but tackle 
different normalization methods. We first explore the bilinear warping rule with the FWP 
method, since there is no bandwidth mismatch problem with this warping rule. Then we im- 
plement the VTLN in Bark/Mel domain. We refer our method as speaker-specific Bark/Mel 
scale VTLN, since we view the Bark/Mel curve with different warping factor as a speaker- 
specific curve. Though warping the spectrum in Bark/Mel domain should be equivalent to 
warping it in the frequency domain, our implementation can avoid the bandwidth mismatch. 
Moreover, there is no need to do spectrum interpolation as in the FWP VTLN, and there 
is no constraints on the warp as in [4]. In addition, the speaker-specific Bark/Mel scale 
VTLN is very simple in implementation, and there is no need to specify the warping rule. 
Our experiment results show that the speaker-specific Bark/Mel scale VTLN is better than 
the piecewise/bilinear frequency warping VTLN, and can reduce up to 12% relative word 
error rate for our Spanish and English spontaneous speech scheduling task database. The 
VTLN is usually considered as a time consuming technique for speaker normalization. In this 
paper we investigate the adaptation of the warping factors in the supervised/unsupervised 
adaptation mode. The results show that the promising result could be obtained by using 
not more than three utterances from a new speaker to learn his/her warping factor, and the 



unsupervised adaptation mode works as well as the supervised one. Therefore, the compu- 
tational complexity of VTLN can be alleviated by learning the warping factor from very few 
utterances of a new speaker. 

2    VOCAL TRACT LENGTH NORMALIZATION 
Since the Bark/Mel scale filter bank coefficients (spectral or cepstral coefficients) are the 
popular preprocessing in the current state-of-the-art speech recognition systems [11, 12, 13, 
14, 15], we only address VTLN based on this kind of front-end preprocessing in rest of this 
paper. In this section, we describe the two different front-end implementations of VTLN, 
i.e, the frequency warping method in frequency domain and the speaker-specific Bark/Mel 
scale warping in Bark/Mel domain. We explore to use a bilinear warping rule in frequency 
warping method. 

2.1    Preprocessing 
The recorded speech signal is assumed to be transmitted via some kind of channel and to 
be received via some kind of receiving device. In the transmitting and receiving process, the 
clean speech signal is disturbed by channel distortions and some additive noises. Generally, 
the channel distortion is assumed to be multiplicative in frequency domain, so that the 
received speech signal can be expressed as: 

X{Lü)   =   H(u)S(u>) + N(u) (1) 

Where X{u), S(LO), H(UJ), and N(u>) are the spectrum of the received speech signal, the clean 
speech signal, the channel response, and the additive noise signal. We assume that X{UJ) has 
been segmented with a Hamming window, so that H(u) and N(UJ) also include the effect 
of pre-emphasis and the Hamming window. In the Bark/Mel filter bank front-end, X{u) 
is integrated with the filter bank using band pass filters spaced according to the Bark/Mel 
scale, and usually have triangular or trapezoid shape [12, 14, 16]. The integration with the 
filter bank can be formulated as: 

0(n)   =    J2 Tn(u)X(u)     0<n<N-l (2) 
w=ln 

Where 0{n) is n-th filter bank output, N is the number of filters, ln and hn are the lower 
and upper bound of the n-th filter Tn{u>). The bandwidth of each Tn{u), i.e., hn — ln, depends 
on the Bark/Mel scale. We evaluate our VTLN methods based on two different filter bank 
coefficients, the Perceptual Linear Predictive (PLP) cepstral coefficients (PLPCC) is used 
to carry out the experiments for the piecewise/bilinear frequent warping VTLN and the 
speaker-specific Bark scale VTLN. The Mel frequency cepstral coefficients (MFCC) is used 
to carry out the experiments for the speaker-specific Mel scale VTLN. 

In the PLPCC front-end, we use the same Bark scale and filter bank shape as in [14]. 
We calculate 21 filter bank coefficients and use them to derive 13 LPC-Driven cepstral 
coefficients. Then we combine the cepstral coefficients and power with their first and second 
derivative to generate a 42-dimensional feature vector. Finally, this vector is transformed 
with a linear discriminant analysis (LDA) matrix, and reduced to 28 coefficients. 

