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Abstract

In human-mediated translation scenarios, a human interpreter translates
between a source and a target language using either a spoken or a written rep-
resentation of the source language. In this work the recognition performance
on the speech of the human translator spoken in the target language (English)
is improved by taking advantage of the source language (Spanish) representa-
tions. For this, machine translation techniques are used to translate between the
source and target language resources and then bias the target language speech
recognizer towards the gained knowledge, hence the name Machine Translation
Enhanced Automatic Speech Recognition (MTE-ASR).
Different basic MTE-ASR techniques are investigated, namely restricting the
search vocabulary, selecting hypotheses from n-best lists and applying cache
and interpolation schemes to language modeling. Given a written representa-
tion of the source language and with the help of a non-iterative combination of
the most successful basic techniques, it was possible to outperform the English
baseline ASR system by a relative word error rate reduction of 30.6%. In the
case of a spoken source language representation, where a source language ASR
has to be used at first to create a further processable written representation,
the reduction is still 23.2%.
With the help of an iterative system design, which recursively applies the im-
proved ASR output to enhance the involved MT system(s) for a further ASR
improvement, it was possible to further increase these word error rate reductions
to 37.7% and 29.9% respectively.



Zusammenfassung

Durch die EU-Osterweiterung hat sich die Anzahl der zuvor elf
Amtssprachen des Europäischen Parlamentes auf 20 erhöht. Amtssprache
bedeutet, dass jedes Ausschussdokument und jeder Antrag in diese Sprache
übersetzt werden muss. Auch wenn während einer Ausschusssitzung nicht
alle der 20 Amtssprachen angeboten werden (können), ist schon alleine der
Aufwand der sich durch die Notwendigkeit der Simultanübersetzung der
angebotenen Sprachen ergibt, immens. Für Sitzungen der Vereinten Nationen
mit ihren sechs Amtssprachen ergibt sich eine ähnliche Situation. In An-
betracht dieser Sachlage ist es wünschenswert, Hilfsmittel zur Verfügung zu
haben, die die Arbeit der zahlreichen Übersetzer erleichtert. Ein solches, sehr
effektives Hilfsmittel, stellt ein Diktiersystem dar, welches dem Übersetzer
erlaubt seine Übersetzung einfach per Spracherkennung eingeben zu können.
So haben Experimente gezeigt [1], dass ein menschlicher Übersetzer bis zu
viermal schneller arbeiten kann, sofern er seine Übersetzung nicht tippen
muss sondern einfach diktieren kann. Noch höhere Steigerungsraten lassen
sich durch die direkte Verwendung von Simultanübersetzungen zur Erzeugung
von Transkripten einer Rede erzielen. Um den sich, bei auf diese Art und
Weise erstellten Dokumenten, ergebenden Nachbearbeitungsaufwand möglichst
gering zu halten, sollte die Fehlerrate des Diktiersystems möglichst gering sein.
Gerade in der besonderen Situation einer diktierten Übersetzung ergeben sich
durch die zur Verfügung stehenden Informationen in der Ursprungssprache
(Originaldokument, Sprachsignal des Redners) sehr effektive Möglichkeiten zur
Fehlerreduktion. So ist es möglich, diese in der Ursprungssprache gegebenen
Informationen mit Hilfe einer maschinellen Übersetzung in die Zielsprache zu
übersetzen und den Spracherkenner auf dieses Wissen hin auszurichten. Dieser
Ansatz wurde unabhängig voneinander von Dymetman et al. [2] und von
Brown et al. [1] bereits im Jahre 1994 vorangetrieben. Seither gab es einige
weitere Veröffentlichungen zu diesem Thema.

In dieser Arbeit wird untersucht, wie die Erkennungsleistung eines
Spracherkenners in der Zielsprache eines menschlichen Übersetzers (Englisch)
mit Hilfe der in der Ursprungssprache (Spanisch) gegebenen und maschinell in
die Zielsprache übersetzten Informationen verbessert werden kann1. Basierend
auf bereits verfolgten Ansätzen zu diesem Thema werden zunächst einige
grundlegende Techniken zur Verbesserung des Spracherkenners entwickelt.
Zu diesen Techniken zählen die Einschränkung des Erkennervokabulars, die
Auswahl von Hypothesen aus den n-besten Listen des Erkenners sowie das
Anwenden von Cache- und interpolierten Sprachmodellen. Bei in Schrift-
form gegebenen ursprungssprachlichen Informationen war es möglich, durch
eine nicht iterative Kombination der genannten grundlegenden Verbesserung-
stechniken, eine relative Wortfehlerratenreduktion von 30.6% zu erzielen. Sind
die ursprungssprachlichen Informationen nur in gesprochener Form vorhan-

1Natürlich können Ziel- und Ursprungssprache auch einfach vertausch werden, wobei sich
dann eine Verbesserung des Spracherkenners auf Seite der Ursprungssprache ergibt.



den, so müssen diese zunächst durch einen Spracherkenner in der Ur-
sprungssprache in Schriftform gebracht werden, um von der maschinellen
Übersetzungskomponente weiter verarbeitet werden zu können. Aufgrund dieser
zusätzlichen möglichen Fehlerquelle sinkt die Wortfehlerratenreduktion hier auf
23.2% ab.
Neben der nicht iterativen Kombination der grundlegenden Verbesserungstech-
niken wird eine darauf aufbauende iterative Kombination untersucht. Grundidee
dieses iterativen Systementwurfes ist es, die schon verbesserte Spracherkenner-
ausgabe rekursiv zur Verbesserung der beteiligten Übersetzungskomponente(n)
zu verwenden und durch die verbesserte maschinelle Übersetzung wiederum
eine weitere Steigerung der Spracherkennerleistung zu erzielen. Mit Hilfe
dieses iterativen Ansatzes ist es möglich die Wortfehlerratenreduktion auf 37.7%
beziehungsweise 29.9% zu steigern.
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Chapter 1

Introduction

1.1 Automatic Speech Recognition

Speech recognition systems for large vocabulary continuous speech recognition
are nowadays widely available. Those systems are based on statistical methods,
in which the so-called fundamental equation of speech recognition is taking center
stage:

Ŵ = arg max
W

P (W |Y ) = arg max
W

P (W )P (Y |W )
P (Y )

(1.1)

This equation indicates that to find the most probable word sequence Ŵ
given the observed sequence Y of feature vectors extracted from the acoustic
signal, the product of P (W ) and P (Y |W ) has to be maximized (the denominator
P (Y ) is independent of W and can be ignored). The language model (LM)
P (W ) determines the a priori probability of observing the word sequence W .
The acoustic model P (Y |W ) represents the probability of observing the feature
vector sequence Y given W. Different central questions of Automatic Speech
Recognition (ASR) can be directly derived from equation 1.1:

- Signal preprocessing: Which kind of signal preprocessing should be used
to extract the sequence of feature vectors from the acoustic signal?

- Language and acoustic modeling: How should the language model and the
acoustic model be represented/computed?

- Decoding: How can the sequence of words Ŵ , which maximizes equa-
tion 1.1, be found? (Given the combinatorial explosion associated with
large vocabularies, an efficient pruning of the search space is of particular
importance to the decoding process.)

Although already published in 1996, [3] still gives a good overview of the
principles applied in current Large Vocabulary Recognition (LVR) systems to
deal with the mentioned problems.

1



1.2 Statistical Machine Translation

The basic principle of the statistical methods used in automatic speech recogni-
tion were successfully applied to machine translation (MT). The most probable
word sequence T̂ of words in the target language given the word sequence S in
the source language can be computed with the help of the fundamental equation
of statistical machine translation:

T̂ = arg max
T

P (T |S) = arg max
T

P (T )P (S|T ) (1.2)

P (T ) is again called the language model (of the target language). The trans-
lation model (TM) P (S|T ) gives the translation probability of S given T. Again,
an efficient search algorithm is needed to find the best target sentence that
maximizes equation 1.2. A more detailed introduction to statistical machine
translation can be found in [4].

1.3 Machine Translation Enhanced Automatic
Speech Recognition

In this work, the term Machine Translation Enhanced Automatic Speech
Recognition (MTE-ASR) is defined as generic term for all techniques that
are aimed to improve the recognition accuracy of an ASR system with
the help of available resources in one or more languages different from
the ASR system language, whereas these resources are at first being trans-
lated by a machine translation component into the language of the ASR system.

Human-mediated translation scenarios in which a speaker of one language
communicates with one or several speakers of another language with the help
of a bilingual human interpreter are particularly suited for MTE-ASR based
applications. One example for such a human-mediated translation scenario
is an American aid worker speaking with a non-American victim through a
human interpreter. Another example is a Spanish speaker delivering a speech
to a non-Spanish audience as commonly seen in European Parliament or United
Nations debates. In the latter example, one (or several) interpreters would
translate the Spanish spoken presentation into the target language(s) of the
listeners. This happens either directly from the spoken speech or with the help
of a transcript of the delivered speech. In both examples, it is desirable to have
a written transcript of what was said by the speaker in the source language
and of what was said by the interpreter(s) in their respective target languages,
e.g. for archiving and retrieval, or publication. The most straight-forward
technique is to record the speech of the speaker and the interpreter(s) and then
use automatic speech recognition to transcribe the recordings. Since additional
knowledge in the form of a spoken and/or a written representation of the
source/target language is available, it can be used to improve the performance
of the ASR. One possibility is the use of machine translation to translate

2
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Figure 1.1. Document driven and ASR driven MTE-ASR.

these resources into the language of the respective ASR system. This work
concentrates on the specific case where the ASR system for the target language
of one interpreter is to be improved. Such a scenario is illustrated in Figure
1.1.

As shown in Figure 1.1, two basic application scenarios can be distinguished:
scenarios in which a written representation of the source language is available
and scenarios in which such a written representation has to be created first from
the spoken representation with the help of a source language ASR system. In
the following, the former case will be referred to as Document Driven MTE-ASR
and the latter as ASR Driven MTE-ASR.

1.4 Iterative MTE-ASR

MTE-ASR seeks to improve the performance of automatic speech recognition
with the help of available resources in languages different from the ASR system
language by using machine translation to translate those resources into the ASR
system language. In the same manner, it is possible to improve the performance
of a MT system by using automatic speech recognition. A way to accomplish
such an improvement would be, for example, to use the translation transcrip-
tion provided by the target language ASR together with the source documents
and/or transcriptions of the source language ASR as additional training data.
This motivates the feedback loop of the iterative MTE-ASR system design de-

3
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Figure 1.2. Iterative MTE-ASR.

picted in Figures 1.1 and 1.2. It is noteworthy that for the ASR driven case
the improvement of the source language ASR and the target language ASR is
automatically combined by this iterative design (feedback loop).

