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Abstract

Low-proficiency non-native speakers represent a significant challenge for large-vocabulary continuous speech
recognition (LVCSR). Acoustic models are confused by a heavy accent; language models are confused by
poor grammar and unconventional word choice. Lack of comfort with the spoken language affects the
fundamental properties of connected speech that have been a focus of LVCSR research; cross-word and
interword coarticulation, disfluency, and prosody are among the features that differ in native and non-native
speech.

In this dissertation, I first address the problem of characterizing low-proficiency non-native speech. One
population is examined in great detail: learners of English whose native language is Japanese. Properties
such as fluency, vocabulary, and pace in read and spontaneous speech are measured for both general and
proficiency-controlled data sets. I further show that native and non-native speech can be distinguished using
a variety of statistical metrics, including perplexity and Kullback-Leibler divergence. Patterns in reading
errors and grammaticality of spontaneous speech are quantitatively described. This analysis, while focusing
on one speaker population, provides a model for characterizing non-native speech that the broader LVCSR
community may find useful. The generalizability of this model is demonstrated by contrasting the speech of
native speakers of Mandarin with that of our primary speaker set.

Second, I explore methods of adapting to non-native speech. The test set is controlled for language
exposure and proficiency, and the task is a simplified read news task tailored toward the lower-proficiency
speakers, who experienced limited success in more difficult reading tasks like the widely-used Wall Street
Journal readings. I find that the largest gains in recognition performance come through acoustic adaptation,
and present evaluations of adaptation and training techniques incorporating native-language and accented
data. From a speaker-adapted baseline of 63.1% WER (the same models perform at 8% for Broadcast News
FO speech), a 29% relative improvement is achieved through a combination of adaptation and training. In
contrast, gains from lexical modeling were found to be extremely small, even when investigated in conjunc-
tion with retraining. I describe data-driven and linguistically-motivated algorithms for lexical modeling,
presenting experimental results and discussing possible reasons why the improvement was not larger.

Finally, I present a novel method for detecting non-native speech. Without using any acoustic features,
I show how bilateral and multilateral discrimination can be accomplished on the basis of features present in
text. Both recognizer output and transcripts of non-native speech are identified with high accuracy through
naive Bayes classification. The word and part-of-speech sequences that are found to be indicative of non-
native speech provide an additional resource for characterizing non-native speech, which leads to further
insights about the properties of non-native spoken language.
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Chapter 1

Introduction

In the early 1990’s, dialogues like the following were the target of intensive basic research in speech recognition

and natural language understanding (Ward, 1990) .

System: Welcome to Pittsburgh Airlines’ automated flight information service. Do you know
the flight number?

User: Five-twelve.

System: Would you like arrival or departure information?

User: Arrival.

System: Flight 524 arriving on Tuesday, Feb 27th. Is that correct?
User: No.

System: What would you like to change, the flight number or the date?
User: The flight number.

System: Please say the flight number.

User: Five one two.

System: Flight 512 arriving on Wednesday, Feb 28th. Is that correct?
User: Yes.

System: Flight 512 arrives in more than one city. Would you like Boston Logan or
Charleston, SC?

Today, at least one major airline provides an automated interaction exactly like this as the front-line
response to caller flight information queries. Clearly, speech recognition has begun to be embraced by
industry, which sees it as an efficient replacement for human operators, and tolerated, however grudgingly,
by users. We can expect to see more and more applications of speech recognition in the real world as the
technology improves and public acceptance spreads.

With real-world deployment, however, user diversity demands serious consideration. Although the claim
that all users should be offered equal access to speech recognition is not strong (people with poor reading
skills do not have the same access to newspapers as the highly literate, for example), it does appear that
speech recognition applications are on a trajectory to become a default interface for information dissemination
systems. Accommodation of users whose language skills are somehow impaired is not only an interesting

research problem but also a significant functional concern.
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In the dialogue transcribed above, I, a native speaker, called up to make the query. Although the flight
number was misrecognized at first, overall, the recognition quality was good, and I was able to get the
information I required. I also asked a friend, a native speaker of Japanese who had lived in the United States

for two years, to call for the same information.

System: Welcome to Pittsburgh Airlines’ automated flight information service. Do you know
the flight number?

User: Yes.

System: Please say the flight number.

User: Z— & five hundred and twent- five hundred and twelve.

System: Would you like arrival or departure information?

User: Arrival.

System: Flight 283 arriving on Tuesday, Feb 27th. Is that correct?

User: ®H#? No flight five hundred and twelve please

System: What would you like to change, the flight number or the date?

User: L7 So... flight number is five hundred and twenty no five hundred and twelve

System: Please say the flight number.

User: Flight number is five hundred and twelve.

System: Flight 94 arriving on Wednesday, Feb 28th. Is that correct?

User: No.

System: What would you like to change, the flight number or the date?

User: Flight number, please.

System: Please say the flight number.

User: Five hundred and twenty.

System: Flight 520 arriving on Wednesday, Feb 28th. Is that correct?

User: Yes.

System: Flight 520 arrives in more than one city. Would you like Chicago O’Hare or Kansas
City, MO?

User: %, no, no. Not twenty, twelve.

System: Please repeat or rephrase that.

User: Mo A7

System: Please repeat or rephrase that.

User: <click>

In this case, the speaker is prevented from finding out what she wants to know by a combination of
recognition errors and her difficulty responding appropriately to the system’s prompts. One can envision
other situations in which reduced English proficiency would diminish the effectiveness of speech-driven ap-
plications. Dictation systems, for example, are used by people ranging from physicians recording patient
information to graduate students with typing injuries. Both of these groups have significant non-native
populations. Conversational transcription systems such as meeting record and surveillance systems cannot
assume that all subjects will be fluent speakers of the language. If a speech translation system is available to
facilitate English-Japanese communication, it may be used not only by native English speakers but also by
the many others who speak English better than they speak Japanese. Language learning systems are limited
in their ability to offer recognition-based lessons to the degree that speech recognition of new learners is not

reliable.

There are many levels at which non-native speech differs from native speech. The term non-native



speech, as widely used in the speech recognition community (Byrne et al., 1998; Langlais et al., 1998;
Livescu and Glass, 2000; van Leeuwen and Orr, 1999; Witt and Young, 1997), covers an enormous range of
proficiencies and speech types. For a language like English, this range is in fact much greater than the range
of native speech, even when regional variation is considered. There are a few parameters, however, that
seem particularly useful for encoding non-native speech. Accent, mode, lexical choice, syntactic soundness,
and fluency are aspects of spoken language that can both describe variation in native speech and be used to

distinguish it from non-native speech.

Accent

The word accent is the subject of some controversy. The confusion (and genuine lack of an absolute distinc-
tion) between accent and dialect, coupled with increasing awareness of negative associations with marked
accents and dialects, has prompted many to abandon both terms in favor of the more neutral and more vague
variety. One of the reasons that it is so difficult to assign a scholarly definition to the word accent is that in
the lay sense, accent is by definition not absolute; a listener perceives an accent when the speaker’s speech is
different from his own. Although academic publications emphasize time and time again that there is no such
thing as “unaccented” English (Lippi-Green, 1997; Wardhaugh, 1998), the sense of the word accent that is
shared by native speakers will always be relative to one’s own speech, and it is this understanding that is
the foundation for recovery strategies.

While we may lack a clear set of features that characterize accent (Lippi-Green defines accents as “loose
bundles of prosodic and segmental features distributed over geographic and/or social space”), lay listeners
seldom have difficulty identifying presence or absence of accent; although the boundaries of accent may differ
from speaker to speaker, I submit that there are speakers whom any educated native speaker would identify
as having a foreign accent. If we adopt Wardhaugh’s definition of accent as “how [people] pronounce what
they say” and accents as often having “clear regional and social associations” (Wardhaugh, 1998), we can
define foreign accent as “pronunciation that is associated with a country or region in which English® is not

the primary language spoken.”

Mode

The amount of planning and attention required to generate an utterance can be quite different for native
and non-native speakers; attention used for utterance generation can also impact the actual production to
the degree that the number of cognitive cycles available for sentence generation and articulation is reduced
(Pawley and Syder, 1983, p.208). Variables describing the speech task, level of formality, and spoken language
performance have sometimes been borrowed to describe degree of attention as well, but since we cannot
assume that the correlation between these variables and attention is the same for native and non-native

speech I will modify the definition of the term mode as used in e.g. (Finke and Waibel, 1997) to describe

IEnglish is used as the default “native language” in many of the examples and definitions in this thesis. This is for convenience

only; all definitions, theories, and applications are meant to be extensible to any human language.
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the degree of attention paid to utterance generation.

Careful speech and casual speech are often offered in speech recognition literature as examples of speaking
styles (Eskenazi, 1997), e.g. Although Labov (1972) supported the idea that “styles can be ranged along a
single dimension, measured by the amount of attention paid to speech”, more recent definitions incorporate
formality level (Wardhaugh, 1998) and relationship between speaker and listener (Bell, 1984). Rampton
(1987) argues that particularly in the case of the non-native speaker, for whom attention to speech may be
distributed very differently from native speakers, Labov’s definition is not appropriate. Generally speaking,
the term style is currently used to describe systematic linguistic choices associated with particular situations
(Finegan, 1994). One can separate situational appropriateness from degree of planning, and I will therefore
restrict the definition of style to formality and difficulty level (audience-directed lexical and structural choices)
and use the variable mode to encode the degree of planning that goes into formulating an utterance. The
variable register will be used to describe task- and context-directed lexical and structural choices.

Mode, then, as I have defined it, varies along a continuum and is closely related to proficiency among non-
natives. It also directly affects performance. A native speaker and a non-native speaker of low proficiency
could be speaking with the same style and in the same register (asking a stranger on the street for directions,
for example), but with modes representing very different levels of attention. The greater cognitive load
consumed by attention for the non-native speaker may affect his ability to articulate difficult phone sequences,
resulting in a stronger accent than he would normally exhibit for isolated words. I assume that mode is
different from the other parameters discussed here in that it is not directly evident in the speech that is
produced; rather, it exerts an influence on how speech is produced that is different for native and non-native

speakers.

Syntactic Soundness

Learners of a language are generally exposed to L2 grammar in the early days of their study, yet incomplete
mastery of syntax is one of the features that can mark even highly proficient speech as non-native. One
theoretical view of second language acquisition takes the Chomskian position that acquistion of L1 grammar
occurs as children instantiate the biologically endowed Universal Grammar, it does not agree on whether L2
learners have access to this resource (Ellis, 1997, p.66). It is clear that adult learners struggle with principles,
for example, co-reference through a reflexive, that are instantiated differently (or uniquely) in L1 and/or
L2. Tt has also been observed that attention and learning stage can interfere with production of even those
syntactic concepts that L1 and L2 share, as with acquisition of definiteness for Polish learners of English
(Van Dyke, 1997).

Native speakers certainly do not always demonstrate prescriptively correct syntax. Soundness in instan-
tiation of basic principles like definiteness marking, however, is common to native speakers. For the most
poorly educated native speaker, the sentence “Flight number is five hundred and twelve” just sounds wrong,
for reasons he would not know how to explain other than to say “you have to say the.”

Incorrect instantiation of syntactic principles does not necessarily result in a syntactically incorrect sen-



tence. Native speakers of German frequently confuse past and past perfect in English. Imagine that a party
was thrown on Saturday night. On Monday morning, to be asked “did you go to the party?” would not
seem unusual; the perfectly grammatical “have you been to the party,” on the other hand, would perplex,
causing one to wonder if the party were still going on. This type of syntactic misinstantiation is a subtle yet

sometimes jarring sign of non-nativeness.

Lexical Choice
The words chosen by a speaker to express a thought can also reveal whether he is native. A sentence can be
semantically meaningful and syntactically correct yet noticeably non-native. Let us consider the following

sentence pairs.

(L.1) a.  What is the cost of a ticket for the concert
b.  How much does a ticket for the concert cost
(1.2) a. I'm going to have a jelly and peanut butter sandwich
b. TI'm going to have a peanut butter and jelly sandwich
(1.3) a. Let’s disassemble the puzzle

b. Let’s take apart the puzzle

In each of these examples, the first is technically correct but less likely to be spoken by a native speaker
than the second. There are many regional differences in the way native speakers choose words (British
“lift” and General American (GA) “elevator” being a familar example). A lack of awareness of familiar
lexical patterns, however, results in noticeable idiosyncrasies, as contrasted with regionalisms, in non-native
speech. This variable can cause a particular problem for speech recognition as the language model encodes

the distribution of words in native speech.

Fluency

The fluency variable describes the pace and smoothness of speech. Native speech is often disfluent; native
speakers backtrack, stutter, pause in the middle of a sentence, and speak in fragments in conversational
speech. These effects show similarities even across languages (Eklund and Shriberg, 1998). Speech disfluen-
cies are not limited to conversational “modes;” they are found in read speech as well, when readers stumble
over the text. Pace, too, varies greatly in native speech. Some natives speak quickly; others speak slowly.
Some speak in bursts, others with an even rhythm. However, it appears that measurements of fluency can be
used to distinguish native and non-native speech. Cucchiarini et al. (2000), among others, show that pace
correlates closely with perception of proficiency. Some non-native reading errors in speech are distinctive
and quantifiable (Mayfield Tomokiyo and Jones, 2001). While some disfluencies seem to follow universal
patterns, others, including the native-language interjections seen in the dialogue transcribed above, strongly

indicate that the speaker is non-native.

It seems clear that native speakers are able to recognize non-native speakers based on features like accent,

syntax, and fluency. Children can identify and imitate specific characteristics of speech that mark it as typical
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of a non-native group. When a listener is first exposed to a variety of non-native speech, he may initially
struggle to understand it, but if he is a cooperative listener, he can often adapt very quickly. Humans are
incredibly well equipped to understand speech, and tolerate deviation relatively well.

Unfortunately, neither of these skills have come as naturally to the machine. Computer understanding
of speech is based on statistical models of patterns found in training corpora. When the accent, syntax,
and lexical choice of the speaker are not well-represented in a training corpus, the models must somehow be
adapted if good recognition is to be achieved. We might imagine several angles for attacking such adaptation.

The acoustic model specifies the expected mapping of acoustic events to phonetic units. In a fully-
continuous context-dependent system such as the one that will be described in later chapters, this is an
extremely fine-grained representation. Acoustic events are modeled on a sub-phonetic level, and many
more variations are recognized as would be in a traditional phonetic analysis; in the recognizer used in this
dissertation, 118 distinct realizations of /t/ in GA are modeled. The acoustic model would be the natural
place to represent phonetic differences in realization for a given speaker’s accent.

The lexicon, which describes the phonemic makeup of words, would lend itself to modeling of phonemic
differences and phonological adaptation in production. By altering the lexeme specifications, phonemic sub-
stitutions, epenthesis, elision, and in some cases phonetic realizational differences can be easily represented.
The problem that arises is that the altered lexicon may not interact with the acoustic model as expected.
However, lexical modeling is a straightforward approach that has been used with modest success for varieties
of native speech (Humphries and Woodland, 1997; Huang et al., 2000) and non-native speech for non-LVCSR,
tasks (Fung and Liu, 1999).

The recognizer’s understanding of how words occur in sequence is encoded in the language model. Absent
a natural language understanding component, the recognizer has no understanding of the meaningfulness of
a hypothesized utterance, and must rely on a statistical model to determine the likelihood of a sequence of
words having been uttered. By adapting the language model, the restrictions on probable word sequences
could be relaxed for increased tolerance of deviation from native patterns of speech. Alternatively, one could
envision training a statistical model of non-native speech, explicitly representing patterns that are common
in the speech of non-natives.

Finally, the system itself could be adapted for greater flexibility in processing non-native speech. Just
as human listeners are able to ask the speaker to repeat himself, delay processing while building context,
and silently induce lexical, syntactic, and phonetic mappings from both positive and negative examples, a
system that endeavors to understand non-native speech could incorporate learning strategies with the aid of
dialogue and natural language understanding components.

This investigation will be restricted to the recognizer components that model pronunciation, namely the

acoustic model and the lexicon.

In this dissertation, I concentrate principally on native speakers of Japanese. This speaker population

offers great potential for experimental control; English education is standardized in Japan, and the Japanese



population in Pittsburgh is large enough that finding speakers with similar educational backgrounds and
exposure to English was not difficult. The nature of Japanese-influenced English is well known, if not well
studied, from both lexical and phonotactic points of view. The many English words that have worked their
way into everyday Japanese speech have undergone semantic and phonological transformations that can help
us to predict how Japanese natives will approach production of English. Because nativized foreign words are
represented in the Japanese script, an array of orthographic mappings is accessible that may provide further
aid in developing a model of Japanese-influenced English.

Applications of this work are also likely to be of interest in Japan. Language tutoring systems that model a
particular native language (L1) well can present feedback in the context of linguistic elements that are known
to be problematic for speakers that share the user’s L1. The Japanese government is currently so concerned
about the English language ability of its citizens that it is considering the dramatic step of making English
an official language (Kawai, 2000). Such a requirement would increase the demand for English training,
and possibly for English versions of natural language systems currently available in Japanese. In such an

eventuality, tolerance of non-native English would be critical.

Problem statement
Speech recognition systems consistently perform poorly on all but the most fluent non-native speakers. As
speech recognition technology moves into general use, accommodation of non-native speakers is both an

interesting research problem and an important functional concern.

Thesis statement
Speech recognition performance for lower-proficiency non-native speakers of English, specifically native speak-

ers of Japanese, can be significantly improved through phonological modeling of the non-native condition.

Organization

This document is organized into seven chapters and three appendices. Chapter 2: Background and Re-
lated Work surveys the rich history of the study of language acquisition as well as relatively recent research
in speech recognition for non-native speakers; Chapter 3: Non-native Speech Database: Composi-
tion and Characterization provides a description of elicitation and transcription methods and a thorough
analysis of the JL.1 and ML1 English read and spontaneous speech corpora; Chapter 4: Acoustic Model-
ing describes detailed experiments in acoustic modeling for JL1 English; Chapter 5: Lexical Modeling
describes linguistically-motivated and data-driven modeling of phonological interference at the lexical level;
Chapter 6: Hypothesis-driven Accent Classification presents a novel and extremely effective method
for detecting non-native speech that can be used to invoke the non-native modeling methods described
in previous chapters; and finally, Chapter 7: Conclusion summarizes the main contributions of this
work and discusses directions for future research. Appendix A: Data Collection and Speaker Profi-
ciency Evaluation lists database statistics and demographic information for the speakers; Appendix B:

Phonological Transformation Rules gives the rules used for linguistically-motivated lexical modeling of
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non-native speech; and Appendix C: IPA-Arpabet Mappings provides a chart relating the International
Phonetic Association (IPA) symbols used for linguistic discussions to the ASCII symbols commonly used in

the context of speech recognition.



Chapter 2

Background and Related Work

The idea of specialized recognition of non-native speech has developed from two separate directions. In
language learning research we have seen increased efforts to use output from speech recognition applications
to provide feedback and guidance to the student. The relationship between acoustic scores and human
perception has been the focus of much interest in this area, as have methods for measuring distance between
the student’s speech and a model of “good” native speech. Research in speech recognition, on the other
hand, has turned toward non-native speech as the systems become accurate enough and realistic enough
for non-native speakers to want to use them. Progress in recognition of non-native speech is measured
primarily by reduction in word error, which is not a metric that can be directly linked to such features as
intelligibility. The goal of an LVCSR system is to model speech so that the word the speaker intended to say
is recognized; this may be accomplished by building a model that is incorrect from a prescriptive standpoint
and undesirable from a pedagogical standpoint but represents the speaker’s intent.

This chapter begins with a discussion of second language acquisition (SLA) research, which has influenced
the way computational modeling of non-native speech is approached. I then give an overview of how non-
native speech has been approached in the disciplines of computer-aided language learning and LVCSR, and

conclude by discussing issues in elicitation and recording.

2.1 Second Language Acquisition

Do non-native speakers carry over pronunciation habits from their first language to their second? This is
the question that research in second language acquisition may help to answer. The assumption that learners

systematically substitute L1 phones for L2 phones is widespread in speech recognition.

“Accent usually comes from the articulation habits of the speaker in her/his own native language.”

(Fung and Liu, 1999, p.1)
“An alternative approach to [modeling] non-native speech is to assume that non-native speakers will

9
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dominantly use their native phones, presumably by mapping the phones of the language they are

speaking (L.2) to their native language (L1).” (van Leeuwen and Orr, 1999, p.1)

“[The] techniques introduced here are based on the underlying idea that a non-native speaker. .. will
substitute sounds of his or her mother tongue for those foreign sounds he or she cannot produce.”

(Witt and Young, 1999, p.1)

Studies in SLA do not agree on this point, however. While the fact that native speakers of a language can
often guess a non-native speaker’s L1 based on their articulation of specific phones is not disputed, whether
any sort of trajectory in phonetic space between specific L1 and L2 phones is common to speakers of the

same L1 is the subject of many years of debate.

2.1.1 Contrastive Analysis

Contrastive Analysis (CA) is a branch of applied Linguistics introduced in the 1930’s which is concerned
with “producing inverted (i.e. contrastive, not comparative) two-valued typologies (a CA is always concerned
with a pair of languages), and founded on the assumption that languages can be compared” (James, 1980,
p.3). CA theory claimed that “speakers tend to hear another language and attempt to produce utterances
in it in terms of the structure of their own language, thus accounting for their ‘accent’ in L2,” where accent
refers not only to phonological accent, but to all elements in the presentation of speech that mark the speaker
as foreign (Ferguson, 1989, p.82). In SLA-oriented CA, comparable features of L1 and L2 are identified and
described, and mismatches are identified that are likely to lead to error on the part of the learner; CA is
said to be able to predict and diagnose errors. This application is based on the concept of linguistic transfer,
which is said to happen when knowledge about one language is applied (correctly or not) to another and
intuitively would seem to explain why language learners make the mistakes they do.

The most serious arguments against CA were that its foundations were in structuralism and behavioral-
ism, which had begun to lose favor, and that in practice, it was not an effective method for predicting
errors that learners actually make. Briere (1966) reported on an experiment in which American students
were played non-English sounds from Arabic, Vietnamese, and French and asked to reproduce them. While
there were some cases of clear L1 transfer, Briere found that in other cases the students approximated one
non-English sound with another (/R/ for /+/), which would not be predicted by CA. Furthermore, it was
observed that some of the non-English sounds were easier than others for the American students to learn
(Briere gives the example of a voiceless non-aspirated fortis dental stop as being easier than the dentalized

version), a phenomenon for which CA does not provide an explanation.

2.1.2 Error Analysis

Dissatisfaction with CA led to the development of a paradigm known as Error Analysis (EA). James (1998,

p.2) identifies two ways in which language learners “stop short of native-like success in a number of areas
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of the L2 grammar” (Towell and Hawkins, 1994): “when their L2 knowledge becomes fixed or fossilized,
and when they produce errors in their attempts at it.” This distinguishes them from native speakers, who
are defined as knowing their language perfectly. While much is made in speech recognition research of the
imperfection with which native speakers use their language, in the Chomskian tradition this is a performance
issue and should be distinguished from language competence.

EA looks for systematic behavior in groups of learners, asking what types of errors out of all of the
language errors produced by learners can be clustered together and be classified as “errors that native
speakers of language X are likely to make,” or “errors that speakers who do not control a system of case
marking are likely to make.” In EA, only L2 and the intermediate language IL, which represents the
learner’s understanding of L2 at a given time, are compared for mismatches (recall that in CA, L1 and L2
were contrasted).

One major argument against EA is said to be that it does not account for the fact that speakers often
avoid elements of L2 that they find difficult (further discussion to follow) and therefore do not make errors

that EA would predict; another is that it incorrectly ignores the effects of transfer from L1.

2.1.3 Transfer Analysis

Recognition of the theoretical shortcomings of EA led to a return to favor of CA. Wardhaugh (1970) suggested
that the problem with early CA was that it claimed to be able to predict errors by comparing only L1 and
L2. EA was not quite a complete solution to this problem; although it could predict errors more accurately
using its model of the learner’s current understanding of L2, it did not take into account influences of L1,
which cannot be ignored. An alternative, weaker version of CA was proposed, which claims only to be able
to “explain (or diagnose) a subset of actually attested errors — those resulting from [L1] interference” (James,
1998, p.5). This incarnation of CA is referred to as language transfer, transfer analysis, or weak CA, and is
different from EA in that the intermediate language IL is compared to L1 and not L2; it is used primarily

as one tool within an EA-based analysis framework.

2.1.4 Towards a model of non-native speech

The idea of the intermediate language IL, often known as interlanguage, as a legitimate, working language has
been developed to the point where it can really be taken as the basis of a computational model of a learner’s
speech. The problem for speech recognition, of course, is that each speaker has an individual model, repre-
senting the level of L2 understanding he has reached and the influences of L1 and other languages to which
he has been exposed; one would need a way to generalize in order to apply ideas from interlanguage theory
to a speech system. Nevertheless, it provides a theoretical background for thinking about implementing an
error model for LVCSR.

Corder (1967) introduced the term transitional competence to reflect the independent system of the

language that learners (both native and non-native) develop. Children acquiring their native language do
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not control the full adult version of the language, but rather an intermediate language, just as L2 learners
do. This concept was then revised, and the idea of the idiosyncratic dialect developed to better describe
the language spoken by the learner: it is a dialect in that it shares important parts with other varieties of
the language, and can be considered one version of that language (as opposed to a separate language), but
is idiosyncratic in that there are not enough speakers of that version to claim that they form any sort of
language community, a characteristic that speakers of social dialects share. This definition emphasizes the
transitional and unstable nature of the intermediate language.

Tarone et al. (1983) discuss strategies that language learners use to overcome difficulties in four major
areas: phonological, morphological, syntactic, and lexical. They identify the strategy classes of transfer,
overgeneralization, prefabrication, overelaboration, epenthesis and avoidance, most having an application in
all four domains. Awoidance is further broken down into topic avoidance, semantic avoidance, appealing
to authority (asking, using a dictionary), paraphrase, message abandonment, and language switch. It is
interesting to consider these strategies in two of the contexts that concern us in speech recognition: sys-
tem development and data collection. Clearly, many of the strategies outlined can be directly applied to
error modeling in the speech system; phonological epenthesis and transfer (e.g. phoneme substitution), mor-
phological overelaboration (choosing uncontracted forms), and lexical overgeneralization can be explicitly
represented. The discussion of communication strategies, particularly avoidance strategies, has implications
for training data collection as well, however, perhaps even more for task-oriented systems than freely conver-
sational systems, which are traditionally considered more difficult. We often speak of the need to elicit during
data collection words and expressions that will appear in real-world use of the system. How important is it
to elicit the same strategies that will be triggered when non-native speakers try to use a speech system? Or,
conversely, to avoid during data collection the triggering of strategies that would not be invoked in real-world
use? It may be the case that in conversation, speakers have more flexibility to appeal to strategies such as
avoidance in order to hide an inability to pronounce certain words or ask certain questions; they can choose
another word or another topic, or choose silence as their avoidance strategy. When they need to find out
specific information, however, they may resort to different strategies to express themselves than they would
in conversation.

Tarone (1978a) investigates interlanguage phonology. For the specific case of Japanese learners of English
(and building on L. Dickerson’s 1974 dissertation (Dickerson, 1974)), she notes that “certain phonological
environments are more favorable to the production of [s] and [z] than others.” This effect has important
implications for acoustic modeling, as we will see in Chapter 4. Tarone looks with particular interest at the
role of the syllable in L2 phonological acquisition, asking why American speakers, for example, struggle with
the articulation of /3/ in any syllabic context other than that in which it appears in English. She extends this
discussion to the various strategies speakers of many languages invoke to help with the articulation of non-
CV (consonant-vowel) syllables. Disagreeing with Oller (1974), who emphasized the difference between the

ways consonant clusters are simplified in L1 acquisition (deletion, reduction) and in L2 learning (epenthesis),
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Tarone supports the idea of the CV syllable as a “universal articulatory and perceptual unit such that the
articulators tend to operate in basic CV programs in all languages” (Tarone, 1978b). She found a tendency
in learners to simplify even consonant clusters which appeared in L1 using both epenthesis and deletion —
she found that the preference for a CV syllable was independent from the strategy used to form it and L1.
Incorporating this idea of an Ll-independent preference for the CV syllable, Tarone identifies five processes

and five constraints associated with L2 phonological acquisition.
Processes:

1. negative transfer from L1

2. first language acquisition processes
3. overgeneralization

4. approximation

5. avoidance
Constraints:

1. the inherent difficulty of certain L2 sounds and phonological contexts
2. the tendency of the articulators to rest position

3. the tendency of the articulators to a CV pattern

4. the tendency to avoid extremes of pitch variation

5. emotional and social constraints

These processes and constraints interact to define the learner’s interlanguage phonological system and can
be the basis for phonological error analysis.

The consistent observation that few L2 pronunciation errors can be traced to direct L1 transfer is not
easy to reconcile with the clear consensus that there are identifiable foreign accents, a dilemma that Beebe
(1987) attacks in a study of myths about interlanguage phonology. If non-native pronunciation errors do not
have their roots in differences between L1 and L2 phonology, why can a non-linguist classify foreign accents
by country when they cannot so easily classify grammatical errors?

Beebe presents a study which supports findings from earlier studies (e.g. Dickerson, 1974) but which
presents data from five language groups, making it more comprehensive than previous studies. Beebe suggests
that while native American listeners may classify a non-native phoneme that they hear as a particular native
one using recovery strategies based on the English phonological system, the phoneme may not be the one
that the speaker intended, and acoustically, may actually be quite distant from the phoneme that the
listener thinks he heard. This intuition could shed some light on the agreement among native speakers
on characteristics of particular foreign accents while at the same time explaining the lack of success of

CA in explaining L2 pronunciation errors. Beebe makes the further observation that most substitution
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errors are phonetic, and not phonemic as it it may appear to native listeners. Looking at the distribution of
English /1/ attempts in native speakers of four Asian languages (Japanese, Chinese, Korean, and Indonesian),
Beebe found that although the pronunciation error rate was 46% (the calculation of this error rate was not
discussed), the rate of substitution of an r-variant was only 3%. Three-quarters of the /r/ errors were
phonetic deviations from /1/, and not phonemic substitutions of /r/.

Beebe’s distinction between phonemic and phonetic errors is important when trying to teach pronunci-
ation, as her findings indicate that while her students may appear to be confusing r and 1, theirs are not
the sort of errors that minimal-pair training would correct. What they need to understand is why their
approximations of /1/ do not sound to a native speaker like /1/, not how /r/ is different from /1/. It is
difficult to know whether this distinction would be meaningful to the speech recognizer. On the one hand,
one might conclude that if it sounds like an /r/ to a native speaker, it will sound like an /r/ to the recognizer,
and since the recognizer can accept pronunciation variants very easily, it would be simple to add /raik/ for
“like” to the internal lexicon. On the other hand, Beebe’s research suggests that while human listeners hear
it as an /r/, they do so not because it is spectrally like an /r/, but rather because of the complex interaction

between human auditory recovery strategies and phonological and semantic expectations.

2.2 Computer-Aided Language Learning

As technologies for processing human language have matured, it has become possible to view them as ped-
agogically valuable tools. Advances in speech recognition and parsing have been enthusiastically received in
the field of computer-aided language learning (CALL), although the application of “technology” in language
learning systems ranges from the very simplistic to the overly optimistic.

Noting that this work focuses specifically in the application of speech technology to language learning,

let us first consider some common roles of speech in CALL systems.

Interactive: record and playback functions, adding variety to otherwise tedious drills
Quantitative: providing feedback regarding acoustic features like duration and F1/F2

Probabilistic: estimating the likelihood of an acoustic model having produced the acoustic event provided

by the speaker

Communicative: incorporating speech with natural language understanding to act as a conversation part-

ner

In an interactive context, speech is used to give the learner instant and repeated access to his own
pronunciations, and to those of native speakers that he wishes to emulate. Critical issues include monitoring
(if the learner has full control over the interaction, will he proceed in the way that is most beneficial to him?)

and feedback (without evaluation from a teacher, will the learner know what he is doing wrong?) as well
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as authenticity, individual learning styles, and limitations in the hard-coded processing domain (Garrett,

1995).

At least one of these concerns can be addressed by providing quantitative feedback to the user so that
deficiencies and improvements in his speech are clearly visible. Speaking rate and pause frequency are known
to have significantly different distributions in native and non-native speech (Mayfield Tomokiyo, 2000) and
correlate well with fluency ratings given by speech therapists and phoneticians (Cucchiarini et al., 1998).
Eskenazi and Hansma (1998) have found that prosodic features that can be extracted directly from the

speech signal are also good indicators of fluency and pronunciation quality.

While systems that offer this kind of quantitative feedback without requiring the user to utter isolated
phones do need an acoustic model to generate a time-phone alignment, they are not making a statement
about the relationship between the learner’s speech and the information about native speech contained in
the model. Many CALL systems use probabilistic output from the acoustic model to derive a pronunciation
score. The scores themselves are then evaluated by comparing them to scores given by human listeners; a
scoring algorithm is considered effective if it produces scores that correlate well with scores that experienced
humans, such as language teachers, give the speakers. Pronunciation scores can also be given at different
levels; a sentence-level score would give a speaker an idea of how good his overall pronunciation is, whereas
a phone-level score would be useful for training articulation of specific phonemes.

Bernstein et al. (1990) presented the first HMM-based pronunciation evaluation system. They compared
performance of sentence-level models and monophone models for a read speech task, finding that grading
results correlate best with decisions by human graders when the sentences were first aligned using the sentence
models and scores calculated using the phoneme models. They reported high reliability and agreement among
human graders for ratings of pronunciation quality.

Franco et al. (1997) describe HMM-based phone log-likelihood scores and phone log-posterior probability
scores that were used to evaluate American learners of French. They found that the posterior-based scores
correlate better with human raters than the log-likelihood-based scores. They theorize that this is because
their calculation of the posterior score includes a normalizing term in the denominator that would balance
out effects of individual speaker characteristics or acoustic channel conditions. The authors also looked
at duration and found that duration-based pronunciation scores performed similarly to the posterior-based
scores at the speaker level and somewhat worse, but better than the log-likelihood scores, at the sentence
level. A combination of posterior and duration scores at the sentence level improved correlation with human
raters somewhat over posterior scores used alone. The maximum correlation they were able to achieve was
62%, compared to 65% inter-grader and 76% intra-grader correlation. Extending the approach to scoring
of individual phonemes, Kim et al. (1997) report that at the phone level, while posterior-based scores still
correlate best with human graders, correlation of duration-based scores is very poor. They hypothesize that

this is because of the high variability of phone duration.
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In related work at SRI, Ronen et al. (1997) assigned weights to phones based on how damaging mispro-
nunciation of the phone is to expert ratings of overall intelligibility (as perceived by professional teachers).
Ronen et al. found that incorporating the weights in calculation of the overall sentence score improved
correlation with human graders.

Neumeyer et al. (1996) move towards text independence by introducing a class of algorithms which do
not require a reference sentence or network to align the recognized speech to. They are able to structure
the exercises in such a way that the responses expected from the user are highly constrained, yet the user
is provided with the illusion of flexibility. Variations on this theme have also been successful (Eskenazi and
Hansma, 1998; Ehsani et al., 1997).

Eskenazi (1996) showed that acoustic scores from the recognizer can be used to detect speaker pronun-
ciation errors, and that prosodic features that distinguish non-native from native speech are present in the
speech signal. Comparing acoustic phone scores across speakers (10 native and 20 non-native speakers were
studied) for individual segments, Eskenazi found significant differences between native and non-native pro-
nunciation for several phonemes, indicating that pronunciation error detection based on acoustic score would
be successful. Working with expert tutors, Eskenazi examined possible measures of prosodic errors contribut-
ing to accent, finding that segment duration ratios, number of pitch peaks in a segment, and amplitude are
features that correspond well with information human experts use to characterize accent. Eskenazi’s Fluency
pronunciation tutor incorporates this information to provide speakers with feedback on their pronunciation
(Eskenazi and Hansma, 1998).

Kawai and Hirose (1997) report similar results, using Japanese monophone models for training native
speakers of Chinese in pronunciation of the Japanese long vowels and geminate consonants known as
tokushuhaku. Duration is phonemic in Japanese, and while short vowels are similar to Chinese vowels,
Chinese speakers often have difficulty producing the long vowels. Using average phone durations of 20 native
speakers as a guide, their system was able to tell speakers whether their pronunciations were too long, too
short, or acceptable.

It has been pointed out that for speech systems designed specifically for pronunciation training of a
predetermined phoneme set, a template-based recognizer may provide more useful scores than an HMM-
based system (Dalby et al., 1998). In their experience, while an HMM-based recognizer showed better
overall recognition accuracy, a template-based system was more accurate at recognizing vowel and nasal
contrasts.

It is not clear that speech recognition technology has reached the point at which it can make judgements
as to correctness of pronunciation that correspond to human judgements at a satisfactory level (Langlais et
al., 1998), although Kawai (1999) claims to have done so for some specific sound types.

Some systems combine native models of the target L2 with native L1 models and non-native L2 models
to build a system that can tell learners when their pronunciation is closer to an L1 phone than the target

L2 phone. In his doctoral thesis, Kawai (1999) develops systems for English-speaking learners of Japanese
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and Japanese-speaking learners of English. He uses a bilingual monophone phoneme set and allows free
transitions during alignment between English and Japanese phonemes. In this way, he is able to model L1
interference in L2 articulation, providing valuable feedback to the user.

Ronen et al. (1997) use a framework in which native and non-native models are trained and free tran-
sitions are allowed between the native and non-native phoneme sets in decoding. Non-native models were
trained on speakers that were given low pronunciation scores by human graders. They used monophone
models, having determined that system performance did not improve significantly with the introduction of
context-dependent models (their experience is shared by Witt and Young, (1997), who found that context-
independent models allow better acceptance/rejection accuracy). It is not mentioned whether the path
through the mispronunciation network corresponds with human listeners’ judgements of nativeness of pro-
nunciation of the individual phonemes, but they did report a lower correlation between machine and human
judgements of goodness of pronunciation calculated with this approach than with an approach in which each
each utterance is decoded twice, once using native models and once using non-native models, and the HMM
log-likelihood scores are combined to calculate a pronunciation score.

Auberg et al. (1998) present an accent coach that teaches English pronunciation to Japanese speakers.
They use the IBM ViaVoice system for the recognition component of their system, which tries to teach
users to discriminate, identify, and produce sounds that are recognized as being problematic for Japanese
learners of English. They describe the extensions that they made to the pronunciation dictionary to account
for expected mispronunciations, notably the inclusion of variants to reflect insertion of epenthetic vowels
in consonant clusters. Although they were successful in modifying the available tools to a degree that
suited their purposes, using off-the-shelf recognition software not designed to recognize non-native speech

can undermine the effectiveness of CALL systems (Price, 1998).

