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Zusammenfassung

In dieser Arbeit untersuchen wir die Auswirkungen von verschiedenen Distanzmaßen
zwischen Gaussverteilungen und Gauss-Mixturen auf die Qualität eines Cluster-
Algorithmus für Polyphone. Auf einem voll-kontinuierlichen System testen wir dazu
die Euklidische Distanz, die Kullback-Leibler-Divergenz, die Erweiterte Mahalanobis-
Distanz und die Bhattacharyya-Distanz mit einem divisiven Clustering.

Spracherkennung mit großem Vokabular und kontinuierlicher Sprache erfordet viele
Trainingsdaten und sowohl im Training als auch in der eigentlichen Anwendung große
Rechenkapazitäten. Daher werden an vielen Stellen Vereinfachungen und Annähe-
rungen genutzt, um Leistung einzusparen. Eine solche Reduktion ist die Verwendung
von generalisierten Polyphon-Klassen anstelle von einzelnen Polyphonen; um diese
Klassen zu erstellen, wird ein Cluster-Algorithmus verwendet, dessen Aufgabe es ist,
ähnliche Polyphone zusammenzufassen.

Ein beliebtes Distanzmaß, welches diese Ähnlichkeit misst, ist die sogenannte Entro-
pie-Distanz. Sie wird direkt auf den Mixturgewichten der Gauss-Mixturen berechnet,
ist daher auf semi-kontinuierlichen Modellen leicht zu berechnen und stellt auf diesen
ein anschauliches und gut interpretierbares Maß dar.

Aufbauend auf der Entropie-Distanz als Bezugspunkt untersuchen wir die Euklidi-
sche Distanz, die Kullback-Leibler-Divergenz, die Erweiterte Mahalanobis-Distanz
und die Bhattacharyya-Distanz hinsichtlich ihrer Diskriminierung von Polyphonen.
Da diese Distanzen direkt auf den Gaussverteilungen (bzw. in unserer Anwendung
ebenso auf Gaussmixturen) operieren, wird hierzu ein voll-kontinuierliches System
verwendet.

Für jedes Distanzmaß trainieren wir anschließend ein System, welches den aus dem
Clustering hervorgehenden Entscheidungsbaum nutzt. Dieses System wird auf un-
abhängigen Test-Daten in Form der resultierenden Wortfehlerraten evaluiert.
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Abstract

In this work we analyze the effects of different distance measures between Gaus-
sian distributions and Gaussian mixtures on the quality of a clustering algorithm
for polyphones. Using a fully-continuous system, we test the Euclidian distance,
the Kullback–Leibler divergence, the Extended Mahalanobis distance and the Bhat-
tacharyya distance with a divisive clustering.

Speech recognition with large vocabulary and continuous speech necessitates much
training data and huge computing capacities in the training as well as in the actual
utilization. Therefore, often simplifications and approximations are used to save
effort. One such reduction is the use of generalized polyphone classes instead of
single polyphones; to create these classes, we use a clustering algorithm, whose task
it is to combine similar polyphones.

A common distance measure, which measures these similarities, is the so–called en-
tropy distance. It is directly calculated on the mixture weights of the Gaussian mix-
tures, thus it is easily computed and represents a descriptive and well interpretable
measure.

Based on the entropy distance as benchmark, we analyze the Euclidian distance,
the Kullback–Leibler divergence, the Extended Mahalanobis distance and the Bhat-
tacharyya distance in regard to their discrimination of polyphones. As these dis-
tances directly operate on the Gaussians (respectively also on the Gaussian mixtures
in our application), we use a fully-continuous system.

For each distance measure we then train a system, which uses the decision tree
resulting from the clustering. This system is evaluated on independent test data in
form of the resulting Word Error Rate.
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1. Introduction

Computing power has increased almost exponentially over the last few decades and
there is no end of this trend in sight. Almost all branches of research have profited by
this, and still will – also, many achievements in science would be impossible without
powerful computers.

Automatic Speech Recognition (ASR) is one of these tasks that is only feasible
because of fast processors and large memories. Although humans understand speech
without major problems even under bad conditions, it is still error-prone to translate
speech to text automatically by a machine. Partly this is because speech recognition
still has to cope with various limitations constraining the complexity of the solutions
and thus reducing recognition accuracy. Two of these limitations are the motivation
for this work: limited data and limited computing power.

On the one hand, the ASR system needs to be trained, which means it estimates
its parameters based on samples of speech data. To train all the acoustic models
reliably, there need to be at least some samples for each of them. As these sounds
are modeled in their particular context of surrounding sounds (called polyphones,
see Section 2.1), there are millions of possible combinations. Creating a speech
database to cover all of them is hardly achievable. The data needs to be labeled,
i. e. annotated with a transcription of the spoken language in written form, which
has to be done manually to a certain extent, and thus is too expensive. The quote

“There is no data like more data”1

brings this to the point.