1.5 Objective

Several successful MTE-ASR approaches have been developed in recent years to
provide professional translators with a high quality automatic dictation tool. A
short overview on those approaches is given in chapter 2. In chapter 3, several
basic MTE-ASR techniques that are based on those ideas are developed and
compared. Furthermore, the most promising techniques are combined and inte-
grated into the above described iterative MTE-ASR system design to examine
the feasibility of this iterative approach. This is done in chapter 4 for the docu-
ment driven case and in chapter 5 for the ASR driven case. As a consequence of
the iterative system design, several techniques are examined that improve the
performance of the involved MT systems with the help of the output provided
by the involved ASR systems.

4



Chapter 2

Related Work

Some publications on MTE-ASR for developing an automatic dictation system
for professional translators are available. However, given the fact that this is
a very specific application, the number of publications is relatively small. This
chapter gives a short, to the authors knowledge complete, overview of all these
publications.

2.1 The TransTalk Project

Dymetman et al. introduce in [2] a prototype version of their dictation tool
TransTalk. The translation direction is English to French and they assume
that the transcript of the English sentence is known for each spoken French
sentence. The prototype version operates as an isolated-word recognizer over a
20K French vocabulary. They achieve an average word error rate reduction of
24% relative over their baseline system by first using the isolated-word recognizer
to prune the 20K word search space to the n (20) most acoustically probable
words for each acoustic token and then performing a Viterbi search through the
remaining sentence candidates using the translation model together with the
available English source sentence.
Brousseau et al. describe in [5] version two and three of TransTalk. Version

two extends the n-best technique applied in the prototype version to continuous
speech recognition. The speech recognizer, which is based on a bi-gram language
model, produces a n-best list of French sentence hypotheses and the translation

word correct sentence correct
ASR with bi-gram LM 80.7% 4.0%
Rescoring with tri-gram LM 84.5% 8.7%
Rescoring with tri-gram LM and TM 86.0% 12.7%

Table 2.1. TransTalk version 2: Rescoring of ASR n-best hypotheses (n=200).

5



model, now interpolated with a tri-gram language model, is again used to select
one hypothesis. This system was tested on 300 Hansard sentences (6,639 words)
without OOV words and only up to 40 words per sentence. The results for
version 2 can be found in Table 2.1. It is reported that this approach takes
about 93 times real-time.
In version three, the translation model is used before recognition on a French
sentence to generate a dynamic vocabulary from the English sentence. The
recognizer vocabulary is then constrained to this dynamic vocabulary. The
used baseline ASR system runs at 15.8 times real-time and yields a 75.7% word
correct rate on the above described test set. Using a dynamic vocabulary with
2,000 words a run time of 5.4 times real-time and 77.1% word correct rate could
be accomplished.

2.2 Automatic Speech Recognition in Machine
Aided Translation

Brown et al. describe in [1] the possibility of combining speech recognition and
machine translation by formulating:

T̂ = arg max
T

P (T |A,S) = arg max
T

P (A|T )P (T )P (S|T ) (2.1)

T is the word sequence in the target language, S the word sequence in the
source language and A the sequence of acoustic feature vectors. This is identi-
cal to the fundamental equation of speech recognition (see equation 1.1) except
that the target language model P (T ) is now multiplied with the translation
model P (S|T ). Brown et al. deduce from this that machine translation can be
incorporated into speech recognition by ”some judicious fiddling with the lan-
guage probabilities.” On a test set of 1,000 Hansard sentences, they accomplish
a per-word perplexity decrease from 63.6 to 17.2 by augmenting their standard
tri-gram LM with translation model probabilities.

2.3 Cheating with Imperfect Transcripts

In [6] Placeway and Lafferty describe how closed-caption information can be
used to improve the quality of an automatic transcription system for television
broadcasts. The closed-caption information used is provided in the language of
the transcription system. The pursued approach is nevertheless analogous to
the MTE-ASR approach presented in [1], as the questions arises how a caption
(or rather the ”hint” a caption provides) H is being generated from a text W :

Ŵ = arg max
W

P (W |A,H) = arg max
W

P (A|W )P (W )P (H|W ) (2.2)

A is again the sequence of acoustic feature vectors. The used translation
model P (H|W ) computes the minimal string edit distance with words as units.

6



Standard LM Interpolated LM
Standard ASR 59.8% 47.8%
ASR + TM 28.5% 18.2%

Table 2.2. Cheating with Imperfect Transcripts: WERs for a NBC Nightly News transcrip-
tion.

This means that, during decoding, for each partial hypothesis the edit distance
to the caption is computed and added in an appropriate way to the score of
the hypothesis. It is reported that when keeping all other things equal, the
approach affects the search with a 10% slowdown, but that generally a modest
increase in overall speed can be observed due to pruning effects. In addition
to this approach, an interpolation of the language model with the text of the
closed-captions was taken into consideration. Table 2.2 shows the word error
rates (WER) for the transcription of a NBC Nightly News show from April
1995.

2.4 MT and Topic-Based Techniques to En-
hance Speech Recognition Systems for Pro-
fessional Translators

The vocabulary approach presented in the TransTalk project [5] was re-
investigated by Ludovik and Zarchaski [7]. For this, the vocabulary used by
two independent translators for the translation of 10 Spanish newspaper arti-
cles into English was compared to the vocabulary produced by a MT component.
Roughly 1/3 of the words used by the professional translators were not included
in the vocabulary produced by the MT. Another method examined in [7] used
the MT system for topic detection and then chose an appropriate, precomputed,
topic-specific language model. With this approach, the error rate of the English
ASR system could be reduced from 9.98% to 5.07%.

2.5 Summary

The presented MTE-ASR approaches differ in the way MT knowledge is used to
influence the ASR search process. The dynamic vocabulary technique restricts
the search space before the actual decoding. Language model interpolation, se-
lecting an appropriate topic specific LM through topic detection and the explicit
computation of translation probabilities during decoding (which again can be
seen as ”fiddling” with the LM probabilities), influences the search in itself as
the probabilities of the considered (partial) hypotheses are being changed. The
potential computational overhead, caused by an explicit computation of TM
probabilities, can possibly be staved off by pruning effects. Last, but not least,

7



rescoring the n-best ASR hypotheses with the help of MT knowledge does not
influence the ASR decoding process itself.

8



Chapter 3

Comparison of Basic
MTE-ASR Techniques

In this chapter, different basic MTE-ASR techniques that are based on the
approaches presented in chapter 2 will be introduced and compared. The term
basic refers here to the fact that the iterative MTE-ASR system design is not yet
taken into consideration. Therefore, only the baseline MT knowledge is used for
ASR improvement. Techniques to improve the MT component of the iterative
system are presented in chapter 4.

3.1 Experimental Setup

3.1.1 Scenario

The scenario considered for the examined ASR improvement techniques in this
chapter can be characterized as document driven and non-iterative:

MTST ASRT
transcript of 
translation

documents in source 
language (Spanish)

audio data in target
language (English)

Figure 3.1. Document driven, non-iterative MTE-ASR.
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3.1.2 Used Performance Metrics

The primary performance metrics used in this work are word error rate
(WER) for measuring ASR performance and BLEU score for measuring MT
performance. If not mentioned otherwise, the involved system components will
be tuned in regard to these primary performance metrics, i.e. the involved
ASR systems will be tuned in regard to WER and the involved MT systems
will be tuned in regard to BLEU score. In addition to WER and BLEU score,
NIST score and n-best word error rate (nWER) will be given. Throughout
this work the nWER is always given for n = 150. The BLEU and NIST scores
are given in regard to just one reference translation, namely the transcript of
the translation spoken by the human translator. BLEU and NIST score were
computed with the help of the MT evaluation tool mteval-v09c.pl which can be
downloaded from the NIST (National Institute of Standards and Technology)
homepage1.

The word error rate is based on the minimal edit distance between hypoth-
esis and reference sentence, this means it is based on the minimal number of
substitutions s, insertions i and deletions d necessary to transform the hypothe-
sis into the reference. With n the number of reference words, the WER is given
as:

WER =
s + i + d

n
∗ 100% (3.1)

The n-best word error rate is the minimal WER found within the n-best
hypotheses for a reference, i.e. the nWER is equivalent to the WER of the
n-best hypothesis with the best WER.

The BLEU score [8] computes the geometrical mean of the modified n-gram
precisions with n ∈ {1; 2; 3; 4} and applies a length penalty to translation
hypotheses that are shorter than the, in regard to its length, best matching
reference translation. The n-gram precisions are modified in a way to serve
the ”intuitive” demand for considering a reference n-gram as exhausted after a
matching candidate n-gram is identified. In its original definition, the BLEU
score ranges from 0 to 1, whereas a translation that is identical to a reference
translation attains a score of 1. However, throughout this work the BLEU
score will be given in the range form 0 to 100, i.e. multiplied by the factor 100,
as it is sometimes seen in MT related publications.

The NIST score [9] is a variation of the BLEU metric but instead of n-gram
precisions information-weighted n-gram counts are used, i.e. more informative
n-grams are weighted more heavily. The NIST score ranges from the worst
possible score 0 to a best maximal value that is dependent of the used reference
translations. As the transcripts of the human translator are used as reference
translation in this work, there is only one English reference translation for each

1http://www.nist.gov/speech/tests/mt/resources/scoring.htm
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WER nWER BLEU NIST
English Baseline ASR 12.6 6.5 82.9 10.8
Spanish to English MT 46.8 34.2 40.4 7.1

Table 3.1. English baseline ASR and Spanish to English MT performance.

Spanish sentence. It is therefore possible to compute the maximal possible NIST
scores on the used data sets by using the reference translations as translation
hypotheses. The in this manner computed maximal NIST scores can be found
in the following sections where the used data sets are described more closely.

3.1.3 Data

The used test data set (data set I) consists of 506 parallel Spanish and English
sentences taken from the bilingual Basic Travel Expression Corpus (BTEC). The
506 English sentences were presented four times, each time read by different
speakers. After removing some corrupted audio recordings, a total of 2,008
spoken utterances composed of 12,010 (798 different) words was taken as the
final data set. This equals 67 minutes of speech from 12 different speakers. The
complete data set was used for tuning the parameters of the described MTE-
ASR systems. Generalization accuracy over unseen data will be examined along
with the iterative MTE-ASR system design on a different test data set (data
set II) in chapter 4 and 5. The best possible NIST score on this data set (data
set I) is 12.1.