Communicative systems address relevance and authenticity concerns about CALL by not only evaluating
but also understanding and responding to what the user says. The SUBARASHII Japanese tutoring system
(Ehsani et al., 1997) allows beginning learners of Japanese to interact with a ficticious Japanese person to
perform simple problem-solving tasks. As the goal of SUBARASHII is not to correct speakers’ mistakes but
rather to give speakers experience using the language, significant flexibility is allowed at the syntactic and
lexical level. Within the context of four constrained situations (as an example, one of the situations involves
asking whether the ficticious character would like to go see a movie on Friday), the model of acceptable
responses from the user is augmented with probable errors and variations in phrasing. This allows the user
flexibility in what he is allowed to say (correct sentences are not rejected just because they are not exactly
what the model predicted), and even with some errors, the user is able to interact with the system, as he
would in real life with a human listener.

During recognition, monophone acoustic models are used, and the search is constrained by the response
model. It would not be possible to take advantage of these restrictions in a full conversational system, but

in a system in which the topic and direction of the conversation can be highly constrained (as is often the
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case in language classrooms!), Ehsani et al. found that “meaningful conversational practice can be authored
and implemented and that high school students do find these encounters useful.” The recognition accuracy
for grammatically correct and incorrect utterances that were in the response model were 80.8% and 55.6%

respectively. Recognition accuracy for utterances that were not in the response model was not reported.

2.3 LVCSR

The CALL research described above focused not on improving recognition quality but rather on using speech
recognition, in some form or another, to aid language learning. Accurately recognizing heavily accented and
poorly formed non-native conversational speech has not been a priority in CALL, perhaps because even with
high-quality recognition, analyzing and providing feedback on conversation is very difficult.

In large-vocabulary continuous speech recognition (LVCSR), the objective is to improve the system’s
understanding of the speaker, not the speaker’s language skills. There are acoustic, lexical, and language
models in an LVCSR system, all of which can be adapted to more accurately represent non-native speech.
The better the representation, the better the recognition (or so one would hope).

An early study of non-native speakers in LVCSR focused on Hispanic-accented English (Byrne et al.,
1998). Initial word error rates were extremely high, averaging 73% in an unrestricted-vocabulary task-based
test. It is interesting to note how Byrne et al. evaluated the skill levels of their speakers. An intermediate
skill level implied only some reading knowledge of English, yet the speakers were expected to answer questions
such as “What is going on here” and “What will happen next,” requiring non-trivial conversational skills.
Advanced speakers required solid reading comprehension, and were assumed to be able to participate in an
argumentative dialogue. It is doubtful that the same correspondence between reading and speaking skills
would apply to Japanese speakers. Most Japanese learners of English study the language in Japan before
coming to the United States, and can have a high level of competency in reading but extremely limited
ability to carry on a conversation. The sociological circumstances surrounding Byrne’s speakers’ acquisition
of English doubtless made his classification the correct one for his target population, but it should be noted
that the correspondence between reading and speaking competencies will be different for different target
populations, and the data collection protocol and ultimate system design should reflect this.

Studies using more constrained tasks or higher-proficiency speakers have had more success in bringing
word error rate to a reasonable level. Witt and Young (1999) have shown that for a simple task, fully-
trained source and target language model parameters can be interpolated to form a new set of accent-
dependent models that perform well on speakers of different native languages. For high-proficiency speakers
and speakers of regional dialects, adaptation using source-language data is effective to the point of being
sufficient (Schwartz et al., 1997; Beaugendre et al., 2000), and target-language data may also contribute to
WER reductions in some cases (Liu and Fung, 2000a).

The lexical model, or specification of the phones that make up a word can be modified to more accurately
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represent the phone sequences a speaker is likely to utter. It has been shown that data-driven induction of
pronunciation variants can be successful for both foreign-accented speakers and regionally-accented native
speakers. Humphries and Woodland (1998) derive a pronunciation dictionary for American-accented English
by aligning canonical phonetic transcriptions of words to the result of phoneme recognition using American
speech and British acoustic models, and training a decision tree on those alignments. The decision tree
is then used to generate an American pronunciation dictionary from a British pronunciation dictionary.
Amdall et al. (2000) also collected possible transformations by aligning reference to automatically-generated
pronunciations, and show how small gains in accuracy for the WSJ non-native speakers can be achieved by
pruning the list of word variants based on the probability of the rules invoked for the individual phone
transformations. Livescu and Glass (2000) use a similar alignment-to-phone-hypothesis method to derive
pronunciation variants for speakers in the JUPITER weather query system. Their objective, like Amdall’s, is
to model non-native speech in general, as opposed to focusing on a particular L1 group. Fung and Liu (1999),
on the other hand, concentrate on English spoken by Cantonese native speakers. Although their approach to
pronunciation variant derivation is not described in detail, it appears that they successfully use predictions
from a linguist as to what phone substitutions are likely to develop a lexical model that results in improved

recognition on the HKTIMIT isolated phone database.

2.4 Multilinguality

Multilinguality in speech recognition systems has received significant attention as real-world systems begin
to be deployed. When the primary focus of research was on developing a reasonable model of speech, the
actual language used for development was less important than the learning and modeling techniques that
were being refined. Certainly, language-specific issues, including tones in Chinese, liaison in French, and
vocabulary specification in German, needed to be resolved, but researchers generally concentrated their
efforts in modeling their own language and sometimes another widely used language such as English.

As people came to actually want to use these systems, however, the serious overhead involved in developing
a recognizer in a new language, and computational costs involved in running multiple recognizers, made
systems that could recognize any of a number of languages attractive. A multilingual system typically uses
a common phone set to represent all languages it covers, sharing training data across languages when the
phones show similar properties, and making the task of adding a new language easier as the language and
phoneme inventory of the overall system grows.

While multilingual systems seem at first to be very close to non-native systems, there are several crucial
distinctions. In a multilingual system, users are presumed to be native, or at least near-native, speakers of
the recognition target language. While they exhibit the variation that always is seen in native speech, they
are expert speakers that fully control the syntax, semantics, and phonology of their language. All that we

know about pattern modeling for native speakers is valid for the different languages in a multilingual system
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because the languages are spoken by natives. There are no issues of L1 interference between speaker groups.
Multilingual systems do not face the challenge of modeling inconsistent phonological simplifications beyond
what is commonly seen in fluid native speech. In a multilingual system, the objective is to sufficiently rep-
resent the phoneme inventory of each language, which has been well-studied for all but the rarest languages.
The problem of deciding how models should be shared across languages is a significant one, but should be
distinguished from the problem of modeling speakers who have a common target, the L2 phone set, but are
achieving it with varying degrees of success.

Schultz and Waibel (1999) describe a method for incorporating new phonemic contexts in the allophonic
decision tree. Because the phoneme sequences that occur in each new language can be enumerated based
on either existing linguistic analysis or expansion of a text corpus to its phonemic representation, those
sequences that do not occur in any of the languages already modeled in the system can be specified. The
authors adapt the existing decision tree to the new phonemic environments by pruning back the branches
affected by the new polyphones and re-growing those parts incorporating the new acoustic data and re-
training the associated distributions. Schultz and Waibel report that his method results in a large decrease
in WER with only a fraction of the acoustic data that would have been needed to fully train the new
polyphones.

Imperl (1999) describes an algorithm for clustering polyphones across languages. He groups together
polyphones with a triphone distance under a certain threshold to share training data and greatly reduces
the number of polyphones represented in the system with only a small degradation in WER. Kohler (1999)
compares three methods for specifying a phoneme inventory for a context-independent multilingual system,
finding that density clustering bootstrapped from the IPA representation of phones in different languages
outperforms both depending solely on the IPA symbol and using a purely data-driven clustering approach.
Kohler discusses the representational difference of these approaches, noting that the best-performing method
operates at a sub-phone level, while using the TPA specification alone does not take advantage of this more

specialized modeling.

2.5 Data Collection

Several projects have included the collection and recognition of accented speakers. In addition to the Byrne
corpus, the Australian National Database of Spoken Language contains data from non-native speakers, both
those who were born in Australia but claim a language other than English as their first and those who arrived
in Australia after puberty (Millar et al., 1994). Non-native speakers were mostly of South Vietnamese and
Lebanese Arabic backgrounds, although representatives of other migrant populations were also included.
Bratt et al. (1998) describes in detail the methodology used by SRI for collection of read data from
American learners of Latin American Spanish. The non-native collection was part of a larger project in

which many varieties of Latin American Spanish were recorded. Sentences were primarily taken from Spanish
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newspaper texts and were balanced for length and phonetic coverage. A subset of the 43,460 utterances from
the non-native speakers was phonetically transcribed so that systematic pronunciation errors by the non-
native speakers, all native speakers of American English, could be analyzed. In their phonetic transcriptions,
transcribers were allowed to choose from the union of the Spanish and English phone sets, and were also
provided with diacritics to mark ways in which a Spanish phone sounded non-native if the error was more
subtle than substitution of an English phoneme. Inter-coder agreement was measured at the phone level,
and it was found that [B], [0], [y], and [¢] were the most consistently transcribed as well as good predictors
of native pronunciation.

One of the important questions to ask when developing a speech database is how well disfluencies need
to be represented. For language model training, we know that examples of common expressions and con-
structions are needed and must be elicited during data collection. Does the same care need to be taken
with disfluencies? It has been observed that although disfluencies are a significant source of error in Switch-
board and hesitation words can be used to better predict other words (Shriberg and Stolcke, 1996), better
disfluency modeling does not significantly improve recognition accuracy (Stolcke and Shriberg, 1996). Will
this also be the case for non-native speakers? How will non-native speakers differ from native speakers in
their disfluency patterns? These questions can only be answered by collecting and analyzing data containing
disfluencies. Disfluency behavior appears to be similar across English and Swedish (Eklund and Shriberg,
1998), but we cannot be sure whether a similar relationship exists between other language pairs, and if not
whether non-native speakers observe L1 disfluency patterns, L2 disfluency patterns, or a combination, and
how disfluencies are distributed when the speaker is not fluent in the language being spoken.

Many of the assumptions ordinarily made when collecting speech data are challenged when working with
previously unsampled populations. Eskenazi (1997) points out that speaker competence in linguistic skills
and reading ability are among the variables that must be recognized when recording data from children and
speakers of languages for which there is not a high standard of literacy. I have observed that when recording
non-native speakers who are highly literate in their native language, similar variables must be considered,
presenting a special challenge for data collection protocol design and execution (Mayfield Tomokiyo and
Burger, 1999). One does not wish to frustrate the speaker, as doing so would tend to both compromise the
integrity of the data and leave the speaker with negative feelings.

In disciplines in which recording of speakers for the purpose of analyzing patterns in speech has long
been common practice, ethical standards have evolved which we might be encouraged to respect, especially
when it could be perceived that our interest in the speaker is because his speech is somehow substandard.
In his description of the field methodology in the project on linguistic change and variation, Labov (1984)
describes a number of issues in spoken data collection, mentioning among other things how important it is
that speakers do not come out of the data collection experience feeling that they have been objectified or
misunderstood.

The interview is a technique that is frequently used to gather data for the purposes of sociolinguistic
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research, and it closely parallels scenario-based data collection in the sense that both are contrived situations
designed to elicit natural speech that will be transcribed and analyzed. Both suffer from conflicting definitions
of what “natural speech” is and whether it can be elicited in the contrived setting (and whether that matters).
The primary difference is the amount and breadth of speech sought; for speech system training we need many
hours of speech from a variety of speakers, whereas much sociolinguistic research focuses on the speech of
just a few speakers. As we expand our data collection endeavors to cover new speaker populations, we
would benefit from the insights of researchers in Sociolinguistics, where speakers of non-standard varieties
of languages such as English are often targeted.

In an extensive discussion of the interview, Briggs (1986) makes many points that seem relevant to data
collection for LVCSR. He emphasizes the importance of understanding the meaning of the speech event (an
interview, or an interaction with a speech translation system, e.g.) for the speaker. Recording for a research
project may be a familiar event for the researcher, but not for the speaker. Reading aloud is commonplace
in American schools, but participants of different backgrounds may be intimidated or even offended when
asked to read aloud. While native speakers of English certainly vary in their comfort reading and speaking,
when the researchers are also native speakers of English, there are far fewer cultural variables that can lead

to misunderstanding.

[The] hiatus between the communicative norms of the interviewer and interviewee can greatly
hinder research, and the problems it engenders have sometimes abruptly terminated the interview
...if the field worker does not take this gap into account, he or she will fail to see how native
communicative patterns have shaped responses; this will lead the researcher to misconstrue their

meaning. (Briggs, 1986)

The issue of elicitation of natural speech has been given much attention in areas of Linguistics, espe-
cially Sociolinguistics, where entire studies can revolve around the speech of just a few speakers, making it
crucial that the speech collected truly represents the natural speech patterns of the speaker being studied.
Wolfson (1976) defines the notion of natural speech “as properly equivalent to that of appropriate speech;
as not equivalent to unselfconscious speech.” She suggests that in some situations, it is natural to speak
carefully, and that careful speech in such contexts should not be considered unnatural. By the same token,
for semi-fluent non-native speakers, whether they are at a real information desk or recording a contrived
scenario, their speech will most likely be planned. This means that we can probably allow speakers to make
notes of what they plan to say (if that makes them more comfortable). It may also mean that we don’t
need to make as much of a distinction between read and spontaneous speech; it may be the case that for the
purposes of training a non-native recognizer, read dialogues and even read texts may be much more useful

than they are for training a native system.



Chapter 3

Non-Native Speech Database:

Composition And Characterization

The differences between native and non-native speech can be quantified in a variety of ways, all relevant
to the problem of improving recognition for non-native speakers. Differences in articulation, speaking rate,
and pause distribution can affect acoustic modeling, which looks for patterns in phone pronunciation and
duration and cross-word behavior. Differences in disfluency distribution, word choice, syntax, and discourse
style can affect language modeling. And, of course, as these components are not independent of one another,
all affect overall recognizer performance.

Understanding how native and non-native speech differ at all levels is clearly an important first step
in attacking the problem of non-native recognition. In this chapter, I present an analysis of rhythmic and
lexical, and to a certain extent syntactic, differences between the native and non-native speech samples I
have collected. This analysis is important for speech recognition, but has implications for other areas of
natural language processing such as parsing and discourse processing.

This chapter is structured as follows. Sections 3.1, 3.2, and 3.3 describe the protocol used to build
a database of clean wide-band non-native speech. Recording, transcription, and annotation conventions
will be presented, as well as evaluation of speaker proficiency. In Section 3.5 I present my analysis of the
data, describing lexical distribution, speaking rate and pause distribution, disfluencies, reading errors, and

grammaticality in the native and non-native speech.

3.1 Data collection

At the time this thesis work began there were some small databases of non-native speech available. In
particular, the LDC Wall Street Journal (LDC, 1994a) and Broadcast News (LDC, 1997) databases have

non-native components, and are linked to widely-used native databases so results on non-native speech could

23
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be compared to those for native speech. However, because both of these databases were limited to read
speech, I would not have been able to compare characteristics of read and spontaneous speech for the same
speakers. My goal was also to examine patterns in speech of speakers who were of a lower proficiency level
than those in the two read news databases. It was therefore my decision to collect my own database of
non-native speech, following as closely as possible the data collection conventions used in developing these

well-known databases (LDC, 1996a).

3.1.1 Pilot data collection experiments

In order to determine what type of data I would be able to collect, several pilot experiments were run with
five local speakers who were acquaintances and known to be of the target English proficiency level. All were
native speakers of Japanese. They returned a number of times to complete different tasks, under different
recording conditions, and were asked for their reactions to each situation. I defined my target data based
on their feedback. This approach is different from the more conventional method of first characterizing the
target data and then designing the task and recording protocal to enable collection of that data. My decision
to control for the native language and English proficiency of the speakers limited the potential speaker set,

however, and I wanted to maximize the extent to which local speakers would be able to participate.

Spontaneous speech

My decisions in spontaneous speech collection were heavily influenced by the experience of colleagues at the
Interactive Systems Labs (ISL) at Carnegie Mellon University who have had many years of experience in
collecting spontaneous speech from native speakers in a variety of domains. Data that has been collected at
ISL is used as a standard database in multi-site speech system development and evaluation (Burger et al.,
2000; Ahlen et al., 1997). In most cases, a scenario is designed and speakers are asked to converse freely in
the context of that scenario. The scenario can be goal oriented, asking the speakers to schedule a meeting
or make a hotel reservation; it can also be free in form, asking speakers to converse about a certain topic.
Completely unconstrained speech can be collected by simply recording conversations and discussions with
the permission of the speakers.

The non-native speakers who were invited for pilot experiments resisted both scenario-based and uncon-
strained spontaneous data collection. They cited their lack of confidence in producing English sentences
as the primary reason for their discomfort. One of the speakers refused to do either task. The other four
agreed to record, but two of the four complained that the tasks were “hard” and “embarassing.” Three of
the five speakers said independently that they believed word would get out within the close-knit Pittsburgh
Japanese community that the task was unpleasant and I would have difficulty recruiting speakers.

The speakers were asked to do a third task in which they were given prompts designed to elicit natural
questions on specific topics. They strongly preferred this task. Although a prompted task can unnaturally

constrain the types of words and expressions that are used (speakers tend to repeat the phrases in the
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Speaker Group Native Non-native
Prompt type English prompts | English prompts | Japanese prompts
Perplexity 102.6 59.49 32.73

Table 3.1: Perplexity of spoken English as elicited from native speakers, non-native speakers given English prompts,
and non-native speakers given native-language prompts. Perplexity is measured with respect to a native language
model.

prompt), I hypothesized that because the speakers were already depending on learned templates in their
speech, the prompted speech might not be as distant from spontaneous speech as it would for native speakers.
T also thought that giving speakers native-language prompts and asking them to formulate English queries
might approximate the pseudo-translation process they were already going through in speaking English,
and that such prompts might actually elicit fairly natural utterances, whereas giving them English prompts
would encourage them to use phrases that they were not familiar with and introduce speech errors that
would not ordinarily occur.

As an informal evaluation of this hypothesis, I examined how well a topic-matched language model pre-
dicted the English-prompted utterances, the native-language-prompted utterances, and a set of utterances by
native English speakers given the same English prompts. A standard measure of language model performance

over a corpus is perplexity, which is defined in e.g. (Manning and Schiitze, 1999, p.510) to be
ppl — Q%IOQP(wl...N)

where N is the corpus size and the probability of the word sequence w; ... N is approximated, in the
case of a trigram language model, as

N
P(w1 N) = HP(wi|wi_2,wi_1)

i

The results of the evaluation are shown in Table 3.1. The perplexity is dramatically lower for the Japanese
speakers, particularly when the prompts are given in Japanese. This could mean that the Japanese speech
is much simpler than the native speech; it could also mean that the Japanese speakers are relying on some
fixed phrases that are common in native speech. The difference between the English-prompted and native-
language-prompted speech suggests, as does an examination of the transcripts, that Japanese speakers are
more predictable in their speech patterns when not influenced by the possibly unfamiliar English phrasing

in the prompts.!

Read speech

In addition to the spontaneous utterances, I wished to collect samples of read speech from each user as well.

As it turned out, this was also not straightforward, as speakers resisted reading text that was too difficult.

't should be noted that the subjecs reported no difficulty in understanding the English prompts, only that the phrasings

were not the ones they would have chosen.
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Wall Street Journal articles, for example, were unanimously ruled impossible by my panel. T chose to have
speakers read a modified-vocabulary version of the story of Snow White and several articles from an archive
of news articles written for children. This was not a completely altruistic decision; certainly, I did not want
to antagonize or embarass the speakers, but I also did not want recordings full of repeated attempts to
pronounce unfamiliar words, long pauses in the middle of words, and unintelligible segments. There were
plenty of these effects in the simpler readings, and asking the speakers to read texts of higher difficulty would

only serve to drive up the word error rate and lower my chances of recruiting volunteers.

Conclusions from pilot experiments

The issue of difficulty was not one I had previously encountered in collection work with native speakers.
Talking is something most native speakers do comfortably every day, and getting a gift certificate for ice
cream or pizza in exchange for a chat appeals to many people, particularly those of the hungry undergraduate
persuasion. In working with the non-native speakers, I became aware of a number of assumptions commonly

made about data collection that do not necessarily hold when the speakers are not proficient in the language.

There is a limited supply of speakers.

Although recruiting speakers is never easy, the creative recruiter can always find new venues: recruiting
speakers in shopping malls, for example, or festivals. There are simply fewer non-native speakers to be
found, particularly when the data collection must be controlled for factors such as speaker proficiency or

native language.

There is a risk of alienating the community.

Because non-native speaker communities are often quite tight, opinions of the recording project may spread
quickly. It is possible that members may react negatively to the project, feeling perhaps that the researcher
is asking them to do something unpleasant when the researcher had no such intention. If word spreads that
the project should be avoided, it may become impossible to recruit speakers from the target group. The

researcher must be sensitive to cultural norms and possible misinterpretations of the purpose of the project.

All speakers are not equally able to perform the task.

While native speakers vary in their abilities to read aloud or extemporize, this variation is limited to the
realm of fluent native speech. Non-native speakers range much more in their abilities to perform different
tasks, and care must be taken in planning the data collection to account for variation in speaker ability,

something which is not ordinarily a factor in native data collection.

The act of speaking, whether careful or not, represents a major cognitive load for the speaker.
There is some cognitive load associated with speaking for native speakers (Lamble et al., 1999). The more
thought that must go into completing the task, the higher the cognitive load, and the more likely speech

errors are to occur (Grant, 1999). However, this load is far lighter than the one experienced by non-native
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speakers. Non-native speakers must often struggle to remember what the rule is for moving the verb to the

end of the sentence, or if the word started with an /r/ or an /1/, not just how best to express their thoughts.

The data collection administrator may not understand intuitively how difficult or easy the
task is for the speaker.

Native speakers have a general understanding of what is easy and what is hard for other native speakers.
Even if they do not expect that reading a certain Wall Street Journal article will be difficult, they will
quickly realize it when they see the speaker struggling. The researcher’s intuitions may not be correct with

non-native speakers, however.

Some speech tasks (read/careful/spontaneous) may be significantly more difficult than others
for the speaker

Again, while I recognize that normal native speakers vary in their abilities to complete certain tasks, this
variation just does not compare to the variation among non-native speakers. If a non-native speaker has
only been educated using read texts, spontaneous speech will be very difficult for him, whereas a speaker

who learned primarily by speaking may find reading aloud far more difficult.

The speakers may perceive the task as a test on which they will be evaluated

This was an issue that I faced many times. Because many speakers have learned the non-native language
in school, they often feel that they are being tested when they are asked to use it in artificial situations
such as data collection. This worry makes the task more unpleasant for them and may affect their speaking
performance. Speakers may or may not be more comfortable if this concern is addressed right away, but it

is important for the researcher to understand that speakers may be feeling judged.

Speakers may not have a good idea of what they would say in a given situation, and may not
have said and heard something similar before

For example, I had assumed that one speaker’s hesitations were because he did not know the right words to
complete a hotel reservation. It turned out that he had never had to make a hotel reservation even in his
native language, and didn’t know what sorts of things he could ask for. He had not told me this when we

first explained the task; it took some probing afterwards to understand what had happened.

While it is not strictly necessary to ensure that the data collection experience is a pleasant one for the
speakers, it is valuable to consider doing so for two important reasons: concern for the feelings of the speaker,
and concern for the integrity of the data. With regard to the latter, in collecting speech data for LVCSR,
the goal is to obtain samples of speech that are representative of those that would occur when a speaker is
using the speech system for its intended purpose. If speakers are feeling embarassed or tense, if they are
frustrated, if they are pressured to use words and expressions that they normally would not, the utterances

they produce may be quite atypical of their usual speech. As for the former, respecting and being prepared



28 CHAPTER 3. NON-NATIVE SPEECH DATABASE: COMPOSITION AND CHARACTERIZATION

for differences in expectations of the speech elicitation process have long been a consideration in disciplines

such as Sociolinguistics that rely on data collected in field interviews (see Section 2.5 for a discussion).

3.1.2 Data collection protocol

Based on the information gathered during the pilot data collection, the decision was made to have one group
do the spontaneous recordings and read the fairy tale, and a second group read a number of articles of
children’s news from the magazine Time for Kids. The collection of articles read by this second group form
the Children’s News Database (CND) that was designed for this dissertation. Some speakers were willing
to do both tasks, so for those speakers there is an element of overlap in the database. Because it was much
easier to recruit volunteers, more speakers were recorded for the news reading task, which in turn influenced

the decision to focus primarily on read speech in the acoustic modeling portion of this thesis work.

Speaker recruitment

Most speakers were recruited locally in Pittsburgh, although some were recorded in Japan. The local speakers
responded to bulletin board postings around the Carnegie Mellon and University of Pittsburgh campuses
and electronic mailing list announcements. The speakers in Japan were members of an English conversation
club at Kyushu University. The only requirements were that speakers had studied English for at least six
years, continued to experience some difficulty in speaking and understanding it, and had not spent more
than one month immersed in an English-speaking environment until after graduating from college.
Potential speakers were given a description of the tasks they would be asked to perform and told that it
would take between thirty minutes and one hour, and that they would be given a gift certificate to a local

merchant of their choice.

Demographic information

Speakers were asked to fill out a form to record their gender, hometown, dialect, exposure to English, and

other characteristics. This information is provided in Appendix A.10.

Anonymization and consent

Each speaker was assigned an identification number that was used to store the recorded data and demographic
information. These assignments were known only to one researcher, and the anonymization process was
explained to the speakers. Each speaker signed a document stating that he or she agreed to be recorded,
with an optional release of their recorded data for the purposes of playing excerpts at research presentations.
The document also stated that speakers could terminate their participation at any time, and was provided

in both English and Japanese.
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Scenario 1. Scenario: Going to a restaurant

You read about the Lemongrass Grill in your guidebook and you would like to try it. Find out the

following about the Lemongrass Grill:
e Type of food served
e Prices
e Hours

Reservation needed?

Distance from the Plaza Hotel

Transportation back to the Plaza Hotel

Figure 3.1: Excerpt from elicitation scenario given to JL1 speakers

Recording environment

Based on feedback from the pilot speakers, it was decided to have speakers record onto a tape, alone in
a quiet room. A digital audio tape (DAT) was used with a Sennheiser headset. Speakers were given the
material with an explanation of the task and shown how to operate the DAT recorder. When they felt
comfortable with the device and task and had filled out the paperwork, the test administrator left the room.
The speakers always knew how to find the administrator, and often came to ask questions. In only one case

did the speaker fail to operate the DAT recorder correctly.

Tasks

Speakers participated in the spontaneous task, the read news task, or both. For the spontaneous task, the
speakers were given a set of scenarios consisting of an explanation of the setting and a number of prompts for

queries. An English example is given in Figure 3.1. The actual Japanese version is provided in Appendix A.6.

Some speakers that participated in the spontaneous task were also recorded reading the story of Snow
White, which is provided in Appendix A.7.

For the read task, speakers were asked to read two or three articles from CND . They were told that they
should make their best attempt to pronounce any unfamiliar words, and that if they made an error they
could either continue or return to the beginning of the sentence. All speakers read one common article, the

text of which is provided in Appendix A.4. The remaining two articles were unique to each speaker.
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Amount

Fifty-six native speakers of Japanese were recorded. Of these, twenty-five recorded the spontaneous task
only, twenty-three recorded the read news task only, and eight recorded both.

Twelve native speakers were recorded under the same conditions. Of these speakers, one recorded the
spontaneous task only, five recorded the read news task only, and six recorded both. The final composition

of the database is given in Table 3.2.

3.2 Evaluation of speaker proficiency

So that recognition performance on individual speakers could be put into the context of their level of
English proficiency, all speakers were evaluated following the guidelines of the Speaking Proficiency English
Assessment Kit (SPEAK), a standardized evaluation procedure developed by the Educational Testing Service
as part of the Test of English as a Foreign Language (TOEFL) program (SPE, 1987; Clark and Swinton,
1979). SPEAK provides guidelines for rating non-native speakers of English in four categories: overall
comprehensibility, pronunciation, grammar, and fluency. In a full SPEAK test, proficiency in two or more
of these categories is assessed for each of six tasks: reading from text, sentence completion, telling a story
depicted by a series of drawings, answering questions about what is happening in a single drawing, answering
spoken questions, and describing a printed schedule aloud.

The ratings are on a four-point scale, from 0 to 3. The system assumes that speakers are non-native, so a
score of 3 allows for some non-native patterns in pronunciation, prosody, or usage as long as the speech is fully
comprehensible and closely approximates native speech. In effect, then, this four-point scale is comparable
to a five-point one in which the top score is reserved for native speech.

The SPEAK guidelines provide simple but very specific criteria for assigning proficiency scores. These
criteria are listed fully in Appendix A.1. The following is an excerpt, listing the criteria for assigning scores
in the comprehensibility category; these criteria cover features found not only in read speech but also in

spontaneous speech.
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Prompted Story News
Native language || # speakers | # utterances || # speakers | # utterances || # speakers | # utterances |
Japanese 33 2257 13 795 31 3802
English 6 436 6 548 10 1419
Chinese 6 375 6 507 — —

Table 3.2: General information about the non-native speech database

0 Overall comprehensibility too low in even the simplest type of speech.

1 Generally not comprehensible because of frequent pauses and/or rephrasing, pronun-

ciation errors, limited grasp of vocabulary, or lack of grammatical control.

2 Comprehensible with errors in pronunciation, grammar, choice of vocabulary items or

infrequent pauses or rephrasing.

3 Completely comprehensible in normal speech with occasional grammatical or pronun-

ciation errors.

(SPE, 1987, p.16)

For this thesis, speakers were only rated for proficiency in the first task, reading aloud from text. Each
speaker was assessed by two qualified SPEAK raters, whose scores were averaged. In cases where the two
raters’ diagnostic scores differed by more than 0.95, a third rater assessed the speaker and his score was
averaged with the score closest to his to obtain the final rating for the speaker (the outlying score was
thrown out). Each speaker was rated on three separate passages, and these three scores were averaged to
give a final diagnostic score for that speaker in each of three categories: pronunciation, fluency, and overall

comprehensibility. All speakers read the same text, which is given in Appendix A.5.

3.3 Transcription and annotation

Recordings were transcribed by one transcriber and validated by at least one second transcriber. The
transcription and annotation conventions were based on those used in the LDC transcriptions of spontaneous
speech (LDC, 1996b), with some extensions for transcription of read speech errors. In order to make the
extended-format transcriptions compatible with the checking program that was used, the surface form is
slightly different from those used in the LDC conventions; the types of annotations made are the same,
however, and the transcripts can easily be converted to the LDC format.

The transcribers used the TransEdit transcription tool. TransEdit was written by Susanne Burger and
Uwe Meier, graduate students affiliated with the Interactive Systems Labs at CMU. TransEdit allows the
transcriber to view and segment the speech waveform and either transcribe and annotate the speech from

scratch or annotate a prepared text in an embedded editing window. It runs in a Windows environment.
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Examples of transcribed read and spontaneous passages are given in Appendices A.8 and A.9.

3.3.1 Read speech transcription

In transcribing read speech, transcribers worked from the same text that the speakers read, transcribing any
departures from the original text. They brought the text up in the text editor and as they listened to each
recording they annotated the text to reflect what the speaker actually said.

Allowing the transcribers to work from the original text sped up the transcription progress significantly
and also increased the accuracy of the transcriptions. A pilot transcription experiment had suggested that
while native transcribers tended to miss some types of reading error made by native speakers, this problem
occurred only rarely when transcribing the non-native speech. This is probably because many native reading
errors are still examples of natural English and are therefore not as noticeable as non-native reading errors.
For example, in the following sentence, both native and non-native speakers exchange singular and plural
nouns, but the reading error made by the native speaker results in a smooth and gramatically correct sentence

and the reading error was not caught until verification.

(3.1) a.  Then Clinton’s lawyers will be given twenty-four hours to present the President’s side
(text)

b.  Then Clinton’s lawyer will be given twenty-four hours to present the President’s side
(native reading)

c.  Then Clinton’s lawyers will be given twenty-four hour to present the President’s sides
(non-native reading)

Word-level annotations

To produce a word-level transcription, the original text was preserved and any departures were inserted and
marked as reading errors, with the scope of any repeated segments indicated. The following forms of error

were annotated:

Insertions the speaker inserts a word that was not written in the text.
(a) Will <;ins the> Fox’s film sell as many action figures and fast food meals as The Little Mermaid
Deletions the speaker omits a word that was written in the text.

(a) only a hundred <;del years> ago the rivers of Washington State and Oregon were jumping with
salmon
(b) in most places fishermen today catch one third fewer Chinook salmon than they did in the early

nineteen <;del hundreds>

Substitutions the speaker misreads a word (or words) as another English word (or words).
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(a) will all this effort <;1 &effect> be worth it
(b) settlers arrived in the early eighteen hundreds <;2 &eighteens>

(c) the united states has strongly opposed japan’s <;1 &united states> whaling practices
Repairs the speaker “rewinds” one or more words to correct something that he said.
(a) restoring salmon populations to healthy levels will be an {-/upstair=/- upstream} struggle for
everyone in the area
(b) {-/Colonists may have used <;ins a> copper/- -/used copp=/- colonists may have used copper}

Repeats/retraces the speaker rewinds one or more words repeating exactly what he said, usually to recover

his train of thought or to stall while thinking of what to say next.
(a) {+/the/+ +/the/+ the} N M F S must approve these plans but some groups are already taking
steps

(b) {-/some travel hundreds <;del of> miles/- <;meta oh> some travel hundreds of miles}
Neologisms the speaker invents a word?.

(a) Since nineteen ninety five roaming wolves have killed eighty four sheep <;1 “sheeps> and seven
cattle
(b) The ruins of what appears to be Cleopatra’s palace lay buried in layers of mud seaweed <;1 “seawood >

and garbage

Mispronunciations as most speakers are strongly accented, words are only marked as mispronounced if
they are articulated in a way that cannot be attributed to native language interference. The majority

of mispronounced words are words that were unfamilar to the speaker.
(a) ...near the Columbia and *Willamette [w ih 1 y ax m eh t] river systems

Unintelligible words words that are only recognizable because the transcriber is looking at the original
text, or articulated segments that cannot be marked as insertions or deletions because they are not

recognizable as words

(a) The rarer the species the higher the price the animal ((fetches)) abroad

(b) Parents learn the truth about (()) how their children were murdered

Word fragments the speaker either stops or starts in the middle of a word

2This differs from native neologisms in that the speaker is not inventing a word in order to better convey meaning; the speaker
thinks that he is using an established word. Words that are marked as neologisms are made up of recognizable morphemes
which, while not combining to form an established word, show the speaker’s understanding of English morphology and an

attempt to find familiar parts in an unfamiliar word.
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(a) In {-/nineteen ni=/- nineteen ninety} wildlife inspectors in Bangkok Thailand found six baby o=

orangutans wedged into cra= crates

(b) {-/Environment/- -/environmen=/- environment= *pause* {-/=alist=/- =alists }} the govern-

ment and ordinary folks <;1 &folk> team up to save the salmon

Noise and meta-utterance transcription

Non-human noises such as microphone noise and distortion and environmental noise were marked in the
transcripts. Human noises such as breath sounds, coughing, and laughter were also marked.

In addition to the inserted words marked in word-level annotations, speakers often inserted filler words
such as “um” and “uh” both in English and in their native languages, and also meta-level expressions such
as “oh” and “I'm sorry.” These extra-text words were not annotated as insertions, but rather were given a
filler or meta annotation. This distinction was made so that insertions due to misreading could be isolated.
Native-language words were marked as such; a transcriber with a familiarity with the native language of the

speaker did these annotations.

Phonetic transcription

For a selection of the recordings, phoneme-level transcriptions were produced by transcribers experienced
in phonetic transcription. While the transcribers were restricted to the English phoneme set used by the
recognizer, they were permitted to add diacritics indicating such effects as r-coloring, devoicing, nasalization,
lengthening, release deletion, and aspiration. There were many times that the transcriber could not identify
a phone in the legal phone set that resembled the speaker’s articulatory production. In these cases, the
expected phone given the canonical pronunciation was used and marked as unrecognizable. The phone set

used by the transcribers is provided in Appendix C.

3.3.2 Spontaneous speech transcription

Noise- and phone-level transcriptions for spontaneous speech followed the same conventions as were used for
read speech. Word-level transcription conventions followed the LDC’s transcription manual for CALLHOME?
(LDC, 1996b) with the disfluency transcription extentions described in Section 3.3.1. Specifically, the follow-
ing events were annotated: human noises, non-human noises, filler words (hesitation sounds), unintelligible
segments (with or without best guess), foreign-language segments, partial words, idiosyncratic words and
neologisms, mispronunciations, and asides and meta-level speech.

Transcribing the spontaneous speech was very challenging because in many cases it was difficult to
determine what the speaker was trying to say. For example, for one poorly pronounced utterance, the first

and second transcribers disagreed on what was said:

3CALLHOME is a two-channel telephone speech task, so not all of the annotations allowed in CALLHOME were needed for the

non-native transcriptions.
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Transcriber 1 {+/should I/+ should I} go {-/four mo=/- with four months} time
Transcriber 2 {+/should I/+ should I} go {-/four mo=/- with four months} start

Neither of these transcriptions made sense in the context of the prompt, which was roughly “ask what to
wear” in the scenario “Going to a play.” Only after a third transcriber who was very familiar with Japanese-
influenced English listened to the utterance many times did it become apparent that the speaker meant to

say the following:
Actual utterance {+/should I/+ should I} go {-/formal/- with formal} style

Transcribers were instructed to transcribe what they thought the speaker said. My reasoning was that
a speech recognition system’s goal is to match the perceptive skill of a cooperative native listener, and that

the reference transcript should reflect what a native speaker hears.

3.4 Training/Test set definitions

In this section, the native and non-native speaker sets that will be used in further experiments are specified.

These data sets are used for training, evaluation, cross-validation, and analysis.

Training data
Training data sets are used in the training of acoustic models. Chapter 4 will refer frequently to the training

data. For this dissertation, training data was only collected for non-native speakers and read speech.

Evaluation data
Evaluation data is also referred to as test data. Recognition experiments always report results on only

evaluation data unless otherwise specified.

Cross-validation data
Cross-validation data is used when parameters such as word probabilities or language model weights must

be estimated on a data set that is disjoint from the training and evaluation sets.

Analysis data
Analysis data is only used in this chapter, in discussions of data characterization. Analysis data sets are not

necessarily disjoint from the corresponding training, evaluation, and cross-validation sets.

Partitioning of the non-native read data into training, evaluation, and cross-validation sets was done
based on proficiency; 10 speakers who received a SPEAK score of between 1.83 and 2.17 were selected for
the test set, and of the remaining speakers, three were arbitrarily selected for the cross-validation set.

Table 3.3 lists the number of speakers and number of utterances for each of these data set types. An ID

tag is also given to each data set for ease of reference throughout the dissertation.
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Data set Used for Type of Domain Native # speakers | # utterances
ID speech language

N-E-R evaluation read CND English 6 339

N-A-R analysis read CND English N-E-R used for analysis
N-A-story analysis read Snow White | English 6 545

N-A-S analysis spontaneous | tourist English 6 334
NN-E-R evaluation read CND Japanese | 10 419
NN-X-R cross-validation | read CND Japanese | 3 125
NN-T-R training read CND Japanese | 15 1343
NN-A-R analysis read CND Japanese NN-E-R used for analysis
NN-A-story || analysis read Snow White | Japanese | 12 717
NN-A-S analysis spontaneous | tourist Japanese | 32 2190
C-A-story analysis read Snow White | Mandarin | 6 507

C-A-S analysis spontaneous | tourist Mandarin | 6 375

Table 3.3: Specifications for training, evaluation, cross-validation, and analysis sets to be used throughout the thesis.
Data set NN-E-R is controlled for proficiency

3.4.1 Common article for read speech evaluation

As noted in Section 3.1.2, each speaker completing the CND task read one article in common with other
speakers and one or two articles, depending on length, that was unique to that speaker. This test article

will be known as CND1; the text is provided in Appendix A 4.

