
TUNING BY DOING: FLEXIBILITY THROUGH AUTOMATIC STRUCTURE OPTIMIZATION 

Ulrich Bodenhausen and Alex Waibel 

University of Karlsruhe, Computer Science Department. 

[LKD, 7500 Karlsruhe l, Gennany 

and 
School of Com purer Science, Carnegie Mellon University, 

Pittsburgh, PA 15213, USA 

ABSTRACT 
The successful application of speech recognition systems ro 
new domains greatly depends on the tuning of the architecture 
to the new 1.ask, especially if 1.he amount of training daca is 
small. In this paper we present 1.) an improved version of our 
Automatic Structure Optimization (ASO) algorithm that does 
this rnning nmomarically and 2.) a new Automatic Validation 
Analyzing Control System (AVACS) !hat is designed ro detect 
poorly generalizing models as early ns possible and to selec
tively change their learning and automatic strUcturing process. 
ASO and AVACS were applied to a Multi State Time Delay 
Neural Network and could improve the generalization perfor
mance of an already handtuned architecture from 85% to 
92.3% on an alphabet recognition task. 

1. INTRODUCTION 
Despite the aim to develop general purpose, speaker indepen
dent, very large vocabulary speech recognition systems, there 
is also a considerable number of applications lhat require the 
best possible recognition accuracy on a small, well defined, and 
customii:ed domain. Achieving the best possible perfonnance 
with HMMs, Neural Networks, or hybrid systems greatly 
depends on the tuning of the architecrure ro the particular task, 
especially if the amount of training d.1.ta is small (which is often 
true for customized applications). ln this paper we present 

• an improved version of our Awonuuic Structure Optimiza
tion (ASO) algorithm (1). [2), [3] that does this tuning auto
matically for neural necwork speech recognition systems 
and 

• a new Automatic Validation Analyring Control System 
(AVACS) that is designed to detect poorly generalizing 
models on a class by class basis as early as possible and to 
selectively change their learning and automatic s01Jcruring 
process. 

AVACS is an attempt townrds better teaching methods for arti
ficial neural networks. Instead of only presenting examples that 
have to be learned by the network, the system is frequently 
tested with a validation set to identify models that seem to learn 
weU. but do not lead to good generalization. While a validation 
set is used in many other systems to detennine the stopping cri
terion (by training until the maximum validation performance 
is reached), we extend the use of this set and propose ,t compar
ison of the confusion matrices on train and va.lid.'Ltion set to 
selectively detect the classes that generalize poorly. Because of 

· the constructive method that is used by ASO it is then possible 

1485 

to identify all resources that contribute to these classes and 
res1l"Ucture Md/or retrain them. 

In adwtion to the advanta.ge of offering an automatic architec
ture optimization that is automatically validated nnd conu-oUed, 
our approach also offers im attempt towards controlled error 
equalization. Consider a speech recognition t.'lSk with 50 words 
only. Although a recognition performance of 94% does not 
sound that bad it is highly undesirable if all errors occur for 
three words only. AVACS detects rhese kinds of irregularities 
and tells the learning/structuring module that something is 
going wrong. 

2. THE AUTOMATIC STRUCTURE 
OPTIMIZATION ALGORITHM (ASO) 

For the application of neural networks to speech recognition all 
of the following architectural parameters have to be well 
adapted to the task and the given amount of training dam (see 
Fig. 1): 

• the number of hidden units, 
• the size of input windows and 
• the number of states that model an acoustic event. 

The ASO algorithm automatically adapts all of these architec
tural parnmeters to the given task and amount of training elm.a 
in a single training run. The algorithm offers the flexibility ro 
apply neural net speech recognition systems to new domains 
without the need for manual tuning of the :1Tchitecture. 