3.1.4 Baseline ASR

For the ASR experiments in this work, the Janus Recognition Toolkit (JRTk)
featuring the IBIS single pass decoder [10] was used. The sub-phonetically tied
three-state HMM based recognition system has 6 K codebooks, 24 K distribu-
tions and a 42-dimensional feature space on MFCCs after LDA. It uses semi-tied
covariance matrices, utterance-based CMS and incremental VTLN with feature-
space MLLR. The recognizer was trained on 180h Broadcast News data and 96h
Meeting data [11]. The back-off tri-gram language model was trained on the
English BTEC (not including the test data set), which consists of 162.2 K sen-
tences with 963.5 K running words from 13.7 K distinct words. The language
model perplexity on the data set described above is 21.6. The dictionary has
19.8 K entries (18.3 K without pronunciation variants), with the 13.7 K BTEC
words as a subset. No gain in recognition accuracy could be observed for re-
ducing the dictionary to the 13.7 K BTEC words; therefore, the original 19.8
K dictionary was kept. The OOV rate on the data set is 0.53%. After system
parameter tuning, a word error rate (WER) of 12.6% was achieved. N-best
WER, BLEU score and NIST score can be found along with the performance
values for the used Spanish to English MT system in Table 3.1.
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3.1.5 MT System

The ISL statistical machine translation system [12] was used for the Spanish to
English automatic translations. This MT system is based on phrase-to-phrase
translations (calculated on word-to-word translation probabilities), extracted
from a bilingual corpus, in our case the Spanish/English BTEC (not including
the test data set). It produces a n-best list of translation hypotheses for a given
source sentence with the help of its translation model (TM), target language
model and translation memory. The translation memory works as follows: for
each source sentence that has to be translated, the closest matching (in regard
to edit distance) source sentence is searched in the training corpus and extracted
along with its translation. In case of an exact match, the extracted translation
is used. Otherwise, different repair strategies are applied to find the correct
translation. The translation model computes the phrase translation probability
based on word translation probabilities found in its statistical IBM1 forward
and backward lexica regardless of the word order:

p(s|h) =
∏
j

∑
i

p(sj |hi) (3.2)

The word order of MT hypotheses is, therefore, appointed by the language
model and translation memory. As the same language model is used as in
the ASR baseline system, one can say that only the translation memory can
provide additional word order information for ASR improvement. The tuned
system gave a BLEU score of 40.35. Refer to Table 3.1 for the according NIST
score, WER and nWER.

3.1.6 Handling of MT OOV words

The MT system hands unknown Spanish words on without changing them. This
means the English translations can contain Spanish words. In the case of words
with identical orthography in English and Spanish (this is mostly the case for
proper names), it is, therefore, possible to reduce the OOV rate of the ASR
system by automatically computing the English pronunciations for unknown
MT words. The OOV rate of the ASR system could be reduced from 0.53% to
0.48% with this approach. However, no change in recognition accuracy could
be observed. Given the relatively low OOV rate, it is very unlikely to see any
significant gains with this approach on the described data set. For this reason,
no extension of the ASR dictionary with unknown Spanish words was done for
the experiments described in this work.

3.1.7 Used MT n-best List Sizes

The MTE-ASR approaches described in the following make use of the MT n-best
translation hypotheses in various ways. Therefore, the question of the optimal
n-best list size occurred frequently. It became apparent that for the successful
improvement techniques relatively small n-best list sizes, most of the times in the
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n Size of n-best Coverage of test Average number of
lists vocabulary set vocabulary different translations

1 810 72% 1
10 1159 80% 9.86
20 1393 83% 19.29
40 1669 85% 36.06
80 1967 86% 59.80

Table 3.2. Analysis of MT n-best lists over the complete data set.

range of [1; 40], but always well beneath n = 100, were sufficient. To motivate
this observation, a basic analysis of the MT n-best lists was done. This analysis
showed that with increasing n the n-best list vocabulary size increases notedly
faster compared to the coverage of the test set vocabulary. For details refer to
Table 3.2.

3.2 Vocabulary Restriction

In the related work presented in chapter 2 inconsistent results have been re-
ported for restricting the search space of the ASR system by restricting its
vocabulary. The success of this approach is highly dependent on the quality of
the automatically created translations compared to the spoken translations that
are to be recognized. Even if the MT would produce ”perfect” translations in
respect to reference translations given by another human translator, restricting
the ASR vocabulary in the hope to minimize the room for possible recognition
errors may be more damaging than helping if the spoken translations differ too
much from these reference translations.
To examine the usability of vocabulary restriction on the given system config-
uration, the baseline ASR system was restricted to the words found within all
MT n-best lists, i.e. the vocabulary was not dynamically computed for each
sentence as in [5]. For an MT n-best list of size n = 1, a WER of 26.0% was
achieved, which continuously decreased with larger n, reaching a WER of 19.6%
for n = 150. A lower bound of 15.0% for n → ∞ was computed by adding all
OOV words to the n = 150 vocabulary. None of these vocabulary restricted
ASR systems could outperform the baseline system. Therefore, the vocabulary
restriction approach was not further pursued.

3.3 Language Model Interpolation

Two different approaches were examined to adapt the English baseline ASR
language model to the used data set by applying LM interpolation. First, the
baseline ASR language model was interpolated with a small back-off tri-gram
language model computed on all MT n-best lists that were created for the
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Spanish sentences. Second, for each English sentence a separate interpolated
LM was dynamically computed by interpolating the baseline LM with a small
back-off tri-gram language model computed on the one MT n-best list that was
created for the respective Spanish sentence. In the following the first approach
will be referred to as ”standard language model interpolation” and the second
as ”dynamic language model interpolation”.

3.3.1 Standard Language Model Interpolation

For these experiments 10% of the English sentences found in the BTEC were
randomly selected as held-out data set and a new English baseline LM was
computed on the reduced BTEC. The interpolation weight w of the small MT
language model was automatically computed with tools provided by the SRI
Language Modeling Toolkit [13] so that the perplexity on the 10% held-out data
set became minimal. The in this manner found best interpolation parameters
were n = 30, w = 0.2035. The perplexity of the interpolated LM on the test
data set was now 17.0, the WER was 11.9%.
In addition to the described experiment the development of the WER for using
different values of n and w when interpolating the original baseline LM, as it was
described in section 3.1, was examined. The best setting for the interpolation
weight, based on the average WER (averaged on WERs for the different used
values of n), was w = 0.2. The best setting for the MT n-best list size, again
based on the, accordingly for different values of w computed average WER,
was n = 30. This is in compliance with the results from the first experiment.
Figure 3.2 (a) shows the average WERs for the different interpolation weights
and Figure 3.2 (b) shows the average WERs for the different n-best list sizes.
The system with w = 0.2, n = 30 had a WER of 11.62%. The best parameter
setting based on the absolute WER (not the average WER) was w = 0.2, n = 20
and yielded a WER of 11.60%. This is an absolute gain of 1.0% compared to the
baseline WER of 12.6%. The MT word context information given in the MT
n-best hypotheses could, therefore, successfully be applied to adapt the baseline
LM resulting in an improved ASR recognition performance.

3.3.2 Dynamic Language Model Interpolation

The idea behind dynamic LM interpolation was to make additional use of the
available alignment information: for each English sentence the corresponding
Spanish sentence is known. With this knowledge it is possible to further adapt
the LM to each individual English sentence by dynamically computing an in-
terpolated LM for each sentence with the help of its MT n-best list. No gain
in performance compared to the baseline system could be observed for this ap-
proach. The best interpolation weight (in regard to WER) was again w = 0.2,
but the best MT n-best list size was with n = 90 now three times as high as
for the non-dynamic case. The system with these settings yielded a WER of
13.2%. The higher MT n-best list size can be explained by the less of available
adaption data, i.e. to compensate the missing information that is additionally
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Figure 3.2. Average WERs for LM interpolation.

given when using all MT n-best lists the size of the used MT n-best list has to
be increased. However, this compensation is accompanied with the use of lower
ranking translation hypotheses that are of a smaller value for the LM adaption.

3.4 Hypothesis Selection by Rescoring

The n-best WER found within the ASR 150-best lists of the baseline system is
6.5% showing the huge potential of rescoring the ASR n-best lists. In contrast
to this, no such potential is evident for rescoring the MT 150-best lists as only
a minimal WER of 34.2% can be achieved on these. However, when combining
the n-best lists of ASR and MT, the nWER reduced to 4.2% which proves that
complementary information is given in the n-best lists of both components. In
fact, a performance gain could be observed for enriching the ASR 150-best lists
with the first best MT hypothesis prior to rescoring.

All rescoring experiments mentioned in this work use ASR 150-best lists
that are enriched with the first best MT hypothesis, i.e. there are up to 151
hypotheses in the n-best lists used for rescoring.

The applied rescoring algorithm computes new scores (negative log-
probabilities) for each sentence by summing over the weighted and normalized
translation model score, language model score, and ASR score of this sentence.
To compensate for the different ranges of the values for the TM, LM and ASR
scores, the individual scores in the n-best lists were scaled to [0; 1].

sfinal = s′
ASR + wTM ∗ sTM + wLM ∗ sLM (3.3)
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The ASR score output sASR by the JRTk is an additive mix of acoustic score,
weighted language model score (with the weight lz), word penalty lp and filler
word penalty fp. The language model score within this additive mix contains
fixed discounts for special words or word classes.

sASR =sacoustic + lz ∗ (sLM −DiscountsForSpecialWords)
+ lp ∗ nwords + fp ∗ nfillerwords

(3.4)

The rescoring algorithm allows to directly change the word penalty, and
the filler word penalty added to the acoustic score. Moreover, four new word
context classes with their specific LM discounts are introduced: MT mono-, bi-,
tri-grams and complete MT sentences. MT n-grams are n-grams included in
the MT n-best list of the respective sentence; MT sentences are defined in the
same manner. The ASR score in equation 3.3 is, therefore, computed as:

s′
ASR =sASR + lp′ ∗ nwords + fp′ ∗ nfillerwords

−md ∗ nMTmonograms − bd ∗ nMTbigrams

− td ∗ nMTtrigrams − sd ∗ δisMTsentence

(3.5)

Parameter optimization was done by manual gradient descent. The best para-
meters turned out to be wTM = 0.2, wLM = 0.4, md = 58, fp′ = −35, n = 20,
and all other parameters set to zero (the baseline system had a LM weight of
lz = 32 and the settings lp = −5, fp = 25). The parameter n assigns the size of
the MT n-best lists used for defining the above mentioned word context classes.
The system yielded a WER of 10.5%, which corresponds to a relative reduc-
tion of 16.9%. The MT is not able to produce/score non-lexical events seen in
spontaneous speech. This accounts for the negative rescoring filler penalty of
fp′ = −35; the ASR score has to compete with the filler penalty free TM and
LM scores during rescoring.
This approach offers a successful way of applying MT knowledge for ASR im-
provement without changing the ASR system. MT knowledge is applied in two
different ways; by computing the TM score for each individual hypothesis and
by introducing new word class discounts based on MT n-best lists. Of the word
class discount parameters only the mono-gram discount is different from zero.
This shows that the word context information provided by the MT is of lit-
tle value to the ASR. On the other hand, the mono-gram discount contributes
largely to the success of this approach: the best WER found without any word
class discounts was 11.5%. Thus, the MT is not very useful for getting additional
word context information, but very useful as a provider for a ”bag of words,”
that predicts which words are going to be said by the human translator.