3.5 Transcript analysis

Because speech recognition has only recently reached the point where we can begin to consider recognition of
lower-proficiency speech in LVCSR tasks, the distinctive characteristics of non-native speech, the properties

that make it different from native speech, have not been well studied.

3.5.1 Lexical distribution

Although non-native speakers of the proficiency level I am examining do not have the range of vocabulary
and expression available to them that native speakers do, it is not clear that their speech, either individually
or in the aggregate, could be described as more restricted than that of native speakers. In the context of a
certain task, native speakers often rely on standard words and phrases, whereas non-native speakers, perhaps
performing the task for the first time, may each come up with a unique way to ask the same question. For
example, when prompted to ask about dress, most native speakers responded with “what should I wear,”

while non-native speakers were more creative with their queries:

(3.2) Do we need to wear the formal dress or we can wear the casual one?
(3.3) What kind of clothes do I have to wear for there?

(3.4) In what kind of dresses should I go there?

(3.5) What should I wear to go there?
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If we consider this tendency in the context of Jackson’s (1932) discussion of “old, well-organized” and
“new, now organizing” speech as described in Goldman-Eisler’s (1958) observations that in utterance seg-
ments of the former type, words are far more predictable than those in segments of the latter type, the
hypothesis that the proportion of now-organizing speech is much greater in non-native speech is further
motivated, if not explicitly supported.

Pawley and Syder (1983), too, examine “the puzzle of nativelike selection.” Although they do not present
a statistical analysis, they argue convincingly that “by far the largest part of the English speakers’ lexicon
consists of complex lexical items including several hundred thousand lexicalized sentence stems” (p.215),
showing how such an interpretation of the mystery of nativeness explains how native speakers select “natural
and idiomatic” sentences from among those provided by a generative grammar without requiring changes to
existing models of English grammar.

In this section, a number of perspectives on the question of how lexical items are distributed in sponta-
neous non-native speech are presented. It should be noted that the corpora I am examining are very small
and not strictly suited to statistical analysis. Nevertheless, by looking at properties like word frequency
and corpus entropy it is possible to gain some intuition about the character of non-native speech. One may
also make predictions about the behavior of non-native speech by comparing early trends to documented

observations about native speech.

Word frequencies

Table 3.4 shows the frequency rankings and occurrence rates of the top 25 words in both the JL1 and native
prompted corpora, along with the frequency rankings in the other corpus. For example, the word “could”
was the 8th most frequent word in the native corpus, but ranked 105th in the JL1 corpus. “The,” on the
other hand, ranked first in the JL1 corpus and second in the native corpus.

These frequencies tell us that there are some expected similarities and some striking differences in the
way individual words are used by the two speaker groups. Function words such as “the” and “ to”, and
pronouns like “I” and “you” are among the most frequent words in both the corpora. A closer look, however,
reveals differences even in the distributions of words with equal ranks. For example, occurences of “the”
account for nearly twice as large a percentage of the JL1 corpus as they do in the native corpus. It appears
that there are two reasons for this: hypercorrection and structural choices. Many of the instances of “the” in
the JL1 corpus are incorrectly used - either no article is necessary, or another word like “a” or “my” would
have been more appropriate. The JL1 speakers also tend to use noun phrases where a native speaker would
have chosen something else. For example, many of the JL1 speakers asked “What is the cost?” where a
native speaker would have said “How much is it?”

“Go” and “get” have rankings that are almost the exact opposite of each other in the two corpora. The
contexts in which these words are used are almost identical, but native speakers show a preference for the

construction “How do I get to the hotel” and JL1 speakers for the construction “How do I go to the hotel.”
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Both of these are correct in the grammatical sense; however, a language model trained on native speech is
not going to assign as high a probability to the latter as one trained on JL1 speech might.

The word “which” ranks 25th in the JL1 corpus, but only 306th in the native corpus. This is evidence of
a strong tendency on the part of JL1 speakers to use non-restrictive relative clauses where native speakers

would omit the relative pronoun or use a modifier.

(3.6) a. Please give me the name of the restaurant which is near my hotel.
(Non-native)

b. Are there any good restaurants near the hotel?
(Native)

(3.7 a.  What is the leaving time of the return train which is the final one?
(Non-native)

b.  What time is the last train back?
(Native)

The words “tell” and “could” are both approximately ten times as frequent in the native corpus as in
the non-native corpus. This is partly because native speakers make heavy use of the expression “could you

b2

tell me...” in their queries. Although the sentence “Where is the Empire State Building?” is perfectly
grammatical, it would probably sound abrupt coming from a native speaker unless he and the person at
the (imagined) information desk were already looking at a map and discussing directions. “Tell” is used
only rarely by the JL1 speakers, who show a preference for words like “show” and “teach.” This may be an
avoidance strategy stemming from confusion about usage of the words “say,” “speak,” “talk,” and “tell,”
which English learners of many different language backgrounds report. It also may be evidence of direct
translation from Japanese.

The examples that have been given in this section are very specific. The purpose of raising them was not
to prove that non-native speakers always use “go” more than “get,” or avoid complex modal forms, although
that may be the case. Rather, the objective was to show that there are consistent and significant differences
in the distribution of words in the native and non-native speech samples that have been collected, and that
there are possible linguistic bases for the divergence. The question of whether these observations hold for

other types of non-native data and how they can be exploited in modeling non-native speech is left to future

exploration.
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Frequent words in JL1 speech Frequent words in native speech
Word | JLI corpus | Native corpus | Word | Native corpus | JL1 corpus |
THE 1(8.37%) 2(48™%) || I 1(5.36%) 6 (2.78%)
TO 2 (14.32%) 3 (4.74%) || THE 2 (4.87%) 1(8.37%)
IS 3 (3.84%) 7(2.07%) || TO 3 (4.74%) 2 (4.32%)
HOW 4 ( 3.59%) 8 (1.99%) || YOU 4 (2.59%) 7(2.57%)
AND 5 (2.82%) 10 ( 1.89%) || ME 5(2.07%) | 49 ( 0.45%)
I 6 (2.78%) 1(5.36%) || IS 6 (2.07%) 3 (3.84%)
YOU 7(2.57%) 5(2.59%) || HOW 7 (1.99%) 4 ( 3.59%)
WHAT 8 (12.24%) 22 ( 0.94%) || COULD 8 (1.97%) | 105 ( 0.19%)
CAN 9 ( 2.08%) 8 (1.19%) || AND 9 (1.89%) 5 (2.82%)
GO 10 ( 1.60%) 29 (0.73%) || GET 10 ( 1.75%) | 22 ( 1.02%)
IT 11 ( 1.56%) 13 (1.51%) || A 11 ( 1.56%) 0 ( 1.09%)
DO 12 ( 1.53%) 22 (0.59%) || IT 12 (1.51%) | 11 ( 1.56%)
STREET 3 ( 1.48%) 15 ( 1.35%) || TELL 3 (1.37%) 120 (0.15%)
DOES 4 ( 1.42%) 91 ( 0.27%) || STREET 4 (1.35%) | 13 (1.48%)
OF 5 (1.36%) 16 ( 1.21%) || OF 5(1.21%) | 16 ( 1.36%)
WHERE 6 (1.31%) | 47 (0.46%) || SO 6 ( 1.19%) 123( 0.15%)
FROM 7 (1.28%) 61 ( 0.40%) || CAN 7(1.19%) 9 ( 2.08%)
THERE 8 ( 1.16%) 19 ( 1.16%) || THERE 8 (1.16%) | 19 ( 1.16%)
A 9 ( 1.09%) 12 ( 1.56%) || THAT 9(1.08%) | 51 (0.43%)
RESTAURANT | 20 ( 1.03%) 34 (1 0.59%) || WELL 20 (0.97%) | 107 ( 0.17%)
GET 21 ( 1.02%) 11 ( 1.75%) || WHAT 21 ( 0.94%) 8 (12.24%)
MUCH 22 (0.99%) | 111 (0.22%) | LIKE 22 (0.94%) | 98 ( 0.20%)
TICKET 23 ( 0.93%) - (0.00%) || HOTEL 23 (0.89%) | 47 ( 0.48%)
TIME 24 (0.91%) | 128 ( 0.16%) || IN 24 (0.86%) | 27 ( 0.85%)
WHICH 25 (0.86%) | 306 ( 0.03%) | AT 25 (0.75%) | 75 ( 0.29%)

Table 3.4: Word frequencies in prompted speech: frequency rankings and occurrence rates

Common n-grams

The idea of individual word frequencies as an indicator of distance between corpora can be extended to word
sequences, which give us more information about how the words are used in context. While the occurrence
frequencies are much lower, and the number of unique types much higher than for individual words in the
non-native sample, one can still see patterns that suggest ideas for future modeling of non-native word usage.

The most frequent trigram in the non-native data, “where is the,” never appeared in the native data
at all. This is further evidence that the JL1 speakers favor simple questions where native speakers prefer
embedded forms. “Is there any” is another trigram that shows much lower frequency in the native data,
although it is part of a generic question (unlike “of fine arts,” which is clearly well-represented only because
the native speakers were all speaking in the context of a scenario that takes place at the Museum of Fine
Arts?). Tt turns out that fully 65% of the instances of this question use “any” improperly with a singular
countable (non-mass) or plural noun, an event which occurred only 4% of the time “[be] there any” appeared

in the native sample. For example, the Japanese speakers often formed questions like “is there any restaurant

4The native speakers in this data set were all given the same scenario. This meant that a number of n-grams appeared
frequent only because the speakers were talking about the same thing. For the non-native recordings, the place names in the

scenario were modified after every 10 speakers.
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Frequent trigrams in JL1 speech Frequent trigrams in native speech
Word | JL1 corpus | Native corpus || Word | Native corpus | JL1 corpus |
WHERE IS THE 1 (0.58%) YOU TELL ME 1(1.20%) 6 (0.43%)
CAN I GET 2 (0.54%) 2 (0. 18%) COULD YOU TELL 2 ( 1.08%) 8 (0.24%)
DO YOU KNOW 3 (0.52%) 2 (0.18%) || GET TO THE 3 (0.69%) 0 (0.13%)
DOES IT TAKE 4 (0.46%) 2 (0.24%) || I'D LIKE TO 4 (0.63%) 2 (0.33%)
HOW LONG DOES 5 (0.44%) 77 (0.15%) || TELL ME HOW 5 ( 0.54%) 1(0.14%)
YOU TELL ME 6 (0.43%) 1(1.08%) || TO GET TO 6 (0.51%) 164 (10.06%)
IS THERE ANY 7 (0.43%) 130 (0.09%) || MUSEUM OF FINE 7 ( 0.48%) 06 (0.09%)
LONG DOES IT 8 (0.42%) | 48 (0.18%) || I NEED TO 8 ( 0.48%) 4 (0.10%)
WHAT IS THE 9 (0.38%) 130 (0.09%) || THE MUSEUM OF 9 (0.45%) 0 (0.15%)
TO GO TO 10 ( 0.37%) 9 (0.27%) || OF FINE ARTS 10 ( 0.45%) 2 (0.10%)
HOW MUCH IS 11 ( 0.37%) 248 (0.06%) || SO COULD YOU 11 ( 0.42%) 280 (10.04%)
I'D LIKE TO 12 ( 0.33%) 3 (0.63%) || IT TAKE TO 12 ( 0.39%) 4 (0.28%)
WHAT KIND OF 13 ( 0.30%) 248 (0.06%) || MORE INFORMATION ABOUT 13 ( 0.36%) 1274 (0.01%)
IT TAKE TO 14 ( 0.28%) 1(0.39%) || PLEASE TELL ME 14 ( 0.33%) 280 ( 0.04%)
GO TO THE 15 ( 0.26%) 41 ( 0.21%) || LIKE TO GO 15 ( 0.33%) 3 (0.14%)
MUCH IS THE 16 ( 0.25%) 248 (1 0.06%) || TAKE TO GET 16 ( 0.30%) 164 (10.06%)
WHAT TIME DOES | 17 ( 0.24%) - || IGET TO 17 ( 0.30%) 5 (0.10%)
COULD YOU TELL | 18 ( 0.24%) 1(1.20%) || COULD YOU EXPLAIN 18 ( 0.30%) 155 (10.05%)
CAN I BUY 19 ( 0.23%) — || WILL IT TAKE 19 ( 0.27%) 80 (10.04%)
I GET THE 20 ( 0.22%) 655 ( 0.03%) || TO GO TO 20 (1 0.27%) 0 (0.37%)
HOW MUCH DOES | 21 ( 0.22%) 248 (1 0.06%) || TO GET THERE 22 (10.27%) 0 (0.13%)
HOW FAR IS 22 (10.22%) 248 (1 0.06%) || THE INTERSECTION OF 22 (10.27%) 1274 (0.01%)
TURN TO THE 23 ( 0.20%) 248 (0.06%) || TELL ME WHERE 23 (0.27%) | 164 ( 0.06%)
HOW TO GET 24 (1 0.20%) 6 (0.15%) || LONG WILL IT 24 (10.27%) 280 (10.04%)
WHAT TIME IS 25 (1 0.19%) 130 (0.09%) || I WANT TO 25 (10.27%) 7 (0.16%)

around here” and “is there any good sight points” whereas native speakers reserved “is there any” for mass
nouns (“Is there any seafood on the menu?”) and paired plural nouns with are: “Are there any restaurants

nearby?”

Perplexity and Entropy

As mentioned in Section 3.1.1, the perplexity of the non-native queries was lower than the native queries
with respect to a language model trained on native speech. In other words, given a two-word history, the
language model was better able to predict the words in the JL1 speech than in the native speech. This
observation is also true at the individual speaker level, although there is far more variance in perplexities of
the JL1 speakers, as can be seen in Figure 3.2. It should be noted that the individual speaker corpora are
very small ( ~ 750 words).

To gain an understanding of how the non-native speakers differ from each other in their use of English,
I examined the Kullback-Leibler (KL) divergence (Manning and Schiitze, 1999, p.72) in the frequencies of
words, word trigrams, and part-of-speech trigrams. While KL divergence does not tell us exactly where the
distributions of words and n-grams differ, it does give us an idea of the magnitude of the difference. KL

divergence is defined as

1’
D(pllg) = Zp log @)
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Figure 3.2: Native and non-native speaker perplexities with respect to a language model trained on in-domain native

speech. Speakers are listed along the x axis in order of increasing perplexity

which represents the difference between modeling a distribution with the correct probability mass function
p and the incorrect function ¢. To calculate word-level KL divergence, the frequency of each word type
that appeared in all of the JL1 and native data, a total of 996 word types, was computed for each speaker
corpus. The frequencies were normalized by the number of word tokens in a corpus to obtain a distribution
for that corpus. Smoothing was then applied to distribute a probability mass of .01 across the words that
did not occur in that corpus. Using these frequency distributions, I was able to measure the word-level KL
divergence between two corpora.

Word-frequency-level divergence is straightforward to measure, but may say less about how the speaker
uses language than the breadth of his vocabulary with respect to a fixed domain. Two native speakers
well-versed in the terms commonly used in making travel arrangements, for example, may tend to use the
same sorts of words and expressions in forming queries, leading to low divergence between their speech.
Two non-native speakers unfamiliar with the discourse conventions in a given domain and with vocabularies
limited to distinct sets of words, on the other hand, may diverge much more in their lexical choices.

Trigram-level divergence captures differences in language use better, but because of the size of the corpora
there were very few trigrams with significant probability mass. Measuring divergence at the part-of-speech
level reduces the number of unique types to be compared, possibly allowing a tighter model of each speaker’s
speech. Computation of word trigram and part-of-speech trigram KL divergence were set up as described

above, with the trigram frequencies replacing the word unigram frequencies. Part-of-speech tagging was
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| Comparison (p-q) | Word unigram | Word trigram | Part-of-speech trigram |

native-native 1.04 9.61 4.48
nonnative-native 3.06 13.67 7.25
nonnative-nonnative 1.99 12.46 6.60

Table 3.5: Kullback-Leibler divergence (relative entropy) of word and part-of-speech n-gram frequencies between
native and non-native speaker corpora

done using the MXPOST tagger (Ratnaparkhi, 1996); ungrammatical sentences in the spontaneous speech
did not appear to be affecting tagging accuracy.

Table 3.5 shows the average divergence for native and non-native speakers, both inter- and intra-group.
When computing the intra-group divergence, divergence between each speaker corpus and all the others
combined were calculated; these divergences were then averaged. The divergence between the native and
non-native corpora were consistently higher than the intra-group divergences. Divergence between non-
native speakers was also very high in all measurements. This is evidence that non-native speakers are more

different, from each other in the way they use language than native speakers are.

Vocabulary growth rate

The vocabulary growth rate measures the number of unique words that are introduced as the corpus grows.
When the corpus is small, each new text (article, collection of utterances, etc.) contains many word forms,
words that have not been seen before. As more text is added, the growth rate slows, since many of the
words in the new texts already appear in the corpus. The vocabulary growth rate varies for different types
of corpora — a corpus of bus schedule queries, for example, would have a slower growth rate than a corpus
of unrestricted spontaneous speech. The difference between vocabulary growth rates in different languages
can be large; for comparable corpus types, the vocabulary growth curve in English reaches saturation earlier
than it does in more highly inflected languages like Spanish and agglutinative languages like Turkish.
Vocabulary growth rates are compared across languages and tasks in Figures 3.3 and 3.4. Figure 3.3
shows how the difference between English and Spanish vocabulary growth rates remains similar across tasks:
in broadcast news, conversational speech, and meeting scheduling, the rate of introduction of unique words is
consistently slightly higher in Spanish than in English. The vocabulary growth rate is highest for broadcast
news and lowest for task-oriented dialogues (meeting scheduling). The discrepancy between the curve pairs
is greatest for the most restricted tasks, possibly because gender and number agreement requirements in
Spanish result in many word forms even when set phrases account for a large proportion of the dialogue.
Figure 3.4 compares vocabulary growth rates for five languages in the single task of meeting scheduling.
German and Spanish have more extensive inflectional and compounding systems than English does, produc-
ing faster vocabulary growth. While only a small amount of data was available for Japanese and Korean, it is
evident even from the part of the curve that is shown that the rate of introduction of new words is extremely

high. These trends are highly dependent on how vocabulary items are defined, however. For languages like
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Figure 3.3: English and Spanish vocabulary growth for different tasks. The number of unique word types is shown

as a function of the number of word tokens in the corpus (Geutner, 1995)

Japanese and Korean which have no spaces or few spaces in their written form, a choice has to be made
during transcription about how the text units will be segmented. In the data that was used for the charts in
Figure 3.4, the Japanese and Korean data was segmented at the bunsetsu level, which corresponds roughly
to a noun or verb plus an article, but can contain modifiers or noun-verb sequences as well. Naturally, this
type of segmentation results in a very high vocabulary growth rate. When the Japanese meeting scheduling
data, for example, is segmented morphologically, the growth rate looks much like the English growth rate
shown in Figure 3.4. However, this is not an entirely fair comparison, as the English text has not been
segmented morphologically. In any event, the message to be derived from these curves is that languages
with similar properties show similar vocabulary growth rates, and the differences between languages are
consistent across tasks. It can therefore be surmised that native and non-native English should have similar
vocabulary growth curves, and if they do not there is some fundamental property distinguishing them.

A comparison of the vocabulary growth rate in the spontaneous portion of my non-native database with
native databases of similar size and content is shown in Fig. 3.5. The native data from my spontaneous
database is also shown, although there is only a small amount. The two larger native corpora that I can
compare the non-native transcripts to are a collection of from interactions at an information booth and
a collection of hotel reservation and travel planning dialogues. In the information booth dialogues only
the query side utterances were used to calculate vocabulary growth rate; for the travel dialogues the side

information was not available so all utterances were used.
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Figure 3.4: Vocabulary growth in five languages for the spontaneous scheduling task

As can be seen in Fig 3.5, the vocabulary growth curve of the non-native tourist queries is similar in shape
to that of the native travel dialogues, and the native tourist queries seem to be following the same trend.
Vocabulary growth in the information booth dialogues is very fast; this is probably because the locations that
the travelers are asking about are not restricted, meaning that each new query may introduce not only a new
proper noun but also new adjectives describing it, nearby landmarks, and other unseen words. The travel
dialogues, which are scenario based, offer a better comparison for this reason; a higher vocabulary growth
rate for the non-native speakers in a controlled scenario-based task tells us that the non-native speakers are
using more unique words to express the same thing, while the same difference in an unrestricted task may
only mean that the speakers are asking about different topics.

When calculating the vocabulary growth rates, the transcripts from all the speakers were appended in
the order in which they were recorded. Because the vocabulary growth curve is fairly smooth, it does not
appear to be the case that each speaker uses a radically different set of words - if they did, we would see
lurches in the curve where a new set of transcripts was introduced. Fig. 3.6 shows what the vocabulary
growth curve for the non-native data would look like if the utterances were introduced in random order.
Although the curves are similar, the randomized curves are steeper where the corpus is small. It is likely
that this indicates that the speakers are indeed using slightly different words and expressions; because the
utterances are in random order, there may be utterances from many speakers in the first 2000 words of the

corpus, introducing a wider variety of words early on.
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Figure 3.5: Vocabulary growth rates for native and non-native tourist domain speech.
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Non-native Native
Phrase Contraction || occurrences | percent || occurrences | percent
can not | can’t 6/7 85.71 3 /3| 100.00
did not didn’t 3/4 75.00 3/8 37.50
do not don’t 30/ 31 96.77 9/10 90.00
does not | doesn’t 3 /3| 100.00 2/2 | 100.00
going to | gonna 9/17 52.94 1/3 33.33
iam i'm 35 /42 83.33 23/ 44 52.27
i have i've 3/26 11.54 0/15 0.00
i will 'l 16 / 25 64.00 3 /3| 100.00
iwould | i’d 59 / 67 88.06 13 /31 41.94
it is it’s 35/ 43 81.40 4 /4| 100.00
that is that’s 17/ 23 69.57 6 /14 73.91
there is | there’s 2/8 25.00 4/5 80.00
want to | wanna 6 /40 15.00 2/11 18.18
what is what’s 19 /77 24.68 2/5 40.00
where is | where’s 10 / 82 12.20 0/2 0.00
you are | you're 1/4 25.00 0/0 -
you will | you’ll 6/13 46.15 0/0 -

Table 3.6: Contracted forms in native and non-native speech. The number of occurrences of each base form is given
along with the number of times it is contracted (contracted / total)

Contractions

Table 3.6 shows the most common contracted words and simplified forms in the native and non-native
samples. Because the native corpus is small, some of the occurrences of the base forms are very low. It is
interesting, though, to see both the difference in the rates of occurrence of some contractable base forms and
the rates at which the more common base forms are contracted. In most cases where there is a significant
difference between native and non-native rates of contraction, it is because one speaker set or the other is
using the expression in a context where it is not contractable. For example, depending on the syntactic role,
“I am” can be contracted (“I'm going to the station”) or not (“Can you tell me where I am?”)

Notably, “I am” occurs proportionally much more frequently in the native data, yet the contraction rate
is lower than in the non-native speech for the reason described above.

As noted in Section 3.5.1, the non-native speakers in my sample showed a strong preference for simple
questions like “where is the train” over embedded questions such as “can you tell me where the train is,”
accounting for the difference in occurrence rates of “what is” and “where is”, for example, in contractable

contexts.

3.5.2 Speaking rate and pause distribution

Features describing the pace and fluency of speech are another point of contrast between native and non-
native speakers. In Table 3.7, the word rates, silence rates, average phone durations, and average pause
durations are listed for the native and non-native speakers in my data.

Because questions of timing can be highly speaker-dependent, and I wished to contrast read and sponta-
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neous speech, these calculations were done for a small set of 12 native speakers of Japanese who both read
the Snow White story and completed the spontaneous task. In addition to the native speakers of Japanese,
figures for six native speakers of Chinese are also shown.

The word rate is the number of words the speaker utters per second, not including silences. Not surpris-
ingly, the native speakers consistently speak with a higher word rate than the non-native speakers, although
the effect is less pronounced for the read speech than the spontaneous speech. The other three features shown
answer the question of whether this is due to quicker articulation of individual phonemes, fewer pauses be-
tween words, or both. The silence insertion rate is the ratio of silence elements to words. For example, if

the speaker says

“Once upon a time <pause> in a great castle <pause>, a Prince’s daughter <pause> grew up happy

and <pause> contented, in <pause> spite of a <pause> jealous <pause> stepmother.”

the silence insertion rate is 7/22 = .32. The silence insertion rates for the two non-native groups are similar,
and in both read and spontaneous speech are approximately twice that of the native speech. All speaker
groups show a significantly higher silence insertion rate in the read speech than in the spontaneous speech.

Neither the phone durations nor the pause durations differ significantly when comparing read and spon-
taneous, and native and non-native speech. The difference in speaking rate, then, is almost wholly due to
the number of inter-word pauses present in the non-native speech. This has clear consequences for speech
recognition: because non-native speakers are relaxing the vocal apparatus between words, the cross-word
coarticulatory effects present in native speech will not be as consistently realized in non-native speech. Inter-
word silence is triggered by a complex collection of factors that are not necessarily related to the phonological
environment, such as difficulty of and familiarity with the word, overall comprehension of the text, and fa-
tigue. The same cross-word phoneme pair that saw a pause inserted three sentences earlier may be read
with native-like elision when the words involved are easier or the sentence is shorter, meaning that modeling

non-native cross-word behavior may not be as straightforward as just turning off cross-word modeling.

word rate || silence insertion rate || phone duration || pause duration
speaker spont | read spont read || spont read || spont read
Japanese 242 | 2.33 0.17 0.49 0.11 0.11 0.10 0.09
Chinese 2.70 | 2.28 0.18 0.47 0.11 0.11 0.10 0.12
Native 4.01 | 3.84 0.10 0.22 0.08 0.07 0.10 0.11

Table 3.7: Speaking rate and pause distribution statistics for non-native speakers. The word rate is reported in
terms of words per second. The silence rate is a silence-to-word ratio. Average phone duration and pause duration

are measured in seconds.
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3.5.3 Disfluencies

It has been observed that native spontaneous speech contains many instances of abandoned words, stutters,
restarts, repetitions, filler words, and other disfluencies, some of which occur systematically enough to
warrant incorporation in the language model (e.g. Shriberg and Stolcke, 1996). Disfluencies often occur
when the speaker is searching for the right word or expression, or is pronouncing a word that is difficult
to articulate; they can also occur when the speaker is reading aloud and comes to a word that he does not
know how to pronounce, or simply trips over his tongue. Native speakers may attempt to repair prosodic
errors when they reach a point in the sentence where they realize that they have used inappropriate stress
placement or intonation. Non-native speakers may go back to re-read a phrase when they have stumbled
over an unfamiliar word. For both native and non-native speakers, read speech is not always smooth.
Figure 3.7 shows graphically the difference in native and non-native (JL1 only) speaker rates of repair,
repetition, fragments, and filler words in the read news data. A disfluency rate is defined as the number of

times the disfluency occurs per hundred words:

# of disfluencies
# of words

- 100

The JL1 speakers show significantly higher rates of all types of disfluency that were measured. Interest-
ingly, although the non-native retrace rate was over three times the native retrace rate, the retrace length, or
the number of words that the speaker “rewinds” after an interruption, is similar for native and non-native
speakers. This retrace rate agrees with those reported by Eklund and Shriberg (1998), who found parallel

disfluency patterns in native Swedish and English speech.

3.5.4 Reading errors

Although in a read speech task the speaker’s utterance is supposed to match what is written on the page, there
are often many discrepancies. This is particularly problematic in applications where the search is constrained
to follow an expected word sequence. In my database, the non-native speakers showed significantly higher
rates of both disfluencies and reading errors.

For the purposes of this work, a reading error is defined as the deletion of a word that was part of the
text to be read, the insertion of a word that was not in the text, or the substitution of one word for another.
These errors occur in both native and non-native speech. When native speakers read aloud from text, they
may absorb an entire phrase or sentence at a glance and repeat it from short-term memory. Although this
conversion is almost instantaneous, the encoding and decoding process (i.e. visual to semantic to acoustic)
can introduce error. A secondary source of reading error in native speech is the layout of the text on the
page. Native speakers seem more likely to make errors at line boundaries and when the text is presented in
very narrow columns, although this has not been formally analyzed here.

In the non-native speech samples analyzed in this dissertation, the speakers appear to read one word at a

time; they often pause between words (which contributes to the high silence rate) and do not show the same
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Figure 3.7: Disfluency rates for native and non-native (JL1) speakers in the CND reading task
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|| Error type || Non-native | Native ||
Morphological variant 55.74% 21.27%
Orthographically similar 27.76 48.93
Semantically similar but orthographically distant || O 8.51
Misread numeral 3.91 2.1
Neologism 3.42 0
Function word substitution 3.32 12.50
A-the 1.66 6.25
Other 4.20 0

[ Total number of errors | 1555 | 47 |

Table 3.8: Breakdown of non-native and native misread words

tendency to substitute semantically similar words or phrases. In fact, many substitutions are completely
inappropriate semantically, indicating that the speaker does not understand what he is reading. While
semantically inappropriate substitutions do occur in native speech — most native speakers have experienced
reaching the end of a passage of text with the realization that they have no idea what they have just read!
— they are much less frequent.

Of the 21,958 words in the entire native data base, there were only 8 inserted words, 9 deleted words, and
57 misread words, an average of .39 extra-text words per 100. In contrast, in the 67,669-word JL1 subset
of the non-native database, speakers averaged 2.77 extra-text words per 100. A breakdown of the main
categories of misread words is shown in Table 3.8. Numbers for native speakers are shown for reference, but
as the number of actual native reading errors was very small, this distribution may not be representative of

the actual distribution in native speech.

Substitution of a morphological variant

Although native and non-native reading errors fell into the same general categories, the errorful native
sentences were far more likely to be semantically meaningful and syntactically correct than the errorful
non-native sentences. For example, the following two sentences both contain examples of singular-plural

substitutions.

. ative morphological substitutions
3.8 Nati hological substituti
a. Doctors are studying the pill’s effect on patients
(original text)
b. Doctors are studying the pill’s effects on patients
(spoken)
(3.9 Non-native morphological substitutions
a.  American students perform poorly on standardized tests
(original text)

b.  American student perform poorly on standardized tests
(spoken)
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Function word substitution

Another category of error that appeared in both native and non-native speech is function word substitution.
It is easy for a native speaker who has understood the general meaning of the sentence to carelessly substitute
one function word for another without changing the impact on the listener. It is also easy for a non-native
speaker who is only reading words left to right without full comprehension to substitute a function word
that completely changes the meaning of a sentence or even makes it meaningless..

(3.10)  Native function word substitutions

a. As if that task were not challenging enough...
(original text)

b.  And if that task were not challenging enough...
(spoken)

(3.11)  Non-native function word substitutions

a. The amount of time students spend on homework is increasing
(original text)

b.  The amount of time students spend as homework is increasing
(spoken)

In a special case of function word substitution, “a” and “the” are interchanged. This pair alone was
responsible for nearly one-third of non-native function word substitutions, but more significantly, insertion
and deletion of “a” and “the” accounted for half of all insertion and deletion errors. No other patterns
were apparent in the types of words that were inserted and deleted. There was also a surprising number of
instances of a/the substitution in native speech. An informal examination of a/the substitution in native
and non-native speech suggests again that the native speakers will make these errors, but only when the the
integrity of the sentence is preserved; this hypothesis is difficult to verify, however, as the source texts (and
opportunities for ungrammatical substitution) are not the same, and grammaticality and comprehensibility

judgements vary from listener to listener.

Substitution of an orthographically similar word

While both native and non-native speakers substituted orthographically similar words, native speakers again
tended to choose words that preserved the integrity of the sentence, if not the meaning.
(3.12)  Native orthographic substitutions

a. The politics of the region have always been unstable
(original text)
b.  The politics of the religion have always been unstable
(spoken)
(3.13)  Non-native orthographic substitutions
a. Environmentalists oppose construction of the Three Gorges Dam
(original text)

b.  Environmentalists oppose construction of the Three George Dam
(spoken)
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Substitution of a semantically similar word

Native speakers sometimes substitute semantically similar but orthographically dissimilar words; this error

never occurred in the non-native sample.

(3.14)  Native semantic substitutions

a. Tremendous change is anticipated over the next few years
(original text)

b. Tremendous change is anticipated over the next several years
(spoken)

Neologisms

In neologisms, non-native speakers make up a word. Sometimes these are compositions of common base
forms and common endings that are inappropriate together. At other times they are unsuccessful attempts

to read an unfamiliar word. This type of error did not appear in the (small) native sample.

(3.15)  Native neologisms

a. But rain is nothing new for Northwesterners
(original text)

b.  But rain is nothing new for Northwesterns
(spoken)

(3.16)  Non-native neologisms

a. The diamonds sat glittering in the sand
(text)

b.  The diamonds sat glitting in the sand
(spoken)

3.5.5 Experiment 1:

Detection of non-native spontaneous speech by native judges

Experiment 1: Introduction

It is suspected that ungrammaticality and unnaturalness in non-native spontaneous speech are a factor in
recognition error (e.g. Livescu and Glass, 2000). Because the statistical language models that are widely
used in speech recognition are designed to find and learn patterns, a mismatch in the patterns that appear
in the training and test data will contribute to suboptimal performance of the model.

How ungrammatical is non-native speech? The answer to this question depends on the definition of
grammaticality, and even the definition of speech. Large bodies of work in linguistics rest on the assumption
that native speakers are all competent judges of grammaticality, and indeed there are many sequences
of words that any native speaker would flag as ungrammatical. Many of these studies, however, examine

hypothesized sentences that may never have been uttered and are associated with no acoustic features — they
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are not speech. Real speech, even native speech, is full of ungrammaticalities; filler words, word fragments,
and unfinished thoughts pepper spontaneous speech.

The statistical measurement of perplexity provides a measure of the predictability of a corpus of text.
While predictability is not the same as grammaticality, if a language model is trained on grammatical native
speech, it is not unreasonable to expect that a measurement of perplexity with respect to that model will
be based to some extent on implicit grammatical constraints. What, then, does the observation that the
Japanese utterances are lower in perplexity than the native utterances say about non-native speech? That
it is more grammatical than native speech? Probably not. All that we can infer is that the non-native
utterances contain patterns that also appeared in the training data; we have no idea whether these patterns
are used appropriately in either the semantic or the syntactic context.

Another way to quantify the “non-nativeness” of an utterance is to measure the consistency with which
independent native judges identify it as non-native. This method has the disadvantage of being utterance-
based; a short utterance that is all wrong is given the same non-native label as a long utterance that is almost
correct. We obtain a direct measurement of the distance between the native and non-native corpora, however,
that is independent of a concept of grammaticality that may not be important for conveying meaning in

spontaneous speech.

Experiment 1: Data
599 utterances from data sets N-A-S and NN-A-S were arbitrarily selected for this experiment, with an

average of 34 utterances from 6 native and 12 non-native speakers.

Experiment 1: Method

Four native judges were asked to classify the 599 utterances. Because all of the non-native speakers were
strongly accented, the judges were only allowed to see the transcripts. Judges were not told the percentage
of non-native speakers in the sample. Utterances were presented to the judges in random order, varying

from judge to judge. An average of 34 utterances per speaker was presented to the judges.

Experiment 1: Results

Table 3.9 shows the precision and recall of judgements from each of the native speakers. The precision
measures how many of the utterances judged to be non-native actually were non-native, and the recall
represents how many of the non-native utterances were identified as such. For example, for judge 1, 85%
of the utterances judged to be non-native were actually non-native and 15% had been uttered by native
speakers. 68% of the non-native utterances were correctly labeled as non-native, and 32% were labeled
as native. The precision is much higher overall than the recall, meaning that the native judges seldom

mistakenly label an utterance as non-native, but are not as good at identifying non-native utterances.

# of times a non-native utterance was judged non-native

recision =
p # of non-native judgements
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|| Grader | Precision | Recall ||

1 0.85 0.68
2 0.87 0.54
3 0.88 0.44
4 0.89 0.46

Table 3.9: Precision and recall of native judgements of non-nativeness

Full agreement 3/4 judges agreed Actual

Judged so | Actually so | Judged so | Actually so | totals
Judgements of nativeness 282 200 118 46 260
Judgements of non-nativeness 57 57 72 67 339

Table 3.10: Agreement of native judges, and corresponding actual labels of the utterances

1 # of times a non-native utterance was judged non-native
recall =

# of non-native utterances

Table 3.10 shows how well the native judgements agreed, and for different levels of agreement how well
the judgements corresponded with the actual labels. Of the 599 utterances, 260 were actually from native
speakers and 339 were from non-native speakers. In 282 of their judgements, all four native judges agreed
that the utterance was native, and in 57 of their judgements all judges agreed that the utterance was non-
native. Of the 282 utterances that the judges fully agreed were native, only 200 actually were, while all 57

of the utterances all four judges agreed were non-native were truly non-native.

Experiment 1: Conclusion

The results in this experiment show that while native speakers seldom mis-identify a native utterance as
non-native, they are only able to detect half of the non-native utterances; the other half are judged to be
native. This may mean that the half of the non-native utterances judged native are grammatically correct
and lexically typical of native speech. It is important to keep in mind, however, that native spontaneous
speech is often ungrammatical and disfluent. It is likely that in many cases, the judges have no way to tell
whether a speech “error” is a spontaneous effect or a non-native effect, and are therefore reluctant to mark
an utterance non-native. Ungrammaticalities in native spontaneous speech may also be responsible for the

false judgements of non-nativeness.



Chapter 4

Acoustic Modeling

A foreign accent, as viewed separately from features such as incorrect syntax or unusual word choice that
also mark a speaker as non-native, is characterized by sound. An interdependent collection of properties,
including melody, cadence, and segmental realization must be mastered for a non-native speaker to “lose”
his accent. An accent, not necessarily a foreign one, is perceived when the listener detects patterns that are
different from the ones he is used to hearing or identifies with unaccented speech.

In this chapter, I explore how accent is represented in the acoustic model and how the acoustic model
can be adapted to better handle variation in non-native speech. Specifically, I investigate the contribution
of different types of acoustic material to acoustic model improvement. Using native English data, Japanese-
accented English (L2) data, and native Japanese (L1) data, I demonstrate how recognizer performance can
be improved with respect to speaker idiolect, via speaker adaptation, and habits shared by speakers of a
common L1, via training and adaptation to the non-native condition.

This chapter is structured as follows. In Section 4.1, I describe the baseline system on which my experi-
ments build. In Section 4.3, I use the baseline acoustic models to find where modeling of non-native speech
is poor. In Section 4.4, I document how adaptation to the speaker and condition can improve recognizer
performance. In Sections 4.5 and 4.6, I present experiments in system training with L1 and L2 data. I

summarize improvements in acoustic modeling in Section 4.7.