In the MFCC front-end, we use the Mel scale and a triangular shape filter bank [11, 12]. 
We calculate 30 filter bank coefficients and derive 13 cepstral coefficients via the discrete 
cosine transform.    We also combine the cepstral coefficients with their first and second 



derivative to generate a 39-dimensional vector and reduced to 28 coefficients after the LDA 
transformation. The major difference between the PLPCC and MFCC is that the filter bank 
coefficients are processed with some perception rules in the PLPCC front-end, and the filter 
bank shape is not triangular. We use the Mean-subtraction in both front-ends. 

2.2    VTLN based on frequency warping 
Figure 1 is the block diagram of the VTLN based on frequency warping method as normal- 
ization in the PLPCC front-end. 
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Figure 1: Frequency warping VTLN 

Where x(t) is the input speech signal, Oa(n) is n-th filter bank output, and a is the 
warping factor. Note that the warping factor a is dependent on speaker. We write it as a 
for simplicity throughout this paper. Figure 1 can be expressed as: 

tJ=h„ 

Oa(n)   =     Yl Tn(u)X(Va{Lo))     0<n<N-l (3) 
U)=\n 

Where <pa(a>) is the warping function.    If let ipa(co)  = LV, then equation (3) is equal to 
equation (2) which means no warping.   Compared to 0(n) in equation (2), Oa(n) depends 
on the speaker-specific warping factor and the warping rule. We use two different warping 
rules in this method: 

(1) piecewise rule: 

<Pa{U) 
a 1co     if to < üü0 

bu) + c   if Lo > u>o 
(4) 

(2) bilinear rule [17]: 

tpa(u) 
, .    (1 — a)sin(uj)    . 

vl-(1-a)cos(w)" 
(5) 

Where a is the speaker-specific warping factor, u0 in equation (4) is a fixed frequency 
which is set with experiment to handle the bandwidth mismatching problem,_ and b, c can 
be calculated with a known to0. If we set LO0 = uN, the warping rule becomes linear. Where 
LON is the Nequist frequency and cvN - 8000KHz in this paper. Figure 2 and 3 are the 
warping curves of the piecewise and bilinear rule. Note that according to equation (4) and 
(5), a > 1.0 corresponds to compressing the spectrum, and a < 1.0 corresponds to stretching 
the spectrum, and a = 1.0 corresponds to no warping case. 

In figure 2 and 3, three curves are presented in each Figure, which reflect the range of the 
warping factors obtained in the training process. The lower and upper curves correspond 
to the minimum and maximum factors, and the middle one corresponds to unit warping 
factor (no warping). The area between the upper and lower curve is the possible range of 
warping factors obtained in our experiments. We observed that the warping factors of female 
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Figure 2: Piecewise warping curves 
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Figure 3: Bilinear warping curves 

speakers are dominant in the area between the lower and middle curve, which corresponds 
to spectrum compress, and the warping factors of male speakers are dominant in the area 
between the middle and upper curve, which corresponds to spectrum stretch at frequency 
axis. This is consistent with the fact that female's VTL is generally shorter than male's, 
and the formant positions are higher than the male's. Thus for the normalization purpose, 
in general, most of the female's spectrum should be compressed towards the standard one, 
and vice visa for male's spectrum. From the figures we can see that the possible range of the 
warping factor is very limited, from 0.82 to 1.07 in the piecewise case, and 0.92 to 1.10 in 
the bilinear case. The F0 in Figure 2 is the threshold for handling the bandwidth mismatch 
problem, and there is no such need in the bilinear case. In general, only those values of X(u) 
where u takes a integer value are available in the computer program implementation. After 
warping, (pa(u>) could be no integer value, and hence X(ipa(uj)) does not exist. Therefore, 
one has to find a way to estimate X((pa(uj)) based on the available values of X(u). We used 
a simple linear interpolation method to estimate X((pa(u)) in [10], in which X((pa(u)) = 
pX(üüi) + (1 - p)X(ujh). Where u>i is the greatest integer satisfied with u>i < fa{w), vh is the 
smallest integer satisfied with uh > <pa(u), and p is proportional to the distance between 
u>h and <pa(u}). This interpolation method works well in our JANUS Spanish, German, and 
Switchboard VTLN speech recognition systems [10, 18, 19]. 