3.5 Cache Language Model

Since the mono-gram discounts have such a great impact on the success of
the rescoring approach, it is desirable to use this form of MT knowledge not
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Figure 3.3. Average WERs for the cache LM approach.

only after, but already during ASR decoding. This will influence the prun-
ing applied during decoding in a way that new, correct hypotheses can be found.

A classical cache language model has a dynamical component (a ”cache”)
that remembers the recent word history of m words to adjust the language model
probabilities based on this history. Similar to this definition, the cache LM used
in this experiment has a dynamically updated ”cache” and the LM probabilities
are influenced based on the content of this cache. However, the cache is not
used to remember the recent word history but to hold the words (mono-grams)
found in the respective MT n-best list of the English sentence that is being
decoded at the moment. This cache LM was realized by taking advantage of
the in the JRTk given possibility to define language model discounts for special
words or word classes (compare equation 3.4), i.e. the cache LM was realized
by introducing the word class MT mono-gram in the same manner as in section
3.4 but now defining its members dynamically during decoding. Resulting from
this proceeding, two cache LM parameters have to be adjusted: the MT n-best
list size n and the log probability discount d of the word class MT mono-gram.

In addition to testing different cache LM parameter settings, different
settings for lz, lp and fp were taken into consideration. It could be observed
that the optimal values for these parameters are interdependent, i.e. the best
performance can be expected when tuning all of these parameters together.
However, for all reasonable settings of lz, lp and fp (settings with a good
performance on the baseline system), settings for the cache LM parameters
n and d could be found that yielded similar good word error rates. The best
performing system used the settings: n = 20, d = 1.3, lz = 32, lp = 10 and
fp = 40. It had a WER of 10.4%. Figure 3.3 shows the average word error
rates for different n-best list sizes and different log probability discounts.
This approach yields a similar performance as the rescoring approach, but in

contrast to the rescoring approach, only two parameters have to be tuned (as
mentioned above was the additional tuning of lz, lp and fp of less importance).
Moreover, the expectation to find new, correct hypotheses could be fulfilled;
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the nWER for the Cache LM system output was now 5.5% in comparison to
6.5% of the baseline system.

The applied method was quite simple: a fixed LM probability discount was
used for all MT mono-grams. A more sophisticated approach would be, for
example, to increase the probabilities of words that occur very often in the
respective n-best list by a greater value than the probabilities of words that
occur less often. Some additional experiments referring to this idea have been
done but were not further pursued because of their small gain in performance.
Descriptions for these experiments can be found in appendix A.

3.6 Combination of Different Techniques

The MTE-ASR techniques examined so far applied different forms of MT knowl-
edge with varying success. For example, language model interpolation used MT
word context information found within the MT n-best lists in the form of tri-
grams (and bi- and mono-grams for back-off). In contrast to this, the cache
LM approach only used MT mono-grams. Therefore, the question arises if it
is possible to further improve the recognition accuracy by a combination of the
introduced techniques. Several experiments for a direct, non-iterative combina-
tion of the MTE-ASR procedures described so far were performed. For all these
experiments, the parameters for word penalty, filler word penalty and language
weight were fixed to lz = 32, lp = 10 and fp = 40.

3.6.1 Cache + Interpolated LM

For combining the cache and interpolated LM schemes a minimal WER of 10.1%
was obtained when using the cache LM parameters nc = 20, d = 1.4 and the in-
terpolation LM parameters w = 0.1, ni = 60. This is only a small improvement
compared to the cache LM. We can argue that the MT context information used
within the interpolated LM is of little value and that the success of the interpo-
lated LM approach is largely due to mono-gram backing-off. As the cache LM
approach is already based on MT knowledge provided through MT mono-grams,
the combination with the interpolated LM can only yield small improvements.

3.6.2 Hypothesis Selection on Cache LM System Output

For this experiment, the rescoring algorithm described above was used on the n-
best lists produced by the best found cache LM system. The best WER found
was 9.35% when using the parameter setting wTM = 0.075, wLM = 0.025,
bd = 2, sd = 2, fp′ = −20, lp′ = 5, n = 20 and all other parameters set to
zero. The WER is only slightly different if no word class discounts are used.
This can be explained by the fact that MT knowledge in the form of mono-gram
discounts is already optimally used by the cache LM. Moreover, when keeping all
rescoring parameters fixed to zero except for the translation model weight wTM ,
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Rescoring using best WER parameter settings
- 10.34 -

only fp′,lp′ 10.30 fp′ = −10, lp′ = 5
only wLM 10.28 wLM = 0.025

only fp′,lp′ and MT 10.03 bd = 18, n = 20
n-gram discounts fp′ = −10, lp′ = 5

only wTM 9.55 wTM = 0.075
wTM = 0.075, wLM = 0.025,

all parameters 9.35 bd = 2, sd = 2, n = 20,
fp′ = −20, lp′ = 5

Table 3.3. Rescoring on cache LM system output which had a WER of 10.41%. The results
are given in regard to different parameter settings. Unlisted parameters were set to zero.
The decline in WER for keeping all rescoring parameters fixed to zero can be explained by
the positive effect of enriching of the ASR 150-best list with the first best MT hypotheses.

a minimal WER of 9.55% was accomplished, again for wTM = 0.075. Vice versa,
when keeping the translation model weight fixed to zero, a minimal WER of
10.03% was accomplished for the parameter setting bd = 18, fp′ = −10, lp′ = 5,
n = 20 and all other parameters zero. This shows that, although wTM = 0.075
is comparatively low, primarily the discriminative capabilities of the TM lead to
a further reduction in WER. In this context it is interesting to note, that the MT
bi-gram discount is now more heavily weighted. This can be explained by the
fact that TM score and MT n-gram discounts only are different representations
of MT knowledge: the TM score is an implicit part of the MT n-grams as it
decides out of which words an MT n-gram is formed. Furthermore, the TM score
has a great impact on the ranking of the n-best hypotheses within the MT n-
best lists. Therefore, by using only the bi-grams of the 20-best MT hypotheses,
the TM score is again implicitly applied. The now more heavily weighted MT
bi-grams are only in part responsible for the decrease of the WER from 10.41%
for the cache LM to now 10.03%. Two more factors influence this decline in
WER: the positive effect of enriching the ASR 150-best list with the first best
MT hypothesis and the rescoring due to changing the ASR system parameters
fp′ and lp′. When keeping all rescoring parameters fixed to zero, which is
equivalent to only using the ASR score, the WER decreases to 10.34%, which
is due to the additionally used first best MT hypotheses. When only using fp′

and lp′ for rescoring the WER further decreases to 10.30%. This shows that
rescoring in regard to the ASR system parameters fp′ and lp′ yields only small
gains in recognition accuracy. This was to be expected, as these ASR system
parameters were already tuned for the baseline ASR system and re-adjusted for
the cache LM system. Finally it should be noted that only a minimal decline
in WER to 10.28% can be accomplished by only adjusting the language model
weight wLM . This is due to the fact that the ASR score already includes the LM
score and that the language model weight lz was already tuned for the baseline
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ASR system. An overview on the mentioned results and parameter settings can
be found in Table 3.3. In summary it has to be noted that the additionally
computed TM score has the greatest impact on the success of the subsequent
rescoring of cache LM system output.

3.6.3 Hypothesis Selection on Cache + Interpolated LM
System Output

When performing the hypothesis selection on the cache and interpolated LM
system output, a WER of 9.7% could be achieved for wTM = 0.12, wLM = 0.15,
fp′ = −10, lp′ = 5, n = 20, sd = 2.5 and all other parameters zero. This WER
is higher than the WER for hypothesis selection on the cache LM output.
A more elaborate attempt to explain this fact will be given in the following
summarization (section 3.7). At the moment it should be only noted that
the difference in WER compared to rescoring on cache LM system output is
statistically insignificant.

For testing statistical significance a sentence based T test against 5% is used
throughout this work.

3.7 Summarization

The LM interpolation approach uses MT context information in the form of
tri-grams (and bi- and mono-grams for back off). The small gain in WER,
compared to the rescoring and cache LM approach, can be explained by the
small value of the MT context information for ASR improvement.
Two forms of MT knowledge are very successfully applied by the hypothesis
selection approach:

- MT mono-grams: the MT acts as a provider of a ”bag of words,” thereby
stating these words as likely to be seen in the translation of the human
translator. However, no information on the translation probability of the
individual words is given.

- TM scores: the TM scores constitute the word order independent sentence
translation probability.

In addition to that, it is possible to incorporate MT context information in
the form of bi-, tri-gram and sentence discounts. However, for rescoring the
baseline ASR output no gains in performance could be observed in doing
so. For higher bi-, tri-gram and sentence discounts, a rapid deterioration in
recognition accuracy could be observed. This again proofs the small value of
the MT context information for ASR improvement. The great advantage of
the rescoring approach only to operate on the ASR output without changing
the ASR process in itself, is also its most apparent disadvantage: the success
of the approach stands and falls with the quality of the ASR n-best lists.
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The cache LM approach inherits the way the ”bag of words”-knowledge is used
from the rescoring approach. In doing so, it is not only capable of providing
similarly good (even slightly better, although statistically not significant)
results, but it also produces ASR n-best list with a lower n-best WER (and a
lower average WER). These n-best lists, therefore, offer once again a promising
basis for hypothesis selection by rescoring with its ability to easily apply
the above mentioned additional forms of MT knowledge. In fact, hypothesis
selection on cache LM n-best lists yields the best results with a WER of 9.4%.
This is equivalent to a BLEU score of 86.8 and a NIST score of 11.1 on the
used data set.
No absolutely satisfying explanation could be found for why rescoring of cache
+ interpolated LM output does not provide the same or even slightly better
results as rescoring on cache LM output. Considering this discrepancy in
performance it has at first to be noted that the observed difference in WER of
about 0.4 absolute is statistically not significant on this data set. However, one
possible explanation goes as follows; the LM interpolation weight was chosen
in regard of the WER produced by the combination of cache and interpolation
scheme and not in regard of the WER produced by an additional rescoring. As
already stated, it is not desirable to make overly use of MT context information,
which is of course inherent to the interpolated LM in the form of tri- and
bi-grams. The damaging influence of this MT context information becomes
apparent in the additional rescoring. For the successful combination of cache
LM and interpolated LM, one can argue that the TM score, which is implicitly
given in the MT n-best lists by the positioning of the individual hypotheses,
is to be credited. ASR hypotheses equal to the n-best MT hypotheses are
favored by the interpolated LM. This once again shows another aspect of why
the additional rescoring may not be as successful; during rescoring, the TM
score of the ASR hypotheses is considered along with their ASR and LM score.
However, when using an interpolated LM, the ASR hypotheses equivalent or
similar to the MT n-best hypotheses used for LM interpolation already have an
implicit share of the TM score in their LM and ASR score and are potentially
overly favored.