4.1 Baseline system

All recognition experiments described in this dissertation used the Janus Recognition Toolkit JRTk (Finke et
al., 1997). Recognition experiments are done exclusively on the CND read speech database, specifically data
sets N-E-R, NN-E-R, NN-T-R, and NN-X-R.. The baseline system for CND used acoustic models trained on
Broadcast News data and an interpolated language model combining broadcast news text (150M words) ,
written news text (10M words), written CND archive text (1M words), and children’s literature text (1M

words). Interpolation weights were estimated using arbitrarily selected subsets of the training and cross-

35
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validation data sets NN-T-R and NN-X-R. Language modeling will be discussed further in Section 4.1.3.
CMU/ISL’s Broadcast News (ISL-BN) system selected because it was the most robust available, having
been trained on a large amount of data that varied in speech type and recording condition while remaining
within the news domain. Pilot tests of several systems showed that the BN system offered the best initial
baseline. Because there are some consistent differences between the BN task and the children’s news task,
the BN system was adapted somewhat for optimal performance on the Children’s News (CND) task. This
section describes the initial configuration of the system, the measures taken to maximize performance on
CND , and my verification that any mismatch between the system and the task does not compromise my

interpretation of overall results.

4.1.1 Baseline acoustic models

The acoustic models for the broadcast news system were trained on approximately 66 hours of data recorded
from radio-broadcast news programming. The acoustic data was not limited to clean broadcast speech,
but also included spontaneous broadcast speech (known as FO speech), speech over telephone channels (F1),
speech in the presence of background music (F2), speech under degraded acoustic conditions (F3), and speech
from highly proficient non-native speakers (F4), all conditions that occur from time to time in radio news
(Garovolo et al., 1997).

The baseline recognizer is a quinphone system with 2000 codebooks sharing 6000 distributions.

a quinphone system: the allophonic models take into account the two phones preceding and the two

phones following each base phone.

with 2000 codebooks: 2000 allophonic groups are recognized; each allophonic group is modeled with

Gaussian mixtures described by the same means and covariances

sharing 6000 distributions: each allophonic group is a collection of allophones that can be described by
associating different weights with the means and covariances that model the parent allophonic group.

There are a total of 6000 sets of weights in the system.

Vocal tract length normalization and cepstral mean subtraction are applied at the speaker level. Linear
discriminant analysis (LDA) is used to find the most discriminative of the MFCC, delta, and power features
and reduce the dimensionality of the feature fector describing each frame. This recognizer has an overall
WER of 19.7%, with a WER on the clean (FO only) subset of the test data of 9.4%. System details of
ISL-BN and the Broadcast News test set are summarized in Table 4.1.
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Number of codebooks 2000

Number of distributions 6000

Total number of Gaussians 104,746

Polyphone window 5 phones (2 preceding and 2 following)
Features used MFCC, delta, delta-delta, power
Dictionary size 40,000

Language model type trigram; Kneser-Ney backoff; cutoff=2
Language model training corpus 160 million words

Language model perplexity 155

OOV rate 1.1

Number of test speakers 81

Average number of utterances per speaker | 5.8

WER (F0) 9.4%

Table 4.1: System details for the baseline system and the Broadcast News test set

4.1.2 Experiment 2:

Determining the error due to system mismatch

Introduction

This experiment addresses the questions of channel mismatch and speaker variability. It should be noted that
the only potential source of channel mismatch is the unique features of the recording device and environment;
there is no difference in bandwidth or sampling rate between the BN and CND data. However, it is possible
that the ISL-BN acoustic models perform better on BN speech than locally-recorded CND speech because
the channel used in recording the evaluation data is more similar to those found in the training data. If
this is the case, we would need to be concerned that any improvements we see from adaptation do not
come from better modeling of the non-native condition but rather better modeling of the channel conditions.
This experiment is not meant to be an exhaustive evaluation, but rather an informal confirmation that any

channel mismatch is not severe enough to invalidate future experimental results.

Data
To set an initial error rate for system mismatch experiments, a 484-word segment of NPR, acoustic data was
selected. This segment will be known as NPR1, and is approximately equal in length to the test article that
all CND speakers read. The NPR1 text is given in Appendix A.2. This data was read by a single announcer
(speaker PA1) during a single broadcast under FO conditions.

So that speech from the professional BN announcer could be directly compared to speech from a locally

recorded speaker, a graduate student (speaker LS) was asked to read the NPR1 text. This student also read
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Read by LM score | WER
NPRI1-PA1 || professional announcer 1 | 102.6 6.4
NPRI1-LS local speaker 102.6 7.4
NPR2-PA2 || professional announcer 2 | 112.6 22.8
NPR2-LS local speaker 112.6 14.7
CNDI1-LS local speaker 115.3 13.2

Table 4.2: Comparison of recognizer performance on BN and CND data, after unsupervised adaptation, using the

ISL-BN language model

evaluation article CND1 that was read by all native and non-native test speakers (see Section 3.4).

Because the NPR1 and CND1 texts differed substantially in language model score, the local speaker was
asked to read a second BN passage (NPR2) that was taken from an on-the-scene segment and received a
score from the ISL-BN language model that was much closer to that given to CND1. This text is given in
Appendix A.3. This text was originally spoken by a second BN announcer (PA2).

Method
Because the non-channel-related conditions of the NPR1 recording (speaker, speech mode, environment)
could not be duplicated, it was necessary to approximate the conditions using a local speaker and assess the

error introduced by the approximation. This experiment therefore addresses two potential sources of error.
1. Speaker variability: local speaker vs. BN speakers
2. Channel mismatch: local and BN recordings of BN texts

It will not be possible to find an exact value for channel mismatch. However, based on these two
comparisons, we can draw conclusions about the severity of the mismatch and the likely effect on further
experiments. Corresponding results from text CND1 are given here for reference only; the issue of language

model mismatch will be discussed in greater detail in Section 4.1.3.

Results
Language model score and WER, for NPR1, NPR2, and CND1 spoken by speakers PA1, PA2, and LS are
given in Table 4.2.

Speaker LS is not recognized quite as well as speaker PA1 reading the same text. This difference could
be due either to channel mismatch or speaker variability. The difference (6.4 vs. 7.4) is not large, and we
also see from Table 4.2 that the ISL-BN system performs substantially better on speaker LS than speaker
PA2 (14.7 vs. 22.8) when those two speakers are reading the same text.

Conclusions
The observation that ISL-BN recognizer performed nearly as well on local speaker LS as professional an-

nouncer NPR1, and much better on speaker LS than speaker NPR2, suggests that the effect of channel
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Language model
Test set | BN baseline | Interpolated

NPR1-PA1 7.4 8.9
NPR2-LS 14.7 16.2
CND-LS 13.2 12.7

Table 4.3: Measurements of WER for local speaker 1 comparing baseline BN and interpolated language models on
baseline BN and CND test sets

mismatch is much smaller than the effect of speaker variability. The principal conclusion that I will draw
from this experiment is that while there may be a slight mismatch in the acoustic channel, the effect after

speaker adaptation is not severe enough to compromise the interpretation of future experimental results.

4.1.3 Language modeling

The BN language model is a trigram model using Kneser-Ney backoff (Kneser and Ney, 1995) with a trigram
frequency cutoff of 2 (trigrams that only occured once in the training corpus were treated as unseen). The
training data consisted of 150 million words of transcribed broadcast news text and 10 million words of
written news text.

This is a very large and robust language model. However, slightly higher WER rates found in Ex-
periment 2 (see Table 4.2) for the CND data compared to BN data for the same speaker suggested that
there might be a small mismatch between the type of language used in the adult-oriented BN text and the
child-oriented CND text. This potential mismatch was addressed by interpolating two independent trigram
language models with the larger BN language model. These two new language models were built from CND
archive text and non-CND news written for children. Context-independent interpolation weights were es-
timated from the training and cross-validation corpora NN-X-R and NN-T-R. This interpolated language
model is used in a final rescoring pass of the word lattice for a 5.5% relative decrease in WER for the six-
speaker native test set. The interpolation results in a relative reduction in perplexity on the CND test data
of 16%.

Table 4.3 shows that interpolating the language models decreases WER for local test speaker LS on CND
data and increases WER for both speaker LS and professional anchor PA1 on BN data.

Language model parameters

There are two user-specified parameters that are used in JRTk when incorporating the language model scores
into the search: the language model weight 1z and the word insertion penalty 1p. These parameters can
have a significant effect on the recognition outcome, and it was my observation that the optimal values for
non-native speakers were quite different from those for native speakers.

Table 4.4 shows the effect the language model parameter settings have on recognition accuracy for native

and non-native speakers. These figures represent the true optimal parameter values on native and non-native
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| Parameter settings | Native | Non-native |
1z=36; 1p=18 (optimal for native speakers) 17.5 78.8
1z=70; 1p=90 (optimal for non-native speakers) 39.7 63.1

Table 4.4: Comparison of WERs when the language model weight 1z and word insertion penalty 1p are set to
maximize performance for native and non-native speakers

test sets N-E-R and NN-E-R, (see Table 3.3 for a description of data sets); the values actually used in the
recognition experiments presented in this dissertation were calculated for an independent cross-validation
set and resulted in slightly different WER measurements.

The higher optimal 1z value for non-native speakers indicates that the system performs best when
relying more heavily on the language model than is necessary for native speakers. This is not an unexpected
observation, as the acoustic model does not provide as useful information as it does for native speakers. The
higher optimal 1p value may indicate that non-native speakers are inserting noises and epenthetic phones
that are recognized as distinct words without a high penalty for inserting words.

For many types of experiment, the language model parameters are strictly fixed for simplicity of com-
parison. Because one of the goals of this work is to discover the relationships between different non-native
adaptation techniques, I sometimes recalculate the language model parameter settings for optimal perfor-

mance. These recalculations are always done on the independent cross-validation set NN-X-R.

New word handling in the language model

In order to eliminate variability due to out-of-vocabulary (OOV) error, all words in the test sets are added
to the dictionary. A class-based component of the interpolated language model allows these OOV words
to be added to the language model with the same probabilities as in-vocabulary words which have similar

meanings.

4.1.4 Pronunciation dictionary

The CND dictionary is based on a 20,000-word dictionary developed for the Broadcast News task. With
this dictionary, the out-of-vocabulary (OOV) rate on the CND articles is approximately 5%. In order to
eliminate variability due to OOV error, all words that appear in the test utterances are included in the
dictionary. Pronunciations for unusual proper names and other words of non-English origin are given in the
CND text and can be entered into the dictionary as-is; pronunciations of other OOV words were taken from
a much larger pronunciation dictionary.

All dictionary adaptation experiments described in Sec. 5 were built on top of this baseline dictionary.
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Number of codebooks 2000

Number of distributions 2000

Total number of Gaussians 104,746

Polyphone window 5 phones (2 preceding and 2 following)
Features used MFCC, delta, delta-delta, power
Speaker adaptation supervised MLLR on 50 utterances
Dictionary size 26,110

Language model type trigram; Kneser-Ney backoff; cutoff=2
Language model interpolation BN, children’s news, children’s stories
Language model training corpus 161.2 million words

Language model perplexity 300

OOV rate 0

Number of native test speakers 6

Number of non-native test speakers 10

Average number of utterances per speaker | 38

WER (F0) 18.0%

Table 4.5: System details for the ISL-CND system and the CND test set

4.1.5 Overall CND performance and conclusions about the baseline system

Baseline recognizer performance for one speaker was given in Section 4.1.2. In this section the baseline
performance for the CND system (ISL-CND ) on the native test set that will be used throughout this
dissertation is given.

The CND native test set consists of six speakers, all reading the same article. ISL-CND uses the interpo-
lated language model and domain-adapted dictionary described in Sections 4.1.3 and 4.1.4. Details of this
system and the test set are given in Table 4.5.

Performance for all six native test speakers is listed in Table 4.6. Although the average WER is higher for
CND than for BN, for the reasons discussed throughout Section 4.1 T have concluded that this discrepancy
is due to inherent characteristics of the speakers and the task and not any mismatch or flaw in the acoustic

and language modeling.

Speaker || 204 | 205 | 206 | 207 | 240 | 241 || average
WER 20.5 | 15.2 | 20.1 | 20.8 | 18.5 | 12.7 || 18.0

Table 4.6: Baseline recognizer performance on the six native CND test speakers

Establishing that the acoustic mismatch error is small and that baseline performance matches that of
the currently best-performing speech recognizers allows us to have confidence that optimizations that are

made for non-native speakers are due to better modeling of non-native speech and not to general system
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Figure 4.1: WER plotted against SPEAK proficiency score. Native speech is given a score of 4; noticeably non-native

speech, even if completely intelligible, can score no higher than 3

improvements. The matter of speaker variability, however, will not be ignored; as will be seen, variability
among non-native speakers is extreme, and exploring the interaction between speaker characteristics and
modeling techniques will be a theme throughout this thesis.

Figure 4.1 puts the baseline performance of the ISL-BN system in the context of proficiency, showing
WER for the native and non-native test sets as well as a group of four higher-proficiency speakers. The
native test set N-E-R is that shown in table 4.6 and is the one that will be used in all acoustic modeling
experiments unless otherwise specified. The non-native test set NN-E-R is a proficiency-controlled set of 10
speakers; as discussed in Chapter 3, this set of speakers all scored between 1.83 and 2.17 on a scale from
0 to 4 using the SPEAK assessment (SPE, 1987). We can see three clear clumps in the figure. Although
there is variation among the native speakers (those with a proficiency score of 4), recognizer performance for
all native speakers is better than that for any non-native speakers. Recognition of the four high-proficiency
speakers is better than that of any lower-proficiency speaker. It is these lower-proficiency speakers that are

the focus of this dissertation.

4.2 Significance testing

All improvements reported in this dissertation are statistically significant unless it is specifically stated that
the improvement is insignificant. The NIST statistical test package released with the scoring package SCTK
(NIST, 2000) was used to measure statistical significance; specifically, a matched-pairs test was used to

evaluate sub-utterance-level differences in recognizer performance.
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4.2.1 Basic steps in significance testing
The procedure for testing significance of any change consists of the following steps.

1. Establish the null hypothesis, Hy, and the alternate hypothesis, H,. In the case of measuring recognizer

improvement, the null hypothesis says that improvements we are seeing are a result of chance.
2. Specify a test statistic (function) Y that discriminates between Hy and H,,.

3. Specify the “extreme” value (one-sided or two-sided) of Y in the direction of H,. To show an improve-

ment in error rate, the small extreme supports H,.
4. Calculate the probability (p-value) of seeing Y at and beyond its observed value.

5. If the p-value is less than a fixed value (0.05, 0.01, e.g.), reject the null hypothesis. In the case
of measuring recognizer improvement, this represents the conclusion that the results are not due to

chance.

4.2.2 Special considerations for speech recognizer evaluation

Many people think of significance testing in the context of an experiment in which an experimental group
that has been exposed to some sort of process is compared to a control group that has not. In such a scenario,
the null hypothesis Hy is that any differences between the two groups are coincidental and the process had
no real effect. When we compare an improved speech recognizer to a baseline recognizer, we are doing
something slightly different. We generally want to test the recognizer on a fixed test set, so that differences
in WER can be attributed solely to differences in the algorithm or model. However, this means that there
is no experimental group; the exact same set of utterances is processed by both the baseline recognizer and
the new recognizer. In this situation, we are not concerned with inherent variation between two data sets
that might make the process appear to have an effect, but rather with the external validity of the single
data set. Although upon first consideration this may appear to simplify the problem, a more sophisticated
statistical approach is actually required (Gillick and Cox, 1989) than would be if each recognizer were tested

on an independent test set.

4.2.3 Test statistics
t-test

The t-test is useful when one wants to take into account the magnitude of the difference between the two
systems. Additionally, it incorporates the variance among the samples in the normalization term, so data

with less variance is more significant.
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for:
X the sample mean

i the real mean
s? the sample variance
N the sample size
However, this ¢-test does not take into account the variance in the real distribution, which is important
when one is comparing two systems. Therefore, the following variation is used:
X-7
52 T

nlfl

t =
53
nzfl

for:
x the mean of the error rates of system 1

1 the mean of the error rates of system 2
vary the variance in the error rates of system 1
vary the variance in the error rates of system 2
ny1 the number of samples from system 1
no the number of samples from system 2

The t-test for recognizer evaluation makes two crucial assumptions:
1. the distribution of outputs (error rates) is normal
2. the outputs of the system are independent

It has been argued that the latter does not hold in the case of speech recognizer evaluation (Gillick and

Cox, 1989).

Matched pairs test

The matched pairs test can be used when the independence assumption does not hold. It has been said that
this is the case in speech recognition, when the errors made in recognizing word w; can affect how word w; 1
is recognized.

The matched pairs test is a way of formulating a two-sample problem as a one-sample problem, by
making the sample points differences between outputs of the two systems instead of the outputs themselves.
The data is segmented such that the errors made in one segment are independent of the errors made in
the neighboring segments. In speech recognition, utterances can usually be the segments. The p-value then
answers this question: if the average difference in performance of the two systems is zero, what is the chance
that random sampling would result in an average as far from zero (or further) as observed in this experiment?

The matched pairs test is executed as follows. For n segments, define

Zi=N4{—Nk,i=1,2....n
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where:
N the number of errors in the i’th segment for system A
NE the number of errors in the i’th segment for system B

Estimate the mean and variance of the Z;’s:

Then define a variable W:

fiz
W = -
Uz/\/ﬁ

and determine whether the probability of W being the observed value is greater than your significance
level a.

Since the distribution of the means of differences of error rates tends to a normal distribution, and
the number of segments is large (greater than 50), the probability can be approximated using a normal

distribution. That is, if f(x) is the normal distribution, z is W and y = f(z) is your p-value.

4.2.4 Significance testing in this dissertation

In this dissertation, I used a two-tailed matched pairs test to measure statistical significance. When I state
that a result is significant or highly significant, I mean that it is significant using this test at the p < 0.005

level. In a few instances, I refer to a result as being “barely” significant. By this I mean .05 > p > .01.

4.3 Isolating problematic sounds

In chapter 3, a number of differences between native and non-native speech that can be expected to affect
recognizer performance were quantified. In this section, I present a complementary analysis, examining how

well the baseline acoustic models capture the phonological properties of non-native speech.

4.3.1 Phonetic confusion

Phonetic confusion is a measure of how often an individual phone sounds like a different phone. This gives an
indication of how accurate the acoustic models are with respect to the input speech. An analysis of phonetic
confusion can also provide candidates for phone-substitution-based lexical modeling.

Unfortunately, phonetic confusion figures derived from recognizer output can be difficult to interpret.

Failure to accurately recognize a phone may be because the pronunciation is not correct, but it could also
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be the result of a flaw in the acoustic model. In this thesis, I wish to address the former case and therefore
will attempt to isolate confusions that are common only in recognition of non-native speech.

A phonetic confusion matrix is built by calculating, for each phone in the phone inventory, how frequently
it was misrecognized as each other phone in the inventory. Depending on the objective of the analysis,
confusions can represent either segmental or framewise comparisons. For example, let us say that sentence

(1) was misrecognized as something more like (2).

(1) THEN THEY SWIM UPSTREAM IN A FIERCE WRONG WAY STRUGGLE TO THEIR BIRTHPLACE
(2) THEN THEY SWIM UP STREAMING FEARS RUNWAYS TRAVELED TO THEIR BUS PLACE

Isolating the words “upstream in a fierce wrong way struggle to” for more detailed examination, we can

identify the errors /n/ — /y/, /o] = [n/, [s| = [z/, [5] = [o], [y] = /n/, [s] = [e],/g/ = [v/, and
/t/ = /d/ in a phone-by-phone comparison:!

o p s t r i m 1|nof|lf i r|{s|r|o|lg|w e|s|t r|ia|lgl|t]|] t]u

o p s t r i m 1|y |f i r{z|r|la|ln|w e|z|t rjiae|v|i|dt]|u

leading to the following phonetic confusion matrix shown in Table 4.7, where the prescribed phones are
shown vertically and the recognized phones are shown horizontally.

These confusions would be said to have been generated through a segmental breakdown of word recognition.
While this sort of breakdown is simple to do and is a useful method for finding potential pronunciation
variants, it does not represent confusion due to phone insertion and deletion well. For example, in the
misrecognition UPSTREAM IN A FIERCE — UP STREAMING FEARS, the /o/ sound in the word “a” is effectively
absorbed in the model for /y/. In the matrix given above, the mapping /o/ — /y/ is given equal weight to
the mapping /o/ — /o/. This is not strictly appropriate, however. A more accurate estimate of phonetic
confusions can be found by either calculating mappings on a frame-by-frame instead of a segmental basis or

restricting the word recognition so that the source of phone insertions and deletions is known.

Framewise estimation of confusion

To generate a framewise estimation of phonetic confusions using word recognition output, the active phones

in the input speech and recognizer output are compared for each 10-ms window.

IFor simplicity of illustration, the recognized phone string shown here is more accurate than it actually was. In actual
experiments, no language model was used, and the confusions were much higher. The words corresponding to the phone strings

are provided only for illustration.
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Table 4.7: Example of a phoneme confusion matrix
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(... upstream in a...)

Oms 100ms 200ms 300ms 400ms 500ms 600ms 700ms 800ms 900ms 1000ms 1100ms

Now, instead of the partial matrix
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Because phone transition times in the recognition output rarely match up exactly with the actual times,
using a framewise estimation introduces a large number of small confusions. The /1/ — /y/ confusion in
the new matrix represents such a case. Although individual instances of transition mismatch are typically
very short, overall, they can introduce a significant amount of noise, particularly for phones whose average

duration is itself not long. This is one of the disadvantages of framewise estimation of phonetic confusion.

Underspecified alignment

Another way to ensure a straightforward (and not necessarily one-to-one) mapping between phones in the
input speech and the recognizer output is to force the system to generate a specific number of phones. In
underspecified forced alignment, the user can specify some features of the word that is to be recognized and
then allow the recognizer to “fill in” the missing features to generate a full phonetic specification for that
word. For example, it may be known that vowels are a major source of phonetic confusion. In order to find
the vowel pairs that are most confusible, the user may opt to fix the consonants and only allow the recognizer
a choice where a vowel sound is expected. The recognizer would be presented with a phone network, the

best path through which it can calculate via a Viterbi search:
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I I
el el
e e
o o
® ®
A A
b ) 0 p 1 ) S

u u
U U
ou ou
o1 o1
o) o)
au au
al al
D D

In this example, the word is “birthplace” and the canonical pronunciation is [bafpleis]. However, imagine
that the speaker actually says something more like [ba:0puices]. Running an underspecified forced alignment
of the input speech to the network would tell us which model sequence best matches the speaker’s pronun-
ciation, in this case perhaps [bpfples].

Underspecified forced alignment, then, can be used to generate strings of phonemes similar to those
generated through phonetic expansion of word recognition output. The former offers several advantages.
First, the user can restrict sources of variation according to the objective of the study. Second, there is no
interference from the language model; only the acoustic match is optimized. Third, framewise estimation of
confusion can be accomplished without introducing noise due to phone transition time mismatch. Finally,
one-to-many and many-to-one relationships beween canonical and empirical phone sequences (representing
epenthesis, simplification, e.g.) can easily be explored.

An underspecified forced alignment of sample sentence (1) produces the following mapping (the top line

is the fully specified forced alignment result, the same as the one given above).

(... upstream in a...)

In this case, the underspecification allowed a choice between all vowels, between consonants with the same
place of articulation, between nasal consonants, and between /1/ and /r/. In addition, epenthetic vowels

were allowed post-consonantally. The fact that in the presence of a choice the alveolar nasal is correctly
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recognized but the preceding high front vowel is not indicates that acoustically, the confusion is between /i/
and /1/, not between /n/ and /y/. The mappings in the word-recognition-based example were influenced by
the words in the lexicon, the coarticulatory relationship between /1/ and /y/, and the high frequency of the
morpheme “-ing,” among other factors.

Figure 4.2 shows phonetic confusion in the training data? estimated via underspecified forced alignment.
The size of the bubble at each point represents the magnitude of the confusion. For example, confusion
between /u/ and /u/ is high for non-native speakers. It is also high for native speakers, however. The
non-native speech is characterized primarily by greater degrees of acoustic confusion between the same pairs

of phones that are confusible in native speech.

Unrestricted phoneme recognition

A third method of generating a phonetic transcription of input speech is phoneme recognition. In normal
LVCSR, information about the words and word sequences that are meaningful in a language is used to help
identify phones. Normal native speech is full of departures from the prescribed pronunciation. For example,
the alveolar nasal in “one-way struggle” can be highly labialized in anticipation of the labiovelar approximant.
With the knowledge that “one” is an English word and that “one-way” is a common word sequence in English,
the human listener may perceive the nasal as an /n/ when acoustically and articulatorily it is closer to an
/m/. Higher-level linguistic knowledge contributes greatly to successful recognition of connected speech, and
word-based recognition generally produces a far more accurate sequence of phones than phoneme recognition.

Nevertheless, phoneme recognition can be a useful tool for exposing idiosyncrasies in the production of
words. In unrestricted phoneme recognition, the decoder is run with a uniform language model® and with
a lexicon containing only phonemes. If there are 46 phonemes, there would be 46 “words” in the lexicon.
The result of the search is the sequence of phones representing the acoustic models that best matched the
input speech at each point in time. Phoneme recognition hypotheses can then be used in the same way as
word recognition hypotheses or underspecified alignment hypotheses for segmental or framewise estimation
of phonetic confusion.

Figure 4.3 shows phonetic confusion estimated via a framewise comparison of phoneme recognition hy-
potheses. Although the phoneme recognition error is similar for native and non-native speakers (52.1% and
57.2% respectively), the native confusions seem to be distributed more evenly across phoneme pairs while
the non-native confusions are concentrated in certain “catchall” phones. Specifically, /1/,/t/, and /silence/
tend to be hypothesized inappropriately by the recognizer.

The frame-by-frame values for canonical pronunciation and phoneme recognition output for a non-native

speaker’s realization of the phrase “upstream in a” are juxtaposed below. This is the same sequence that

2“Training data” in this case is the part of the CND database designated for further acoustic model training (N-T-R and

NN-T-R). This set of data was not involved in training of the acoustic models used to generate phonetic transcriptions.
3Syllabic and phonotactic constraints can be introduced by assigning likely phone sequences higher probabilities in the

language model.
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Figure 4.3: Phoneme confusions in unrestricted recognition
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has been used to illustrate word recognition based and unrestricted alignment based phoneme generation.

(... upstream in a...)

Both the valuable information and undesirable noise that phoneme recognition hypotheses contain are
apparent in this example. The first substitution, /a/ — /k/, is peculiar. The speaker does produce a
pronounced glottal stop at the onset of the word “upstream,” which would probably not be present in
smooth native speech and may be the source of the recognizer’s perception of a voiceless velar stop. Indeed,
this phenomenon may partially explain the surprisingly high rate of substitution of voiceless stops for vowels.
The sequence /tr/ is recognized as /tf/, which is plausible as this combination can be palatalized in native
speech as well. Quality of the phoneme recognition degrades toward the end of the phrase, however, where

the final consonant in “upstream” and the initial vowel in “in” are lost altogether.

In Section 4.6 and Chapter 5 phonetic confusion will be used to predict phone substitutions. Both
framewise confusion through unrestricted phone recognition and segmental confusion through underspecified

alignment will be used.

Context-dependent vs. context-independent models

In the previous paragraphs, I have discussed methods that can be used to generate phonetic transcriptions
for estimation of phonetic confusion. It is also important to consider the type of acoustic model that is being
matched to the input speech. The models used in ordinary LVCSR are usually context-dependent, that is,
they model the acoustics of a given phone in a given context. If they were trained on native speech, however,
they may not accurately reflect the phonetic contexts that trigger variation in non-native speech.

In all of my calculations of phonetic confusion, phonetic transcriptions were generated using context-
independent models. While the context-independent models are associated with an increased word error
rate, analysis of phonetic confusion and comparison of confusion in native and non-native speech is more
straightforward with context-independent models. T also wished to avoid allowing phonotactic and coartic-

ulatory patterns found in native speech to influence the match of models to non-native speech.

4.3.2 Polyphone coverage

One of the reasons that modifications to the dictionary may not work well is that the new phonemic tran-
scriptions can include phone sequences that were not in the training data. For example, if the pronunciation
/dailekuto/ is proposed as a variant for the word “direct,” the sequence /ekuto/, which never appeared in

the training data, is introduced. Even if the variant is an accurate reflection of the speaker’s pronunciation,
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(...swim) upstream in a fierce (wrong. ..)
© p s t r i m I n R) f i r s
m o9 p S m 1 n o|ln o f|lo f i r
m o p s ¢t m I n 9 o f 1 r s
o p s t 1 f i r s r
p s t r i i r s 1
s t r 1 m
t r 1 m 1
r i om 1

Figure 4.4: Tllustration of how polyphones are defined for the utterance fragment “...(swim) upstream in a fierce

wrong-way struggle)...”
g-way g8

because no polyphone model was ever trained for this sequence, the trained model for the canonical pronun-
ciation might match the input speech better than the generic model that serves as a backoff model for the
unseen variant polyphone.

I have found that the polyphone coverage, or percent of polyphones in a test data set that appeared in
the training corpus, is much lower for non-native speakers than for native speakers. To calculate polyphone
coverage, a reference corpus is generated, in this case by aligning the training data to the manual tran-
scriptions using the baseline dictionary. Twelve percent of the words in the baseline dictionary have variant
pronunciations listed, averaging 1.2 variants per word with variants. As part of the alignment process, the
variant that most closely matches the actual pronunciation is identified, yielding a more accurate phonetic
representation than a non acoustically derived phonetic expansion of the words in the manual transcription
would. The number of polyphones in this reference corpus is then calculated. In the ISL-BN recognition
system, each phone in the data is associated with a polyphone comprising that phone and the two preceding
(one if the phone is word initial) and two following (one if the phone is word final) phones. In the case of
utterance-initial and utterance-final phones, no preceding/following phones are included in the polyphone
sequence. The breakdown of an example utterance fragment into polyphones is shown in Figure 4.4.

Table 4.8 lists the polyphones associated with each phone that appears in the example utterance fragment.
Four phones appear more than once, and for those phones multiple polyphones are listed. There are a total
of fourteen polyphones in this example. There are 5.5 million polyphone tokens and 4.1 million polyphone
types in the reference corpus. Of the fourteen polyphones in the example, only eight, or 57%, were among
the 4.1 million polyphone types that appeared in the reference data. This utterance fragment, then, has a

polyphone coverage of 57%.
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Table 4.8: Polyphones associated with each phone that appears in the utterance fragment “...(swim) upstream in

a fierce (wrong-way struggle)...”

4.3.3 Experiment 3:

Polyphone coverage after phone substitutions

Introduction

To find how the polyphone coverage is affected by phone insertions and deletions common in non-native
speech, I generated several experimental corpora for which polyphone coverage was measured. In each case,
the input speech was aligned to the manual transcriptions using the variant-sensitive procedure described
above. The reference corpus used for all conditions was the transcribed NN-E-R, corpus.

In this experiment, three variables are adjusted: phonetic expansion dictionary, speaker nativeness, and
acoustic model type. Insights into the polyphonic makeup of non-native speech will come from comparing
coverage of non-native speech before and after introduction of non-native variants in the dictionary. These
results cannot be accurately interpreted, however, without examining how the same changes in the dictionary
affect coverage of native speech, and whether alignment using context-dependent models yields significantly

different, polyphones from those generated using context-independent models.

Data

Polyphone coverage measurement requires a test corpus and a training corpus. The percentage of polyphones
in the test corpus that also occur in the training corpus is the polyphone coverage of the test corpus. For this
experiment, the test corpora were the shared articles from N-E-R and NN-E-R; the training corpus was the
unique articles read by each speaker in NN-E-R. Because the transcribed training corpus will be expanded
phonetically based on the canonical pronunciations in the dictionary, the fact that the articles were originally
read by non-native speakers does not affect the estimation. Phonetic expansion of the test corpora will be

discussed below.

Method

Potential non-native variation in pronunciation was allowed by augmenting the baseline dictionary with
variants generated using several complementary methods. One set of variants was produced using information
about the phonotactic structure of the speaker’s native language. Another set was based on the phonetic
confusion measurements presented in Section 4.3.1. Hand-coded variants were also added, along with variants
derived from native-language representations of loanwords from English. These dictionaries are described

in greater detail in Section 5. The expanded dictionary is very large (1.13 million words); the number of
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CI models CD models

baseline dictionary || expanded dictionary || expanded dictionary

native | non-native || native | non-native native | non-native
Polyphone tokens 92.1 93.7 65.4 46.9 73.8 52.8
Polyphone types 92.1 93.4 61.7 42.6 69.4 48.2

Table 4.9: Polyphone coverage of native and non-native speech

base words is the same as in the baseline dictionary, but instead of 12% of the words having variants listed,
99% are associated with variants, averaging 48 variants per word. If one were attempting decoding with this
dictionary, the search space would be enormous. Because I am doing alignment, however, the word sequence
is known and the recognizer is only asked to determine which of a given list of phone sequences best matches
the input speech. By allowing variants generated by a variety of methods, I maximize the probability that
a model sequence that truly matches the input speech is found. Comparisons of the different methods and
the contribution of variant pronunciations to recognition accuracy are discussed in Section 5.

Polyphone coverage (the percentage of polyphones in the test corpus that also occurred in the training
corpus) was measured for the baseline and expanded dictionaries using the context-independent models and

for the expanded dictionary using the context-dependent models.

Results

Table 4.9 shows polyphone coverage for native and non-native speakers. We can see that the polyphone
coverage of the non-native data is much higher when the non-native pronunciations are forced to conform to
canonical pronunciation standards (66.7% coverage with the baseline dictionary) than when more flexibility
to identify the true phone sequence is allowed (43.1% coverage with the expanded dictionary). This says that
the non-native speakers are producing phone sequences for which polyphones would not have been trained.
However, we can also see from Table 4.9 that coverage of native speech decreases (79.7% to 63.0%) when

the alignment is not restricted to canonical pronunciation standards.

Conclusions
Pronunciations that were intended to be representative of non-native speech are registering as the closest
match for native as well as non-native realizations of the words. There are several possible explanations for
this. First, poor quality in the acoustic models may be causing the wrong variant to be selected. Second,
the native speaker may actually be pronouncing the words in a way that is closer to the selected “non-
native” variant than the canonical pronunciation. Third, the variant may have been one that was derived
from phoneme recognition output, and might reflect internal bias in the acoustic model more than true
L1-conditioned variation.

All three of these hypotheses are probably correct in some cases. One might consider evaluating the first

by comparing context-dependent and context-independent results using the expanded dictionary; because
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CI models CD models
native | non-native || native | non-native
Hand-coded 8.0 9.8 9.4 13.4
Phoneme recognition 75.0 61.4 74.3 57.0
Underspecified alignment 9.0 5.0 8.3 6.2
Linguistically motivated 7.5 22.5 7.6 21.8
Derived from L1 representations of loanwords 0.5 1.3 0.4 1.7

Table 4.10: Source of pronunciation variants selected during alignment

the context-dependent models are more accurate than the context-dependent models, if the problem is with
model quality we should see a significant decrease in the number of non-native variants that match to native
speech, which indeed we do. However, this is not a fair comparison, as the context-dependent models enforce
precisely the constraints that I wish not to be bound by in my investigation of the “true” realizations of words
in speech. The second and third hypotheses can be investigated by looking at the variants that were chosen.
Distributions of variant types selected using context-dependent and context-independent models are given for
native and non-native speakers in Table 4.10. The most striking differences are that linguistically-motivated
variants are selected more often for non-native speakers than for native speakers, and that variants derived
through phoneme recognition are selected more often for native speakers than for non-native speakers. This
suggests that many of the variants identified in native speech are tied to the way phones are modeled in
the recognizer, supporting the third hypothesis. We also have from Table 4.10 clear evidence that the

linguistically-motivated variants capture non-native speech phenomena.

4.3.4 Implications for acoustic modeling

Knowledge of the distribution of sounds and the relationship between prescribed and recognized phones
in native and non-native speech will guide us as we strive to improve acoustic modeling of the non-native
condition. We have seen that confusion between numerous phones is higher for non-native speakers than for
native speakers. The pairs /1,i/, /2,0/, and /8,s/ are satisfying to see highlighted in the confusion matrices as
these are substitutions one might predict from either a linguistic analysis of Japanese or experience listening
to Japanese natives speaking English. By the same token, however, the absence of pairs like /a,,p/ and
/1,r/ in the matrix is disappointing. It was observed in experiment 3 that compared to the native test set
N-E-R, a large number of the phone sequences that appear in non-native test set NN-E-R do not occur in

the corresponding training data.

In the following sections, I will describe a number of methods for improving performance of the acoustic

models on Japanese-accented English, including some specifically intended to counteract problems of phonetic
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confusion and polyphone coverage. Approaches like MLLR adaptation and Viterbi training with accented
data will address issues of phonetic confusion, poor overall modeling of non-native speech, and some insertion
and deletion of phones. Discrepancies in the polyphones found in native and non-native speech require more
sophisticated modeling, and I will present results for training and adaptation of the polyphonic decision

trees.

4.4 Adaptation

In speaker adaptation, acoustic models that have been trained for general speech are adjusted so that they
better model the speech characteristics of a specific condition. Adaptation does not have to be limited to
individual speaker adaptation; general models can be specialized to compensate for differences in acoustic
environment or the characteristics of a group of speakers. Non-native speakers with strong accents are natural
candidates for adaptation because of the magnitude and consistency of many deviations from standard native
pronunciation.

Acoustic adaptation can be applied in either the feature space or the model space. Feature-space methods
include cepstral mean subtraction and vocal tract length length normalization, both of which are applied
in the ISL-BN system. Adaptation techniques commonly applied in the model space include maximum
likelihood linear regression (MLLR) and maximum a posteriori (MAP) adaptation.

Pilot experiments on the non-native data indicated that adaptation would be crucial if a level of recognizer
performance on which further experiments would be meaningful were to be achieved. In this section I
compare applications of MLLR, and mixed-style, or simplified MAP, adaptation, using both native-language
and accented data. I discuss both the differences between the two approaches and experimental results of

applying them for non-native speech.

4.4.1 Model-space adaptation

The two types of adaptation that I discuss in this section operate by modifying the parameters of the
acoustic model, specifically the means of the Gaussian mixture models that represent each phonetic state.
This section focuses on using adaptation to estimate a better general model of Japanese-accented English
before individual speaker adaptation is applied to further specialize the model.

MLLR is an example of what is called transformation-based adaptation. In transformation-based adapta-
tion, a single transformation operation is applied to all models in a transformation class. The transformation
function is estimated from a small amount of held-out data. In the Janus implementation of MLLR, the
optimal number of transformation classes is determined dynamically.

In mixed-style adaptation, the model parameters are re-estimated individually. Using held-out adaptation
data, sample mean values are calculated. An updated mean is then found by shifting the original value toward

the sample value. If there was insufficient adaptation data for a phone to reliably estimate a sample mean,
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no adaptation is performed. The degree of shift toward, or interpolation weighting factor of, the sample
value is globally applied to all transformations. This is where mixed-style adaptation differs from true MAP
adaptation, in which interpolation weights are estimated separately for each transformation. Because similar
gains have been observed in MAP and mixed-style adaptation (Soltau, 2001), I will use the simplified form.
All references to MAP adaptation in this dissertation therefore describe not true MAP adaptation, but
mixed-style adaptation.