2.3    VTLN based on speaker-specific Bark/Mel 
We view the measured Bark/Mel scale presented in [9, 20] as an average scale which applies to 
all speakers. However, for a specific speaker, because of the specific vocal tract shape/length, 
the Bark/Mel scale should be different in some extent. Thus we do VTLN in the way to find 
a specific Bark/Mel scale for each speaker, and the VTLN process is merged into the filter 
bank integration under the speaker-specific Bark/Mel scale. Since we use the line search to 
adjust the Bark/Mel scale towards a specific speaker under the training criterion, the final 



speaker-specific Bark/Mel scale is consistent with the training criterion, and hence guarantee 
to increase the acoustic matching score. We evaluate the speaker-specific Bark scale VTLN 
on the PLPCC front-end, and the speaker-specific Mel scale VTLN on the MFCC front-end. 
Figure 4 is the block diagram of the speaker-specific Bark/Mel scale front-end preprocessing. 
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Figure 4: Speaker-specific Bark/Mel scale VTLN 

Compared to Figure 1, the frequency warping step is removed, and the VTLN is 
implicitly implemented by the speaker-specific Bark/Mel scale filter bank integration. Figure 
4 can be expressed as: 

ü/=/ia(n) 

Oa(n)   =      £    Tn(u,)X(u>)     0<n<N-l (6) 
w=la(n) 

Compared to equation (3), here the difference is that the filter bank space, i.e., ha(n) — la(n), 
is dependent on the speaker-specific warping factor a, since each speaker has a specific 
Bark/Mel scale. We define the speaker-specific Bark scale: 

Ba(u) = 6ln{u/(aa0) + ^(w/(aa0))
2 + 1)) (7) 

Where a is the speaker-specific parameter, a = 1.0 represents the no warping Bark scale. 
We let «o = 12007T, so that the no warping Bark scale is the same as equation (3) in [14]. If 
we let & = io/a, which represents the warped frequency, then equation (7) becomes: 

B(u) = Qln(tü/a0 + ^(cb/a0)
2 + l) (8) 

Equation (7) and (8) show that the filter bank integration with the speaker-specific Bark 
scale is equivalent to the integration in the warped frequency domain with the normal Bark 
scale. However, as we mentioned in section 2.2, if we first warp the spectrum, we have 
to estimate the spectrum values X(LO) where u> is not an integer, and have to handle the 
bandwidth mismatch probelm since X(LO) has a fix bandwidth (8KHz in our case). According 
to equation (7), for different warping factor a, we will get a different maximum number of 
Bark coefficients, which corresponds to the Nequist frequency LO^ (as showed in 5). Let 
the maximum number of Bark coefficients for warping factor a is Bmax — Ba{u^), and the 
number of filter banks is N, then the filter bank space is Bmax/N for a in Bark domain. 
The center frequencies of the filter banks in frequency domain can be found according to 
the Bark curve with a. Therefore, no filter bank will have center frequency which is greater 
than ujpj. In the same way, We define the speaker-specific Mel scale as equation (9). 

Ma{u) = 25%logw{l + u/{a0a)) (9) 

Where a0 = 14007T. Equation (9) is from [13, 21], which is an approximation of Zwicker's 
Bark scale [20]. Figure 5 and 6 are the warping curves of the speaker-specific Bark/Mel 
scale. 
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Figure 5: Bark scale warping curves 
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Figure 6: Mel scale warping curves 

The three curves in each Figure have the same meaning as in Figure 2 and 3. We also 
observed that the warping factors of female speakers are dominant in the area between 
the lower and middle curve, which corresponds to more compress in the spectrum, and 
the warping factors of male speakers are dominant in the area between the middle and 
upper curve, which corresponds to less compress in the spectrum. The major advantage of 
the speaker-specific Bark/Mel scale VTLN is that it is very simple and effective. Viewing 
equation (7) and (9) as speaker specific curves allow us to adjust the other parameters in 
the formula for a specific speaker. 