The ASO algorithm tries to optimize the architecture of the 
system for best possible generalization performance. Accord
ing to Moody [6], the expected error on the test set can be 
approximated as follows; 

(1) 

where n is the number of training exemplars in the training set 

~. cr~/l is the effective noise variance in the response vari-

able(s), /\. is a regularization or weight decay parameter, and 
p cf/ is the effective number of parameters in a nonlineu. 
model. 

The idea of the ASO algorithm is to start with a small number 
of parameters for the given number of training exemplars 
(leading to a smnll second summand on the right side of the 
above equation) and increasing this number to decrease the 



(. MSTDNN - ·--·····,~, ~ for 

1.aA,=.t.10-"-".i:. sequt.n.tiaf 
L==:~::::L..:.J ! moae[ing? 

; 

t 
! MW ___ _,,...•-----many 

\-.., ____ .,..,__,llf-------

spectrogram 

◄► time 
ft.ow mucli temporal con.te:tt · 
from. tfie spectrogra,n? 

liiatkn 
unit.sf 

Fig. 1: Overview of the speech recognizer (Multi-State 
Time Dday Neural Network [MSTDNN] whjch combines 
a Time Delay Neurnl Network [TDNN) with Dynamic 
Tirne Warping [DTW]) and the relevant architectural 
parameters for the optimization process: 1.) How much 
temporal context is needed frorn spectrogram? 2.) How 
many hidden units nre necessary for the mapping? 3.) How 
many states are necessary for the sequential modeling'? 

expected error on the training set (the first summand in the 
above equation). The goal is to increase the second summand 
and to decrease the first summand until the best possible com
promise between a low traini.ng error and a high number of 
pammerers is reached. 
The ASO algorithm uses the following tuning strategies: 

• The time-shift invariance of the task are used to reduce the 
number of trainable parameters and to avoid learning of 
undesired features from the training data (like the length of 
phonemes). 

• The confusion matrix on the training dam is evaluated to 
selectively improve certain pnrrs of the acoustic modeling. 

• The number of sta.tes is increased if the acoustic modeling 
is too complex for the given number of states. 

• Hidden units with sigmoid activation function are allocated 
to specifically solve pairwise confusions (class" A" is con
fused with class "B" and vice versa) which are caused by 
inadequate decision boundaries. The approach is similar to 
the Boundary Hunting Radial Basis Function classifier [4]. 
The hidden units are added additionally to the direct con
nections between the input and the state unirs . 

• The crirerion for rhe allocation of resources is modified 
depending on the quotient p10 ,,, / n, where Pu,rnl is the 

total number of parameters and n is the number of training 
patterns. 

Unlike the human developer, the ASO algorithm starts making 
decisions about resource allocations very early in the training 

14Rn 

Confusion Matrix on 
Training Data 

increase the size of 
!he inpur windows of 
the state units with 
poor performance 

increase the number 
of states for the class 
with poor perfor 
mance 

Confusion-Symme
try Matrix on Train
ing Data 

nllocate a hidden unit 
for the most severe 
pairwise confusion 

increase the input 
window of the hidden 
unit 

Fig 2: The default order in which resources are allocated 
by the ASO algorithm. The elements of the confusion 
syrnmecry mmrix s iJ are computed from the elements 'ii 
of the confusion mnlrix as s .. = c .. c .. 

I) I) }I 

run, i.e. it is tuning the architecture while the network is learn• 
ing the msk ("tuning by doing''). This allows the algorithm to 
complete the optirniz.·'\tion process in a single training run. 

The default order in which resources are allocated is ns fol
lows: At first, the size of the input windows is incremented 
depending on the confusion matrix on the training data. If a 
certain class performs worse than the average class the width of 
the input windows is incremented by one frame. This proce
dure is repeated in the following epochs. If the size of the input 
windows gets close to the average duration of the sound that 
the corresponding state unit is modeling and the perfonnance is 
still not satisfactory, then a new state unit is added. The siie of 
the input window of the first state is halved (to avoid a dramatic 
increase in the number of parrunecers). The input window of 
the new state is gets the same size ns the window of the first 
state, but with randomly ini tialized connections. 