Both MLLR and MAP adaptation are popular and effective in boosting LVCSR, performance (Woodland,
1999). Because transformation-based adaptation defines a transformation function for the entire class, it can
calculate an updated mean even for phones that did not appear with critical frequency in the adaptation
data. For this reason, it can be effective when not much data is available. However, a transformation function
that is optimal for the class may not be optimal for all individual models, and with MLLR one runs the risk
of applying the function improperly and shifting some means away from the observed sample value. This
does not happen with MAP adaptation, as each parameter is adapted separately. When the adaptation data
is representative of the test data, MAP adaptation performance improves as the amount of adaptation data
increases. With only a small amount of adaptation data, however, MLLR tends to provide the better model

(Doh, 2000).

4.4.2 Experiment 4:

Adaptation to the non-native condition

Introduction

There were two questions that I sought to address through adaptation exeriments.

1. Does L1 material provide better adaptation data than accented L2 data?

2. Does MAP adaptation perform better than MLLR adaptation for non-native speech?

The first question is important for two reasons. First, collecting L1 data is sometimes easier than collecting
accented L2 data. For well-represented L1s like Japanese and Spanish, L1 acoustic corpora might already be
available. And by using L1 data to adapt, the potential combinatorial problem of having to collect speech
data for each L1-L2 pair can be avoided. Second, L1 data might provide a more consistent representation of
non-native speech than L2 data does. If the variation in phonetic realization is very great in the accented
L2 speech, new sample means may not be very meaningful, and adapting to them may degrade rather than
improve the model. The best performance might be achieved by first adapting to consistent data that is
representative of the accented speech and then adapting to individual idiosyncrasies in the realization of
specific phones. The problem with this argument, of course, is that it assumes a regular mapping between

L1 and accented L2 phones, a suggestion that has been disputed in e.g. (Briere, 1966).
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The second question asks whether transformation-based or Bayesian adaptation is more appropriate for
non-native speech. One might speculate that because the non-native data is highly variable the risk of
improperly applying transformation functions would be high, suggesting that MAP adaptation would be the
better choice as long as there is enough adaptation data. This is only a hypothesis, however, so one would
like to address the question empirically.

In these experiments, I use the 10-speaker proficiency-controlled set of Japanese-accented English (NN-

E-R) as the test set.

Data
The L1 data that was used for these experiments was Japanese read news from the Nikkei Shimbun. This
data was selected because it was similar in task and topic to the Japanese-accented English data. The data
collection methods and environments were identical.

The accented L2 adaptation data was drawn from the training set of Japanese-accented read news data
(NN-T-R).

The test data was the proficiency-controlled non-native set NN-E-R.

Experiment 4.1: MLLR adaptation

Method

Prior to individual speaker adaptation, MLLR adaptation based on speech from varying amounts of adap-
tation speech was applied. First, the number of adaptation speakers was varied; as with individual speaker
adaptation, 50 utterances from each speaker were used. Performance was calculated for 3, 5, 10, and 15
adaptation speakers. Second, the number of speakers was fixed, but the number of utterances from each
speaker was varied. Performance was calculated for 240, 444, 811, and 1296 words, evenly drawn from
10 adaptation speakers. These numbers approximate the number of words in the 3, 5, 10, and 15-speaker

adaptation sets.

Results

Figure 4.5 shows the results of applying MLLR with L1 and L2 data. While adaptation with accented
L2 data leads to improved performance, adapting with L1 data results in a performance degradation that
increases with the amount of adaptation data used.

The benefit from adaptation with larger amounts of adaptation data is clear, at least up to the 10-speaker
level. One might wonder whether it is the variety among speakers or simply the number of adaptation
utterances from one speaker that contributes most to the gain. Figure 4.6 shows how performance changes
when the adaptation utterances are distributed evenly over 10 different speakers. As we can see from
Figure 4.6, the curves are steeper when the adaptation words are not distributed evenly across speakers; one

may conclude that the effect of increasing amounts of adaptation data is stronger when the amount of speech
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Figure 4.5: MLLR adaptation using L1 and L2 adap- Figure 4.6: MLLR adaptation with with L1 and L2
tation data and varying numbers of adaptation speakers adaptation data and varying numbers of adaptation
words

from each adaptation speaker reaches a critical level. When the adaptation words are distributed evenly
across speakers, the benefit is not seen as quickly because there is initially more diversity in the adaptation

data set.

Experiment 4.2: MAP adaptation

Method

The MAP adaptation implementation used in these experiments is an approximation to the standard al-
gorithm in which the original means are shifted toward the sample means using a single experimentally-
determined interpolation weight, instead of calculating the shift individually for each senone. This method

has been found to produce equivalent or better results than the traditional implementation (Soltau, 2001).

Results
Performance after MAP adaptation is shown in Figure 4.7. On the horizontal axis is the degree of shift
toward the sample mean (the interpolation weight). When the interpolation weight is 1, the adapted mean
is identical to the sample mean. When the interpolation weight is 0, the adapted mean is identical to the
prior mean (i.e., there is no adaptation).

As with MLLR adaptation, we see a degradation in performance when adapting with L1 data. When
adapting with L2 data, we see that the optimal interpolation weight is 0.75.

Conclusions
A comparison of MLLR and MAP adaption is given in Table 4.8. MAP adaptation performs significantly
better than MLLR, adaptation, at least when the amount of adaptation data is large.



82 CHAPTER 4. ACOUSTIC MODELING

80
Bl MLLR
75 T [ baseline
L1 adaptation data +— 5L MAP
L2 adaptation data —+
4 70 b
65 —
@ ﬁ 60 4
w 3
£
s b 1 551 ,
50 q
55 | B
A S 451 b
—
" ‘ ‘ ‘ ‘ w0
0 0.2 0.4 0.6 0.8 1
interpolation weight L1 data baseline L2 data
Figure 4.7: MAP adaptation using L1 and L2 adapta- Figure 4.8: Comparison of MLLR and MAP adaptation

tion data and varying interpolation weights for 15 adaptation speakers

4.4.3 Adaptation for proficient speakers

The consistent observation in these experiments that adapting with L1 data results in a performance degrada-
tion is disappointing, as it reinforces the conclusion seen elsewhere in LVCSR and NLP that clever modeling
cannot compete with plenty of well-matched data. It also contrasts with the results cited in (Liu and Fung,
2000a). It was my initial hypothesis that the lower proficiency levels in my test set were responsible; profi-
cient speakers may have a strong accent, but if their speech is stable, it may be easier to attribute consistent
mispronunciations to interference from L1. Specific interference from L1 for less proficient speakers, on the
other hand, may not influence articulation as much as other effects encountered along the learning curve do.

Unfortunately, this does not appear to be the case. Figures 4.9 and 4.10 show adaptation results for four
proficient speakers. We see the same trend as for the less proficient speakers; using L1 data to adapt to
the non-native condition results in a performance degradation while L2 data improves performance, and the
degradation/improvement grows with the amount of adaptation data. While the improvements are small,
the degradation is even more severe than it is for the less proficient speakers, both for varying numbers of

adaptation speakers and varying numbers of adaptation words distributed evenly across adaptation speakers.

4.4.4 Conclusions from adaptation experiments

The clear result from experiments performed on the data collected for this dissertation is that adaptation
to the non-native condition is successful when accented L2 adaptation data is used and harmful to overall
WER when L1 adaptation data is used. This trend holds for both the lower-proficiency speech that is the
target of this research and the type of high-proficiency speech that has been more widely studied (although

the sample of high-proficiency speech available for this research was small).
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4.5 Training

In Section 4.4, T compared methods and data sources for adaptation, and found that the greatest WER
reduction comes with first using MAP to adapt to the non-native condition, and then applying MLLR again
to those adapted models to adapt to the current speaker. In this section I show how WER can be further
reduced through retraining of the system using L1-dependent data. I investigate whether better results can
be achieved with L1 data or accented L2 data, and present a number of variations on the standard training
procedure that improve recognition performance.

In discussions of recognition system development, I will focus on two phases: building the decision tree
that describes allophonic variation, and refinement of the parameters that describe the probability of a
certain sound being associated with a certain acoustic model. The first may be referred to as clustering,
and the second as training. For clarity, I will use the term building to refer to the process of creating a new

recognition system from scratch, a process which is sometimes also called training.

4.5.1 Experiment 5:

Building a system with accent-dependent data

Introduction

It was shown in Section 4.4 that while using accented data for adaptation improves recognition performance,
adapting with L1 data results in a performance degradation. In speaker adaptation, the model inventory is
kept the same, but the expectation of what a model sounds like is shifted towards what has been seen in the
limited set of adaptation speech. The L1 data does not have the chance to make its maximal contribution,
as the model inventory is based on the polyphones found in native speech; two allophones that are quite

different in L1 may be used to update the same model if the two contexts do not trigger variation in English.
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By rebuilding the system based on the contexts that are meaningful in L1, we can use the L1 data to its full
advantage.

I will compare a system built with a mixture of L1 and native English data with a system built with
a mixture of accented L2 and native English data. The large amount of native data contributes to the
robustness of the model, while the smaller amount of L1-specific data ensures that L1-specific phone sequences

and phone realizations are seen during clustering and training.

Data
The L1-specific (native Japanese and Japanese-accented English) data used in this experiment was the same
as that used for adaptation experiments described in Section 4.4.2.

The L1 data that was used for these experiments was Japanese read news from the Nikkei Shimbun.
This data was selected because it was similar in task and topic to the Japanese-accented English data. The
data collection methods and environments were identical. Approximately 3 hours of this data was used for
training.

The entire training set of Japanese-accented read news data (NN-T-R) was used for this experiment.
This set totals approximately 3 hours of speech from 15 speakers.

The test data was the proficiency-controlled non-native set NN-E-R.

Method
The procedures for building the two systems were identical. Both were bootstrapped from the baseline
system, with initial labels written using those acoustic models. For each system, a new Linear Discriminant
Analysis (LDA) matrix was computed, with codebook and distribution parameters then calculated by k-
means and trained for seven epochs. The result of this process was a context-independent system. To
incorporate phonetic context, a new model was created and trained for each polyphone whose frequency
was above a certain threshold. A decision tree was then grown to find polyphones whose central phones are
similar and can be used to train the same model. LDA, kmeans, and Viterbi training were applied again to
complete the context-dependent system.

Before decoding the test data, optimal language model parameters were found using cross-validation
data, so the language model parameters used in testing the two systems were not the same. Speaker-
adapted weights were estimated by applying MLLR on 50 utterances of unseen adaptation data from each

speaker.

Results

Figure 4.11 shows the WER reduction achieved by rebuilding the system with L1-dependent data. Results
are shown both for the test set average and the individual speakers. The baseline WER is given as a line

plot to make it easy to see for which speakers the rebuilt system results in a degradation. Overall, there is no
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Figure 4.11: WER reduction from rebuilding the system with L1 and accented L2 data

significant difference between the system rebuilt with L1 data and the baseline system. The improvements

in the system rebuilt with accented data, however, are highly significant (p < .001, matched pairs t-test).

4.5.2 Retraining

Given the observed positive contribution of incorporating accented data in system building, it was of interest
to determine whether the effect can be approximated by limiting the specialization to clustering or training.
I began with the retraining case, which is the more straightforward of the two. To retrain using the accented
data, two Viterbi training iterations were run on the fully trained baseline acoustic models described in

Section 4.1. To clarify the effect this has, let us briefly review the Viterbi training process.

Review of Viterbi Training

As described in e.g. (Rabiner, 1990), a hidden Markov model consists of possible states S = s1---sny and

observations O = 0y...0p and parameters m, A, and B defined as follows:
7 the initial state distribution
A the state transition probability distribution
B the observation symbol probability distribution

As HMMs are used for speech recognition, an observation o corresponds to an acoustic event that is
heard, and the states s; correspond to phonological units. In this explanation, I will assume that the unit of

representation is the phoneme.
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In Viterbi training, the values of m, A, and B are iteratively refined to more accurately predict the initial
state, transitions between states, and association of states with observations (phonemes with sounds). This
is accomplished by first using the current parameters to estimate the most probable sequence of states, and
then updating the parameters based on the number of times each state and observation were seen.

The Viterbi algorithm (Forney, 1973) is used to find the state sequence ¢;---gr that best matches the
acoustic sequence given the model parameters. In training, the word sequence, and therefore the prescribed
phoneme sequence, is known. However, the exact time alignment of states must be established. For the word
sequence “upstream in a,” discussed in Section 4.3.1 (assuming a somewhat faster speaking rate), the true

time alignment might look like the following.

(...upstream in a...)

A p s t ri m I n )
5353535353535959595957S7S7S57575752525252525854545454545454565656515151515151585858585353

There are a number of factors that make arriving at the correct alignment difficult, including poor initial
modeling of some phones, noises, silences between words, and phone transitions that don’t fall at 10ms
intervals. The alignment typically gets more accurate with each training iteration, because the model used
to estimate it improves.

After an alignment has been found, the model parameters are updated so that the model is optimal given

the new counts.

4.5.3 Experiment 6:

Retraining with non-native data

Introduction

When a system that has been built on native speech is trained with non-native data, the updates to the model
parameters will reflect the sound-state mappings that are present in the data. If the non-native speakers are
consistent in their deviations from native speech, the model shift should result in better recognition. If the
non-native data is inconsistent, however, using it to train the model can result in a general degradation of
the model.

In Section 4.4, T showed that recognition improves with speaker adaptation. By training using the
accented data, I am essentially extending this approach, updating not only the mixture means but also the
mixture weights and covariances (the full representation of the observation model B). We also benefit from
the iterative component of the training process. Based on the improvements that were seen with adaptation

on accented data, one would expect that the model does improve with training on accented data.
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Data

The accented L2 (Japanese-accented English) data used in this experiment was the same as that used for

adaptation experiments described in Section 4.4.2 and rebuilding experiments described in Section 4.5.1.
The entire training set of Japanese-accented read news data (NN-T-R) was used for this experiment.

This set totals approximately 3 hours of speech from 15 speakers.

The test data was the proficiency-controlled non-native set NN-E-R.

Method
The baseline acoustic models described in 4.1 were trained two additional forward-backward iterations using

only the 3 hours of accented data.

Results
Table 4.11 shows the results of training two epochs on the same 15 training speakers (representing 3 hours
of acoustic data) that were used for adaptation experiments. The improvement in overall WER, was highly

significant as measured by the matched-pairs test described in Section 4.2.

baseline | retrained
Speaker || WER WER
208 64.8 42.9
209 65.0 74.2
212 74.0 54.2
216 59.6 40.8
218 64.6 36.4
220 64.7 59.1
221 92.2 38.6
222 57.4 36.5
225 77.3 53.9
227 53.6 34.8
AVG 67.3 47.2

Table 4.11: Improvements in WER for the retrained system

Conclusion
Retraining in only the final phase with the accented data results in a significant drop in WER, yielding the

best performance so far.
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4.5.4 Experiment 7:

Model interpolation

Introduction

In an effort to decrease word error further, I experimented with model interpolation. As the retrained
acoustic models (from here on called non-native models) were trained on a small amount of data, there is a
danger of overfitting, a problem which has been addressed by smoothing the models via interpolation with a
more robust model (e.g. Huang et al. (1996)). In the native and non-native model sets, there is a one-to-one
mapping between senones (atomic acoustic units, generalized sub-triphones in ISL-BN; c.f. Hwang (1993))
representing the same phonetic context. In the native model, the mixtures of Gaussians are based on many
training samples, while in the non-native model, the mixtures of Gaussians are probably overfitted to the
non-native training data. My goal is to move the non-native distribution towards the native distribution to

the point of maximum robustness.

Data
No acoustic data was involved in this experiment. The two model sets that were interpolated were the
baseline model set and the retrained model set generated from Experiment 6.

The test data was the proficiency-controlled non-native set NN-E-R.

Method

To achieve the goal of moving the non-native distribution towards the native distribution to the point of
maximum robustness, I interpolated each element of the corresponding native and non-native mean and
covariance vectors as well as the distribution weights. Specifically, for each non-native senone S4 in a
system with R mean vectors in each codebook and an underlying feature space dimensionality of NV, the
mean vector u, the covariance matrix C, and the distribution weight vector d are interpolated with those of
the native senone S to create senone model S¢:

A B
w4 ps (1 —w
vie RYj e Nyl = 2 “2”( )

Ciw + CE(1 - w)
2

Vie RVj e N.Cjj =

dfw +dB(1 —w)
2

Vi€ R.dS =

Where w is the experimentally determined weighting factor.

The new covariances were calculated in this way in order to find a medium between the smaller variances
in the native models and the larger variances in the non-native models. It was not my intent to re-calculate
them to represent the variance across all native and non-native samples. The counts that are stored to record

the number of times each senone was seen in the training data were also updated.
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Figure 4.12: Results for interpolation with different interpolation weights. A weight of 0 represents performance

with the original acoustic models. A weight of 1 represents performance with the new models.

Results
Figure 4.12 shows the effect on word error rate of interpolating with different weights w. The optimal
weighting factor was found to be .72; this contrasts with the result in Witt and Young (1999), which found

the optimal weighting factor to usually be less than .5 with a similar interpolation scheme.

Conclusion

The model interpolation yields an improvement of 6.25% relative over the retrained models, which is signifi-
cant. The fact that an improvement is achieved at all indicates that there is a small overtraining effect with
the retraining; the retrained models are slightly overspecialized toward the specific speakers in the training
set NN-T-R, and interpolating these models back with the baseline models adds robustness that leads to

better performance on unseen test speakers.

4.6 Clustering

Non-native speakers are known to have difficulty acquiring context-conditioned phonetic contrasts when the
L2 phoneme is perceived as corresponding to an L1 phoneme that is not subject to, or does not trigger, the
same variation (Flege, 1993). For example, in English, the word-final stop contrasts /p,b/, /t,d/, and /k,g/
are distinguished not only by voicing but also by length of the preceding vowel. This effect is so profound
that even when the final phone itself displays the correct voicing characteristics, if the length of the preceding
vowel is inappropriate the final phone can easily be mistaken for its voiced/voiceless counterpart. Japanese,
on the other hand, exhibits context-conditioned variation that does not occur in English; voiceless consonants
can trigger devoicing of the following high vowel and come consonants undergo heavy palatization preceding
/i/. If the Japanese speakers are carrying these allophonic relationships over into their English articulation,
and failing to observe those appropriate in English, the context decision tree that was built on native speech

may not represent very accurately the environments that are phonologically critical for them.
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It is not a certainty, however, that the native decision tree will not arrive at an acceptable model for a
segment, of non-native speech, or that a decision tree trained on non-native data will specify a better model.

To understand why, let us consider the decision tree growing process.

4.6.1 Review of phonetic clustering

The purpose of phonetic clustering in JRTk is to find the phonetic units that behave similarly in an environ-
ment and pool examples of them to build a single model. The phonetic unit that the ISL-BN system uses
for this is the sub-phone: the beginning, middle, and end of a phoneme are recognized as separate units.
Number and consistency of training examples contribute to the quality of the model; the clustering procedure
uses information about the phonetic environment to group acoustic samples in the way that maximizes both
consistency and number of training examples in each group. Modeling at the sub-phone level allows data for
the middle part of a phone, which may show little effect from neighboring phones, to be pooled, while the
beginnings and ends may be more appropriately modeled separately as features like voice onset and release
vary according to context.

JRTk uses a decision tree to find the optimal groupings and classify input speech samples in decoding.
Questions about the previous and following two phonemes are asked to find the split that creates the best
two new data subsets. Figure 4.13 shows what the tree might look like. In the case of the phone /1/, the most
important question (measured in terms of entropy reduction) is whether or not the current phone occurs at a
word boundary (0=wb?). Because JRTk represents both word ends and word beginnings as word boundaries,
a second question is asked to determine whether the current /1/ is word final (+1=wb?). When the answer
to this question is no (n), the tree stops asking questions, indicating that differences in realization of word-
initial instances of /1/ are not significant enough to warrant specialized modeling. All acoustic samples of
word-initial /1/ are “bucketed” together to build a single model, designated model 48.

Model 73 is also defined fairly early in the tree. This model represents instances of /1/ that are preceded
by a /u/ but are neither word-final nor word-penultimate. We can see from the number of counts in model
73’s bucket that occurences of this context in the training data were relatively rare. It is likely that the
samples were bucketed together at this point not because they were similar but because their number had

approached the minimum required for creating a model.

4.6.2 Native trees and non-native input

In the previous section, I alluded to the two reasons that training data samples are bucketed together to
render an acoustic model: similarity and sparsity. As long as test speakers exhibit the same characteristics
as the training speakers with respect to these two features, the acoustic models will describe their speech as
well as they did the training speakers. What happens when the training and test data is mismatched?

The English word “Pacific” is familiar to many Japanese speakers. It is lexicalized in Japanese, occuring,

for example, in the name of a popular sports league. It is phonologically simple, and its realization in
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+1=vowel?

+1=alveolar stop?

Figure 4.13: Example fragment of a phonetic clustering tree. At each leaf node, a bucket is shown holding the

contexts found in the training data that were assigned to that node and their respective counts
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the non-native training data was very consistently [pafifikui], contrasting with the likely native realization
[po'sifik’]. Tt is easy to see how the native acoustic models, which are designed to distinguish pairs like [i,1],
[s,)], and [k,k"], will not give the intended phone sequence a high score in decoding. Let us explore training
the phonemes /1,8,k/ with Japanese-accented samples of the word “Pacific” and the native-based decision
tree.

/1/ and /i/ are highly contrastive in English. Although each exhibits allophonic variation, notably in
duration for /i/ and reduction for /1/, these symbols do not normally describe the same phonetic event.*
They are acoustically very close, however, and many questions are asked in the decision tree in order to
properly model /1/ in particular. In Japanese-accented English, nearly all instances of /1/ are realized as [i].
The pool of training data for /1/ may be split up necessarily as samples are assigned to contexts that are
meaningful in English, but there is no failure on the part of the system to identify environments in which
/1/ undergoes allophonic alternation, and this is a relatively common phone which should not suffer greatly
from data splitting. When speaker adaptation is subsequently applied, a general /1/ — [i] mapping should
be learned.

In Japanese, /s/ preceding /i/ is always realized as [[]. It can be very difficult for Japanese natives
to produce the English phone sequences [si] (and by extension [s1]). Because English speakers do observe
a contrast in this environment, it might be thought that the English decision tree would not isolate this
allophone of /s/ for specialized modeling, bucketing acoustic samples that are close to /[/ in with more
pure /s/ examples. However, in the baseline decision tree, the questions +1=syllabic, +1=front-vowel,
and +1=high-vowel, describing the phonetic context __{/i,i/} are the first to be asked. Although /[/-/s/
substitution before /i/ is an error that can significantly decrease intelligibility and lead to confusion in the
search, it is not modeled inappropriately in the decision tree, and individual speaker adaptation should
address the realizational problem.

The epenthetic [w] appearing after /k/ presents a different kind of problem. This is not a substitution
error, but rather an insertion error, resulting in the new polyphone /fiku#ts/ (assuming that the next word
is “salmon”). A pre-/u/ context is recognized in the decision tree, but more specific modeling of the full
context was not deemed necessary in native-based clustering. It is possible that this /k/, and the following

/u/ (if the epenthetic vowel is to be modeled as /u/), will benefit from clustering with non-native data.

Although accented speakers vary in allophonic distribution in ways that native speakers do not, it is
not necessarily the case that non-native-based clustering will help, as I have attempted to illustrate. In the
following sections, I address this question empirically, describing two methods for incorporating non-native

data in the clustering process.

4T have thus far avoided characterizing the phone inventory used in recognition as phonetic or phonemic. It is in fact
inconsistent. Certain phonetically distinct sounds, such as [k,k*,k"], are transcribed as the phonemic /k/ with the expectation
that contextual clustering will assign them to different models. In other cases, allophonic variants are assigned full phonemic

status. Morphophonological variation is always represented phonetically.
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Training data source || Hours of data Quinphone coverage WER
types tokens

Native 60 92% 92% 63.1%

Non-native 3 50 57 78.4

Non-native (cheating) 3 91 99 40.8

Table 4.12: Effect on WER of re-growing the tree with non-native data

4.6.3 Re-growing the tree

By re-growing the tree from scratch with a sufficient amount of non-native data, one would expect to capture
important patterns of allophonic distribution in Japanese-accented English. T did not find the three hours
of training data to be sufficient for this task, however. The number of polyphones is small; only 10% of the
polyphone types (46% of tokens) in the full native training data set appear in the small non-native training
data set. By contrast, 92% of the polyphone types (and 92% of tokens) in the non-native data appear in the
60 hours of native data.

Table 4.12 shows how recognizer performance degrades when the tree is trained with only the small
non-native data training set. The WER figures represent performance after post-clustering LDA, kmeans,
and training on the 3 hours of non-native data. Results from clustering with native and non-native training
data are contrasted with the result from a cheating experiment, in which training speakers’ readings of
the evaluation article were included in the training data. When all of the evaluation polyphones (although
the coverage does not actually reach 100%, as reading errors and disfluencies add new polyphones for each
speaker) are represented by multiple examples in the training data, word error decreases dramatically. Al-
though the new decision tree may handle the polyphones it has seen in sufficient quantity in the non-native
data more appropriately than the native tree would, the overall system suffers greatly from the loss of the

robustness that the native tree provides.

4.6.4 Experiment 8:

Decision tree adaptation

Introduction

In order to include questions relevant to non-native speech in the decision tree without rebuilding it from
scratch, T adapted the Polyphone Decision Tree Specialization (PDTS) (Schultz and Waibel, 1999) method
for porting a decision tree to a new language. This method was originally designed to support multilingual
recognition systems that use data from a number of different languages to train models representing a broader
range of phonemes than would occur in one language. Each time a new language is added, it brings with it

phonemes and polyphones that have not yet been seen by the system. PDTS allows questions to be asked
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about these new polyphones in the decision tree and new model mixture weights to be trained for them

without discarding the questions about the polyphones that the new language shares with the old one.

Data

The accented L2 (Japanese-accented English) training data used in this experiment was the same as that used

for adaptation experiments described in Section 4.4.2 and rebuilding experiments described in Section 4.5.1.
The entire training set of Japanese-accented read news data (NN-T-R) was used for this experiment.

This set, totals approximately 3 hours of speech from 15 speakers.

The test data was the proficiency-controlled non-native set NN-E-R.

Method

While I am not working with a new language, phone substitution, elision, and epenthesis in non-native
speech can introduce many new polyphones, as was shown in Section 4.3.2. To use the PDTS method, I
first identified new polyphones by aligning the training utterances using the expanded dictionary described
in Section 4.3.2. Included in the dictionary were variants generated from linguistic rules, free phoneme
recognition, and underspecified alignment. The recognizer selected the best acoustic match for each word
during alignment, generating a list of new polyphones. The new polyphones were then integrated into the
decision tree, with branches pruned back to the point where the new polyphone data could be inserted, and
re-grown with new specialization where the new data showed sufficient internal diversity or divergence from

the native data.

Results

Although I observed a large performance gain from PDTS on cross-validation data, only a small improvement
over the baseline was seen for test data, as shown in Table 4.13. The cross-validation data is used to find
the optimal language model settings before evaluation on the test set. Recognizer performance on this data
set is normally an accurate predictor of recognizer performance on the test data, as verified by periodic
spot checks. However, as we can see from table 4.13, the cross-validation data was quite positively affected
by PDTS where the test data was negatively affected. This trend held for varying pruning thresholds, the
number of polyphone samples necessary in the adaptation data to justify a new branch. It is difficult to
understand why this should be the case; cross-validation, test, and adaptation speaker sets are all mutually
disjoint, and the test utterances used for evaluation on both cross-validation and test speakers were not
included in the adaptation data. Because all evaluation speakers are reading the same article, there is no
dependency on the number of new polyphones. A check of the language model parameters on the test data
confirmed that the settings that were selected as optimal during cross-validation were also optimal for the test
data. The cross-validation speakers did have slightly lower proficiency ratings than the test speakers, so one
possible (and intuitively plausible) explanation would be that PDTS is more effective for lower-proficiency

speakers.
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Cross-validation data | Test data
Baseline 61.6 63.1
Baseline dictionary 59.6 60.3
Expanded dictionary 56.5 65.9
Expanded dictionary and higher threshold 54.9 64.9

Table 4.13: System performance after PDTS

Conclusion
The question of why PDTS performed better for the cross-validation speakers than for the test speakers is
interesting, but somewhat tangential as the standard methodology for evaluation in LVCSR bars us from
investigating individual differences in performance between test and cross-validation speakers. More relevant
is the question of why PDTS did not perform better in the main evaluation on the test speakers. As has
been mentioned earlier in this section, PDTS only grows a new set of branches for polyphones that did
not appear in the training data. While we do not have new polyphones in the prescribed pronunciation
as we would if adding a new language, I demonstrated in Section 4.3.2 that the phonetic realization of
words in non-native speech contains polyphones that are not found in native speech and would not have
been considered in building the decision tree. In this respect, there is a potential for seeing the same
sort of improvement that Schultz and Waibel (1999) observed when adding Portuguese to a multilingual
system. However, in the case of a new language, adaptation and test speakers are native speakers and can
be expected to exhibit consistency in allophonic variation — this is the premise supporting the entire decision
tree clustering approach that has worked so well in LVCSR. When speakers are not natives or proficient
non-natives, they may not share tendencies to similar environmental influence as they individually approach
articulation of English. The observation that performance with the baseline dictionary, in which only native
polyphones are considered, is stronger than with the expanded dictionaries, which allow the newly-trained
polyphones, is evidence to support the hypothesis that although new polyphones do exist in non-native
speech their realizations are not consistent enough across speakers to benefit from specialized modeling.
By examining only allophonic behavior in contexts that are not found in English, PDTS also does not
take into account variation in the many contexts that are. For example, there is quite some variability in
Japanese natives’ realization of English /f/ and /h/. [f] does not occur in Japanese other than in loanwords.
/h/ preceding /u/ is realized as a bilabial fricative, and depending on the speaker may sound to a native
GA listener as either [f] or [h]. Loanwords that originally contained /f/ may be realized with either [f] as
in [ofiswi] (“office”) and [h] as in [terehon] (“telephone”). Confusion in nativization of loanwords, speaker
variability in realization of [$] in Japanese, and reduced articulatory performance when concentrating on
speaking English all contribute to a general inconsistency in production of /f/ and /h/; the transcriptions
contain a number of such substitutions as “feet/heat,” “who’d/food,” and “follow/hollow.” The baseline

decision tree for /f/, however, buckets together all contexts in which the following segment is a rounded
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Figure 4.14: Summary of acoustic modeling results

vowel that does not precede /w/,/r/, or /ao/. No distinction is made between high round vowels and low
round vowels. The decision tree would never learn through PDTS that /f/ behaves differently before /u/
than before /o/ because the polyphones occur in English and have already been accounted for in the decision

tree.

4.7 Summary of acoustic modeling results

In this chapter, I have shown how application of acoustic model training and adaptation techniques con-
tributes to increased recognition accuracy on non-native speech. A summary of the individual contributions
of each method is shown in Figure 4.14.

The baseline word error rate for the proficiency-controlled set of non-native test speakers was 63.1%
after MLLR speaker adaptation. Adapting the allophonic decision tree to the non-native condition (PDTS)
reduces WER to 60.3%. Acoustic model adaptation to the non-native condition via MLLR adaptation
on three adaptation speakers (MLLR-3) prior to test speaker adaptation reduces WER to 58.1%. MLLR
adaptation to the non-native condition with 15 adaptation speakers (MLLR-15) reduces WER to 54.2%.
Rebuilding the system from scratch with accented data (Rebuild-L2) reduces WER to 53.6. MAP adaption



4.7. SUMMARY OF ACOUSTIC MODELING RESULTS 97

with 15 (MAP-15) speakers reduces WER to 51.7%. Additional training iterations using 3 hours of non-
native speech (Retrain) reduces WER to 48.1%. Finally, interpolation of the retrained models with the
baseline models with an interpolation weight of .3 reduces WER to 45.1%, a 29% relative reduction in error
over the baseline.

Among the techniques that I did not find to work well on this data were rebuilding the system with L1
data, adaptation with L1 data, and PTDS with additional training.

Phonetic confusion is much higher in the non-native data than in similar native data, with the most
confusible phone pairs in non-native speech being /m,m/, /o,0/, /fh/, /b,v/, and /u,5/. A number of these
confusions are also significant in native speech; /u,u/ and /b,v/ were the most confusible pairs for native
speakers. Other confusions that were notably higher in non-native speech include /d&,3/, /e,ei/, and /[,s/.

As discussed in Chapter 3, non-native speakers make use of a variety of strategies as they build their
competence in spoken language. Phonological simplification, such as insertion of vowels to break up conso-
nant clusters and failure to observe complex allophonic patterns in the second language, can introduce phone
sequences that never occurred in the training data and were not incorporated into the polyphone decision
tree. Although a flexible alignment of non-native utterances to reference text revealed that there are indeed
many new polyphones in the non-native speech, of the decision tree to the non-native speech resulted in only
a small improvement in recognition accuracy. Possible explanations include that environmental influence is
not consistent across speakers or within one speaker’s articulation; that differences in allophonic alternation
in environments that exist in both English and Japanese are more significant than expected; and that phone

insertions, deletions, and substitutions are effectively absorbed in the course of speaker adaptation.






Chapter 5

Lexical Modeling

The lexical model specifies how phones combine to make words. By modifying the native lexical model we
can represent segmental substitutions, insertions and deletions frequent in non-native speech. If speakers of
a common native language are known, or are found, to systematically substitute! one phone sequence for
another, this substitution can be incorporated in the lexical model for a more accurate representation of the
phonemic realization of words.

There are several problems with lexical modeling that make it not as straightforward a solution to
adapting to foreign accents as it might seem. First, a more accurate phonemic representation may not be
linked to an increase in recognizer accuracy. Second, context-sensitive speaker adaptation is very effective in
learning speaker-dependent deviations in phonetic realization, and independently modifying the phonemic
representation may counteract the benefits of adaptation. And third, whether substitutions accented speakers
appear to make are true phonemic substitutions is an open question, as discussed in Section 2; neither human
perception nor recognizer error is an unbiased indicator of the underlying form of non-native speech.

Nevertheless, lexical modeling is a non-data-intensive, linguistically intuitive approach to adapting to
non-native speech that has been applied with success in alignment-based tutoring applications (Auberg et
al., 1998) and limited domains (Livescu and Glass, 2000) and for new varieties of native speech (Humphries
and Woodland, 1997). Direct modification of the lexical model also seems appropriate for L2 words that
have been nativized in L1, although one must be wary of arbitrarily assigning L.1-L2 phone mappings.

In this chapter, I compare data-driven and linguistically-motivated methods for finding probable phonemic

representations of English words in Japanese-accented speech.

'Throughout this chapter, I will use the term substitute to refer to replacement of one phone sequence with another,

subsuming the insertion case and the deletion case.

99
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5.1 Background

There are two primary considerations in lexical modeling: specifying probable phone sequence transforma-
tions and incorporating them, for optimal recognizer performance, in the search. Transformations can be
specified either by predicting, based on linguistic evidence, likely mappings between L1 and L2 phones, or by
inferring mappings from recognizer output. Both methods have been found to be successful in different, con-
texts. Fung and Liu (1999) based mappings between English and Cantonese on average formant frequencies
in native speech. Auberg et al. (1998) and Kawai (1999) selected mappings based on the minimal pairs that
were to be taught in their language tutoring systems. Humphries and Woodland (1997) found that British
phone representations of American speech could be derived from unrestricted phoneme recognition of Amer-
ican data using a British system. Similar data-driven approaches to transformation inference have been
used by Huang et al. (2000) for Mandarin dialects, Amdall et al. (2000) for proficient non-native speakers
of English, and Suzuki et al. (2000) Japanese-accented English.

Once a description of potential variation has been completed, the list of actual variants for base lexical
forms that will be allowed in the search must be compiled. Let us take as an example the English word
“abroad.” Generating all combinations of the sample phonemic substitutions /o/ — /v/,/b/ — /bu/, /r/

— /1/, /o] = Jo/, and /d/ — /do/, all reasonable for Japanese-accented English, yields 31 variants:

/oblod/  /obrod/  /pbulod/  /oburod/  /eblod/  /ebrodo/ /ebulodo/ /eburodo/
/oblodo/  /obrodo/  /pbulodo/ /pburodo/ /eblodo/ /ebrod/  /obulod/  /eburod/
/oblod/  /obrod/  /obulod/  /pburod/  /oblod/  /obrodo/ /ebulodo/ /oburodo/
/oblodo/  /obrodo/ /pbulodo/ /pburodo/ /eblodo/ /obulod/ /eburod/

A thoughtful implementation of potential Japanese-English transformation rules, allowing commonly
observed substitutions only in contextually plausible positions, generates an average of 40 variants per base
word in the lexicon. This is not a tractable search space for the recognizer, both in terms of sheer size and
in terms of confusability; new variants are very similar to existing words, and discriminating between them
becomes an extremely difficult task.

Effective prioritization of variants, then, is critical. Humphries and Woodland (1998) suggest using a
decision tree to choose the most, probable variants given phonemic context, with a maximum of four variants
per word. Amdall et al. (2000) select transformation rules based on log likelihood in an adaptation set,
pruning the list using a pruning heuristic. Livescu and Glass (2000) rank rules by maximum likelihood in
training data and determine a pruning factor by evaluating performance on development data.

In the next two sections I will document the response of the recognizer to a number of prioritization
and pruning methods for linguistically-motivated and data-driven modeling of the non-native data set. All

recognition experiments use the best-performing acoustic models described in Chapter 4.
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5.1.1 Terminology and phonetic symbols

The symbols that I use to represent sounds in speech will be familiar to users of IPA representations.
This symbol set will help to facilitate a common understanding of the transformations that I describe.
It is important to be clear, however, that the symbols actually used in the lexicon represent something
slightly different. In this chapter, I use phonetic symbols to illustrate four different things. The canonical
pronunciation of a word is an abstraction which will be described using IPA symbols delimited by slashes,
that is, a standard phonemic specification. The realization of a word in speech will be described using IPA
symbols delimited by brackets, a phonetic specification. Transformations actually applied to the lexicon will
also use IPA symbols, but without delimiters, so as not to imply that the symbols in the lexicon correspond
to any precise IPA specification. In discussions of the internal representation or output of the recognizer, I

will use the ARPABET symbol set, which is described in Appendix C.

5.2 Linguistically-motivated modeling

Acquisition of non-native phonology, as noted in Chapter 2, has been very well-studied, in terms of both the

general acquisition process and the specific case of Japanese-accented English.

5.2.1 Some phonological properties of Japanese-accented English

While we have conflicting reports of the nature of phonetic production in non-native speech, literature in

ESL describes consistent trends in the English of Japanese natives that can be used for empirical evaluation.