3    TRAINING AND DECODING PROCEDURES 
Compared to the training and decoding procedures in a no-VTLN speech recognition system, 
there is an additional step, i.e., finding the best warping factor, in the training and decoding 
procedures of a VTLN system. In order to avoid the expansive computation in searching the 
best warping factor, we use a suboptimal method in searching warping factors, with which 
the computational cost can be dramatically reduced without significant loss of recognition 
accuracy. 

3.1     Training procedure 
Suppose Oa(t) is the speech feature vector sequence of the input utterance with warping 
factor a. Let W be the transcription of the input utterance, A be the parameter set of 
the acoustic models of a no-VTLN system, and P(Oa(t) | A) is the probability density 
of the speech feature. We use the Hidden Markov Model (HMM) as acoustic model, and 
the mixture-gaussian density as the output probability density of each HMM state. The 
following procedure is used to train a VTLN system: 



1. Set the initial warping factor a = 1.0 for all speakers. 

2. Do Viterbi alignment with the transcription W to get the best state segment s*: 

s* = arg max P(Oa(t), st | A, W) (10) 

-,*. 3. Search the best warping factor in a limited grid based on s*t 

a* = argmaxP(Oa(i) | s*,k,W) (11) 
l<a<h 

4. Do Viterbi alignment based on W and the best warping factor a* to collect the sufficient 
statistics and update the model parameters. 

A* = arg max P(Oa* (t) | A, W) (12) 
A 

5. Set a = a* and A = A*, and go to step 2. 

Where st in step 2. is the state sequence, / and h in step 3. are the lower and upper 
bound of the grid search line. They are defined as I = a — A and h = a + A, and A is a 
small positive value. The form of Oa(t) as a function of a is determined via equation (3)-(5) 
in the frequency warping case, and equation (6)-(8) in the speaker-specific Bark/Mel scale 
case. We can see that the relationship between Oa(t) and a is generally nonlinear and quite 
complex. This is the major reason that the line search method was used to train a in order 
to avoid the difficulty of mathematical processing. 

The above procedure stops if there is not significant difference in the warping factors 
between two consecutive training iterations. Note that in step 3., the best warping fac- 
tor search is only based on the fixed alignment s* which is obtained from the no warping 
speech feature, so that we avoid the Viterbi alignment for every possible warping factor. 
Our experiments show that this simplified training procedure can dramatically reduce the 
computational cost for the warping factor search without noticeable loss of the recognition 
accuracy. 

3.2     Decoding procedure 
In the VTLN system decoding procedure, the input utterance is first decoded with warping 
factor a = 1.0 and the output sentence (hypothesis) is used to align with the speech signal by 
Viterbi alignment to get the state segment. Based on the state segment, the matching score 
is calculated with all possible warping factors, and the one with the best matching score is 
selected as the warping factor for this input utterance. With the best warping factor, the 
input utterance is decoded again to get the final hypothesis. Here is the decoding procedure: 

1. Set the initial warping factor a = 1.0 

2. Decode the input utterance Oa(t): 

W = arg max P(W | Oa(t), A) (13) 
w 

3. Do Viterbi alignment with the hypothesis W to get the best state segment. 

5i* = argmaxP(Oa(*),5t|A,W0 (14) 
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4. Find the best warping factor based on the segment s*. 

a* = argmaxP(Oa(i) | s*, A) (15) 
a 

5. Decode again based on the best warping factor a*. 

W = argmaxP(W |0„.(i),A) (16) 
w 

Where Oa(t), st, and A have the same meaning as in the training procedure. W is the 
hypothesis of the first decoding pass without VTLN, W is the hypothesis with VTLN. As in 
the training procedure, we search the best warping factor based on the fixed state segment 
s*, with which we can dramatically increase the decoding speed without significant loss of 
the recognition accuracy. 

4    EXPERIMENTS 
All experiments are based on our JANUS-III speech recognition system. Compared to the 
JANUS-II system, the new system uses context dependent polyphone (with multiple left 
and right phones) as speech unit for acoustic model, and the models are clustered and split 
based on the decision-tree. We already used the piecewise frequency warping VTLN in our 
JANUS-III system for Switchboard database and the spontaneous scheduling task database 
of English, German, and Spanish language, and observed up to 12% relative word error 
reduction [10, 18, 19]. In this section, we mainly report the experimental results of the 
bilinear frequency warping VTLN and the speaker-specific Bark/Mel scale VTLN based on 
our Spanish and English spontaneous scheduling task (SSST) database. 