Hidden units are allocmed between the input and the scare units 
in addilon to the direct connections from the input to the state 
units (similar to the Cascade Correlation Algorithm (5)). The 
allocation is dependent on the pairwise confusion (class ''A" is · 
confused with cl.ass "B" and vice versa). The size of the inpur 
window of the new hidden unil is increased in the following 
epochs if the pairwise confusion could not be eliminnred. 
The default schedule for the allocation of resources is shown 
by Fig, 2. It can be altered by the Automatic Validation Analyz· 
ing Control System (AVACS, see next paragraph) if it does not 
lead to good generalization. 



ASO 

Trainin 
Output · 

Validation 
Output 

Structure 

i 

\ MSTDNN 
\ 

\ 

Training 
Data 

I 
I 

! 
i 
i 
! 

Validation 
Data 

Fig. 3: System overview: The training data is used to train 
the Multi State Time Delay Neural Network (MSTDNN). 
The output of the MSTDNN on the training dat,1 is used by 
the Automati c Structure Optimizer (ASO) to change the 
structure of the MSTDNN to improve the performance. 
The ~utput of the MSTDNN on the training and validation 
cu,ui 1s used by the Automatic Validation Analyzing Con
trol System (AVACS) to control ASO such that the general• 
ization performance is optimized. Other network 
optimization techniques like Optimal Brain Damage or 
Optimal Brain Surgeon can be used instead of ASO, too. 

3. THE AUTOMATIC VALIDATION 
ANALYZING CONTROL SYSTEM (AVACS) 

AVACS monitors the learning and tunin g process and is 
designed to detect poorly generalizing models on a class by 
class basis as early as possible (see Fig. 3). A vo.lidation set is 
used to test the generalization ability of the system frequently 
in the training run. The confusion matrices are computed for 
both the training and the validation data. From these matrices a 
new confusion-difference matrix with the elements d1• is com-
puted as follows: 1 

d;j = c;1(trair1) - Cjj (validation) 
(2) 

where C;j are the elements of the confusion matrices normal
ized by the number of appearances of a particular class in the 
data. The interpretation of the difference matrix is straightfor• 
ward: 

Small numbers or positive numbers ind.icare that the net
work generalizes well on the validation data. This means 
that the network should also genernlize well on the final test 
set if the valid,1tion set is representative for the task. In this 
case there is no need to limit the allocntion of further 
resources to further increase the perfonnance on the u-nin
ing data. See Fig. 4 for examples. Small numbers are usu
ruly not visible 
Neg11tive numbers indicate that the performance on the val
idation data is worse than the perfonnance on the training 
data, which is quite normal depending on the number of 
effective parameters, the number of training patterns and 
rhe noise variance of che data [6] , [7]. However, it is possi
ble to detect those classes that generalize worse than other 
classes. This could indicate four possible problems: 

1.) The ASO algorithm accidcr1ta1Jy allocated too many pan.u11-
eters. 
2.) The particular model does not fit because of initial condi
tions. 

3.) The particulnr model does not fit because the architecture of 
the network does not fit for the task. 
4.) The pnrticular model does not 5t because of inconsistent 
training/validation data. More examples of this particular class 
are needed for consistent training of !he syscem. 

There are many options for ' poor generalization recovery'. The 
simplest option is to contaminate all weights of a certain class 
with a certain amount of noise. This method, although very 
simple, perfonned very well in our experiments (with IO. 30% 
noise). Changing the weight decay parameter t.. is also very 
simple nnd effective. 

More sophisticated methods for 'poor generalization recovery' 
were tried, too. For example, it is possible to change the default 
order in which resources are allocated (see Fig. 2). Another 
option is to completely reinitialize the poorly generalizing pans 
of the network and to retrain them. In a limited number of 
experiments non of these methods perfonned better than the 
contamination with noise. In a real application it is probably 
best to try II certain nurn ber of these options and, if none of 
these helped, tell the user to collect more training dam or to 
accept the current generalization capability. 