Epenthesis

Japanese has a strict (C)V syllable structure, the only exceptions being /n/, which can be syllabic, and
geminate consonants. Vowel length is phonemic. Epenthesis of the vowels /i,o,u/ to simplify consonant
clusters and force open syllables is common in Japanese-accented speech. These intrusive vowels have been
shown to affect intelligibility (Tajima et al., 1997), and frequency of epenthesis has not been found to be
linked to familiarity with or nativization of the word (Tajima et al., 2000). Because vowels are often devoiced
following a voiceless consonant in Japanese (Akamatsu, 1997), epenthetic vowels in Japanese-accented English

can be very subtle.

Full-quality vowels

Japanese has a five-vowel system, with vowels realized in positions similar to the first, second, fifth, seventh,
and eighth cardinal vowels [i,e,a,0,u]. Vowels are always full quality, and sequences of vowels are not diph-

thongized. The system of vowel reduction in English is not easily acquired by Japanese speakers, which can
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significantly affect intelligibility as full quality in vowels is linked to a perception of stress for native English

listeners (Giegerich, 1992).

Confusion stemming from nativization and orthography

English words represented in the Japanese syllabary are ubiquitous in Japan. Loanwords are frequent, the
native syllabary is sometimes used to make the introduction to formal study of English more gentle, and
movie posters, newspapers, and karaoke screens are all likely to contain foreign words and names rendered
in the Japanese script. This easy dependency on a familiar orthography facilitates fossilized mappings of
English sounds to Japanese ones. Moreover, because some English sounds are represented by the same
Japanese characters (/1/ and /r/, /v/ and /b/, /o/ and /a/ among others), speakers may not only have
trouble with the phonetic distinction but also with remembering which the original phone was. The former
situation may be addressed with adaptation to the speaker’s idiosyncratic realization of the target phone,
but the inconsistency introduced by the latter may well be best addressed by allowing multiple variants in

the lexicon.

Observation of Japanese allophonic patterns

There are some notable allophonic alternations in Japanese that are not found in English. For example, /s/
is realized as [[] preceding /i/. While speakers with formal exposure to English are generally aware that the

phonetic distinction between [si] and [fi] is contrastive, production is often a problem.

5.2.2 Transformation rules

Based on research in ESL for Japanese natives, a set of context-sensitive transformation rules was compiled.
For each word in the lexicon, an arc was added to the pronunciation network for each applicable substitution.

For the example in Section 5.1 of the word “abroad,” we have the following base pronunciation network.

If we recognize the potential substitutions /o/ — /a/,/b/ — /bu/, [t/ — /1/, [5/ = Jo/, and /d/ —

/do/, we obtain the following pronunciation network, which generates all of the variants listed in Section 5.1.
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Canonical Sample
Rule Word pronunciation realization
r—1 reason /rizon/ [lizan]
0 —o/{t,d} _# adult /odalt/ [adacuto]
j—=>0/% __i year /jir/ [io]

Table 5.1: Sample transformation rules. The symbol $ represents a syllable boundary

Pronunciation networks are created in this way for each base word in the lexicon. A full list of trans-
formation rules is given in Appendix B; several examples are shown in Table 5.1, each with a phonetic
transcription of an instance of a word in the training data in which the transformation was observed.

However accurate the rules, the application is not foolproof because the base lexicon contains a number
of transcription inconsistencies. For example, the syllable-initial /r/ in words like “generator” is often
transcribed as a syllable-final /a+/, leaving a vowel at the head of the next syllable. This means that the rule
o — v/ __$, which generates the appropriate variant /satfiy/ — [sptfig] for “searching” also generates
the inappropriate variant &genaweitar — d&enpeitar for “generator.” Also, compound words appear to behave
differently at component boundaries than the same phone sequence would at an ordinary syllable boundary,
and this sort of compositional information is not available in the lexicon. However, because this lexicon is
only used for bootstrapping the variant extraction process, it does not appear that the spurious paths have

a negative effect.

5.2.3 Associating probabilities with transformations

Having established which transformations would be allowed, I next explored ways of assigning probabilities
to individual transformations and transformation combinations. Enumerating all paths through the new
pronunciation networks yields 915,672 realizations for 22,761 words, compared with 26,110 realizations in
the baseline lexicon. Using this very large lexicon, I aligned the acoustic data from training set NN-T-R
(which will not be used for further training) to the transcripts. All variants were assigned equal initial
probabilities, so the one representing the closest acoustic match was selected during alignment.

This process generates a list of realizations that occurred in the recorded data. There are several ways

to interpret the list.

Word-based interpretation

In a word-based interpretation, variants that were selected during forced alignment are added to the test
lexicon. This approach has the disadvantage of not generalizing to words that were not encountered in the
alignment data. However, it has the advantage of ensuring that all new variants are plausible, which is
not necessarily the case when applying transformation rules to new words. I tested two implementations of

word-based transformation:
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1.1—>r
2.r—1

3.1—~1

Table 5.2: Rules applied in dictionary R1

W1 Variants that represented more than 20% of occurrences of the base word in the alignment data

were selected for the test lexicon

‘W2 Variants that occurred more than twice in the alignments were selected for the test lexicon

These thresholds were determined by two criteria: keeping the dictionary size to less than 60,000, and
not exceeding an average of three pronunciation variants per word. Implementation W1 is biased toward
infrequent words; if a word appears only twice in the training data and one instance is a variant, that variant
will exceed the minimum frequency threshold of 50% and be added to the lexicon. The nature of my task
makes this bias particularly strong. Because many words only occur in one article, and no two training
speakers read the same article, if a speaker’s pronunciation of that word is idiosyncratic the probability of

the variant matching his speech will be high. Implementation W2 is biased toward frequent words.

Rule-based interpretation

In a rule-based interpretation, instead of adding the exact variants that were selected during alignment, one
finds the rules that were most frequently invoked to generate the variants selected during alignment and
apply them to the test dictionary. This method generalizes easily to new data, but because it operates on
all words in the test lexicon only a few transformations can be implemented without exceeding the optimal

lexicon size.

R1 Rules that applied more than 500 times in the training set were applied to the baseline test lexicon

to generate new variants for testing

The selected rules are given in Table 5.2. Because the application of just these three rules expanded the

lexicon size to 60,244, no variations on this implementation were tested.

Phone-based interpretation

In a phone-based interpretation, one examines the individual phone substitutions that occurred in the words
which were selected during alignment and use them to generate a new lexicon. This method has the same
generalization benefit as the rule-based approach. With the additional information about the phonetic

environment, however, the application of transformation rules can be restricted based on context.
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l.r—i 9.2 —>0n 17 m - mu  25. v — vu 33. k = ku 41. f — fu
2.r—1 10. el > el 18. 7z — zu 26. & — &i 34. p = pu 42. br = »
3.1—>r 11.t 2 to  19.j—1i 27. 8 — su 35. 9 > ngu 43. 6 — 6u
4.9 = » 12. v—=b 20. dz = z 28. s = [ 36.d—> & 44. 51 — oi
5.0 =z 13.0 =0 21. d —» do 29. w > u 37. 5 —>n 45. wo — u
6.0 —1i 14. 6 — s 22. al —+ ai 30. ait =+ au 38. g — gu 46. w = o
7.2 —=p 15.A—D 23. f — i 31. [ = Ji 39.r—= 0 47. u — A
8.1—=1u 16. » > o 24. v —» u 32.ji =i 40. 3 > & 48. el — €i

Table 5.3: Top context-independent phone substitutions in alignment data

In the word-based approach I did not need to find the base-to-variant alignments because the forced
alignment result gives us precisely this information. When we replace the words in the aligned utterances with
their phonetic expansions, we have instances of both insertion and deletion in the empirical phone sequence,
and must re-establish the alignment at the phone level. Because the variant candidates were generated by
the phonological transformation rules, I knew which canonical phone sequences could potentially experience
a deletion. Of these, only two appeared with significant frequency in the training data: dz — z and ji
— 1. T elected to treat the sequences /dz/ and /ji/ as single units, allowing them to align to [z] and [i]
respectively to allow deletions. Specifically, all instances of syllable-final D Z and syllable-initial Y IY were
replaced with the symbols D_Z and Y_IY in both the canonical expansions and the empirical expansions.
Similarly, allowable insertions were represented by new symbols, so that there were effectively no insertions
or deletions. These expansions were then aligned using the NIST sclite scoring package (NIST, 2000). It

was necessary to resolve some alignment errors by hand:

Text: solar power is the key

Initial alignment: s ow 1 axr p aw axr IH **xx z DH ax k iy
s ow 1 axr p aw axr IY ZUW z *x ax k iy

Correct alignment: s ow 1 axr p aw axr IH z DH ax k iy

s ow 1 axr p aw axr IY ZUW Z ax k iy

These cases were rare, however, and easy to detect automatically; this example, Z_UW was listed among the
insertions, but because ) — /zu/ was not one of the original transformation rules, its appearance indicated

an alignment ambiguity.

A context-independent implementation of the phone transformations derived from these alignments would
expand the lexicon very quickly, as in implementation R2. Because the top rules in R2 were all context-
independent, applying the top three phone transformations found in the phone-level interpretation yields

essentially the same lexicon. The top context-independent phone transformations found in phone-level
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Number of substitutions Lexicon size

1 34645

2 47886

3 60275

4 92682

) 93047
10 186735

Table 5.4: Growth of the lexicon with the application of context-independent substitutions

analysis are given in Table 5.3. Table 5.4 shows how the lexicon size expands with the number of substitutions
applied.

I tested two lexicons generated using context-independent phone substitution probabilities.

P1 Only the most frequently occurring phone substitution was applied to the base lexicon to generate

the test lexicon

P2 The top two most frequently occurring phone substitutions were applied to the base lexicon to

generate the test lexicon

Context-dependent substitution frequencies were calculated for both three- and five-phone windows.
The most frequent context-dependent substitutions are given in Tables 5.5 and 5.6. The influence of word
frequency is obvious when looking at substitutions given the broader context. The first five can clearly be
attributed to occurrence of “the,” “fifty/fifteen,” “were,” “with,” and “dollars.” This is not necessarily a bad
thing, as better modeling of frequent words would be expected to have a greater effect than better modeling
of rare words. It is only mentioned so that the bias is understood.

Two applications of context-dependent phone-level substitution were implemented.

P3 Phone substitutions that occurred more than seven times in the context of a given 3-phone window

were applied to generate the test lexicon

P4 Phone substitutions that occurred more than once in the context of a given 5-phone window were

applied to generate the test lexicon

In the 5-phone window case, the pruning was not necessary to limit lexicon size, but was applied for
smoothing purposes.
Implementations P3 and P4 estimate probability of a phone substitution in context based on frequency.

A contrasting implementation for the wider context used decision tree learning of phone substitutions.
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l.i—=i/l_y 9.1—-i/k__ 1y 17.j =i/ # _u 25.1—>i/w_n
2.1—>i/r_s 100o—»p/m_n 18 ji—si/#_r 261—-i/w_20
3.1—=i/r_uz .=/t _# 19 1=r/p_ 2o 27, 1—i/s_k
4 r—=v/w__# 12.1—-i/w_90 200v—ovu/o_# 28.0—>1n/z_n
5.1-r/# _ & 13.0—>s/# _r 2l.r—=1/¢e__1i 2. 2 >0/ # _n
6.m—mu/al_# 14 z—-zu/o_# 22.1—>r/1_1i 30.r =1/ # _1i
T.1—i/d_s 15.1=>r/a__1i 2. &> /p_t 3L.O6—s/#__ati

8. z—zu/1__# 16.v—b/# __ai 24 1—=i/[_p 32.dz—z/n__#

Table 5.5: Most frequent substitutions conditioned on a 3-phone window

l.o—n/#0_## 9.1—1/#s__ks 18.d —wdo /en __ ## 26.1—1/ ## __t#
211/ #_ft 10. 1 =1/ #[ _ p# 19. 1> 1/ tr _ p# 27. v = 1 [ o _ ##
.o/ H#w_## 12.jioi )/ H#H# _12 20. 11/ #b _ g 28.8 vz /| wi__ ##
4. 1—=1/#w_ 0# 13. 9 = p /auz _ nd 21. 8 = z | ## __ i# 20.1 >/ wi__ ##
5.1—=r/do _ oz 14. &2 —-p /op _ tr 22.0 s/ ## _auz  30. 11/ #w__1#
6.1l —r /ri_ i 15.vovu/#o__## 23.0—=v/## _v#  3l.i—i/## _ n#
7. 1= lu/wr_ ## 16. 0o = o / #k _ nt 24. 1> 1 ) #3__s# 32.0 =z | #4# _ o#
8.z—uu/#1_#H# 17.1—>1/#w _ o# 25. 1> 1) #HH# _ 2# 11. v - b / #4# __ aib

Table 5.6: Most frequent substitutions conditioned on a 5-phone window
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P5 Phone substitutions were predicted with a decision tree trained on transformations observed in a

5-phone window of context.

The publicly available C4.5 package (Quinlan, 1993) was also used to learn likely transformations. C4.5
requires two input sources: a specification of attributes that should be considered in making a decision about
the transformation, and a set of training data that provides the values for those attributes and the correct
class for a series of training examples. In my application of C4.5, I allowed five attributes: the canonical
identity of the phone whose surface form is to be predicted, and the canonical identities of the two preceding
and two following phones. I chose to learn transformations on a word-by-word basis; although the identities
of the phones in preceding and following words were available, I did not use them for predicting the surface
form of the phone. There were two reasons for this decision. First, as was discussed in Chapter 3, inter-
word pauses are twice as frequent in the non-native speech database as in the native speech database (see
Table 3.7), and cross-word coarticulatory effects are not strong. Speakers tend to pronounce words one by
one, as they have learned them. Second, when we are building the new pronunciation networks from the
baseline lexicon, we have no cross-word context to work with. One can only make predictions based on the
phones that make up each word. There would be no reason to use attributes for decision tree growing that
we know will not be available for classification. C4.5 does allow a wild card value for attributes, which could
be used at word boundaries; I elected to specify a boundary phone value instead, so that word-initial and
word-final effects could be considered.

For each word in the training data, then, there were as many training examples provided as phones in
the canonical pronunciation. In order to simplify estimation of deletion, phone sequences that could undergo
simplifying elision were represented as a single symbol, as described earlier in this section. For the word
“abroad,” with the canonical form [obrod] and an empirical realization of [abulod], the training data was

specified as follows.

Two preceding phones | Canonical form | Two following phones | Surface realization

<s> <s> 9 b T D
<s> 9 b T b} bu
9 b T 0 d 1

b r d <s>
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5.2.4 Experiment 9:

Linguistically-motivated lexical modeling

Introduction
The preceding section described a number of methods for augmenting the pronunciation networks. In this
experiment, I test recognition with all eight methods to see if any result in an improvement in recognizer

performance.

Data

In these experiments, the test data remains fixed, as for previous experiments, to the proficiency-controlled
test set NN-E-R, while the pronunciation lexicon is varied. The eight test lexicons described so far in this

section are summarized below.

W1 Variants that represented more than 20% of occurrences of the base word in the alignment data were

selected for the test lexicon
‘W2 Variants that occurred more than twice in the alignments were selected for the test lexicon

R1 Rules that applied more than 500 times were applied to the baseline test lexicon to generate new variants

for testing

P1 Only the most frequently occurring phone substitution was applied to the base lexicon to generate the

test lexicon

P2 The top two most frequently occurring phone substitutions were applied to the base lexicon to generate

the test lexicon

P3 Phone substitutions that occurred more than seven times in the context of a given 3-phone window were

applied to generate the test lexicon

P4 Phone substitutions that occurred more than once in the context of a given 5-phone window were applied

to generate the test lexicon

P5 Phone substitutions were predicted with a decision tree trained on transformations observed in a 5-phone

window of context.

Method
Applications of all eight methods were tested through acoustic rescoring of the word lattice created for each
utterance during initial decoding. One of the disadvantages of lexical modeling is that adding pronunciation

variants to the lexicon increases confusability in the search. Lattice adaptation is a technique which uses
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SERBIAN
HELD STUDY
OF GOMA
ReRE < A ‘ ND@
SHELLED aTY N

SERBIAN
HELD STUDY
OF = GOMA
REBEL A CINDY
SHELLED oty
aTyin IN

CITY/2

Figure 5.1: Lattice segment for the text “THE REBEL HELD CITY OF GOMA” before (top) and after (bottom)

adding pronunciation variants for the word “CITY”

a word transition lattice to constrain the search space before pronunciation variants are added. The new
lattice is then rescored at the acoustic level. For this data, it was determined experimentally that adding
new links results in better performance than replacing links.

Figure 5.1 shows a segment of a lattice before and after incorporation of pronunciation variants for the
word “city.” For each link bound to the word “city” (standard GA form [sici]), links for the two pronunciation

variants CITY /1 [siti] and CITY/2 [[iti] are added.

Speaker adaptation

MLLR adaptation based on 50 adaptation utterances was applied for each speaker. All lexical adaptation
methods were tested with and without allowing the new pronunciations for acoustic adaptation. It might be
thought that allowing the new pronunciations would always result in better adaptation; if a new pronunciation
is found to be the best acoustic match before adaptation, it might make the most sense to adapt the phones
specified in its path to the acoustic adaptation data than the phones specified in the canonical path for
an even better acoustic match. On the other hand, allowing the new pronunciations might be viewed as
counterproductive to adaptation; yes, the new phone sequence might be a better initial match, but the point
of adaptation is to learn an individual speaker’s preferred realization of the phone he is trying to pronounce,
which is most likely the canonical phone. If adaptation examples are siphoned off to update a different
phone, the true target model does not learn the idiosyncratic realization as well, and the alternate model
may be confused by the adaptation example if it is not consistent with other examples for which it is the

true base model.

Results
I did not observe any statistically significant (p < .01, 2-tailed t-test) changes from applying any of the eight
methods described above to generate alternate lexicons. Table 5.7 gives recognizer performance for each

case.
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WER % of test words | Variants
Lexicon baseline adapt | lexmod adapt Lexicon size with new variant | per word
baseline 45.1 45.1 26110 N/A 1.17
W1 45.5 46.1 27180 14.9 1.19
W2 46.8 46.6 26229 9.2 1.19
R1 46.8 47.1 60244 48.8 2.40
P1 45.9 47.0 34628 20.0 1.55
P2 45.9 46.6 47862 37.7 2.03
P3 46.4 46.9 31595 18.6 1.46
P4 44.9 45.1 31152 20.5 1.53
P5 45.6 46.0 31200 12.0 1.28

Table 5.7: Lexicon statistics and recognizer performance for rule-based lexical modeling. Separate WER figures
are given for decoding with new pronunciations allowed (lexmod adapt) and excluded (baseline adapt) in speaker

adaptation

5.3 Data-driven modeling

Although linguistically-motivated lexical modeling is attractive from a theoretical point of view, and is the
only option when adapting to a new speaker group for which no acoustic adaptation data is yet available,
it assumes a model of human speech that may conflict with what is meaningful for the recognizer. The
recognizer does not yet have the sophisticated ability of a human to perceive sounds in the context of syntax
and semantics and a myriad of sociolinguistic factors. It is not completely inferior, however; its model of
how sounds map to phonetic units is complex, identifying 118 distinct realizations of /t/, for example, where
a linguist might only recognize five or six.

In this section I describe experiments in data-driven lexical modeling. In data-driven modeling, the
recognizer is involved from the start, telling us which phones it perceives when presented with an acoustic

stream.

5.3.1 Initial mappings

In Section 5.2, T obtained initial phone mapping candidates via an analysis of Japanese and Japanese-accented
English. In this section, I will describe how similar mappings were obtained using phoneme recognition.
An initial phoneme recognition pass was done using context-dependent acoustic models, a uniform phone
language model, and a phone lexicon. Phoneme recognition error was 67.2% for the non-native test speakers.
Segmental alignment of the phone recognition hypotheses to the phone expansions of the reference text
yielded a list of frequent substitution, insertion, and deletion errors. The ten most frequent of each type of

error is given in Table 5.8.
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Substitutions | Insertions Deletions
S >z ¢ — SIL o— 0
n—uy h—t n—(
T 0 —d t—0
t—d 0 —p r— 0
t—=p 0 —n T 0
o —u 0 —i 1= 0
i—1 0 — o d—0
T 1?2 0 —r e —0
o — ¢ 0 —z m —

t — SIL () — garbage |k — 0

Table 5.8: Most frequent substitution, insertion, and deletion errors as found by aligning phone recognition hypothe-

ses to phone expansion of reference text

Although we now have what seems to be a plausible list of substitutions, insertions, and deletions, using
it to predict errors that will be seen in individual lexical items is tricky. For example, in the utterance
fragment “American kids spend more time...,” there are a number of deletion errors that are not obviously

attributable to phonological effects.

A framewise alignment of the type discussed in Section 4.3.1 would provide us with a straightforward
mapping, but it is not clear that this mapping is what one would want for lexical modeling. Rules like o —
3/ # _manddmdo — 0 /n _ 13 cannot be said arise from anything other than poor acoustic modeling
(listening to the acoustic data confirms that these phonemes are indeed articulated), and it is not the role
of lexical modeling to compensate for such inadequacy. Rather, I focused on substitutions that could be
ascribed to some sort of phonological interference.

I elected to use these initial segmental mappings to bootstrap an underspecified alignment pass. Under-
specified alignment is described in detail in Section 4.3.1. With this method, we allow the system to find the
best match among a list of plausible substitutions (including insertions and deletions) that were detected
during phoneme recognition, while enforcing structure on the alignment in the form of the approximate

number of phones that are to be identified. Features of plausible substitutions were defined as follows.

1. Having the same or a similar place or manner of articulation as the canonical phone

2The TSL-BN recognizer treats stressed and unstressed /1/ as separate phonemes.
31t should be noted that this is an extreme example illustrating the problem of deletion errors. Insertion and deletion errors

were in general well balanced in this data.
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2. Representing deletion in the initial phone sequence that creates an open syllable

3. Representing insertion in the initial phone sequence that creates an open syllable

4. Sharing at least one vowel feature with the canonical phone (both high vowels, for example)
5. Representing decomposition or monophthongal realization of a diphthong

6. Having a possible mapping to the same Japanese orthographic symbol as the canonical phone

If none of these features were present, the substitution was not allowed. Underspecified alignment generates
a new surface phone sequence for which a mapping to the canonical form is easily derived. With this
mapping, we can duplicate experiments carried out for linguistically-motivated modeling to understand

which approach, if either, leads to an improvement in recognizer performance.

5.3.2 Experiment 10:

Data-driven lexical modeling

Introduction
Testing for data-driven lexical modeling closely paralleled that of rule-based modeling. The purpose of
this experiment was to determine whether data-driven modeling results in an improvement in recognizer

performance where linguistically-motivated modeling does not.

Data

In these experiments, the test data remains fixed, as for previous experiments, to the proficiency-controlled
test set NN-E-R, while the pronunciation lexicon is varied. The eight test lexicons described so far in this
section are summarized below.

Lexicons associating different probabilities with substitutions were defined as follows.

D1 The top two most frequent context-independent substitutions were applied to generate the test

lexicon

D2 The top three most frequent context-independent substitutions were applied to generate the test

lexicon

D3 Phone substitutions that occurred more than seven times in the context of a given 3-phone window

were applied to generate the test lexicon

D4 Phone substitutions that occurred more than once in the context of a given 5-phone window were

applied to generate the test lexicon




114 CHAPTER 5. LEXICAL MODELING

WER % of test words | Variants
Lexicon baseline adapt | lexmod adapt Lexicon size with new variant | per word
baseline 45.1 N/A 26110 N/A 1.17
D1 44.9 45.0 37436 26.7 1.57
D2 45.5 45.0 51847 42.7 2.16
D3 45.2 45.5 58267 58.7 2.57
D4 45.8 45.6 45108 52.6 2.19

Table 5.9: Lexicon statistics and recognizer performance for data-driven lexical modeling. Separate WER figures
are given for decoding with new pronunciations allowed (lexmod adapt) and excluded (baseline adapt) in speaker

adaptation

As with the linguistically-motivated experiments, new pronunciation paths were added via lattice adaptation,

and MLLR adaptation was applied both allowing and excluding the new pronunciations.

Method
The testing method was the same as that described in Section 5.2.4. A word lattice was generated during
an initial decoding pass using the baseline lexicon; pronunciation variants were added to the lattice and an

acoustic rescoring pass was run to generate the final hypothesis.

Results

Recognizer performance with data-driven lexical modeling is summarized in Table 5.9. As with the
linguistically-motivated lexical modeling, there is no significant difference in recognition accuracy for any of

the new lexicons.

5.4 Conclusions from lexical modeling experiments

This investigation of lexical modeling for low-proficiency Japanese speakers of English has not found that any
of a number of approaches contributes significantly to improved recognizer performance. I now examine why
this is the case, first considering in more detail the lexical modeling approaches mentioned in Section 5.1.
Amdall et al. (2000) report an improvement from 29.2% WER to 28.3% for Wall Street Journal (LDC,
1994a) using a data-driven lexical modeling approach. This represents a 3% absolute improvement. Our
generation of lexicion D3 is similar to the method they describe. Both approaches use unrestricted phone
recognition to obtain initial context-dependent phone mappings. Confusability constraints are then enforced,
in the form of phonotactic constraints in our case and restriction to the single most probable phone substitu-
tion in a given triphone context in their system. A phone substitution candidate derived this way is called,

in their terminology, a “rule.” T will borrow their usage in this comparison; this usage should not be confused
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with the phone substitution rules operating on phone class abstractions and variable-length contexts used to
generate lexicon R1. Rule firing frequency constraints are applied in both Amdall’s method and mine; rules
occurring in the training data fewer than 6 and 7 times respectively are not considered in testing. The test
set (WSJ) is read news, just as mine is. The primary differences, then, are my use of maximum likelihood
instead of log-likelihood in calculating substitution probabilities, and the higher overall proficiency of the
speakers.

Livescu and Glass (2000) report an improvement from 20.9% to 18.8% for the JUPITER weather query
system. This represents a 10% relative improvement. The JUPITER task is quite different from ours: it is
a spontaneous task but highly restricted in domain (lexicon size 2000 compared to 26000 for our task); no
attempt is made to control or estimate the proficiency of speakers; and the goal, as in Amdall’s system, is to
adapt to non-native speech in general as opposed to one speaker group in particular. It is difficult to compare
our implementations directly, as JUPITER uses a FST-based decoder and encodes pronunciation variants in
the form of a phoneme confusion FST that is composed with the existing acoustic, lexical, and language
FSTs, but Livescu and Glass’s generation of phone substitution candidates is similar to our methods D1 and
D2. They first obtain initial context-independent phone confusions by aligning reference transcripts with
underspecified alignment output, allowing variable-length substitutions. This confusion matrix is represented
as an FST, which can be pruned to optimize recognition accuracy; Livescu and Glass found, however, that
the best performance came with no pruning. This last result is the most striking difference between our
experiences. They found that the lexicon size was increased to only 1.5 times its original size from adding
all confusions discovered through an underspecified alignment based confusion estimation method almost
identical to ours; our lexicon size expanded to 36 times its original size. This may be because their speakers
showed less variation in pronunciation; it could also be that their inital acoustic models were more tolerant
of deviant pronunciations. The specific vocabulary may play a role as well; if the words used in the weather
query task are mostly common and familiar words, the speakers may be able to pronounce them more
successfully than in the read news tasks.

Fung and Liu (1999) report an improvement from 30.8% to 26.7%, for the undescribed “HKTIMIT”
recognition task. Fung and Liu use a purely knowledge-based approach, working with linguists to identify
sounds that do not occur in Cantonese and probable substitutes from the English phone set. This method
parallels our linguistically-motivated variant generation process. A total of 43 transformation rules are
identified in our system, compared to 28 in Fung and Liu’s, but it may be the case that Fung and Liu use
context-independent rules, in which case each rule would apply to more instances in the lexicon. Fung and
Liu see their lexicon size double with the application of their rules; they therefore require no pruning to
maintain a manageable lexicon size and confusability level. We do not know, however, exactly how the rules
are applied; if the realization estimated to be the most probable for each word is simply added to the lexicon,
a doubling in size of the lexicon is to be expected. Our lexicon grows as quickly as it does because alternate

links are added to the word pronunciation networks for each possible substitution; pruning of this network
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to identify the likely paths through the entire network based on training data is an integral part of our
method. Because we do not know the specifics of the HKTIMIT task, it is difficult to compare our results
directly, but the original TIMIT task (LDC, 1994b) is a read speech task covering 2342 unique phonetically-
engineered sentences. The lexicon size is 6100. Although there was no formal or informal evaluation of
speaker proficiency, because the speakers were all college students in a bilingual environment one can assume
that their exposure to English is fairly extensive. In fact, one of the motivations of Fung and Liu’s work is
that code-switching is frequent among students at the university, and an ASR system deployed there will
need to be able to handle both Cantonese and Cantonese-accented English.

Humphries and Woodland (1998) successfully used lexical modeling of accent variation in WSJ to recog-
nize American-accented speech with a British recognizer. They report an improvement of 21.3% to 18.6%,
a relative gain of 13%. (This is their result after speaker adaptation; they share our observation that pro-
nunciation modeling is more effective with unadapted, or lower-quality, acoustic models.) As in our method,
they begin with an unrestricted phone recognition pass, aligning the results to the reference transcript to
generate phoneme confusions in context. Rather than run an additional plausibility-constraining pass, as
was done by Amdall and by Livescu as well as in our system, Humphries moves directly to a decision tree
clustering phase. This approach most closely resembles our method D4, in which we found the most likely
substitution using decision tree clustering after enforcing plausibility constraints on the initial phoneme
confusion matrix via underspecified alignment. We did not work with decision trees in data-driven lexical
modeling because results from linguistically-motivated modeling indicated that decision-tree-based pruning
did not produce significantly different results from maximum-likelihood-based pruning. We also used the
C4.5 algorithm (Quinlan, 1993), where Humphries and Woodland used the CART algorithm (Brieman et
al., 1984).

It is my interpretation, based on these observations and experience with phonetic transcription of the
CND data, that the speakers in the present study are at a phase in their development of spoken English in
which deviations from standard English pronunciation are very complex. As they build their articulatory
skills, they are inconsistent in phonetic realization where speakers with more experience, however heavily
accented, have developed idiosyncratic articulatory habits. Training and adaptation, which model speech at
a fine sub-segmental level, are more appropriate than even context-sensitive segmental modeling. With this
in mind, it is probably not insignificant that the speakers have all been in the United States for only a short
time after having extensive formal study of English. It would not be unreasonable to think that their spoken
English is undergoing complex changes as they are suddenly exposed to many new varieties of English, and
work to transfer an academic knowledge of the language to a physiological competence. The success of lexical
modeling for native speech would support this hypothesis, as native speakers are more consistent in their
phonetic realizations of words than non-native learners are.

Another factor that may play a role in the effectiveness of lexical modeling is recognition task. Although

experiments with recognition of spontaneous speech for my speakers clearly indicate that spontaneous speech
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is a harder problem for LVCSR, it may be better suited for lexical modeling. In read speech such as that in
my task and in Amdall’s, the speakers cannot choose the words they speak. They cannot avoid words that
are difficult to pronounce, and may struggle with words that are new to them. In query-based tasks such
as Livescu and Glass’s JUPITER weather query system, speakers approach the system with something they
want to know, and can rely on words and fixed phrases that are familiar to them. Read speech, while only

)

mildly affected by a speaker’s command of syntax and semantics of the language and as such “easier,” may

not be a strong candidate for either rule-based or data-driven modeling at the lexical level.






Chapter 6

Hypothesis-Driven Accent

Classification

In order to take advantage of the techniques for modeling non-native speech described in previous chapters,
the system must know that the speaker is non-native. A nativeness decision can be either binary, classifying
the speech sample as native or not, or multilateral, associating the speech sample with a specific native
language or language group. In this chapter, I demonstrate that 1) high-accuracy nativeness classification
can be implemented and 2) it improves overall system performance significantly, as measured by the matched-

pairs test discussed in Section 4.2.

6.1 Problem Description

There are many features distinguishing native and non-native speech, as has been discussed in Chapter 3.
The key decisions in designing a classifier are which of those features to use and what classification algorithm
will make best use of the selected features in the data that is available. These are not independent decisions.
For example, the first formant frequency (F1) of specific phonemes in context may allow very accurate
discrimination, but if those contexts do not appear frequently in the training data, it may be impossible to
build a robust model to classify them. Decision tree learning may be theoretically possible given the amount
of data available, but if the target function does not have discrete output values, specifying the splitting
questions may be difficult.

Another consideration in designing a classifier for speech recognition is the recognizer itself. The most
accurate classification may not result in the best recognizer performance. It might be best to treat the most
proficient non-native speakers as native speakers for the purposes of acoustic model selection. Proficiency
may also not be well correlated with recognition accuracy; the best overall system performance may be

achieved by classifying some of the less proficient speakers as native.

119
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In formulating the accent classification problem, I concentrated on finding properties of non-native speech
that can be easily and reliably extracted and that give a meaningful result for speech recognition. These
criteria led to the development of a hypothesis-driven approach, using naive Bayes classification for both
binary and multilateral discrimination.

This chapter is structured as follows. In Section 6.2 the principles behind hypothesis-driven classification
are described. Section 6.3 provides an overview of Bayesian classification. The software package used
for classification experiments is also described here. Experimental design and results, including end-to-end
system results with classification-based model switching, are presented in Section 6.4. Finally, a discussion of

the discriminative features in this formulation of the accent classification problem is presented in Section 6.5.

6.2 Hypothesis-driven Classification

This approach to accent classification, or more properly L1 classification, bases the classification decision on
recognizer hypotheses of what was said. The hypothesis can be either a word hypothesis, generated using a
word-based lexicon and language model, or a phone hypothesis, generated using a lexicon made up only of
phones and optionally a language model (effectively a phonotactic model).

Determining the nativeness of the speaker is framed as a document classification problem. For each
training speaker (native and non-native), a set of training utterances is defined and recognizer hypotheses
are generated. This data set is not unlike a set of articles, each written by a different writer, originating
from two different publications. If differences in the individual preferences of writers are overshadowed by
differences in the stylistic themes of their publications, it is possible to categorize documents according to
source using statistical algorithms, as was shown in (Argamon-Engelson et al., 1998). I extend this idea to
nativeness classification, asking a classifier to decide whether a set of utterances is representative of native
speech based on a training corpus of native and non-native speech “documents.”

There are two important advantages in formulating the problem this way. First, one may build on a large
body of research in machine learning and document classification. My choice of naive Bayes classification
is based on consistently strong performance in document classification tasks (Lewis, 1998) and favorable
comparison to other classification techniques when class distributions are not radically skewed (Yang and
Liu, 1999).

Second, by using the recognition hypothesis instead of acoustic features, one takes the behavior of the
recognizer into account without relying on an acoustic score whose interpretation may not be straightforward.
Other resources that have been successfully used in accent discrimination include acoustic features, such as
FO (Fung and Liu, 1999), and score from a set of competing L1-specific acoustic models (Teixeira et al.,
1996). Using competing acoustic models requires building the models, which is expensive in terms of both
computation and data; a more troublesome issue with this approach, however, is that a Viterbi score from an

HMM built from one set of data is not necessarily comparable to a score from an HMM built from another
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set of data. Acoustic features, while very discriminative, may not capture the most meaningful distinctions
from the point of view of the recognizer. If the goal of the classification is solely to determine whether
a speaker is native or non-native, acoustic features may offer the best basis for discrimination. I assume,
however, that the nativeness classification will be used to trigger specialized modeling, and that a native
recognizer may respond better to some non-native speakers than a non-native model will. In these cases,
implicit modeling of recognizer behavior in the classification engine may lead to more appropriate, although
not necessarily more strictly accurate, classification.

The question of appropriate versus accurate classification is largely moot given the target population, as
non-native acoustic models performed better than native models on all target speakers. However, it may
become more important as the proficiency range of LVCSR system users broadens.

A further advantage of hypothesis-based classification is that the recognizer itself may be treated as a
black box. This permits the algorithm to be implemented without access to the internal workings of the
recognizer, an option which may be attractive to users of commercial software packages or researchers in

other areas of NLP who are not interested in manipulating recognizer components.

6.3 Bayesian Classification

Bayesian classification is well suited to the task of L1 categorization for several reasons. Bayesian learning
methods support probabilistic hypotheses, which allow a nativeness threshold to be set or the result to be
incorporated with other sources of information. Bayesian classification incorporates the marginal probability
of the class, so knowledge of the distribution of speakers likely to use the system can help to improve
classification accuracy. Bayesian models also handle conflicting examples gracefully, and are not as vulnerable

to data sparsity problems as methods like decision tree learning that iteratively partition training data.

6.3.1 Bayes decision theory

The objective in Bayes decision theory is to minimize the probability of decision error. For example, if there
are two possible outcomes w; and wj, and it is known that w; occurs three-quarters of the time and w; occurs
one quarter of the time, always guessing w; will result in the lowest decision error rate. The policy of always

guessing w; is called a decision rule and can be stated as:

Decide w; if P(w;) > P(wj); otherwise decide w;. (6.1)

If information beyond the basic occurrence probabilities is available, that information can be incorporated
in the decision rule. For example, if w; represents warm weather and w; represents cold weather, the a priori
probability of warm weather may be higher, but if it is snowing out, one can guess that the weather is

probably cold. If x represents snow falling, we can amend the decision rule to be:
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Decide w; if P(w;|x) > P(w;|x); otherwise decide w;. (6.2)

In order to minimize decision error, Bayes decision theory calls for selecting the course of action that

results in the smallest expected loss, or risk. Each possible course of action «; is associated with a risk R:
c
R(oilx) = Mai|w;) P(w;]x)
j=1

where A(ajlw;) is the loss associated with choosing course of action a;. Specifically, Bayes decision theory
prescribes selection of the state w that that maximizes the a posteriori probability P(w;|x), a course of

action that will minimize the risk R.

6.3.2 Naive Bayes classification

In classification problems, the states w; are classes and the feature vectors x are properties of the data,
for example, word distributions in text classification tasks. A Bayes classifier uses Bayes decision rule to
determine which class the present data belongs to. Restating Rule 6.2 in terms of classes ¢; and utterances

u gives

Decide ¢; if P(c;ju) > P(cj|u); otherwise decide c¢; (6.3)

or more generally

Decide ¢; if P(c;|u) > P(cg|u) for all k # i (6.4)

Although we probably do not know the conditional probabilities P(c|u), we can calculate them using Bayes

rule.

P(ulei)(P(ci)

P(ciju) = P ()

(6.5)

Because the probabilities of the utterances are constant across classes, Equation 6.5 can be simplified as

Pleslu) = P(ule))(P(c;) (6.6)

The task of the classifier, then, is to assign an utterance to a class ¢ such that

¢ = argmax P(c¢;|u)
= argmax P(c¢;)P(ulc;) (6.7)

Ci
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Expanding the notion of a set of utterances u to a set of word attributes a; (indicating presence or

absence of a word, perhaps, or word counts), we have the following.