4.1     Database 
The SSST database consists of two different kinds of data: push-to-talk dialogs and cross-talk 
dialogs. Two out of three of the data are cross-talk dialogs. Although they are all human 
to human dialogs, these data are recorded in very different styles. In push-to-talk recording, 
two speakers have to interface with a computer and push the "return" key to speak, so that 
simultaneous speaking can be avoided. In the cross-talk recording, two speakers can interrupt 
each other at any time, hence the cross-talk dialogs contain a lot of simultaneous speaking. 
We also observed that the cross-talk data are more disfluency than the push-to-talk data. 
Details about the SSST database can be found in [22]. The training set consists of 10650 
utterances (about 16 hours speech data). Among of them, 5785 utterances were recorded 
from 68 female speakers, and 4865 utterances were recorded from 72 male speakers. We 
use the push-to-talk and cross-talk dialogs together to train the acoustic models, but keep 
an individual test set for each of them. The push-to-talk test set consists of 86 utterances 
recorded from three male and four female speakers. The cross-talk test set consists of 117 
utterances recorded from three male and three female speakers. All speech data were recorded 
at 16KHz sampling rate. The test vocabulary consists of 4606 unique words in the training 
set. For both test sets, the out of vocabulary word rate is 2.35% for push-to-talk test set, 
and 0.89% for cross-talk test set. The language model is the class-based trigram language 
model. 
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Figure 7: Histogram of piecewise warping factors 
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Figure 8: Histogram of bilinear warping factors 
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4.2 Distribution of piecewise and bilinear warping factors 
Figure 7 and 8 are the statistical distributions of the piecewise and bilinear warping factors 
in the frequency warping VTLN. 

The distributions of warping factors for male and female speakers demonstrate that the 
warping trend is to compress female speaker's spectrum, and to stretch male speaker's spec- 
trum along frequency axis. This warping trend is consistent with the fact that female speak- 
ers, in general, have higher formant frequencies (shorter VTL) compared to male speakers. 
This also illustrates that the warping factors do reflect the VTL difference in some extent, 
though they are obtained by line search, instead of directly calculating the VTL or formant 
frequency. 

4.3 Results of frequency warping VTLN 
Table 1 is a summary of the testing results for the frequency warping VTLN with piecewise 
and bilinear warping rule. The results were obtained in the push-to-talk test set. The first 
column in table 1 are the names of testing speaker, and the first character (M/F) in each 
name represents gender of the speaker. Table 1 shows that both piecewise and bilinear 
warping can reduce about 10% word errors. But the bilinear warping rule does not show 
remarkable improvement, though it can handle the bandwidth mismatch problem, and better 
than the exponential rule [10]. 

4.4 Distribution of Bark/Mel scale warping factors 
Figure 9 is the statistical distribution of the speaker-specific Bark scale factors, and Figure 10 
is the distribution of the speaker-specific Mel scale factors in the speaker-specific Bark/Mel 
scale VTLN. 
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Speaker Baseline Piecewise Bilinear 
Meba 10.4% 8.6% 9.1% 
Mfmm 20.5% 21.6% 17.8% 
Mofc 11.8% 8.5% 12.3% 
Macc 27.1% 26.1% 26.3% 
Mrnn 31.5% 28.7% 29.3% 
Fcba 16.0% 14.4% 12.1% 
Fnba 15.5% 13.3% 12.6% 
Fmcs 25.0% 22.3% 22.5% 
Fmgl 25.0% 22.7% 25.5% 
average 21.8% 19.9% 19.6% 

Table 1: Word error rate for each speaker 

1 < i 

/ x / 

0.60.6«.68).7D.760.80.8«.8S).9aD.96 1 1.04.08.13.161.21 

Figure 9: Histogram of Bark scale warping factors 

Figure 9 and 10 show the same warping trend for the spectrum of male and female 
speakers, though the speaker-specific Bark/Mel scale factors are obtained by adjusting the 
Bark/Mel scale, instead of warping the spectrum as in the frequency warping method. This 
illustrates the correctness of the speaker-specific Bark/Mel scale VTLN. 