Table 3.4 gives an overview on the performance of the described basic MTE-
ASR techniques.
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Technique WER Relative Gain
Baseline ASR 12.6 0.0%
Vocabulary Restrictions > 15.0 -19.0%
Dynamic LM Interpolation 13.2 -4.8%
LM Interpolation 11.6 8.0%
Hypothesis Selection (on Baseline) 10.5 16.9%
Cache LM 10.4 17.6%
Cache & Interpolated LM 10.1 20.0%
Hypothesis Selection on Cache & Interp. LM 9.7 23.0%
Hypothesis Selection on Cache LM 9.4 26.0%

Table 3.4. Comparison of basic MTE-ASR techniques.
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Chapter 4

Document Driven Iterative
MTE-ASR

In this chapter, it is at first examined which of the basic MTE-ASR systems
introduced in chapter 3 are most suited for an integration into the document
driven iterative MTE-ASR system design depicted in Figure 4.1. This system
component selection is done in section 4.1 with the help of the data set used so
far. As the iterative design is based on an additional improvement of the involved
MT component, the examinations will also include different MT improvement
techniques that will be introduced at the beginning of section 4.1. Based on the
results of this system component selection, a final iterative system design will
be derived and then re-investigated on a second data set.

MT
S®T

ASR
T

transcript of 
translation

documents in source 
language (Spanish)

audio data in target
language (English)

iteration

Figure 4.1. Document driven iterative MTE-ASR.
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4.1 System Component Selection

The scenario for which the basic MTE-ASR techniques of chapter 3 were devel-
oped is equivalent to iteration 0 of the document driven iterative system design.
Therefore, it is convenient to start iteration 1 with the output provided by one
of the described basic MTE-ASR systems. Hypothesis selection on cache LM
yielded not only the best first best hypotheses, i.e. the best WERs, but also
the most promising n-best lists in regard to nWER and average WER. For this
reason, hypothesis selection on cache LM was greedily selected as vantage point
for iteration 1.
The used data set (refer to chapter 3 for a closer description) was read four
times. This means that, after iteration 0, there are four different ASR n-best
lists containing English translation hypotheses for each Spanish source sentence.
Using all of these four lists for the following iterations would change the iter-
ative system into some sort of a voting system that choses between the n-best
hypotheses provided by four ASR passes. For this reason, the data set was split
into four disjoint subsets. Based on these four subsets, four different iterative
MTE-ASR systems had to be examined. However, if not stated otherwise, only
the average performance, calculated on the four individual system results, is
presented in the following.

4.1.1 MT System Improvement

An important part of the iterative system design is the improvement of the MT
system component with the help of the ASR output computed in the preced-
ing iteration. Three approaches for MT improvement have been investigated,
namely interpolating the MT target LM with a small ASR language model com-
puted on the ASR n-best lists, retraining the MT system with the ASR n-best
lists as additional training data and combining these two methods. An overview
on the performance gains of the individual MT improvement techniques is given
in Table 4.1. In the following, the three approaches will be shortly described.
At the end of this section, the results will then be evaluated in the given MTE-
ASR context, i.e. in the context of a further improvement of the English ASR
system.

Language Model Interpolation

In a first experiment, the optimal settings for the ASR n-best list sizes and the
interpolation weight of the small ASR language model were computed for each
of the four systems by minimizing the perplexity on the complete English data
set. For all four systems, the settings were n = 10 and w in the range of [0.915;
0.944]. The average performance was BLEU = 53.1.
In a second experiment, the average performance was computed for different
combinations of ASR n-best list sizes and interpolation weights. The optimal
settings in regard to BLEU score (as well as in regard to WER and nWER)
were now n = 3 and w = 0.8 which yielded an average performance of BLEU
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BLEU NIST WER nWER
Baseline MT 40.4 7.1 46.8 34.2
LM Interp 53.4 8.3 35.0 26.0
Updated Translation Memory
- Retraining 70.2 9.9 21.4 7.0
- Combination 84.7 10.9 10.2 6.5
Fixed Translation Memory
- Retraining 42.1 7.3 45.4 30.0
- Combination 54.2 8.4 34.8 25.8

Table 4.1. Comparison of MT improvement techniques.

= 53.4. Overall a similar MT performance (less than 4% relative deviation in
BLEU and NIST score and less than 8% relative deviation in WER and nWER)
could be observed for n-best lists of size 1 ≤ n ≤ 10 and interpolation weights
of 0.6 < w < 1.0.

Retraining

For retraining, new IBM1 lexica (forward and backward lexicon) were computed.
This was done by adding the ASR n-best lists together with their respective
source sentence several (x) times to the original training data. Two sets of
experiments were run: the first with the translation memory fixed to the original
training data and the second with an updated translation memory. In both
cases, it turned out that the parameter range yielding best performances was
1 ≤ n ≤ 5, 1 ≤ x ≤ 4. The best performance in regard to BLEU score (as
well as WER and NIST score) was found for the parameters n = 1 and x = 4
(fixed and updated translation memory). The system with the fixed translation
memory gave a BLEU score of 42.1. The system with the updated translation
memory yielded BLEU score of 70.2.

Retraining Combined with LM Interpolation

The above described systems for LM interpolation and retraining were com-
bined. The range for the parameter settings with the best performance was
equal to the parameter ranges described for the individual systems. The best
parameter setting was nLM = 1, i = 0.9 for LM interpolation and nRT = 1,
x = 1 for retraining. Using a fixed translation memory, a BLEU score of 54.2
was computed. Updating the translation memory improved the performance to
a BLEU score of 84.7.

Conclusions

The combined approach of language model interpolation and retraining provides
the best results, both for keeping the translation memory fixed and for updating
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the memory, whereas the influence of the retrained IBM1 lexica is only small
compared to the interpolated language model and the updated translation
memory. As the objective was to further improve the recognition accuracy of
the English ASR system by an improvement of the MT performance it seems
appropriate to chose the MT improvement technique yielding the best MT
performance, namely the combination of LM interpolation and retraining with
an updated translation memory. However, the basic idea behind MTE-ASR
was that it should be possible to improve the ASR system with the additional
complementary knowledge provided by the MT system. But when using an
updated translation memory one can argue that the complementary information
given in the MT n-best lists is being strongly minimized by updating the
translation memory. The updated memory sees to it that the ASR n-best
hypotheses added to the training data are part of the newly created MT n-best
lists. Moreover, if only the added ASR hypotheses are present as translation
examples, and if nMT ≤ nASR, then we can speak of a simple rescoring of
the ASR hypotheses by the translation model and the language model when
using an updated translation memory. In the context of our iterative system
design, which is aimed at a further improvement of the ASR with additional
complementary MT knowledge, it is, therefore, possible that updating the
translation memory is more damaging than helping. To prove or disprove this
theoretical consideration, the combination of LM interpolation and retraining
with a fixed/updated translation memory was considered for MT improvement.
As we will see in section 4.2.2, it is in fact more effective to keep the translation
memory fixed for further improvement of ASR recognition accuracy.
A more sophisticated approach than just not to update the translation memory
would be a ”cautious” updating of the memory with the help of a reliable
confidence measure. Given such a confidence measure, it would be possible to
update the translation memory only with ASR translation hypotheses that are
most likely correct. That way, it should be possible to further improve the
MT component without losing valuable MT knowledge. This approach was not
examined in this work due to a lack of time.

As so mentioned above, it was necessary to split the data into four disjoint
subsets as not to make use of the additional information provided by the fact
that the data set was read four times. In realistic application scenarios, it is in
fact highly unlikely to have the audio stream of several translators at hand that
are translating into the same target language. Nevertheless, this scenario was
examined for MT system improvement. When using all available ASR n-best
hypotheses of the effective four ASR passes along with an updated translation
memory, a BLEU score of 90.0 could be accomplished (the NIST score was 11.4,
the WER was 5.8% and the nWER was 2.1%). This shows the high ability of
the translation model to function as a voting mechanism in the case of multiple
translation hypotheses provided by automatic speech recognition on multiple
target audio streams.
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Figure 4.2. Iteration 1: Examined System Component Combinations & Respective WERs

4.1.2 Iteration Results

Based on the insights gained so far, the combined MT improvement technique
with a fixed or updated translation memory and the ASR improvement tech-
niques ”rescoring on cache LM system output” and ”rescoring on cache + in-
terpolated LM system output” seem to be most promising for the following
iterations. For iteration 1, the resulting four combinations together with their
respective WERs are shown in Figure 4.2. No significant word error rate re-
duction, compared to iteration 0, could be observed. The same was true for
iteration 2; therefore, no further iterations have been carried out.
The parameter settings1 used for iteration 1, again found by manual gradient
descent, are shown in Table 4.2. The better performance of the MT system
with the updated translation memory is reflected in the smaller MT n-best list
sizes n (nc, ni), the slightly higher probability discounts d and the higher LM
interpolation weight w. The smaller amount of MT knowledge applied in the
case of the cache LM system without LM interpolation is being compensated
by higher TM weights wTM and higher MT n-gram discounts (bi-gram discount
bd and sentence discount sd).

4.1.3 Conclusions

The difference in word error rate for the examined component combinations was
to small to a allow a justified decision for one of these combinations. Moreover,
no significant reduction of WER was seen for applying the iterative scheme. One
possible explanation for both observations could be the fact that the complete
data set was used for system parameter tuning. Especially when looking at the
relatively high number of parameters used for rescoring on cache LM output,

1Although there were in fact four separate systems, one per data subset, the same settings
were used for all four systems.