¢ = argmax P(c¢;)P(a1,az2 - ap|c;) (6.8)

Ci

A naive Bayes classifier is a special kind of Bayes classifier. The naive Bayes assumption is that the
attributes used for description are all conditionally independent (Manning and Schiitze, 1999). If a feature
vector u, which represents an utterance, is thought of as a set of individual word features, the naive Bayes
assumption says that their occurrences are independent. This is, of course, not strictly true; grammatical
constraints and lexical relationships certainly influence the presence and order of words. However, the
assumption simplifies the model, and the decision made can still be optimal (Domingos and Pazzani, 1997),
approaching the performance of neural network and decision tree learning models (Mitchell, 1997). Applying

the naive Bayes assumption brings us to

¢ = argmax P(¢;) H P(ajlc;) (6.9)
c;,eC j

where the ¢;s are classes that are members of a class set C' and the a;s are word-level attributes.

6.4 Experiments

In this section, I describe the design of a hypothesis-driven Naive Bayes classifier and the methodology used
to evaluate it. I compare classification based on hypotheses and transcriptions, on read and spontaneous
speech, on words and phonemes, on words and parts of speech, and on phonemes and phone classes. I
find that not only is L1 classification based on recognizer hypotheses possible, it is more accurate than
classification based on manual transcriptions of native and non-native speech.

Three experiments in accent classification are described in this section: word-based binary classification
of the speakers in test sets N-E-R and NN-E-R as native or non-native; word-based binary and multilateral
classification of native English, Japanese, and Chinese speakers; and phone-based binary classification of the
speakers in test sets N-E-R and NN-E-R. Because the general methodology and materials are the same for
all three experiments, they are discussed here; text data and individual experimental results are described

in discussions of each experiment.

6.4.1 General methodology

In order to frame accent detection as a document classification problem, files containing utterance text are
created for each speaker. The utterance text can be transcriptions of utterances or recognizer hypotheses

(word-level or phone-level).
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Classification of both read and spontaneous speech was evaluated. For spontaneous speech experiments,
data sets N-A-S, NN-A-S, and C-A-S were used. Read speech experiments examined classification on data
sets N-E-R and NN-E-R. Each speaker in this data set reads 3 articles, one of which was common to all
speakers, as described in Sections 3.1.2 and 3.4. Four train/test conditions were evaluated in read speech

experiments:

A Train and test on shared article
B Train and test on disjoint articles
C Train on disjoint articles; test on shared article

D Train on shared articles; test on disjoint article

For conditions A and B, leave-one-out training and testing was done in order to maximize the size of
the training set. That is, for each speaker in the combined N-E-R and NN-E-R sets, a classification model
was trained on all the other speakers to discriminate between native and non-native documents. Accuracy
of that model was then tested on the held out speaker. Overall classification accuracy was calculated by
averaging accuracy for all leave-one-out tests.

For conditions C and D, there was no need for leave-one-out testing as training and testing were done on
separate data sets.

The baseline accuracy to which classification accuracy should be compared is calculated by dividing the
number of test speakers in the most common training class by the total number of test speakers. This is
the accuracy that would be achieved by a model that always guesses the most common class found during
training. For example, in the N-E-R and NN-E-R sets there are 8 native and 10 non-native speakers. Always
guessing “non-native” would yield a baseline accuracy of 56% (10/18). Baseline accuracies are listed for each

experiment.

6.4.2 Materials

To carry out the experiments described in this section, I made use of publicly available classification and
part-of-speech software packages. These are described here, along with the configuration of the recognizer

that was used for the classification experiments.

Text classification

The Rainbow statistical text classification package (McCallum, 1996) was used for all classification exper-

iments. Rainbow implements a naive Bayes classifier for text, with a number of features specialized for
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text applications. In running Rainbow, no feature selection' was used. Token unigrams, bigrams, and in
some cases trigrams were treated as independently occurring features. Punctuation and capitalization were
removed from the transcriptions to make them consistent with the hypotheses.

Preliminary experiments showed that words commonly considered stopwords, such as function words,
contributed significantly to discrimination. Therefore, in all of the experiments described in this chapter, no
list of stopwords to exclude was defined.

Because the data set was relatively small, the training and test sets were defined by a random partitioning
of the full data set into 70% training and 30% testing. This random partitioning was repeated 20 times and
classification accuracy was averaged over the 20 trials for each experiment. The full data set for each

experiment consisted of exactly one “document” from each of the speakers.

Recognizer

The recognizer used to generate the hypotheses was the ISL-BN system described in Section 4.1. Baseline
WER on native speech was 18.0% in the CND read news task and 63.1% on non-native speech. The choice to
use a system that performs poorly on non-native speech was motivated by the expectation that a nativeness
classification will be used to trigger specialized non-native modeling, and that the initial processing will be

done with the standard native acoustic models.

Part-of-speech tagging

In some of the experiments that will be described, words in the utterance sets were replaced by their parts of
speech using the publicly available MXPOST toolkit (Ratnaparkhi, 1996). MXPOST is a maximum entropy
tagger that achieves 96.6% accuracy on unseen Wall Street Journal articles. Because the data set evaluated
in (Ratnaparkhi, 1996) is similar to ours in both content and genre, I assume that tagging accuracy on the

CND database is similarly high.

Read and spontaneous speech

For this thesis, both read and spontaneous speech were collected from the non-native speakers, and both were
used in the investigation of L1 classification. Upon first consideration, it may be thought that spontaneous
speech is easier to classify than read speech because the differences in word choice contribute to the decision.?
However, the ultimate goal is to use recognizer hypotheses for classification, and recognition errors introduce

noise that may diminish this effect somewhat. I wished to both establish whether spontaneous speech can

Mn discussions of text classification, the term feature selection refers to limiting the vocabulary used for classification.
Common feature selection techniques include using only content words and using only words that appear with high frequency.

Feature selection typically improves classifier performance, so results may have been even higher with judicious feature selection.
2 Although, as noted in Section 6.3.2, I am effectively ignoring word order and syntax in my classification model, the presence

and frequency of individual words and n-grams strongly influences the classification decision, as will be discussed in following

sections.
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indeed be classified with greater accuracy than read speech can and analyze the differences in the word
features that contribute most to L1 classification of these two types of speech.

A second reason for electing to study classification of both read and spontaneous speech was that read
speech can be restricted in a way that allows one to control variables such as vocabulary, difficulty, and
content. By having speakers all read the same text, one can isolate the contribution of recognition error to
classification accuracy. One can also evaluate the classifier in ways that are not possible when the data is
spontaneous, by comparing training on a single article that is read by all speakers with training on a disjoint
set, of articles, for example.

Finally, a number of important speech recognition applications and tasks target speech that is read.
Language tutoring applications, in which speakers are often asked to read specific words and sentences, and
speaker-dependent enrollment, in which users must read aloud from text to allow the system to adapt to
their voice, are two examples. In these cases, a nativeness classifier would need to base its decision only on
differences in the way the speakers read the same pieces of text. Precisely this situation will be addressed in

the “train/test on a common article” evaluation.

Transcriptions and recognizer hypotheses

In order to understand the performance of hypothesis-driven classification, it is important to subject classi-
fication of manual transcriptions to the same evaluations. If classification of hypotheses is less accurate than
classification of transcriptions, one can predict that L1 classification will improve as recognition technology
develops. If recognition accuracy is very poor, it may also only be meaningful to evaluate classification on
transcriptions. If, on the other hand, classification of hypotheses is more accurate than classification of
transcriptions, we are given evidence of a synergistic relationship between the recognition and classification
processes.

A comparison of classification on hypotheses and transcriptions tells us more than just which is more
accurate. We also learn about the words and types of words that are important in detecting non-native
speech in these two data types. While the objective of integrating L1 classification in this thesis work is
to improve the overall performance of the recognition system, the same type of classification can be used
in text-based natural language processes such as language modeling and parsing. The value of a thorough
examination of L1 classification of both recognition hypotheses and transcripts, then, clearly extends beyond

the immediate context of speech recognition for low-proficiency non-native speakers.

6.4.3 Experiment 11:
Word-based classification of read speech
In word-based classification experiments, the features used as input to the classifier were word identities and

parts of speech. There are several reasons for looking at parts of speech as well as word identities. First, it

reduces the size of the feature set, allowing more robust modeling and handling of unseen words. Second, it
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allows one to make generalizations about the types of words that are important in discrimination. Third, it
compensates somewhat for recognition error. Finally, it increases the experimental validity of using unique

renditions of a single article, read by all speakers, for training and/or testing.

Data

In read speech experiments, data sets N-E-R and NN-E-R were used for training and testing in the four
configurations described in Section 6.4.1. The baseline classification accuracy of classification on this data
set is 56%), achieved by always guessing that the speaker is not native, the state with the highest a priori
probability (cf. Equation 6.1).

Each of the four experimental conditions reveals unique properties of the data and its classification
potential. When training and testing on the common article, a high classification accuracy shows that even
when the printed words were exactly the same, reading errors made by native and non-native speakers were
enough to identify them. When training and testing on unique articles, a high classification accuracy shows
that the classifier is extremely robust, and that patterns that mark non-native speech are independent of
the words and phrases in the text. High classification accuracy when the training articles are all the same
and test articles were all unique shows that the patterns found in non-native readings of one text are so
discriminative that they generalize to detect non-nativeness in a wide variety of texts. And high classification
accuracy when the training articles are all different and the test articles are all the same shows that non-
native speakers display consistent (found in all renditions of the test article) and text-independent (learned
from a set of disjoint articles) idiosyncrasies in reading.

Documents were created for each speaker consisting of either transcriptions of a reading of an article or
recognizer hypotheses of a reading of an article. For evaluating classification based on part of speech, the
words in the documents were replaced by their part of speech as assigned by MXPOST (Ratnaparkhi, 1996).

For this experiment, an additional document set was created to evaluate the hypothesis that a 21% vs.
58% WER is in and of itself detectable. In order to establish whether the classifier is modeling the way the
recognizer responds to non-native speech or simply the higher word error, I artificially raised the word error
rate of the native speech. This was accomplished by adding white noise to the signal until the word error

rate was close to that of the non-native speech (56%).

Results

Table 6.1 shows results of training and testing a naive Bayes classifier under the four conditions described
above. Classification accuracies are given for both transcriptions and recognizer hypotheses. The most
striking result is that classification of hypotheses is consistently more accurate than classification of tran-
scriptions. This is strongly counterintuitive, as the recognizer is generally viewed as a noisy channel that
would be expected to mask non-native patterns. Yet the effect is consistent and highly significant (p < .005)
as measured by a matched-pairs test.

Although the classification accuracy for the noise-added hypotheses decreases, it is still much higher than
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Condition word-identity | POS
train and test on common article (trans) 83% 74%
train and test on common article (rec) 94 100
train and test on common article (high-WER rec) 66 7
train and test on disjoint articles (trans) 41 40
train and test on disjoint articles (rec) 47 77
train on disjoint articles; test on common articles (trans) | 56 56
train on disjoint articles; test on common articles (rec) 96 95
train on common articles; test on disjoint articles (trans) | 56 56
train on common articles; test on disjoint articles (rec) 96 83

Table 6.1: Classification accuracy of read speech for two-way classification of Japanese and American English speakers

reading texts in English. Baseline is 56%.

the baseline, suggesting that there is something special about the recognition errors made on non-native
speech. The observation that classification in the non-noise-added case is based to some degree on features
of high-WER speech, as opposed to non-native speech, should not be thought of as indicating that such
classification is invalid. If a high word error rate is a feature of non-native speech, using it as a basis for
classification is not illegitimate. It only indicates that WER plays a significant role in discriminating between
recognizer output for native and non-native speakers.

Another important observation is that classification based on parts of speech outperforms classification
based on word identities in almost all cases. This is particularly true when disjoint articles are involved, a
condition under which word-identity classification never exceeds the baseline and is often considerably worse.
When training on a disjoint set of articles and testing on the common article, the classifier detects non-native
speech with 95% accuracy using parts of speech, compared to 56% (baseline) accuracy when using words.
This is evidence, as discussed above, that the same patterns that are found in all speakers’ renditions of the
common article are present in different speakers’ readings of disjoint articles. Under the same conditions,
however, the classifier performs no better than the baseline when the input is transcriptions instead of
recognizer output; differences in word distribution among the disjoint articles overshadow the non-native

effects in the transcriptions.

6.4.4 Experiment 12:
Word-based classification of spontaneous speech
This experiment examines classification of spontaneous speech. The recognition accuracy on the spontaneous

speech was so poor that classification of recognizer hypotheses was not evaluated. Recognition of spontaneous

speech has not been a focus of this thesis, and I did not optimize the recognizer for performance on this task.
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However, classification results on transcriptions are quite interesting, and are included here.

Data

The domain was tourist-domain queries; speakers were prompted in their native language to ask questions
of an agent about specific sights and events, as described in Section 3.1.2. For spontaneous classification
experiments, data from all speakers in sets N-A-S; NN-A-S, and C-A-S (6 English, 31 Japanese, and 6
Chinese natives) was used.

The proper names that appear in the queries are unique to each native speaker group, biasing classification
based on word identities. When recording, each speaker was given a scenario that included local sight and
event names, information such as ticket prices that should be obtained, and a general description of the
situation. The scenarios were changed after each 5 to 10 speakers. Scenarios were given to more than one
speaker so that multiple examples of non-native pronunciations of unfamiliar words would appear in the
data. Scenarios were changed regularly to maximize the phonetic breadth of the data. This balance is
appropriate for data collection for LVCSR, but was not the best for classification. Using part-of-speech tags
instead of word identities, therefore, was not just desirable for better classification but was necessary for a
fair evaluation. Because my concern about bias was limited to proper nouns, I performed a third type of
evaluation in which only nouns were replaced with their parts of speech. Examples of the word-identity,

part-of-speech, and noun-only part-of-speech documents are:

Document type Example sentence

word-identity What is the business hours of Tiffany

POS WP VBZ DT NN NNS IN NNP

POSNoun What is the NN NNS of NNP
Results

Table 6.2 shows results of L1 classification based on words in spontaneous speech. Classification accuracy is
shown for various combinations of the three speaker groups (native English, Japanese, and Chinese). Because
baseline classification accuracy is estimated by always choosing the most common class, and the number of
speakers in each class in the training and test data varies for the different configurations, baseline accuracy for
each configuration is specified in Table 6.2. For example, for a three-way native/japanese/chinese decision,
we had 31 Japanese, 6 native, and 6 Chinese speakers in the training set. The total training set size is 43
speakers. If the most common class is always guessed, the accuracy of the classifier will be 31/43, or .72.

Nearly all experimental classification accuracies are significantly higher than the corresponding baseline.

In most cases, the mixed word-POS (the POSNoun column in the table) data is most accurately classified.
For binary native/non-native decisions, classification was nearly perfect. Accuracy decreased somewhat for a
three-way decision; interestingly, it was also for this condition that replacing nouns with their part-of-speech
tags did not significantly improve classification accuracy.

These results may prompt one to ask why classification is most accurate with mixed word-POS data. It
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Classes baseline | word-identity | POS | POSNoun
Native/Japanese 83% 90% 84% | 97%
Native/Chinese 50 100 100 | 100
Native/Japanese/Chinese | 72 90 74 89
Native/Japanese/Chinese | 72 89 83 89 (n < 3)
Native/all non-native 72 87 76 96
Native/all non-native 72 96 90 98 (n < 3)
Japanese/Chinese 83 93 86 100
Japanese/Chinese 83 86 80 100 (n < 3)

Table 6.2: Classification accuracy of spontaneous speech. Baseline classification accuracies for the different conditions
are given in the table. Figures annotated with (n < 3) indicate that trigrams, and not just unigrams and bigrams,

were used for classification.

would not be unusual to expect that since the noun replacement was done to compensate for a bias in the data,
this configuration would result in accuracies somewhere between those of pure word and pure part-of-speech
based classification. The answer may be that the mixed condition provides just enough generalizability while
exploiting the discriminative power of specific non-noun word sequences. This intuition is supported by an
analysis of features important in classification; singular nouns are highly indicative of non-native speech,
while certain personal pronouns and associated verb forms such as “you” and “am” are indicative of native
speech. The former association would not be apparent if only word identities were used, and the latter would
be hidden if all words were replaced by their parts of speech. The actual word and part-of-speech sequences

that contributed most to discrimination will be discussed in detail in Section 6.5.

6.4.5 Experiment 13:

Phone-based classification of read speech

Phone-based classification experiments mirrored the word-based classification experiments for read speech.
Only hypotheses were evaluated because phone-level manual transcriptions of all the data were not available.
Whereas for word-based classification word identities were replaced with their parts of speech for a more
general model, for phone-based classification phone identities were replaced with the symbols C (for conso-
nants) and V (for vowels). Because the feature set in this latter case only had two members, the classifier

was permitted to consider sequences of length up to 5.

Data
In phone-based classification experiments, the features used as input to the classifier were phone identities

and classes (vowel or consonant). Phoneme hypotheses for data sets N-E-R and NN-E-R were generated by
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Condition | phone | phone class
A 100 86
B 92 80
C 88 71
D 76 82

Table 6.3: Classification accuracy of read speech. Baseline is 58%.

the ISL-BN recognizer that produced the word hypotheses, with the standard lexicon replaced by one in
which each phoneme was treated as an independent word, and the word language model replaced by a phone
trigram language model. This may not be the most accurate phoneme recognizer, but it did not require any

additional training of acoustic models® and was completely sufficient for the task, as will be evident.

Results
Results for phone-based classification are shown in Table 6.3. Accuracies of phone-identity classification are
higher than those for phone class (C/V) classification except when the training data was the common article
and the test data was disjoint articles. This suggests that a phone-based model built from multiple examples
of a limited set of phone contexts does not generalize well, although performance of that same model is
perfect on new renditions of the common article.

The biggest difference between word-based and phone-based classification is seen when training and
testing articles are all disjoint. With data like this, the best performance of word-based classification is 77%,

using part-of-speech tags. Classification of phone identities is much more accurate, at 92%.

6.4.6 Conclusions from classification experiments

The results in these experiments show that classification of recognizer hypotheses can be extremely accurate
for both binary and multilateral decisions. The test condition that is most likely to be of general interest for

application to speech recognition is condition B, in which all training and test articles are disjoint.

6.4.7 Accent-dependent recognition

The objective of L1 classification, of course, is to trigger a switch in the way speech is processed. For
native speakers, and possibly non-native speakers with certain characteristics, standard acoustic models,
language models, and lexicon would be used. If the speaker is found to be non-native, specialized modeling

would be invoked. In this section, I describe how L1 classification would fit into an LVCSR system, showing

3 Although no new acoustic models were trained for the phoneme recognizer, because phones were treated as individual words
and the internal representation in the recognizer suppresses cross-word contexts of distance greater than one, the contextual

models are no longer quinphone models but rather triphone models.
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Non-native Speakers Native Speakers
native  non-native native  non-native

Speaker models models Speaker models models
221 82.2 59.5 206 20.1 51.6
227 47.0 39.1 202 22.8 53.4
222 58.8 50.5 201 26.3 59.1
208 61.6 47.5 203 29.7 63.6
218 59.3 46.6 204 20.3 62.1
216 62.8 47.0 240 18.5 54.2
220 62.6 53.0 207 19.4 62.5
225 77.0 59.4 205 15.0 49.5
212 66.5 52.7

209 64.7 64.7

AVG 64.3 52.0 AVG 21.5 57.0

Table 6.4: Performance of native and non-native acoustic models on native and non-native speakers, given in terms

of WER

how recognition accuracy would improve with optimal classification and demonstrating that my method

approaches this level of performance.

Gold standard

The gold standard for accent classification in an accent-dependent recognition system is measured by calculat-
ing overall system performance given optimal classification performance. At this point, I am only considering
an acoustic model switch, so optimal classification performance would mean identifying a speaker as native
if and only if that speaker is recognized better by the native acoustic models.

Recognition accuracy of native and non-native acoustic models is shown in Table 6.4. The optimal result
for each speaker is highlighted. In this case, native speakers are always recognized best by the native models
and non-native speakers are always recognized best by the non-native models. If the best-performing model
set is always used, the overall WER for all 18 speakers will be 38.7%, compared with 45.6% if the native
models are always used. This is the gold standard for overall system performance which I hope to approach

with automatic classification.

System implementation and evaluation

To implement on-the-fly accent-dependent recognition, I used the output of my naive Bayes L1 classifier to
determine whether to use acoustic models optimized for native or non-native speech for a final recognition

pass. Ideally, in such a system one would like to use disjoint sets of utterances for classifier training and
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Pure native | Non-native | Gold-standard switching | Hypothesis-driven switching

WER 45.6 04.2 38.7 40.3

Table 6.5: Overall recognizer performance when L1 classification is used to switch to non-native acoustic models

testing, so I will use the phone-based classification, which achieved the best performance for disjoint articles.

The algorithm for running accent-dependent recognition is as follows.

1. Generate a set of initial phone hypothesis using native context-dependent acoustic models, a lexicon
with entries representing phonemes, and a language model built from phoneme distributions in the

language model training corpus.

2. Pass the set of hypotheses through a classifier that has been trained on phoneme hypotheses of native

and non-native speech

3. If the hypothesis is classified as native, re-recognize the speech with a word lexicon and a word language

model

4. If the hypothesis is classified as non-native, re-recognize the speech with customized acoustic models,

a word lexicon, and a word language model.

This process can be streamlined by generating word hypotheses in step 1 and classifying based on those
hypotheses; if the speaker is judged to be native, the initial hypothesis will become the final hypothesis.
Because the classification accuracy for word tokens is not as high as for phoneme tokens when testing on
disjoint sentence sets, one could boost system performance either by using a common set for classification or
biasing the classifier to prefer false negatives to false positives. I have found that falsely identifying native
speakers as non-native is more harmful than falsely identifying non-native speakers as native; the mismatch
between the native speech and the non-native acoustic models is severe.

Table 6.5 shows the performance of the on-the-fly accent-dependent recognition system, comparing it
with the gold standard described above. One native speaker was incorrectly classified as non-native; all

other classifications were correct.

6.5 Discriminative Features in Non-native Speech

In order to understand the classifier’s behavior, it is helpful to look at the individual word, part-of-speech,
phone, and phone class n-grams that contribute most to successful discrimination. Rainbow provides this in
the form of a list of tokens that have a high probability of being found in documents in class A and a low

probability of being found in documents in class B. This term is known as the log-odds ratio.
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Words Parts of speech
Native Non-native Native Non-native
NMEFS the;the noun(pl) noun(sing)
the;NMFS in;in determiner preposition
nineteen;hundreds | the noun(pl);preposition | preposition;preposition
hundreds;now in adjective;noun(pl) noun(sing);noun(sing)
hundreds that gerund;particle particle;preposition
habitats;and habitat;and noun(s);verb(3s) cardinal#;cardinal#
Il;grow fishers noun(pl);modal verb(past)

Table 6.6: Most discriminative word and part-of-speech n-grams in transcripts of read speech, sorted by log-odds

score

6.5.1 Transcriptions of read speech

Table 6.6 shows the words and parts of speech that were important in discriminating between native and
non-native transcripts of the shared article, sorted by log-odds score. The top word indicating native speech
was “NMFS,” which was an acronym for the National Marine Fisheries Service. The native speakers always
read this smoothly, while the non-native speakers often repeated and misread letters. The top n-gram for
the non-native speakers, on the other hand, was a repetition of the determiner “the.” Non-native speakers
frequently repeated words in their reading, possibly because they were unfamiliar with the next word. The
term “nineteen hundreds” also played an important role in identifying native speech. This token was written
in numerals in the text (“1900s”), and non-native speakers often did not know how to read it aloud. Whether
a speaker read “habitats” or “habitat” (the correct word was “habitats”) was another clue to nativeness
class. Reading errors involving singular-plural confusion were extremely common in the non-native speech,
and relatively rare in the native speech.

The singular-plural distinction was also important in discriminating based on part of speech. A number
of plural nouns was found to be the primary indicator of nativeness. It is important to keep in mind at this
point that speakers were all reading the same article; the fact that plural nouns were found to be indicative
of native speech does not necessarily indicate a preference on the part of native speakers for plural nouns,
but rather a tendency of non-native speakers to misread plural nouns as singular in a text where plural nouns

were frequent.

6.5.2 Recognizer hypotheses of read speech

Table 6.7 shows the important word and part-of-speech n-grams in discriminating between recognizer hy-
potheses of the shared read article. The most striking difference, and the one most encouraging for further

work in classification of recognizer output, is the word “salmon.” This was an article about salmon popula-
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Words Parts of speech
Native Non-native Native Non-native
the that noun(pl) verb(past)
salmon and noun(pl);preposition | personal pronoun
will to adjective;noun(pl) noun(sing)
with it noun(pl);modal coordinating conjunction
salmons we adjective “to”
the;NMFS | someone determiner;adjective | noun(s);verb(past)
habitats some determiner;noun(pl) | personal pronoun;verb(past)

Table 6.7: Discriminative word and part-of-speech n-grams in recognizer hypotheses of read speech

tions, so this token appeared many times. In the native speech, it was generally recognized correctly. In the
non-native speech, however, it was usually not, but was rather misrecognized as “some,” “someone,” and
“simon,” among other words. Misrecognized native productions of the word “salmon,” on th e other hand,
did not tend to be misrecognized this way, but rather as the plural “salmons,” which, incidentally, is not the
correct plural form and did not appear in the article but was allowed in the search because it was produced
on occasion by non-native speakers.

Turning to the part-of-speech-based classification in the right-hand part of Table 6.7, we can see that
plural nouns continue to play a role in nativeness decisions. This is true for the noisy native data set as
well as the baseline native data set. The top token on the non-native list is the past tense verb. It is not
obvious why this form is so indicative of non-native speech. Past tense verbs also help to identify non-native
speech in transcripts, indicating that non-native speakers are indeed on occasion reading past tense forms
inappropriately, but the association is much stronger in the recognizer output. My hypothesis is that the
non-native speakers move less smoothly from word to word, and that epenthetic vowels, unnatural consonant

releases, and inter-word human noise are taken by the recognizer to be a past tense ending.

6.5.3 Spontaneous speech

Discriminative tokens for spontaneous speech are given in Table 6.8. The word tokens include tokens rep-
resenting singular, plural, and proper nouns, avoiding overtraining on specific place names. Because this is
spontaneous speech, we are no longer looking at reading errors, but rather genuine preferences in word usage
for the different speaker groups. The non-native data set consists of speakers of both Chinese and Japanese.

Nouns, specifically singular, non-proper nouns, are a strong indicator of non-nativeness. I have observed
a tendency on the part of the non-native speakers to form sentences around noun phrases, saying, for
example, “what is the price of the ticket of the show” where a native speaker might say “how much does
the show cost.” Native speakers use more personal pronouns in their queries to the agent, as evidenced

both by the importance of the personal pronoun in the part-of-speech-based classification and related verb
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Words Parts of speech
Native Non-native Native Non-native
am noun(s) “t0”;verb(base) noun(sing)
proper noun | the preposition wh-adverb
can;you the;noun(s) personal pronoun verb (3s)
more is;the verb(base) verb(3s);determiner
more;noun is adjective;noun(pl) determiner
give;me noun(s);noun(s) adjective(comp.);noun(s) | wh-adverb;verb(3s)
give how noun(sing);modal determiner;noun(sing)

Table 6.8: Discriminative word and part-of-speech n-grams in transcriptions of spontaneous speech

Phones Phone classes
Native | Non-native Native Non-native
dh ih cCcC \4
th hh CC \AY
er ao CCCC VCCV
axr iy C VC
ax ow CCcCccC | CVV
ax;th aa CCCCV | ¢V
ch ih;ih VCCCC | VVC
xn ng CvCCC | vCCve
jh ae CCCVC | CVCCV
dh;ey | hh;ih cCccv CVVvC

Table 6.9: Discriminative phone and phone class n-grams in phoneme hypotheses

forms like “am.” Sentences like “I'm interested in seeing the Empire State Building, can you give me more
information” are common in the native data, where non-native speakers showed a strong preference for
simple constructions like “how do I go to the Empire State Building.” This tendency also partly explains

the importance of wh-adverbs (how, when, where, why) in identifying non-native speech.

6.5.4 Discriminative phone sequences
Phone identities

Table 6.9 shows the phone unigrams and bigrams that were most discriminative in this test case. Most
of the phones indicative of native speech are ones that are known to be difficult for non-native speakers,

particularly speakers of Japanese. R-colored vowels, reduced vowels, and the interdental consonants are
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classic examples; when running phoneme recognition with no lexical model, these phonemes are simply
not found in Japanese-accented speech. Instead, simple vowels like [a] and [i] are hypothesized with great
frequency.

There are two surprising entries in this table, however. First, the voiced affricate [&]. /d5/ is common
in Japanese, and while a narrow phonetic transcription would make distinctions between the realizations in
English and Japanese (Akamatsu, 1997), the differences are not at all obvious to the untrained ear. This
phone is not one of the ones that would first come to mind when compiling a list of common pronunciation
errors made by Japanese natives, perhaps because native English speakers are not sensitive to the kinds of
deviations in this phone in Japanese-accented English (as they might be in German-accented English). The
recognizer, however, apparently does perceive a significant difference, which is a small piece of evidence to
support automatic, rather than linguistically-motivated, modeling of pronunciation errors. The controverting
evidence is that word-level substitution and deletion errors involving /d&/ are not frequent, and /d3/ does
not show a high confusability with any one particular phone.

The other puzzling observation is that [z] is indicative of Japanese speech. This phoneme is not found
in Japanese, and many Japanese speakers have a tendency to substitute a back-central low vowel. This
substitution often does not affect intelligibility. Here we have the reverse of the [&] situation: a phone which
one might predict would consistently undergo substitution, and might be better represented by another phone
in the phoneme inventory. This is not merely linguistic conjecture; both trained phoneticians and ordinary
transcribers marked many instances of [&] as having been mispronounced as [a]. Nevertheless, the recognizer
finds this phone more frequently in recognizer hypotheses of non-native speech than in hypotheses of native
speech. This difference may be related to the tendency of native speakers to neutralize this phoneme, and
others, in unstressed syllables and weak forms of words. It could be that native realizations of both [&] and
[a] in fluent speech are often reduced to the point that they sound like [0] to the recognizer, if a phoneme is
detected at all. Non-native realizations, on the other hand, may be of fuller quality.

Table 6.10 shows results of phoneme recognition on native and non-native realizations of the word “can,”
from the sentences “Humans and salmon can peacefully coexist” and “Industry can be barred from using
land.” There is often no vowel recognized in the native realizations of this weak-form word; in the one case
that there is it is a reduced vowel. However, in the non-native realizations, there is nearly always a full vowel
recognized by the phoneme recognizer, almost always /a/.

While this is an interesting problem, the verification of my hypothesis will be left to future exploration.

Phone classes

The consonant-vowel strings that are hypothesized are not at all surprising when considering the two groups
I am attempting to distinguish. Frequent consonants and consonant clusters are clear indicators of native
speech, while frequent vowels and CV-type syllables are indicators of Japanese-accented speech.

The reader may be surprised by the long sequences of consonants that were found to be indicative of native
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Humans and salmon can peacefully coexist | Industry can be barred
Native | Non-native Native | Non-native
kn k ae n k k ae m

k m n iy aen k k ae m

k m tiy aen k k ae m

k n k ae m k n k n

kn k ae m k k aen

k ax nih aen k k ae

k n k eh m k sh ae m

Table 6.10: Phoneme recognition on native and non-native realizations of can

speech. It is important to remember that the phone hypotheses represent what the recognizer perceives, and
not necessarily what the user intended to utter. 5-consonant sequences are not supposed to be common in
English. However, it is easy for short or reduced phones to be absorbed by the models of the surrounding
sounds. Native speakers are also notorious for not obeying the articulatory and phonological rules of their
languages; modeling pronunciation variation in fluent native speech is the subject of a growing body of
research (Finke and Waibel, 1997; Liu and Fung, 2000b; Nakajima et al., 2000; Nock and Young, 2000).
What we see from the list of discriminative phone class sequences in Table 6.9 is that because of properties
of the recognizer and of the speech, a reasonably constrained phoneme recognizer finds phone class sequences

in native speech that it does not in non-native speech, and those sequences are highly discriminative.

6.6 Application to language tutoring

Although this method was originally designed to classify speakers as native or non-native, one could imagine
also using it to offer feedback to a speaker who is learning to speak a language. Those features that are
found to be most discriminative in terms of deciding whether a speaker is native or non-native could be
thought of points that the user might wish to improve. Rather than offer feedback on specific productions
of phones, such a system would first identify general problem phones or phone sequences for each speaker,
and then present exercises to the user that target those phones.

To determine the pronunciation problems that are most damaging for the user, he would first be asked
to read from a text. Underspecified recognition hypotheses for that text would then be treated as the sole
non-native training document to be contrasted with the native training documents. Because we can assume
that the speaker is non-native, building a robust classification model is not as important as identifying phone
realizations that distinguish the speaker from the native training set.

Taking underspecified alignment results for the shared set of articles (this is a case in which having all

training and test speakers read from the same text is desirable, as a decision will be based only on phone
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221 | 227 | 222 | 208 | 218 | 216 | 220 | 225 | 212 | 209

ax | ax |ax |ax |ax |ax |ax |ax | ax | ax
dh | axr | ih ah | ih dh | ae |axr | ae | axr
axr | dh | ae |dh |ah |ih ih dh | ay |ih
ey | ah | axr | axr | axr | axr | axr | ae ey dh
ah | th dh | th ey ah | aw | th iy er
ay |ey |ah |er ix ae | dh | ah | axr | th
eh | er ey |ey |dh [th |hh |eh |eh |ey
th | ix xl ng |ay |er eh | ix dh | xl
x1 ih th | ix x1 ey |th |er aw | ae

sh ae uh | ae er sh ah | hh | ah aw

Table 6.11: Phones which are found to be most problematic for each speaker using the classification-based method

realization and not on phone distribution), I measured native/non-native classification accuracy on phone
unigrams to be 100% for a 20-trial held-out test. Underspecified alignment hypotheses, then, appear to
offer a sound basis for classification. If we look at the phones that are found to be discriminative when
the non-native model is built from the speech of a single speaker, we can see which realizations are most
damaging to him in terms of differentiating his speech from that of native speakers. Table 6.11 shows the
ten most problematic phones for each speaker as calculated using this method.

This is only an idea for an application of accent classification; to establish its validity as a pedagogical
tool one would have to measure how well the “damaging phones” identified by the classifier correlate with
human perception of accent, and also determine whether speakers’ pronunciation improves with use of the
system. However, attacking the problem of pronunciation tutoring by finding the areas that most mark a
speaker as non-native contrasts with the more common approach of analyzing individual articulations, and

is an interesting direction for future work.

6.7 Summary and conclusions

In this chapter I have shown that high-accuracy text-based nativeness classification can be implemented and
improves overall system performance significantly. A text-based classification method, one that operates on
the recognizer hypotheses as opposed to acoustic features, was chosen because of both its novelty and the
potential for its application in situations when access to acoustic features is not desirable. For example,
the output of the classifier described in this chapter could be used to switch to a non-native grammar for
parsing, or to separate native from non-native utterances in language modeling; it could also be paired with
off-the-shelf recognition software that does not allow access to acoustic features. Although similar methods

have been used to identify the author and source of publication of a written text, somewhat similar tasks,
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to my knowledge, this is the first time naive Bayes based text classification techniques have been applied to
classification of spoken language.

The method described here performs well in classifying transcriptions of spontaneous speech for both
2-way (native/non-native, Japanese/Chinese, etc.) and 3-way (Native/Japanese/Chinese) distinctions. Per-
haps more surprising is that both transcriptions and hypotheses of read speech can also be classified with
high accuracy. In the CND task, all articles were originally written by native speakers; The fact that the
classifier can identify the reader as native or non-native shows that the types of reading errors made by native
and non-native speakers are highly discriminative. The most interesting observation is that hypotheses are
classified more accurately than transcriptions. This clearly says that the recognizer is responding differently
to native and non-native speech.

Stopwords, those extremely common words that are often excluded from consideration in classifying
native-produced text, were found to be extremely discriminative. Pruning the classification vocabulary to
a list of only 70 words brought accuracy of the most difficult task, classification of speakers as native or
non-native when each reading unique articles, to 87%.

Phoneme recognition hypotheses were in general a better source of input data than word recognition
hypotheses. If a mandatory two-pass process in an option, the recognizer can be used to first produce a
phone hypothesis, and then re-recognize the utterance at the word level with the appropriate acoustic models.

Once a speaker has been classified as native or non-native, the system can re-recognize the utterance
using customized acoustic models. For our test set (N-E-R + NN-E-R), automatic model switching yielded

a relative improvement of 9% over using native acoustic models for all speakers.
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Conclusion

Non-native speech is very diverse. Even restricting this study to a specific L1 group, proficiency level,
task, and mode of speech, we have seen tremendous intra- and inter-speaker variation in the production of
spoken language. As speakers traverse the learning curve, they experiment with sounds and words, sometimes
generating common patterns and sometimes generating one-of-a-kind events that defy classification. Because
accurate recognition depends on finding and modeling speech patterns, this diversity poses a substantial
challenge for LVCSR.

The results presented in this dissertation show that while there are many elements of non-native speech
that remain difficult to model, a small amount of acoustic data can be put to effective use in decreasing
recognition error for non-native speakers. In this chapter, I summarize major results and contributions and

discuss promising directions for extensions of this work.

7.1 Summary

In this section, the principal results and observations from each chapter in the main body of the dissertation

are outlined.

Chapter 3 Characterization of non-native speech
e Native and non-native speech can be distinguished using a number of qualitative measures, in-
cluding
— Word frequency
— N-gram frequency
— Perplexity
— KL divergence (more variability in non-native speech than native speech)

e Vocabulary growth rate for non-native speakers higher for native speakers, both individually and
in the aggregate

e Use of contractions is different for different L1 groups

e Frequent pauses in non-native speech account contribute to a significantly slower overall speech
rate and inhibit cross-word coarticulation
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CHAPTER 7. CONCLUSION

Reading errors are frequent in non-native speech; 2% of words in speech do not match the source
text

Substitutions in reading are most frequently morphological variants for non-natives and ortho-
graphically similar words for natives

Native judges show high recall but low precision detecting non-nativeness in transcribed utterances

Chapter 4 Acoustic modeling

Context-dependent models perform better than context-independent models for low-proficiency
LVCSR

Optimal language model settings for native and non-native speech are significantly different
Phonetic confusion occurs in the same pairs as native speech, but is more extreme

Polyphone coverage decreases for both native and non-native speakers when non-canonical pro-
nunciations are allowed both for native and non-native speakers

MAP adaptation performs better than MLLR for adaptation to the non-native condition with a
large adaptation data set

Accented L2 data is a better source of adaptation data than L1 data

Additional forward-backward iterations with L2 data give the greatest performance gains, at 30%
relative word error rate reduction

Interpolation of retrained models with baseline models improve performance further

Chapter 5 Lexical modeling

In a large-vocabulary system, adding pronunciation variants to the lexicon before decoding can
severely degrade recognizer performance. Acoustic rescoring after adding variants to the lattice
results in superior recognition accuracy

For the task and speakers that this dissertation centers on, neither data-driven nor linguistically-
motivated approaches to variant derivation contribute to significantly reduced WER. This may
be true of lower-proficiency speech in general

Allowing variant pronunciations that are associated with a particular L1 group during speaker
adaptation does not appear to significantly affect the quality of the adaptation

Chapter 6 Accent classification

Naive Bayes classification can be used to make accurate bilateral and multilateral decisions about
the speaker’s L1

Recognition output is more reliably classified than transcripts
Spontaneous speech is more reliably classified than read speech
Using a mixture of words and part-of-speech tags maximizes classification accuracy

Phone-based classification outperforms word-based classification when training and test texts are
all disjoint

Classification results can be used to switch between native and non-native acoustic models for a
significant reduction in overall WER

7.2 Major contributions

Primary contributions of this work can be summarized as follows.
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A characterization of low-to-mid proficiency Japanese-influenced English. Native speakers of
Japanese are of great interest in non-native speech recognition; they represent a large potential audience
for language-learning software, and comparatively low speaking proficiencies for equivalent study of English
makes their speech a greater challenge for LVCSR than that of many other L1 groups. The properties of
speech known to be important for LVCSR, have not been thoroughly examined for this group, however.
This dissertation provides an extensive analysis of linguistic features such as syntax, lexical choice, fluency,
and inter-speaker variation, comparing read and spontaneous speech, for lower-proficiency native speakers

of Japanese.