4.5 Results of Bark/Mel scale warping VTLN 

Table 2 is the summary of the testing results for the speaker-specific Bark/Mel scale VTLN. 
The results were obtained in the push-to-talk test set. 

Table 2 shows that both speaker-specific Bark and Mel scale VTLN reach the same word 
error rate, though the baseline performance of the MFCC front-end system is slightly better 
than that of the PLPCC front-end system. The speaker-specific Bark/Mel scale VTLN is an 
effective approach because of the simplicity, though the performance is only slightly better 
than that of the frequency warping VTLN, 

From Table 1 and Table 2 we can see that the improvement is quite different among the 
testing speakers, the word error reduction vary from 30% to - 6% from speaker to speaker, 
and this variation seems independent to the baseline word error rate of each speaker. We 
think that the reason is because the warping factors are searched based on the ML criterion. 
Since the ML criterion can only guarantee that the searched warping factor is the best one 
in the sense of increasing the matching score of the warped speech feature with the appeared 
acoustic models. But the warped speech feature may get much better matching score with 
the other acoustic models which do not appear at the transcription (equation (9) in the 
training procedure) or the hypothesis (equation (13) in the decoding procedure). Therefore, 
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Figure 10: Histogram of Mel scale warping factors 

Speaker Bark Mel 
baseline VTLN baseline VTLN 

Meba 10.4% 8.2% 10.8% 8.6% 
Mfmm 20.5% 19.3% 20.8% 19.0% 
Mofc 11.8% 9.4% 12.7% 12.7% 
Mace 27.1% 25.9% 28.1% 27.5% 
Mrnn 31.5% 27.4% 27.4% 24.6% 
Fcba 16.0% 14.5% 16.2% 13.9% 
Fnba 15.5% 15.5% 14.9% 15.9% 
Fmcs 25.0% 21.2% 22.5% 21.0% 
Fmgl 25.0% 21.2% 25.0% 21.2% 
average 21.8% 19.4% 21.0% 19.4% 

Table 2: Word error rate for each speaker 

searching the warping factor based on some kind of discriminative criterion should alleviate 
this problem. 

5    VTL ADAPTATION 
The VTLN has been considering as a time-consuming speaker normalization technique, es- 
pecially with the line search method to find the best warping factor. Therefore, it's crucial to 
find a way to reduce the computational cost. In this section, we investigate the adaptation 
of the warping factor in the speaker-specific Bark scale VTLN. Suppose that speaker-specific 
warping factor reflects the vocal tract length and/or shape of the speaker. Since only one 
factor need to be learned for each speaker, very few speech samples from each speaker should 
be enough for the warping factor estimation. Table 3 contains the results of the adaptive 
VTLN. We use the first 1-3 utterances of each speaker as the adaptive data, and run the 
VTLN system through the adaptation utterances to get the warping factor for every speaker. 
Then the learned warping factor will be used in testing all rest of the utterances from that 
speaker. Therefore, there is no need to search the warping factor in the decoding process. 
Here we suppose that the system can verify any speaker change in practical use. 

Table 3 shows that we can simply search the warping factor based on the first utterance 
of the speaker in the unsupervised mode, use the obtained warping factor to normalize rest 
of the utterances from the same speaker without significant loss of recognition accuracy. 
Figure 11 shows distributions of the warping factors from four testing speakers (two male 
and two female) obtained in testing process. 
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Utt No. Baseline Supervise Unsupervise 
1 23.8% 21.8% 21.9% 
2 23.8% 21.9% 22.1% 
3 23.8% 21.9% 21.9% 

Table 3: adaptation of warping factor 

0.640.680.720.760.80.840.880.920.96 1  1.041.081.121.161.2 

Figure 11: Distribution of the warping factors in test 

It illustrates that the warping factor for a speaker could vary from utterance to utterance 
in a limited range. But there is significant difference between male and female speaker. With 
one or two utterances, the warping factor could be located in the male or female area. 

6    RESULTS WITH THE CROSS-TALK TEST SET 
As we mentioned before, the cross-talk dialogs contain a lot of simultaneous speaking, and 
are more disfluency than the push-to-talk data. Thus they are more difficult for recogni- 
tion. Table 4 contains the results obtained with the speaker-specific Bark scale VTLN and 
piecewise frequency warping VTLN based on the cross-talk test set. 