27



Updated Transl. Memory Fixed Transl. Memory
Cache LM n = 1, d = 1.5 n = 20, d = 1.3
Rescoring wTM = 0.225, wLM = 0.1, wTM = 0.175, wLM = 0.1,

fp′ = −20, lp′ = 5, fp′ = −17.5, lp′ = 10,
n = 20, bd = 2, sd = 6 n = 20

Cache + nc = 1, d = 1.4, nc = 20, d = 1.3,
Interpol. LM ni = 5, w = 0.1 ni = 10, w = 0.05
Rescoring wTM = 0.125, wLM = 0.15, wTM = 0.15, wLM = 0.1,

fp′ = −35, n = 20 fp′ = −35, n = 20

Table 4.2. Parameter settings for iteration 1. Unlisted parameters were set to zero.

it is questionable if the same very good performance can be accomplished on
unseen data not used for parameter tuning. One could, therefore, argue that
the possibly unrealistically good rescoring performance excels potentially given
positive iteration effects as well as differences in the examined component com-
binations. In this context, it should be noted that the slightly more visible
differences in WER for the ASR output in iteration 1 become clearly smaller
after rescoring.
Another possible reason for the failure of the iterative approach could be the
very good match of the used data set and the baseline language model. The
perplexity of the LM on the data set was very low (21.60). Therefore, room
for further improvements by applying word context knowledge provided by the
improved MT system is relatively small.

4.2 Final System

4.2.1 Experimental Setup

Final System Design

The results gained so far for the different system component combinations in-
troduced in 4.1 do not allow a justified decision for one of these combinations.
For this reason, all of these combinations will be re-investigated.

Data

The second data set consists of 500 English and Spanish sentences in form and
content close to the BTEC. The English sentences were read 4 times, each time
by 5 different speakers with 10 speakers overall. The data was split into four
parts so that each sentence occurred just once per subset. Overall, there were
four MTE-ASR systems, one per subset. One tenth of each subset was randomly
selected as held-out data for tuning the parameters of the respective MTE-ASR
system. The final performance was measured over the complete output of all
four systems. Because of some flawed recordings, the reduced data set consisted
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WER nWER BLEU NIST
Baseline ASR 22.3 10.3 68.0 9.6
Baseline MT 50.1 34.5 32.5 6.9

Table 4.3. Performance of baseline components on data set II.

only of 1,747 sentences composed of 13,398 (959 different) words. The audio
data equals 68 min. The best possible NIST score on this data set is 12.3.

Baseline Components

The same baseline systems (ASR and MT) were used as for the experiments
on the first data set (refer to 3.1 for a closer description). The OOV rate of
the ASR system on the second data set was now 0.51%. The perplexity of the
language model used by both baseline systems was now 85.2 on the new data
set and, thereby, approximately four times higher than on the first data set.
Table 4.3 gives an overview on the baseline performance.

4.2.2 Iteration Results

The system component combinations for iteration 1, introduced in section 4.1.2,
were based on the use of the cache LM system without language model inter-
polation in iteration 0. With the given higher perplexity of the baseline LM on
data set II, the question arises if it is still reasonable to forgo language model
interpolation in iteration 0 as it was done on data set I. It turned out that sim-
ilar results could be observed in iteration 0 on data set II. The combination of
cache LM and interpolated LM yielded a better word error rate than the cache
LM system alone; however, rescoring on cache LM system output finally led to
the best WER:

WER nWER BLEU NIST
Cache LM 18.2 7.5 72.6 10.0
Rescoring 15.5 7.5 76.5 10.4
Cache + Interpol. LM 16.9 8.0 74.3 10.2
Rescoring 15.9 8.0 76.3 10.4

Table 4.4. Results for Iteration 0 on data set II.

Therefore, the same component combinations were taken into consideration
as before. Figure 4.3 shows the respective word error rates on data set II for
iteration 1. No noteworthy changes in word error rate could be observed for
iterations > 1. In general, better ASR results can be gained when working
with a fixed translation memory. The loss of MT knowledge when updating the
translation memory, which was already mentioned in 4.1.1, becomes not only
evident in the first best word error rates of the respective systems, but also
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Figure 4.3. WERs of different component combinations on data set II.

in their n-best WERs. An updated translation memory forces the MTE-ASR
systems in iteration 1 towards the n-best ASR hypotheses of iteration 0 which
were used for updating the memory. Therefore, the nWERs for the systems
based on an updated translation memory increase significantly (approaching the
first best WERs), while the nWERs remain constant for the fixed translation
memory systems. This nWER development is depicted in Figure 4.4 for the
cache + interpolated LM systems.
The reasons for the better performances of the cache + interpolated LM systems
compared to the cache LM systems can be found in the improved MT context
information as well as in the higher mismatch between baseline language model
and data set II. Based on its superior performance, the combination of fixed
translation memory and cache + interpolated LM was picked as final document
driven iterative MTE-ASR system. This final system had a WER of 13.9%, a
nWER of 7.6%, a BLEU score of 78.6 and a NIST score of 10.6. A summarizing
overview on the performance of the final system components is shown in Figure
4.5.

It should be kept in mind that the data was split into four parts so as
not to make use of additional information provided by the fact the data was
read four times overall. This means there were in fact four final systems, one
subsystem per subset. The used parameter settings2 for each subsystem were
again found by manual gradient descent, but now on the 10% held-out data
randomly chosen from each of the four data subsets, i.e. parameter tuning was
done for each of the four subsystems separately. For this reason, there were
always only up to fifty sentences used for parameter tuning. Nevertheless, the
found parameter settings always yielded a good performance. This fact may be
surprising, especially when looking at the relatively high number of parameters

2The parameter settings for the final subsystems can be found in appendix C.
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Figure 4.5. Final document driven iterative MTE-ASR system - results for data set II.

used for rescoring. At first, it has to be noted that all parameter settings
were always searched within the ranges that turned out to be useful in the
experiments done on data set I. Moreover, it has to be mentioned that the main
focus for rescoring parameter tuning was on the translation model weight, as
this parameter turned out to be the most important parameter when applying
rescoring on output provided by an ASR system using the cache LM scheme.
This may be, in part, explained by the fact that the tuning of the language
model weight, the word penalty and the filler word penalty were also taken
into consideration when tuning the cache LM together with the interpolated
LM parameters. As for the rescoring parameters apart from the translation
model weight, these were only changed from zero (zero means no rescoring in
respect to this parameter) if high differences in WER could be observed and if
the changes seemed ”plausible” (whereas ”plausibility” was up to the authors,
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certainly subjective, consideration).

A significant difference in WER could be observed for the four iterative
MTE-ASR subsystems on their respective data subset. The best baseline WER
was 18.5%, the worst was 25.4%. This very high difference of 11.9% absolute
is to be explained by the different speakers. The data subset of the subsystem
with the lower WER happened to be read only by speakers with a relatively
good articulation. It could be observed that the subsystem suffering from a
bad articulation profited the most from the additional knowledge provided by
the MT. Its relative gain in WER was 42.4% after iteration 1, compared to a
relative gain of 35.3% for the other subsystem. The maximal absolute difference
in WER between the four subsystem was now only 3.4%. Figure 4.6 shows the
the WERs of the four subsystem up to iteration 1.

4.2.3 Conclusion

Even though a very high relative gain of 30.6% in WER compared to the baseline
ASR system could be accomplished for the non-iterative approach (iteration 0),
the relative gain could be further increased to 37.7% for the iterative approach
(iteration 1). This shows that the iterative approach could be successfully ap-
plied in the document driven case to further increase the recognition accuracy.
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Chapter 5

ASR Driven Iterative
MTE-ASR

This chapter is structured in the same manner as the chapter for the document
driven case. At first, the most promising system component combination will
be selected for the ASR driven iterative MTE-ASR depicted in Figure 5.1. This
is done in section 5.1 with the help of a first data set. The resulting final system
is then re-investigated in section 5.2 using a second data set.

5.1 System Component Selection

5.1.1 Experimental Setup

Data

The data set used for these experiments corresponds to data set I of the doc-
ument driven case, i.e. the same 506 parallel Spanish and English sentences
were used. The data was now read only two times, each time by three Span-

MTST ASRT

audio data in source 
language (Spanish)

audio data in target
language (English)

MTTSASRS

transcript of 
translation

iteration

transcript of speech
in source language

Figure 5.1. ASR driven iterative MTE-ASR.
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WER nWER OOV Perplexity
English Baseline ASR 13.5 7.4 0.56% 21.9
Spanish Baseline ASR 15.1 8.4 3.20% 75.5

Table 5.1. Performance characteristics of the baseline ASR systems on data set I.

ish1 and three English speakers. As a consequence, the data had to be split in
two separate parts, and all experiments were run on two separate MTE-ASR
systems. The performance values are once again computed on the complete
output of both subsystems. Ten percent of the data was randomly selected as
held-out data for parameter tuning of the individual subsystems. Because of
some flawed recordings, the reduced Spanish data consisted of 900 sentences
composed of 5,398 (1,021 different) words. The respective English data con-
sisted of 898 sentences with 5,333 (786 different) words. The Spanish audio
data equals 36 minutes, the English 32 minutes. The best possible NIST score
on this data set is 12.1 for the translation direction English to Spanish and 12.2
for the translation direction Spanish to English.

Baseline ASR Systems

The same English baseline ASR system was used as in the experiments for the
document driven case. It had a WER of 13.5%. The difference in WER com-
pared to the English baseline ASR system for the document driven case, which
had a WER of 12.6%, can be explained by the fact that data set I was now read
only twice and that the parameter optimization was now done on a 10% held-out
data set. Table 5.1 gives an overview on performance as well as OOV rate and
baseline language model perplexity for the English and Spanish baseline ASR
systems. The Spanish ASR system is once again based on the Janus Recognition
Toolkit (JRTk) with its IBIS single pass decoder [10]. The sub-phonetically tied
three-state HMM based recognition system has 2 K codebooks and 8 K distri-
butions. All other basic characteristics are equivalent to characteristics of the
English recognizer. The ASR system was trained on South American Spanish
as well as Castilian Spanish, namely on 112 h South American speech data
(mainly Mexican and Costa Rican dialects) and 14 h Castilian Spanish speech
data. The South American corpus was composed of 70 h Broadcast News data,
30 h Globalphone data and 12 h Spanish Spontaneous Scheduling Task (SSST)
data. It gave a WER of 15.1%; this higher WER compared to the WER of
the English recognizer can be explained by the approximately four times higher
perplexity of the Spanish language model. The higher perplexity of the Spanish
LM is due to the fact that Spanish is a morphological more complex language
than English.