4. SJ'MULATIONS 
The ASO algorithm with AVACS was applied to Multi State 
Time-Delay Neural Networks (MSTDNNs, [8], [9]), an exten
sion of the TDNN [10). The results are summarized in Table l. 
The ASO algorithm alone could improve the generalization 
performance of an already optimized architecture from 85% to 
91. 7% for ill\ alphabet recognition task with 2200 trruning pat• 
terns. While constructive and pruning methods tend to be very 
successful in optimizing tasks with medium-sized training 
databases (50 • 500 examples per class), it is much harder to 
optimize an architecture for extremly small databases (l O - 30 
examples per class). The ASO algorithm could still nchieve 
81.5% with only one quarter of the training cfa.ta (20 examples 
per class = 520 training patterns) because a smaller network 
was constructed. AVACS further improved the results on this 
extremely small training set (520 training patterns) from 81.5 % 
to 83.5% in preliminary experiments. 

5. DISCUSSION AND CONCLUSIONS 
The results with the ASO algorithm alone suggested that the 
algorithm c.w construct efficient nrchitectures in a single train
ing run that achieve comparable or better recognition accura
cies thru, manually tuned · architectures. ASO offers the 
flexibility to use a given amount of available training data with
out the need to mnnoally adapt the architecture to this amount. 
The good generalization ability on extremely small training 
sets [2], [3] can be explained by the unequal amount of training 
that the weights of the final system have received. Many con
nections are ndded late in the trmning run when the error i~ 
already very low. These connections are never trained by large 
error derivatives and their weights remain very close to thei.J 
random initialization [3). The ASO algorithm perfonns simi, 
larly on on•line handwritten character recognition tt1sks we 
have tested [I), (2), [3]. 





A 

B 

Fig. 4: A comparison of typical confusion-difference 
matrices for the alphabet recognition task with an 
extremely small training set (520 training patterns). The 
desired output is shown on the horizonr.al axis and the out
pul of lhe network is shown on the vertical axis, White 
blobs indicate a poor generalization with the size of the 
blob proportional to the value of dij• the confusion-differ~ 
ence (see Eq. 2}. Black blobs indicate a better performance 
on the valicfation data than on the training data. A) A hand
luned architecture with standa.rd weighl decay reached the 
best performance on the validation set after 385 epochs 
because weight decay tends co slow down learning. Test 
performance wr1s 75.7%. 8) The architecture optimized by 
ASO and AVACS reached the best vwidation performance 
after 175 epochs. Test perfonnance was 83.5%. A compar
ison of both matrices shows that 1.) ASO plus AVACS 
result in better generalization performance and 2.) ASO 
plus AYACS lead to fewer 'seri ous' generalization errors 
which are inwcated by large white blobs in the matrices. A 
fixed architecture witho ul weight decay performs even 
worse (more serious generalization errors Md lower tes t 
perforrnn.nce. 

AYACS is a.n attempt to improve the learning process by better 
analysis of the generalization errors of the system. It has the 
following advMtages: 

A validation set ruid confusion matrices are used in many 
systems n.nywny. so it is ensy to implement AVACS. 
AVACS can also work with pruning methods (like Optimal 
Brain Damage (OBD)[7) or Optimal Brain Surgeon (OBS) 
[11]). AVACS can propose poorly generalizing partS of the 
network that would benefit most from OBD or OBS. Thus 
the lime-consuming computation of second derivatives that 

is required by these methods is not necessnry for nil param• 
eters. 

• It can be used to change the weight decay parameter which 
can be very useful. 

• AVACS can also be used to selectively detect when more 
training datn is needed for certain classes. 

• AVACS allows n prediction of likely and less likely general-
ization errors. 