Baseline Bark Piecewise 
23.4% 22.3% 23.0% 

Table 4: Word error rate for Cross-talk test set 

Table 4 demonstrates that VTLN is not very effective for the cross-talk data. One of the 
reason is that the average length of the cross-talk utterances is only 9.5 words (compared to 
38.5 words per utterances in the push-to-talk data). This could be a problem, since the VTLN 
only uses the current utterance to estimate the warping factor. All testing results in this 
paper are obtained without separating voiced/unvoiced speech segment, thatis, all speech 
data are involved in calculating the warping factors. We used to separate the voiced/unvoiced 
speech based on the Viterbi alignment, and only used the voiced speech to calculate the 
warping factor in training and testing processes [10]. But the results were not better than 
that of no voiced/unvoiced speech separation. According to [8], it seems more sophisticated 
voiced/unvoiced separation method may make the VTLN become effective for this kind of 
cross-talk data. 
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7    VTLN AND GENDER-DEPENDENT SYSTEMS 
In this section, we will show that the gender-independent (GI) VTLN system is better than 
the gender-dependent (GD) system. The speaker-specific Bark scale VTLN is used in this 
experiment. The results are obtained from the push-to-talk test set. 

GI GD GI-VTLN GD-VTLN 
21.8% 20.8% 19.6% 19.0% 

Table 5: GI and GD vs VTLN system 

Note that, in the GI-VTLN test, we calculate the average male/female warping factors in 
the training set, and offer them to the male/female speakers in the test set, so that there is 
no need to search the warping factors during testing (suppose the system can detect gender). 
This is equivalent to the gender-dependent system, except the acoustic models are trained 
with the VTL normalized speech feature, instead of gender-dependent speech data. Table 
5 shows that such kind of VTLN test is much better than that of the real GD system. 
Moreover, the real GD-VTLN system does not present significant improvement compared 
to the GI-VTLN system. These results illustrate that the VTLN mainly alleviate the VTL 
difference between male and female speaker. With the same gender speakers, since their 
VTL differences may be very small, the algorithm for the warping factor calculation and 
normalization should have high frequency resolution. 

8    RESULTS BASED ON ENGLISH DATABASE 
In this section, we present the testing result of the speaker-specific Bark scale VTLN and its 
adaptation based on our English Spontaneous Scheduling Task (ESST) database. Compared 
to the SSST database, the ESST database is much bigger (contains about 30 hours speech 
data). The evaluation set contains 612 utterances recorded from 13 speakers (5 female and 
8 male speakers). The vocabulary contains 3200 words, and the out of vocabulary rate is 
0.68%. The language model is also the class based trigram language model. 

Baseline Bark-VTLN Adaptation 
23% 20.2% 20.3% 

Table 6: Word error rate for ESST test set 

Table 6 contains the word error rates obtained from the baseline system (the GI system), 
the speaker-specific Bark VTLN system, and the unsupervised VTLN adaptation (only using 
the first utterance of each speaker to search the warping factor during test). It shows that 
the VTLN is as effective as for the SSST database, and the unsupervised adaptation based 
on one utterance is very efficient for learning the warping factor. 

9    CONCLUSION 
In this paper, we address the methods of vocal tract length normalization and adaptation 
for large vocabulary continuous speech recognition. We explored the bilinear warping VTLN 
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based on the frequency warping method, the speaker-specific Bark/Mel scale VTLN which 
warps the spectrum in Bark/Mel domain. The experimental results show the speaker-specific 
Bark/Mel scale VTLN is very simple and effective. We obtained 12% word error reduction 
with it. We also investigated the adaptation of the warping factor in order to reduce the 
computational cost in decoding process of the VTLN system. The results show that the 
VTLN is still very effective with only one utterance from each speaker to estimate the warping 
factor. We presented the results obtained from the cross-talk data and ESST database to 
demonstrate the effectiveness of our VTLN method, and the results obtained from VTLN 
system and gender-dependent system to illustrate that the VTLN system is better than the 
gender-dependent system, though the fixed warping factors were used for the VTLN system. 
Our results also show that the current VTLN basically alleviate the VTL differences between 
different gender speakers. 
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