1The Spanish speakers mostly had a Castilian Spanish accent. A few speakers had a South
American accent
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Input provided by BLEU NIST WER nWER
Spanish Transcripts 40.8 7.0 47.2 31.1
Spanish Baseline ASR 39.0 6.7 51.1 35.2
English Transcripts 34.9 6.2 56.3 38.3
English Baseline ASR 31.6 5.7 61.1 43.9

Table 5.2. Performance of baseline MT systems on data set I.

Baseline MT Systems

The same Spanish to English statistical machine translation system was used
as before. The English to Spanish machine translation system is equivalent to
the Spanish to English system, only that the translation direction was inverted
during training. The language model was again the same as the language model
of the baseline ASR system. Table 5.2 gives an overview on the performance of
the MT systems when using the transcripts as input and when using the first
best ASR hypotheses as input. The BLEU score of the Spanish to English MT
system decreases from 40.8 to 39.0 when using the first best ASR hypotheses
as input instead of the Spansih transcripts. The BLEU score of the English to
Spanish MT system decreases from 34.9 to 31.6 when using the first best ASR
hypotheses as input instead of the Spansih transcripts.

5.1.2 Baseline MTE-ASR Systems

The ASR driven iterative system design provides not only transcription hy-
potheses for the target language (English) translation but also transcription
hypotheses for the source language (Spanish) speech. The iterative design auto-
matically combines the improvement of the source language ASR and the target
language ASR. In particular, it would have been possible to start the iteration
cycle with improving the Spanish ASR with knowledge gained by automatically
translating the hypotheses of the English baseline system first. Depending on
the performance of the respective baseline ASR systems this may be desirable.
This work only concentrates on the case where the target ASR system is im-
proved first within the iteration cycle. As a consequence, the first improvement
of the source ASR system is done with the help of the already improved target
ASR system. For an accurate comparison of the iterative approach with the
non-iterative MTE-ASR approach in regard to the improvement of the source
language side ASR system, it is, therefore, necessary to consider a separate
non-iterative source language side MTE-ASR system. The non-iterative target
language side MTE-ASR system is implicitly given in iteration 0 of the iterative
system design.
Figure 5.2 shows the results for the best non-iterative MTE-ASR approach on
the source language side (Spanish). Once again, it was better to use the combi-
nation of rescoring on cache LM output instead of rescoring on cache + interpo-
lated LM output. Comparing these results with the non-iterative improvement
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Figure 5.2. Source side baseline MTE-ASR: Results on data set I.
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Figure 5.3. Target side baseline MTE-ASR: Results on data set I.

of the target language side (English) it becomes apparent that the decrease in
WER for the English ASR system is higher than for the Spanish ASR system.
This can be explained by the fact that Spanish is a morphological more com-
plicated language than English, which is also the reason for why the on the
test data set computed perplexity of the Spanish BTEC language model is ap-
proximately 3.5 times higher than the perplexity of the English BTEC language
model.

5.1.3 Iteration Results

Figure 5.3 shows the results for iteration 0. For iterations > 0, only the com-
bined MT improvement technique with a fixed translation memory was taken
into consideration based on the results for the document driven case. For ASR
improvement, rescoring on cache LM output and rescoring on cache + interpo-
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Figure 5.4. ASR driven iterative MTE-ASR: Results on data set I.

lated LM output were examined. The additional use of an interpolated language
model for the English ASR resulted in a slightly worse WER (the difference was
statistically insignificant). This was true for all examined iterations (0-2) and
can be explained by the already very good match of the English baseline LM
with the used data set (the perplexity was only 21.9). For the Spanish ASR
system a small gain in WER (again statistically insignificant) could be accom-
plished when using an interpolated language model based on the output of the
improved English to Spanish translation component, i.e. when applying an in-
terpolated LM in iteration 2. This small gain can be explained by the higher
mismatch between the Spanish baseline LM and the given data (the perplex-
ity was 75.5). The fact that the gain was only minimal may be due to the
still relatively moderate performance of the improved Spanish MT component.
Overall, no significant changes in performance could be observed for iteration 2
compared to iteration 1; therefore, no further iterations have been carried out.
Figure 5.4 gives a summarizing overview on the performance of the best found
system component combination on data set I.
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5.1.4 Conclusion

In the context of a subsequent rescoring, it seems that the use of an interpo-
lated language model in addition to the cache LM scheme can only be helpful
if the data provided for interpolation came from an already improved MT com-
ponent. Even if based on an improved MT component, gains in WER may
only be expected if a certain mismatch between baseline language model and
data is given. Furthermore, no significant gains in recognition accuracy are to
be expected by recursively applying knowledge provided by the improved MT
components. This means, improving the involved MT systems once is suffi-
cient. As a consequence, the iteration should be aborted before an involved MT
component would be improved a second time, namely during iteration 2. Since
we started the iterative process by improving the target side ASR, we should,
therefore, abort the iterative process after rescoring the source side ASR output
in iteration 2.

5.2 Final System

5.2.1 Experimental Setup

Final System Design

The final ASR driven system design is shown in Figure 5.5. Based on the results
for the document driven case and the results for the ASR driven designs exam-
ined so far, language model interpolation for the involved ASR components is
only applied after improvement of their respective MT component. The iter-
ative process is aborted in iteration 2 so that no involved MT component is
improved twice.

Data

The data set used for re-investigating the final system design corresponds to data
set II of the document driven case, i.e. the same 500 parallel Spanish and English
sentences were used. The data was read two times, each time by three Spanish
and five English speakers. As a consequence, the data was split in two separate
parts, and all experiments were run on two separate MTE-ASR systems. As
before, the performance values are computed on the complete output of both
subsystems. Ten percent of the data was randomly selected as held-out data
for parameter tuning of the individual subsystems. Because of some flawed
recordings, the reduced Spanish data set has 904 sentences composed of 6,395
(1,089 different) words. The respective English data set has 880 sentences with
6,751 (946 different) words. The Spanish audio data equals 45 minutes, the
English 33 minutes. The best possible NIST score on this data set is 12.2 for
the translation direction English to Spanish and 12.4 for the translation direction
Spanish to English.
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Figure 5.5. Final ASR driven iterative system design.

WER nWER OOV Perplexity
English Baseline ASR 20.4 9.0 0.53% 86.0
Spanish Baseline ASR 17.2 8.9 2.04% 130.2

Table 5.3. Performance characteristics of the baseline ASR systems on data set II.

Baseline System Components

The same baseline ASR and baseline MT systems were used as before. Table
5.3 gives an overview on performance as well as OOV rate and baseline language
model perplexity for both ASR systems. The performance for the baseline MT
systems can be found in the following description of the baseline MTE-ASR
systems.

5.2.2 Baseline MTE-ASR Systems

Figure 5.6 shows the non-iterative source side MTE-ASR system performance.
The non-iterative target side MTE-ASR system (refer to Figure 5.7) is once
again equivalent to iteration 0 of the iterative system design.

5.2.3 Iteration Results

A summarizing overview on the performance of the final ASR driven iterative
MTE-ASR system is shown in Figure 5.8. The final target side output had a
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Figure 5.7. Target side baseline MTE-ASR: Results on data set II.

WER of 14.3% (and a nWER of 7.5%, a BLEU score of 77.7 and a NIST score
of 10.5).

5.2.4 Conclusion

The non-iterative ASR driven MTE-ASR design yielded a relative gain of 23.2%
in WER on the target language side (English) and a relative gain of 16.2% on
the source language side (Spanish). This already relatively high gains could
be further increased to 29.9% on the target side and to 21.3% on the source
side by applying the iterative scheme. Similiar results have been gained for
the document driven case in chapter 4. The iterative system design, therefore,
constitutes a feasible and promising approach to Machine Translation Enhanced
Automatic Speech Recognition.
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Chapter 6

Conclusion

6.1 Summary

In this work, several approaches were examined for improving the ASR perfor-
mance on the target language speech for human mediated translation scenar-
ios by incorporating information which became available through automatically
translating transcripts of the source language speech, hence the name Machine
Translation Enhanced Automatic Speech Recognition (MTE-ASR). The source
language transcripts were either given (document driven case) or had, at first,
to be created on the source language speech with the help of a source side ASR
system (ASR driven case).
Starting from the document driven case and based on ideas found in related
work, several basic non-iterative MTE-ASR approaches were developed. The
successful basic techniques were:

- Language model interpolation: interpolating the baseline language model
with a small language model computed on the MT n-best lists.

- Applying a cache language model scheme: enhancing the language model
probabilities of words found within the MT n-best lists.

- Selecting hypotheses from ASR n-best lists with the help of the available
MT knowledge. The ASR n-best lists were enriched with the first best MT
hypotheses and either provided by the baseline ASR system or by a, with
one or both of the above mentioned techniques, improved ASR system.

The best results among these basic, non-iterative MTE-ASR techniques
could be gained by hypothesis selection from n-best lists provided by an ASR
system applying the cache LM scheme. This was true for the document driven
case as well as the ASR driven case. For the document driven case, a relative
gain of 30.6% in word error rate compared to the baseline system WER of
22.3% was accomplished on the used test data set (data set II). For the ASR
driven case, a relative gain of 23.2% compared to the baseline system WER of
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Figure 6.1. Results for improving the target language side ASR (English, data set II).

After developing the basic MTE-ASR techniques, their integration into an
iterative system design was examined. The basic idea behind this iterative de-
sign was not only to make use of the available source language information
for ASR enhancement, but to also make additional use of the available target
language information for MT enhancement in the hope to further improve the
speech recognition accuracy with the help of such an improved MT component.
As a consequence of this examination, different MT improvement techniques
had to be considered, namely retraining the MT system with the ASR trans-
lation hypotheses as additional training data and interpolating the MT target
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Figure 6.2. Results for improving the source language side ASR (Spanish, ASR driven case,
data set II).

language model with a small language model computed on the ASR n-best lists.
It turned out that combining those two techniques yielded the best results.
However, in the context of further improving the speech recognition accuracy, it
was necessary to constrain the retraining in a way that the translation memory
component of the MT system was not updated, i.e. the translation memory was
kept fixed to the original training data.
The best results within this iterative framework could be accomplished by inte-
grating language model interpolation into the above described best basic MTE-
ASR approach after an improved MT becomes available. Furthermore, it could
be observed that improving the involved MT component(s) just once is suffi-
cient. This means that the iterative process should be aborted right before an
involved MT component would be improved a second time. Figure 6.1 gives a
summarizing overview on the performance of the baseline ASR, the non-iterative
MTE-ASR and the iterative MTE-ASR for the document driven case and the
ASR driven case on data set II. Because the ASR driven iterative system de-
sign automatically combines the improvement of the source language ASR (in
our case Spanish), an according overview is given in Figure 6.2. The results
show that the examined non-iterative approaches and especially the iterative
approach constitute a feasible and promising way for Machine Translation En-
hanced Automatic Speech Recognition.