Preliminary results on a difficult task (spelled alphabet recogni
tion with only 20 training examples for each spelled letter) 
have been promising. Both proposed methods together (ASO + 
AVACS) allow ihe flexible use of neural networks for custom
ized speech applications th.it require best possible performance 
for the given amount of training dnw (usually small). Further 
experiments on other ta.Sks will be made for further evaluation. 

TABLE I. Alphabet Recognition Results Depending On 
Training Set Size (Preliminary) 

test performance test performance 
(520 training (2200 training 

pactems) patterns) 

handtuned 75.7% 85.0% 
MSTDNN 

MSTDNNwith 81.5% 91.7% 
ASO 

MSTDNNwith 83.5% 92.3% 
ASO+ AVACS 

ACKNOWLEDGEMENTS 
The authors gratefully acknowledge the suppon of the McDon• 
nel-Pew Foundation and would like m thank S. F11h!man, S. 
Manke, H. Hi.Id and M.T. Vo. 

REFERENCES 
I I] U. Bodenhaimn and A. Waibel. Application Oriented Aulomotic Structllr• 

Ing of 1ime-Delny Neuml Networks for High Perfom1ance Ch~rnct~ :uid 
Speech Rccosnition. Ln, Pr<>c~~dings /CNN 93, S1111 Francisco, March 
1993. 

121 U. Bodonhnuse11 and S. MMke. Connectionist Architcctura.1 ~aming for 
High ?erforrnnncG <_-,1aractar a.id Speech RecogniLion. In; Pmcccdin,;s 
ICASSP-9J, Minneapolis, April 199'.:I. 

m U. Booenhauseo 11.11d S. Ma.rlke. Automo.tic.-illy Structured Neural Networks 
For Ha.nd1vrincn Chnrnctc.r nnd Worcl Recognition. In: Proceedings !CANN 
93, Amstt:.rda.m, Sepiember 1993 

141 E.C. Oien at1d R.P. LipprnMn. A Bou11dary Hunting Radial Basis FU11ction 
C.1i\s~ifi er Which Allocates Centc.rs Constructively. In: Advances in Nc1m1/ 
lnformotfr>n Pmc~ssint: Sys/ems 5, 1993 

[5] S. E. Fii.hlman Md C. Lebiere. The Casc:a.dc-Correlat1on )..earning Architec
ture. In, Adva11ccs in Neural lnfrm-1U1tfon Ptoccssing Sys/ems 2, 1989. 

[61 J. Moody. The Effective. Number of Parame~I'$: An Ant\lysis of Genera.Ji• 
ution nnd Regularization in Nonlinear Ll!:ILITlillg Syit~ms. In: Advanct: in 
Neural Information Pmcc:rsing Systems 4, 199]. 

[7] Y. Le Cun, 1. S. Denker, and S. A. Solla. Optimal l:lrain D111nage .. In: 
Advances in Neural I nfr>rmalir>n Prr>ccssing Systl!ms 2, I 989. 

18] P. Haffner, M. F~zini, Md A. Wt1ibel. Integrating lime Alignmenc alld 
Neural Networks for High Perfonnance Continuous Spec-ch Recognition. 
ln Prr,cccdings r,f the ICASSP-9!. 

19] P. Haffuer nnd A. Waibel. Timc-De.lny NeuraJ Networks Embedding Time 
Alignment: A l'erfomianee Artalysi~.ln: Pm,ccdings Eurospccch 9}. 

I !OJ A. Waibel, T. Hanauiwa, <::. Hinton, K. Shit.110, lllld K. i,,ang. Phonem~ 
Recognition using Time-Delay Ncur:u Network~. IEEE Ttan.sactim,.r r,11 

Acoustics, Speech and SigMI Pr{)(;cssing. March 1989. 
Ill] 8. HMsibi nnd D. G. Stork. Second Order [krivatives for Network Prun

i111r Optimal Brain Surgeon. 1.n, Advances in Neural lnfotmalir>n Pr~ccss
i,ig Systems 5, 199~ 