A frame of reference for characterizing language use in other non-native speaker groups.
While this dissertation focuses on one speaker group, the metrics used for speech characterization are general
and similar analyses can be performed for any native language or proficiency level. Limited three-way
comparisons between native speakers of English, Japanese, and Mandarin are provided to demonstrate how

multilingual analysis could be approached.

A controlled study of speech errors and LVCSR performance for a specific L1 background,
English proficiency, speech mode and task. It is known that non-native speech varies widely, and that
variation has a negative effect on recognition accuracy. Most examinations of non-native LVCSR, however,
target either high-proficiency speakers or a range of speaker proficiencies. By controlling these variables,
this dissertation is able to provide strong statements about the character of the data and its response to

statistical modeling and recognition.

An evaluation of adaptation and training methods and data sources for non-native speech
recognition. Through a comparison of adaptation methods, training data sources (L1 vs. L2), and training
data amounts, this dissertation shows how compensation for foreign accent can be expected to improve with

different modeling techniques.

Significant improvements in LVCSR performance for low-proficiency read speech. The ex-
periments described here resulted in a 30% relative improvement in recognizer accuracy, closing nearly half

of the gap between performance on native and non-native speech.

A comparison of linguistically-motivated and data-driven approaches to pronunciation mod-
eling for non-native speech. Although this dissertation did not find that lexical modeling improved
recognition significantly for this data set, it provides a detailed comparison of variant generation and prun-

ing techniques that can be used as a basis for pronunciation modeling for other proficiencies and L1 groups.

A novel and accurate method for detecting non-native utterances. Acoustic and lexical modeling

experiments were designed to maximize recognizer performance for a L1-specific recognition system. If this
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recognizer is then to be used in conjunction with a native system or other Ll-specific systems, a model-
switching strategy must be employed. The method presented in this dissertation is extremely accurate in

binomial and multinomial classification of both recognizer hypotheses and transcriptions.

7.3 Future directions

The research presented in this dissertation only begins to address the complex problem of modeling the diverse
population of non-native speakers. While I have tried to explore the issues that I did choose thoroughly,

there were many tempting paths that I chose, in the interest of time, not to follow. A few are listed below.

7.3.1 Allophonic modeling

Although the implementation of allophone tree adaptation discussed in Chapter 4 was not effective for this
data set, I believe that allophonic modeling has a great deal of promise. A more sophisticated allophonic
adaptation method may be able to capture Ll-specific alternations in phonetic environments that occur
in both L1 and L2. An allophonic model that encodes L1-dependent variation is particularly appropriate
for systems that target a specific speaker group; one might expect that the influence of environment on
phonetic realization, of which most speakers are unaware, is the least likely to be affected by speaker-
internal inconsistency. If allophonic alternations are indeed conditioned on the same contexts when speaking
L2 as when speaking L1, adaptation of all polyphones, and not just those that are introduced through phone

insertion, deletion, and substitution, may contribute to a decrease in WER.

7.3.2 Speaker dependency

Speaker adaptation, which has been found to greatly improve recognizer performance, targets speaker-specific
effects in the acoustic model. Speaker dependency in the lexical model, however, has not been addressed.
Experiments in lexical modeling suggest that although global modeling does not improve recognizer perfor-
mance, individual speakers are modeled better by some methods than others, and adapting the lexical model

based on speaker-dependent properties may result in an increase in recognition accuracy.

7.3.3 Extension to other languages

In order to present a controlled study of L1-dependent LVCSR, only native speakers of one language were
targeted in this dissertation. The overhead involved in collecting acoustic data for multiple languages, and
ensuring relative uniformity of language background and skill among speakers, also prevented the investiga-
tion from extending the range of L1s beyond the limited study of Mandarin natives presented in Chapter 3.

Whether the same adaptation methods are effective for speakers of other languages, and if not what that
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tells us about both Ll-specific influences on L2 and the nature of non-native speech in general, has been left

to future exploration.

7.3.4 Language modeling

Adaptation of the language model, which describes likely sequences of words, has not been addressed in
this dissertation. It was observed, however, that speakers of certain L1s show common patterns in sentence
construction. It is possible that recognizer performance could be improved by incorporating these patterns

in the language model, and language model adaptation is a natural extension of this work.

7.4 Illustrative examples

With all of the word error rate figures, performance charts, and adherence to LVCSR evaluation conventions
that prevent us from making simple observations about the specific errors seen in the test set (thereby
avoiding, to use a timely analogy, “teaching to the test”), it is easy to lose track of what the changes in
performance that we are seeing really mean. The examples represent the recognition result, after adaptation,
of one randomly chosen utterance for some of the models that have been discussed in this dissertation.

Misrecognized words are shown in italics.
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Reference environmentalists the government and ordi= ordinary folks team up to save the northwest’s
won= wondrous wild salmon
Baseline and that meant that the state department and the court that ordinary folks teamed up to
say that no scientist but under a flight attendant
PDTS!  environment that against the government and a quarter ordinary folks teamed up to save
the northwest’s one hundred flight attendant
MLLR-3  environment that against the government and all that ordinary folks teamed up to see
that and also based on wonders like exzon
MLLR-15 environment that the state department and the court that ordinary folks teamed up to see
that northwest one wonders like exzon
Rebuild-L2  environment baptist the government and order ordinary folks team up to save the
northwest’s one hundred slide on
MAP-15  environment the list the government and called ordinary folks team up to save the
northwest’s one wonderful like son
Retrain  and that meant the least the government and ordered ordinary folks teamed up to save the
+interp  northwest’s one wonders like son
Lexical environmental risks the government and all that ordinary folks team up to save the
modeling  northwest’s one wonders wild son

The progression through better and better stages of modeling is evident from these examples.

We

move from a hypothesis that really gives the reader no clue as to what the speaker was trying to say to a
hypothesis that is extremely close, showing evidence of confusion surrounding similar phones (/1,r/ and /t,k/
in “environmentalists” / “environmental risks”), word fragments (“ordi=" recognized as “all that,” “won="

o«

recognized as “one”), and unusual words (“wondrous,” “salmon”).

While there are still clearly problems that remain to be resolved, the experiments in this dissertation
show how much ground can be covered with a small amount of data and techniques that are for the most part
widely used. We may never be able to coax native-level performance out of the recognizer for low-proficiency

non-native speech, but this work suggests that speech recognition for non-native speakers is a realistic goal,

and outlines analysis and adaptation methods that will contribute to reaching it.

IThe abbreviations used here are the same as those given in the summary of acoustic modeling results in Figure 4.14 on

page 96



Appendix A

Data collection and
speaker proficiency evaluation

A.1 SPEAK rating criteria

Pronunciation

0 Frequent phonemic errors and foreign stress and intonation patterns that cause the speaker to be
unintelligible.

1 Frequent phonemic errors and foreign stress and intonation patterns that cause the speaker to be
occasionally unintelligible.

2 Some consistent phonemic errors and foreign stress and intonation patterns, but speaker is intelligi-
ble.

3 Occasional nonnative pronunciation errors, but speaker is always intelligible.
Grammar

0 Virtually no grammatical or syntactical control except in simple stock phrases.

1 Some control of basic grammatical constructions but with major and/or repeated errors that interfere
with intelligibility.

2 Generally good control in all constructions with grammatical errors that do not interfere with overall
intelligibility.

3 Sporadic minor grammatical errors that could be made inadvertently by native speakers.

Fluency

0 Speech is so halting and fragmentary or has such a nonnative flow that intelligibility is virtually
impossible.

1 Numerous nonnative pauses and/or a nonnative flow that interferes with intelligibility.

2 Some nonnative pauses that do not interfere with intelligibility

3 Speech is smooth and effortless, closely approximating that of a native speaker.

Comprehensibility

0 Overall comprehensibility too low in even the simplest type of speech.

1 Generally not comprehensible because of frequent pauses and/or rephrasing, pronunciation errors,
limited grasp of vocabulary, or lack of grammatical control.

2 Comprehensible with errors in pronunciation, grammar, choice of vocabulary items or infrequent
pauses or rephrasing.

3 Completely comprehensible in normal speech with occasional grammatical or pronunciation errors.
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A.2 NPR1

Relief workers have returned to the rebel held city of Goma in eastern Zaire in a second attempt to distribute
food to starving refugees.

The B. B. C.’s Alan Little reports the first convoy was held up at the border.

The B. B. C.’s Alan Little reporting from Goma town.

The government of Zaire says the entry of aid convoys from Rwanda represents a violation of territorial
sovereignty.

The supplies carried by the convoy are the first to reach eastern Zaire from rwanda since last spring.
Canada has offered to lead a multinational military force to help ease the refugee crisis in Zaire.

A third gasoline storage tank has erupted in flames at a petroleum storage facility near Mexico City.

At least a dozen people have been injured and about twenty four hundred have been forced to evacuate their
homes.

The fire was triggered by an explosion in two storage tanks holding more than four million gallons of gasoline.
Firefighters have been spraying a curtain of water in an effort to contain the blaze.

More snow is falling this morning in northern Ohio and other parts of the great lakes region tens of thousands
of homes remain without electricity.

From member station W. C. P. N. in Cleveland Joe Smith reports.

A Delta airlines jetliner slid off a runway at Cleveland’s snowy Hopkins international airport last night.

No one was injured.

It was the second such incident at the airport in as many days.

This is N. P. R. news.

Meetings in advance of an economic summit in Cairo have failed to produce any breakthrough in negotiations
on the withdrawal of Israeli troops from the west bank city of Hebron.

Secretary of state Warren Christopher met with Palestinian leader Yasser Arafat.

The state department says the session yielded no discernible progress.

President Clinton met meets with congressional leaders today in a search for common ground.

Ways to balance the budget are at the top of the agenda.

Mr. Clinton insists the two sides are not that far apart.

He has suggested the administration and congressional republicans pick up where they left off before the
political conventions.

Twenty students were arrested Monday during a protest at the University of California Riverside.

They were demonstrating against an affirmative action proposition that was passed by California voters last
week.

For member station K. C. L. U. Jeff Barry reports.

Court action begins in orange county California today on O. J. Simpson’s effort to regain custody of his two
youngest children eleven year old Sidney and eight year old Justin.

The children have been living with the parents of their mother Nicole Brown Simpson since she was murdered
two and a half years ago.

The question for the court is whether they will stay with their grandparents or move in with their father.
This is national Public Radio News from Washington.
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A.3 NPR2

The guardians of the electronic stock market NASDAQ who have been burned by past ethics questions
are moving to head off market fraud by toughening the rules for companies that want to be listed on the
exchange Marketplace’s Philip Boroff reports.

As part of the proposals penny stocks will be eliminated from NASDAQ These trade for literally pennies.
Less than a dollar a share.

They are the stocks of speculative companies.

On wall street they are the longest of the long shots.

Some penny stocks grow into established corporations.

Others are shell companies.

Incorporated firms without assets or prospects.

Some of these are sold by small unsavory brokerage firms that dump them upon gullible investors.

David Whitcomb is a Rutgers University finance professor and frequent NASDAQ critic.

That is the real change it is reducing the status of cheap stocks so.

that at least NASDAQ is not giving them its seal of approval.

Also these companies will no longer appear in newspapers on NASDAQ’s list.

And Whitcomb says investors may be less prone to buy them if they are not listed in the paper.

NASDAQ officials say they are not only trying to fight fraud by raising listing standards they are doing a
periodic tuneup of their market Which they hope will help promote public confidence In New York.

I am Philip Boroff for Marketplace.

Today the Dow Jones industrial average gained thirty eight and three quarter points.

Details when we do the numbers.

Later on tonight’s program life in the fast lane.

And coming up next a fast food Godzilla joins the burger wars in Japan.

I am David Brancaccio this is Marketplace.

American popular culture whether it is rock and roll fashion or Hollywood movies has long been an important
export Even though statisticians have a hard time measuring its value.

Take fast food.

When the first American style burger joint opened in London’s fashionable Regent street some twenty years
ago it was mobbed.

Now it is Asia’s turn.

As the people in the far east get richer they are anxious to try and able to afford burgers fries pizza and
chicken The latest entrant is Burger King.

Its C. E. O. Robert Lowes arrived in Japan to launch a belated effort to grab a share of the country’s annual
five billion dollar burger market.

Marketplace’s Tokyo bureau chief Jocelyn Ford reports.

Asia is in the midst of a fast food rush and Burger King is the latest American chain to try to get a bite of
the booming business.

So far this year Burger King has opened five outlets in the Tokyo area and it plans to expand to thirty five
by the end of the year.

The world’s number two burger chain is twenty years and over a thousand outlets behind its archrival
McDonald’s but Burger King C. E. O. Robert Lowes says better late than never.

The fastest growing markets in the world today are essentially Latin America and Asia Pacific.

I find it very difficult to comprehend any company who desires to be one of the better global companies in
the business that it is in ignoring those markets.

Lowes says in Asia the demographic recipe is right for growing the fast food market.

As the economies develop as you know more women work in the workplace it demands more convenience
and while sometimes the dual income families they are making more money I think they want the higher
quality products.

There is a long list of American fast foods that have successfully made the long march to Asia.

From Seoul to Singapore hungry consumers can grab pizzas burgers and chicken.

But the welcome mat is not always out.

In some markets there has been a nationalist backlash to western fast food joints.
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Take India for example.
Earlier this year a farmer’s group ransacked a K. F. C. outlet and McDonald’s was met with protests by

farmers when it opened its first lamb burger restaurant last month.
Patricia Horvath is an analyst with U. B. S. securities in Tokyo.
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A.4 CND1
A SAFETY NET FOR SALMON

Environmentalists, the government and ordinary folks team up to save the Northwest’s wondrous wild
salmon

Pacific salmon have never had it easy. Sure, the fish begin life gently enough, wiggling around in sun-
dappled creeks and pools with their brothers and sisters. When they are bigger, they set off downstream to
the ocean, where they’ll grow up.

But after a few years in the ocean, life gets tough. Something in their nature tells them that it’s time to
go home. Salmon find their way back to the mouth of the river that carried them to the ocean. Then they
swim upstream in a fierce, wrong-way struggle to their birthplace. Some travel hundreds of miles! They
jump against the currents and waterfalls that once carried them out to sea. After they reach their birthplace,
females lay eggs to continue the circle of life. Then the salmon die of exhaustion and old age. What a way
to go!

As if that journey weren’t challenging enough, the people who share the salmon’s habitat have made life
even harder. Pollution, overfishing and habitat destruction threaten salmon species with extinction. Only
100 years ago, the rivers of Washington State and Oregon were just jumping with salmon. But in most
places, fishermen today catch one-third fewer Chinook salmon than they did in the early 1900s. Now the
government has decided to get serious about rescuing these silvery symbols of the wild Northwest.

Save The Salmon: It’s The Law

Last week the National Marine Fisheries Service (NMFS) announced that nine kinds of salmon and
related fish would be protected under the Endangered Species Act. One of those, the Upper Columbia
Chinook salmon, is now listed as endangered. The other eight fish are considered threatened.

The 26-year-old Endangered Species Act is one tough environmental law. When a species is protected
under the act, industry can be barred from using land where the endangered animal might be found. Ordinary
citizens also face strict rules about using protected habitat.

But there’s no way to keep people away from the salmon habitats, and that makes protecting the salmon
really tricky. At least 5 million people, including those in the big cities of Portland and Seattle, live near the
Columbia and Willamette river systems, where threatened salmon swim. No use of the Endangered Species
Act has ever affected so many people.

The new rules will change the way people farm, fish, harvest timber, build homes, use water and chemicals,
and work (see chart). Restoring salmon populations to healthy levels will be an upstream struggle for
everyone in the area. But so far, Northwesterners say they are up for the challenge.

”The salmon are an important part of our lives,” said Seattle Mayor Paul Schell last week. ” We under-
stand that preserving our environment has a direct impact on our quality of life and our economy.” Will All
This Effort Be Worth It?

Over the next two months, public officials, Native American leaders, businesses and environmental groups
will come up with plans for meeting the law’s requirements. The NMFS must approve these plans, but some
groups are already taking steps to help the salmon. They want to get a head start on the far-reaching and
costly changes that will be needed.

Rollie Schmitten, director of the NMFS, hopes that the people of Washington and Oregon will continue
to support efforts to save the salmon, even when it means making expensive changes in how folks live and
work. He says that in the end, their personal sacrifices and higher taxes will pay off. ”Humans and salmon
can peacefully coexist and even enhance each other’s quality of life,” says Schmitten.

After all, both species thrive on the same things: clean water, green shade trees and a safe place to come
home to.
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A.5 TFK1

After a few years in the ocean, life gets tough. Something in their nature tells them that it’s time to go
home. Salmon find their way back to the mouth of the river that carried them to the ocean. Then they swim
upstream in a fierce, wrong-way struggle to their birthplace. Some travel hundreds of miles. They jump
against the currents and waterfalls that once carried them out to sea. After they reach their birthplace,
females lay eggs to continue the circle of life. Then the salmon die of exhaustion and old age.

Last week the National Marine Fisheries Service announced that nine kinds of salmon and related fish
would be protected under the Endangered Species Act. One of those, the Upper Columbia Chinook salmon,
is now listed as endangered. The other eight fish are considered threatened. The 26-year-old Endangered
Species Act is one tough environmental law. When a species is protected under the act, industry can be
barred from using land where the endangered animal might be found. Ordinary citizens also face strict rules
about using protected habitat.

Over the next two months, public officials, Native American leaders, businesses and environmental groups
will come up with plans for meeting the law’s requirements. The NMFS must approve these plans, but some
groups are already taking steps to help the salmon. They want to get a head start on the far-reaching
and costly changes that will be needed. Rollie Schmitten, director of the NMFS, hopes that the people of
Washington and Oregon will continue to support efforts to save the salmon, even when it means making
expensive changes in how folks live and work. He says that in the end, their personal sacrifices and higher
taxes will pay off. "Humans and salmon can peacefully coexist and even enhance each other’s quality of
life,” says Schmitten.

A.6 Japanese prompts

Scenario 2. Restaurants

BIRTNITA BT 7 BEID TS the Lemongrass Grill IZEFIZITI 9 & L TWET, the Lemongrass
Grill IZOWTLLFOHEAZ|RTZE0,
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A.7 Snow White

SNOW WHITE AND THE SEVEN DWARVES

Once upon a time in a great castle, a Prince’s daughter grew up happy and contented, in spite of a
jealous stepmother. She was very pretty, with blue eyes and long black hair. Her skin was delicate and fair,
and so she was called Snow White. Everyone was quite sure she would become very beautiful. Though her
stepmother was a wicked woman, she too was very beautiful, and the magic mirror told her this every day,
whenever she asked it.

”Mirror, mirror on the wall, who is the loveliest lady in the land?” The reply was always; ”You are,
your Majesty,” until the dreadful day when she heard it say, ”Snow White is the loveliest in the land.” The
stepmother was furious and began plotting to get rid of her rival.

Calling one of her trusty servants, she bribed him with a rich reward to take Snow White into the forest,
far away from the Castle. Then, unseen, he was to put her to death. The greedy servant, attracted to the
reward, agreed to do this deed, and he led the innocent little girl away. However, when they came to the fatal
spot, the man’s courage failed him and, leaving Snow White sitting beside a tree, he mumbled an excuse
and ran off. Snow White was all alone in the forest.

Night came, but the servant did not return. Snow White, alone in the dark forest, began to cry bitterly.
She thought she could feel terrible eyes spying on her, and she heard strange sounds and rustlings that made
her heart thump. At last, overcome by tiredness, she fell asleep curled under a tree.

At last, dawn woke the forest to the song of the birds, and Snow White too, awoke. She found a path
and walked along it, hopefully. On she walked till she came to a clearing. There stood a strange cottage,
with a tiny door, tiny windows and a tiny chimney. Everything about the cottage was much smaller than it
ought to be. Snow White pushed the door open.

”T wonder who lives here?” she said to herself, looking round the kitchen. ”What tiny plates! And spoons!
There must be seven of them, the table’s laid for seven people.” Upstairs was a bedroom with seven neat
little beds. Going back to the kitchen, Snow White had an idea.

"T'll make them something to eat. When they come home, they’ll be glad to find a meal ready.” That
evening, seven tiny men marched home singing. But when they opened the door, to their surprise they found
a bowl of hot soup on the table, and the whole house very clean. Upstairs was Snow White, fast asleep on
one of the beds. The chief dwarf shook her gently.

"Who are you?” he asked. Snow White told them her sad story, and tears came to the dwarves’ eyes.
Then one of them said, as he noisily blew his nose:

”Stay here with us!”

"Hooray! Hooray!” they cheered, dancing joyfully round the little girl. The dwarves said to Snow White:

”You can live here and keep house while we’re down at work. Don’t worry about your stepmother leaving
you in the forest. We love you and we’ll take care of you!” Snow White gratefully accepted their hospitality,
and the next morning the dwarves set off for work. But they warned Snow White not to open the door to
strangers.

Meanwhile, the servant had returned to the castle, with the heart of a deer. He gave it to the cruel
stepmother, telling her it belonged to Snow White, so that he could claim the reward. Highly pleased, the
stepmother turned again to the magic mirror. But the mirror replied: ” The loveliest in the land is still Snow
White, who lives in the seven dwarves’ cottage, down in the forest.” The stepmother was very angry.

”She must die! She must die!” she screamed. Dressing herself as an old woman, she put a poisoned apple
with the others in her basket. Then, taking the quickest way into the forest, she crossed the swamp at the
edge of the trees. She reached the bank unseen, just as Snow White stood waving goodbye to the seven
dwarves on their way to work.

Snow White was in the kitchen when she heard the sound at the door: KNOCK! KNOCK!

”"Who's there?” she called.

”"I'm an old woman selling apples,” came the reply.

”T don’t need any apples, thank you,” she replied.

”But they are beautiful apples and so juicy!” said the velvety voice from outside the door.

”T’'m not supposed to open the door to anyone,” said the girl.

” And quite right too! Good girl! If you promised not to open up to strangers, then of course you can’t
buy. You are a good girl indeed!” Then the old woman went on.

9
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”And as a reward for being good, I'm going to make you a gift of one of my apples!” Without a further
thought, Snow White opened the door just a tiny crack, to take the apple.

”Isn’t that a nice apple?” Snow White bit into the fruit, and as she did, fell to the ground in a faint: the
effect of the terrible poison left her lifeless instantly.

Now chuckling evilly, the wicked stepmother hurried off. But as she ran back across the swamp, she
tripped and fell into the quicksand. No one heard her cries for help, and she disappeared without a trace.

Meanwhile, the dwarves came out of the mine to find the sky had grown dark and stormy. Loud thunder
echoed through the valleys and streaks of lightning ripped the sky. Worried about Snow White, they ran as
quickly as they could down the mountain to the cottage.

There they found Snow White, lying still and lifeless, the poisoned apple by her side. They did their best
to bring her around, but it was no use.

They wept and wept for a long time. Then they laid her on a bed of rose petals, carried her into the
forest and put her in a crystal coffin.

Each day they laid a flower there.

Then one evening, they discovered a strange young man admiring Snow White’s lovely face through the
glass. After listening to the story, the Prince (for he was a prince!) made a suggestion.

”If you allow me to take her to the Castle, T’ll call in famous doctors to waken her from this strange
sleep. She’s so lovely, I’d love to kiss her!” He did, and as though by magic, the Prince’s kiss broke the spell.
To everyone’s astonishment, Snow White opened her eyes. She had amazingly come back to life! Now in
love, the Prince asked Snow White to marry him, and the dwarves reluctantly had to say good bye to Snow
White.

From that day on, Snow White lived happily in a great castle. But from time to time, she went back to
visit the little cottage down in the forest.
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Example of a transcript of read speech

5.4
14.

23.

30.

51.

60.

4.

84.

89.
99.

105

109.
119.

129.

139.

155.

161.

171

174.
178.
181.
181.
185.
187.
190.
201.

210.

216.
222,

233.

1
33

65

53

24

31

19

31

26
76

.47

09
04

03

03

62

36
.41

75
83
03
79
95
25
97
63

80

05
84

22

#rustle# Storming Disney’s Kingdom

/br/ xAnastasia leads the charge as rival studios <;1 &studio> move in on
toon town #rustle#

{-/A headstr=/- a <;1 &an> headstrong} Russian princess will try to win your
heart this week

Fox Animation Studios <;1 &studio> is /ls/ {-/re=/- *releasing} its first
cartoon feature /br/ Anastasia

Like Disney Studios’ best loved hits /br/ the movie features a beautiful
((heroine)) <;del a> devilish ((villain)) /ls/ cute animal sidekicks catchy
songs /br/ a plot that *rewrites history and an all star cast doing voices
Fox wants to {-/pro=/- prove} #rustle# that a cartoon movie doesn’t have
to come from Disney in order to be a winner with kids

/br/ The movie which opens November twenty first /br/ is based on the true
story of a royal princess who disappeared in the nineteen /br/ seventeen
revolution in Russia

/1s/ The {-/part=/- partly} computer animated backgrounds of great cities
and snowy landscapes are {-/brea=/- ((breathtaking))}

/1s/ Anastasia herself is a smart /br/ lovable *heroine

But it takes more than #pause# gorgeous cartooning and #pause# /1ls/ good
storytelling to make a hit animated movie these days

/br/ Will kids and parents buy Anastasia toys games and videos <;1 &video>
too

Will they go see the movie more than once

Will <;ins the> Fox’s #pause# film sell as many action figures and fast
food /br/ meals as The Little Mermaid or ((Aladdin))

/br/ Anastasia’s pro= producers who spent about /br/ fifty three million
dollars making the movie have their fingers crossed

I really hope it will {-/com=/- /1ls/ compete} with the best Disney
pictures says Fox movie chief Bill <;1 &billy> {-/#*mechanic/- Mechanic}
The company that has #begin rustle# ruled the animation #pause# kingdom for
sixty years does not plan to sit still #end rustle# while a little princess
grabs for the cartoon movie throne

Disney will try to lure kids away from Anastasia this month

/br/ Its new Robin Williams movie Flubber /br/ and nineteen eighty nine’s
The Little Mermaid will compete against Fox’s film in theaters

/br/ Are we going to make it easy for them /ls/

/1s/ No says Disney movie group chairman Richard Cook

/br/ Are we going to compete

You bet

Don’t be fooled by the pretty songs and scenery

This is war

/br/ How A Mouse Became A Giant

It all started in nineteen thirty seven <;1 &seventh> #pause# with a movie
about a fair skinned beauty and seven short guys

The first movie length cartoon was Walt Disney’s /br/ eighty two minute
Snow White and the Seven Dwarfs

The animated musical delighted audiences all over the world

Disney {-/went/- went on} to make more than thirty animated features

and had little competition

The company has sold millions of dollars’ worth of toys /br/ games
*clothes and videos /br/ based on its popular {-/c=/- characters}
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4.93

7.72
10.84
17.12

20.75
28.76

37.4

42.06
45.24
48.5

55.15

65.73

71.90

76.41
81.35
84.63
86.06
88.64
95.01
101.17

110.33

112.57
114.88
117.0

119.96

/1s/ alright /uh/ where is the the [Empire State Building ((IY M P AY ER S
TEYTB IHLD IYNG))] /1s/ located
/uh/ how much is admission fee
/uh/ how long do you think it take to look around
is there any /n/ /n/ any good place to see /ah/ near [Empire State Building
((IYMPAYERSTEYTB IHLD IY NG))]
is there any good restaurant around in the around there /h#/
{-/how long i=/- (how long is)} how long is it from the [Edison ((EH D IH S AH N))]
[Hotel ((HH OW T EH L))] to to the [Empire State Building ((EH M P AY ER
STEYTB IHLD IH NG))]
/uh/ what kind of restaurant is it #noise# the [Chelsea Bistro and Bar
((CHEHL S IYBIYSTROWEHNB AA R))]
/h#/ and how much do I expect to pay for the the restaurant /h#/
/uh/ what is the business hour
/uh/ do you think I need a reservation
/uh/ how long is it from here to the /uh/ from the [Edison ((EH D IH S AH N))]
[Hotel ((HH OW T EL))] to that to that restaurant /h#/
/uh/ do you have any suggestions *pause* {+/when I finish/+ *pause* when I
finish} my dinner *pause* to go back to the [Edison ((EH D IH S AH N))]
[Hotel ((HH OW T EH L))] say like bus or /uh/ subway #noise#
how long does it how long does it take to go to [Long Island
((L A0 NG AY L IH N T))]
/uh/ what kind of /uh/ transportat= transportation is available /h#/
/1s/ /uh/ do you know how much it is like for the bus or train /h#/
/uh/ is there anything interesting in [Long Island ((L A0 NG AY L IH N T))]
/1s/ /uh/
is there any good restaurants
/uh/ do you what time is the last bus last ship or last train
where is the [Rockettes ((R A0 K IH T))] [Rockettes ((R AD K IH T S))] located
#noise# /um/
{+/how long/+ *pause* how long} is it from the [Rockettes ((R A0 K IH T S))]
to the most /uh/ to the nearest transportation
when does the show begin #click#
when does the show /uh/ finish
/1s/ how much is the ticket
/h#/ /uh/ {+/how can I/+ how can I} buy the ticket
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A.10 Speaker Demographics

A.10.1 Speakers completing the read task

Years studying

Years immersed in

Speaker ID || Gender | L1 Age English English Proficiency score
201 f english 30 — — 4
203 f english 19 — — 4
204 m english 23 — — 4
205 m english 37 — — 4
206 f english 19 — — 4
207 m english 20 — — 4
240 m english 25 — — 4
241 m english 26 — — 4
242 m english 32 — 4
208 * f japanese | 29 7 1.5 1.94
209 * m japanese | 29 8 0.75 1.94
210 f japanese | 33 8 0 1.83
211 f japanese | 57 8 0 1.11
212 * m japanese | 31 8 2 2.11
213 f japanese | 29 8 0 1.06
214 f japanese | 29 8 0 1.00
215 f japanese | 25 6 2 2.00
216 * m japanese | 36 10 0.33 1.94
217 m japanese | 27 6 9 2.83
218 * f japanese | 26 10 3 2.00
219 f japanese | 34 8 7 2.67
220 * m japanese | 31 10 1.5 2.11
221 * f japanese | 31 10 1.5 1.83
222 * f japanese | 23 10 0.50 2.17
223 f japanese | 26 10 3.5 2.44
224 f japanese | 32 5 11 2.83
225 * m japanese | 31 10 2.5 1.89
226 f japanese | 30 10 7 2.05
227 * f japanese | 29 17 0.67 1.89
228 f japanese | 25 9 0.67 2.00
229 f japanese | 26 8 0.50 2.17
230 m japanese | 25 10 0.50 1.44
231 f japanese | 31 7 1.3 1.22
232 f japanese | 28 8 1.5 2.00
233 m japanese | 33 10 0.17 1.89
234 f japanese | 34 10 0.50 2.00
235 f japanese | 31 8 0 1.33
236 f japanese | 36 8 1 1.00
237 m japanese | 40 6 0 1.00
239 m japanese | 40 8 1.75 1.33

Speakers with an asterisk (*) by their names were part of the proficiency-controlled test set.
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A.10.2 Speakers completing the spontaneous task

Speaker ID | Gender | L1 Age | Years studying English | Years immersed in English
009 m english 19 — —
010 f english 19 — —
012 f english 30 — —
102 f english 25 — —
108 m english 26 — —
105 m english 22 — —
106 m english 41 — —
806 m taiwanese | 24 0 14
801 f mandarin | 24 10 1
802 f mandarin | 28 15 1
808 f mandarin | 29 17 1
805 f mandarin | — 1 9
804 m mandarin | 24 10 0
803 m mandarin | 30 7 1
807 m mandarin | 27 13 1
001 m japanese | 27 6 3
002 f japanese | 27 10 2
003 f japanese | 31 10 0.42
004 f japanese | 31 15 8
005 f japanese | 29 7 1.5
006 f japanese | 28 13 1.5
007 f japanese | 31 15 8
008 f japanese | 29 7 1.5
011 m japanese 31 8 2
013 f japanese | 28 13 1.5
014 f japanese | 22 8 D
015 f japanese | 21 7 1
016 f japanese | 21 7 3
017 f japanese | 31 3 0.58
018 m japanese 21 9 0
019 m japanese 22 10 0
020 m japanese | 21 15 0
021 m japanese | 26 8 2
022 f japanese | 26 7 1
023 m japanese | 27 25 0.42
024 m japanese | 26 6 8
025 f japanese | 29 7 1.5
026 m japanese | 29 8 2
027 m japanese | 29 8 0.75
028 f japanese | 29 7 0.67
029 f japanese | 25 8 0.25
030 f japanese | 42 12 17
031 f japanese | 30 6 0.58
032 m japanese | 30 15 1
033 f japanese | 20 3 4
034 m japanese 19 10 0
035 f japanese 19 6 0.25
036 f japanese | 28 8 0.25
037 m japanese | 35 3 0
038 f japanese | 20 3 1
039 m japanese | 23 8 1
040 m japanese | 23 0 18




Appendix B

Phonological transformation rules

This appendix lists the transformation rules used to produce the dictionaries described in Section 5.2.2. In
the first column are the rule tags. The rule is given in the second column. The symbols used in the rules
represent the units in the lexicon, i.e., the base phone is the one that was in the canonical transcription and
the surface phone is the one that will be added. An example of a word that is affected by the transformation
is shown for each rule, with the canonical lexicon entry and a phonetic transcription of an instance of that
word in the training data in which the transformation was observed. Because the units of representation
are different, the surface symbol on the right side of the rule may not match its counterpart in the phonetic
transcription. The phonetic transcription is shown to give as accurate a portrait as possible of the actual
realization. Distinctions that were not phonemic in the original lexicon, such as [a,n] and [0,0:], are suspended
in the new lexicon. Some global transformations were added to resolve transcription inconsistencies in the
lexicon.
This list shows rules for adding paths to the pronunciation networks. These are not replacement rules.

MA-3 s—= [/ _ {i1} citizen /sttizon/ [[itizun]
MA-3 h—f/ _ {uv} hood /hud/ [puzd]
MA-3 f—h/ _ {ol00} telephone /telofon/ [telehomn]
MA4 w—0/ _ {uu} woman /wumon/ [wman)]
MA-5 w—ou/ _ {iL} wish Jwif/ [ufz]

MA-5 w—ou/ _ {ele} wedding Jwediy/ [uediggu]
MA-5 w—ou/ _ {oi00} water Jwotar/ [uortai]
MA-6 d— &/ _ {i1} candidate /keendideit/  [kjandsideit]
CC1 d—0/ _z$ needs /nidz/ [nizu]
CC2 0 —o/{td} _ handmade  /handmeid/ [hondomeido]
CC-3 0 —i/{&ky, j} _ hitchhiking  /hrtfhaikiy/  [hitf:ihaikingu]
CC-5 0 —u/{pbfvh 6 S,2,5,8,km,lts} _ C  difficult /dufikolt/ [difikaluto]
CC4 w—ou/ {p,b,f,v,e,S,S,Z,g,g,k,m,l,ts} _ swam /swaem/ [suam]
CC6 w—ou/{&Y[__V Schweitzer — /[waitsar/ [Juaitsa:]
CC6 w—ou/{td}__V twelve Jtwelv/ [tuelubu]
CC-7 w—0/ _{uv} woman /wumon/ [urman]
CC-8 w—u/$_ {olopo} wove Jwov/ [uovu]
CC-8 w—u/$_ {ele} wedding [wediy/ [uediggu]
CC-8 w—u/$_ {iL} weekend Jwikend/ [uikuend]
CC9 j—0/8%_ i year /jir/ [ior]

CC-12 y—-n/ _ {kg} Bangkok /beegkok/ [bagkok]
CC-13 pyp—ngu/ _§ Hemingway /hemmwei/  [hemmgue:]
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FV-1
FV-2
FV-3
Fv-4

RL-1
RL-2
RL-3
RL-4
RL-7
RL-8
RL-9
RL-11
RL-12
RL-13

MD-1
MD-2
MD-3
MD-4
MD-5

MP-13
MP-14
MP-15
MP-16
MP-18

MA-1
MA-2

MP-1
MP-2
MP-3
MP-6
MP-9

0 —i/{k [} _#

w _> u / {p7b7f7v79767s7Z737g7k7m717ts} _ #

0 —o/{td} _#
y—ngu/ _ #

r— 0/ {oi0,0} __ 8C

r— o/ {oloo} __$V

r— o/ {dlop} __#
r— 0/ {atau} _ C
r—-n/V_C
r—»n/V_$
r—-n/V__#
>—=n/ _$
»—>n/ _C
=/ _#

al — ni
ol — oi
el — ¢l
au — pu
e&—=jo/k__

0 —s
00—z
v—=>b
r—t

3> &

l—>r
r—1

{o1,00} = 0
{el,e} —» ¢
{i,,1i} =i
{&e,p,a,0} = D
{u,u} = u

bridge
reptile
adult
swimming

morphology
moreover
more
Arkansas
cart
heirloom
gear
searching
searching
sir

like
boy
make
house
cash

breath
then
never
water
measure

place
reason

Jbrics/
/reptail/
Jodalt/

/swimiy/

/morfolodi/
/morova/
/mor/
Jorkonso/
/kort/
/erlum/
/gir/
[satfm/
[so4f/

[so/

Jlaik/
/boi/
/meik/
/haus/
[keet/

/bred/
/den/

/nevar/
[wora|

[meza/

/pleis/
/rizon/

APPENDIX B. PHONOLOGICAL TRANSFORMATION RULES

[burids:i]
[reputal:lu]
[adacurto]
[suimingu]

[laik]
[boi]
[meik]
[

[

kjat]



Appendix C

ARPABET-IPA mappings

NOISES VOWELS
+BR  breathing AA o
+HU  human noise AE @&
+NH non-human noise AH &
+SM  lip smack AX o
+TH throat clearing A o
+LA  laughter EH ¢
+F  semantic noise (um, uh) ER ‘o
AXR &
DIPHTHONGS IH 1
IX I
Aw  au Iy i
AY al ow o
EY el UH U
oY of uWv  u
CONSONANTS
B b K k SH [
CH ff L 1 T t
D d M m TH 6
DH 0 N n \Y v
DX r NG 1 W w
F f P p Y
G g R r Z v/
HH h S s ZH 3
JH &

SPECIAL PHONES

Syllabic continuants  Unreleased stops

XL} PD p’
M m ™ t°
XN n KD K’
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