6.2 Future Work

Only the first best hypotheses of the source language ASR system were trans-
lated in the ASR driven case. One possible future development would therefore
be to translate complete ASR lattices. Furthermore, system parameter tuning
was done by manual gradient descent throughout this work. This should be
automated. Another important issue is the use of an updated translation
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memory. Using a reliable confidence measure for updating the translation
memory with only those ASR translation hypotheses that are most likely
correct, it should be possible to further increase the MT performance without
losing helpful complementary MT knowledge. Moreover, having a reliable
confidence measure at hand, it can be hoped that the automatically generated
translation and source speech transcripts can be successfully applied to create
an improved MT component that will perform better on new, unseen data (of
the same domain)1. An important next research step would be the testing
of the applied MTE-ASR approaches on a more complex, and in regard to
a possible tangible use case, more realistic data set. Bilingual data from
European Parliament debates is being considered for this at the moment.
Given more realistic data, different new use case specific problems will have to
be addressed. For example, the assumption made so far that for every spoken
target sentence the respective source sentence (audio) data is known and fully
available will not be maintainable any longer. Furthermore, self-corrections of
the human translator, as they are likely to be seen in the case of simultaneous
translations, have to be considered.

A realistic application for the introduced iterative ASR driven MTE-ASR
would be for example an offline working transcription system to assist the
publication of European Parliament or United Nations speeches in different
languages (including the source language). Looking at the fact that there are
six official United Nations languages and twenty official European Parliament
languages, the possible benefit becomes easily apparent. It has to be noted,
especially, that the iterative approach directly allows an incorporating of knowl-
edge provided not just by one additional audio stream in another language
but by many. An according scenario that shows this is depicted in Figure 6.3.
Further in the future an on-line system is imaginable for providing high quality
transcripts in real time, to be used for example as closed captioning for TV
broadcasts of debates.

1To what extend the MT improvement techniques used so far are suitable to positively
influence the MT performance on unseen data has not been investigated within this work.
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Appendix A

Additional Cache LM
Experiments

A.1 Differentiated Increasing of LM Probabili-
ties

The method applied in the cache LM experiments described in chapter 3 was
quite simple: the LM probability of all MT mono-grams was increased by a con-
stant value. A more sophisticated approach would be, for example, to increase
the probabilities of words that occur very often in the respective n-best list by
a greater value than the probabilities of words that occur less often.
At first the MT n-best lists were analyzed more closely, to see if there is a cor-
relation between the amount of occurrence of a word in the n-best list and the
”correctness” of that word, where a word is defined as correct if it is part of the
English transcript of the respective sentence. For this the MT n-best list words
were separated into four partitions:

- Partition I: all words that occurred in at least 66% of the translations
found in the n-best list

- Partition II: all words that occurred in at least 33% of the translations
found in the n-best list and not in partition I

- Partition III: all words that occurred in at least 10% of the translations
found in the n-best list and not in partition I or II

- Partition IV: all words that occurred at least once and not in one of the
other partitions

Table A.1 shows the number of words in the respective partition together
with the rate of correct words in percent for different MT n-best list sizes.

After performing some first experiments, it became clear that increasing the
LM probabilities for the words found in the translations by a factor greater
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n I II III IV
10 2439 651 749 634

74% 38% 16% 9%
50 2187 954 1649 2771

76% 42% 13% 5%
100 2153 1004 1878 4496

76% 43% 12% 4%
150 2130 1041 2018 5550

76% 42% 12% 3%

Table A.1. Number of words and ”word correct” rate for n-best list word partitions.

n 0 0.2 0.4 0.6 0.8 1.0 1.2 1.3
20 10.39 10.41 10.35 10.32 10.33 10.35 10.37 10.41
40 10.46 10.51 10.43 10.37 10.40 10.44 10.48 10.46
60 10.48 10.51 10.41 10.37 10.41 10.51 10.53 10.56
80 10.51 10.53 10.47 10.42 10.50 10.62 10.68 10.64

Table A.2. WERs for a differentiated increasing of word probabilities.

than 1.3 will inevitably lead to a decline in recognition accuracy, even if only
the words found in partition I were increased by a greater value, but increasing
the LM probabilities for the words found in partition IV by a smaller value than
for the words found in the other partitions will lead to a small decrease in WER
of the cache LM system. Table A.2 shows the WERs for systems where the
probabilities of words found in partition IV were increased by different values
in the range from 0 to 1.3. The probabilities for all other words found in the
MT n-best lists were increased by the value 1.3. This approach was not further
pursued as the observed gain in performance was only minimal.

A.2 Considering Synonyms

Another possibility to improve the original cache LM approach would be to not
only increase the LM probabilities of the words found in the MT translations
but also of all their synonyms. For this reason the vocabulary on the 20-best
MT hypotheses was computed for all sentences and extended it by all synonyms
found in the WORDNET database. Through this the vocabulary was increased
by approximately 60% without increasing the coverage of the test set vocabulary
at all. This approach was, therefore, not further pursued.
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Appendix B

Document Driven
MTE-ASR: Parameter
Settings

System I System II System III System IV

ASR lz=30, lp=-15 lz=26, lp=5 lz=32, lp=10 lz=30, lp=-15
fp=30, n=10, fp=35, n=20, fp=30, n=30, fp=5, n=30,

d=1.2 d=1.4 d=1.3 d=1.2

Resc. wTM=0.25, wTM=0.15 wTM=0.15, wTM=0.25
lp’=20, fp’=-25, fp’=5

md=5

MT nLM=1, i=0.9 nLM=1, i=0.8 nLM=5, i=0.9 nLM=1, i=0.9
nRT =3, x=4 nRT =3, x=4 nRT =1, x=2 nRT =1, x=2

ASR lz=32, lp=-5, lz=30, lp=-5, lz=32, lp=5, lz=30, lp=0,
fp=10, n=20, fp=15, n=20, fp=30, n=10, fp=5, n=20,
d=1.3, nLM=5 d=1.3, nLM=1, d=1.3 d=1.3, nLM=1

i=0.05 i=0.1 nLM=1, i=0.1 i=0.05

Resc. wTM=0.125 wTM=0.125, wTM = 0.1, wTM=0.175,
wLM=0.075 fp’=10 wLM=0.025

Table B.1. Parameter settings for the final document driven system on data set II. Unlisted
parameters were set to zero.
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Appendix C

ASR Driven MTE-ASR:
Parameter Settings

System I System II
E. ASR lz=30, lp=10, fp=30 lz=30, lp=-5, fp=40

MT - -
S. ASR lz=30, lp=-5, fp=40 lz=28, lp=-5, fp=40

n=20, d=0.8 n=10, d=0.5
Resc. wTM=0.075 wTM=0.1

Table C.1. Parameter settings for the Spanish non iterative ASR driven system on data set
I. Unlisted parameters were set to zero.

System I System II
E. ASR lz=26, lp=0, fp=35 lz=30, lp=-15, fp=5

MT - -
S. ASR lz=30, lp=5, fp=30 lz=32, lp=10, fp=35

n=30, d=0.6 n=10, d=1.0
Resc. wTM=0.15 wTM=0.125

Table C.2. Parameter settings for the Spanish non iterative ASR driven system on data set
II. Unlisted parameters were set to zero.
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System I System II
S ASR lz=30, lp=-5, fp=40 lz=28, lp=-5, fp=40
MT - -

S to E
E ASR lz=30, lp=10, fp=40, lz=28, lp=-5, fp=40,

n=20, d=1.4 n=20, d=1.3
Resc. wTM=0.075, wLM=0.175 wTM=0.075, wTM=0.05

fp’=-5
MT - -

E to S
S ASR lz=30, lp=-5, fp=40, lz=28, lp=-5, fp=40,

n=20, d=0.8 n=10, d=0.5
Resc. wTM=0.075 wTM=0.1
MT nLM=20, i=0.8, nLM=10, i=0.8,

S to E nRT =1, x=2 nRT =1, x=2
E ASR lz=30, lp=10, fp=40, lz=28, lp=10, fp=40,

n=20, d=1.4 n=20, d=1.5
Resc. wTM=0.1, wLM=0.025, wTM=0.15, wLM=0.05

lp’=15
MT nLM=10, i=0.8, nLM=10, i=0.8,

E to S nRT =1, x=2 nRT =1, x=2
S ASR lz=30, lp=-5, fp=40, lz=28, lp=-5, fp=40,

n=1, d=0.8 n=1, d=0.6,
nLM=20, i=0.05 nLM=20, i=0.075

Resc. wlp’=5 wTM=0.1

Table C.3. Parameter settings for the final iterative asr driven system on data set I. Unlisted
parameters were set to zero.
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System I System II
S ASR lz=26, lp=0, fp=20 lz=28, lp=10, fp=40
MT - -

S to E
E ASR lz=30, lp=-10, fp=25, lz=30, lp=-15, fp=5,

n=20, d=1.3 n=10, d=1.2
Resc. wTM=0.15, lp’=25 wTM=0.15
MT - -

E to S
S ASR lz=30, lp=5, fp=30, lz=32, lp=10, fp=35,

n=30, d=0.6 n=10, d=1.0
Resc. wTM=0.15 wTM=0.125
MT nLM=20, i=0.8, nLM=20, i=0.8,

S to E nRT =1, x=2 nRT =1, x=2
E ASR lz=30, lp=-10, fp=25, lz=30, lp=-15, fp=5,

n=10, d=1.2, n=10, d=1.2,
nLM=10, i=0.025 nLM=10, i=0.05

Resc. wTM=0.075, lp’=10, wTM=0.075
MT nLM=5, i=0.8, nLM=5, i=0.9,

E to S nRT =1, x=2 nRT =1, x=2
S ASR lz=30, lp=5, fp=30, lz=32, lp=10, fp=35,

n=10, d=0.8 n=10, d=0.8,
nLM=1, i=0.05 nLM=1, i=0.05

Resc. wTM=0.15 wTM=0.075, lp’=5

Table C.4. Parameter settings for the final iterative asr driven system on data set II.
Unlisted parameters were set to zero.
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