On the other hand, even if there was a speech database covering all polyphones
with sufficient acoustic evidence, computing power would be the bottleneck in many
real-time scenarios.

A possibility to overcome these limitations is the clustering of different polyphones
that are similar with respect to a specific distance metric. This means the acoustic
model treats “similar” sounds as one, allowing to end up with an arbitrary number
of polyphone classes instead of millions of single polyphones.

1According to [Jeli05], this comment was made by Bob Mercer at Arden House, 1985.
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1.1 Objective

In this work we investigate the effects of different acoustic distance metrics on the
quality of the clustering. This means we try out measures which determine a distance
between two acoustic units in order to define which sounds are“similar”to each other
and which are not. Our main objective is to improve the Word Error Rate (WER)
of the ASR system by creating polyphone classes that best fit the given speech data.

1.2 Structure

This work consists of a theoretical part which explains the foundations and con-
cepts and a practical part which describes their usage and effects in a real speech
recognition system.

Chapter 2 begins with an introduction into some basic terms of speech recognition
and clustering in general. In Chapter 3 we describe the task in more detail and
present existing approaches to its solution. Finally, Chapter 4 explains the distance
measures and other algorithms used in this work.

After this, in Chapter 5 we implement an ASR system and evaluate the effects of
the presented distance measures in Chapter 6. Chapter 7 resumes the work and
presents issues for further investigations.

1.3 Related Work

In speech recognition, cluster algorithms are used to reduce the number of acoustic
models – mainly hierarchical clustering is used for this. The two major ways to do
this are bottom up [IKHv00] and top down [FiRo97] algorithms. There also exist
hybrids or mix forms of these two base algorithms [SiRS99].

All hierarchical clustering algorithms have in common that they need a distance
metric in order to decide how to build the cluster tree. As finding an appropriate
distance metric between phonemes is also a common problem in multilingual acoustic
modeling, there has been previous research on this:

One field of particular interest for many current research projects is the adaption of
acoustic models from one language to another. Mainly for under-resourced languages
it is difficult to establish an acoustic model without having much speech data to train
the models well [LeBe05].

One approach is to create an automatic cross-language phoneme mapping from a
well-trained source language with enough acoustic evidence for training to the target
language [LeBe09]. The quality of this mapping depends primarily on the distance
measure used to estimate the similarity between source and target phonemes, thus
there has been a lot of effort in trying out different measures to get a good mapping
[SoBo01].

There are also proposals to use the confusability of two phonemes to measure their
distance [LeBS06]. Another approach for a distance measure is to directly com-
pare the Hidden Markov Models (HMMs) the acoustic model is based on [MoTr06,
AnHe04].



2. Foundations of Acoustic Models

This chapter describes and defines the basic terms used throughout this work. At
first, we describe the acoustic units phonemes, phones and polyphones and their
representation in the form of Gaussian Mixture Models, as well as codebooks and
distributions. Finally, the basic algorithms for clustering are introduced.

2.1 Phonemes, Phones and Polyphones
A phoneme is the cognitive abstraction of a sound representing the smallest struc-
tural unit that distinguishes meanings of words2.

In contrast, a phone is the smallest identifiable unit in speech and relates to an
instance of a phoneme in an actual utterance2. Spoken language can be seen as a
continuous series of phones, which therefore build the basic units of our acoustic
model.

For example, the words “ceiling” and “sealing” consist of distinct phonemes ; however
their pronunciation is almost identical, which means their phones are the same.
Linguists and phonologists distinguish precisely between the terms phoneme and
phone. From a more technical point of view, they can easily be mixed up, as the
goal of ASR is to find words consisting of phonemes from a given stream of phones.
In this work we tried to use them appropriately.

Lastly, a polyphone is a phoneme modeled in its particular context of surrounding
phonemes. If e. g. the word “hello” is represented as the phoneme series H E L O,
the phoneme E has a left context H and a right context of L O, resulting in the
polyphone E(H|L O). E is then called the center phoneme of the polyphone. The
introduction of polyphones to ASR brought about an improvement in recognition
accuracy, as taking the context of a phone into account benefits from co-articulation
effects in spoken language.

About 50 different phonemes is a typical quantity for the English language, as for
example listed in Appendix A. Given these, this can easily sum up to millions of
polyphones.

2 cf. http://www.voxforge.org/home/docs/faq/faq/what-is-the-difference-between-a-phone-
and-a-phoneme [Online; accessed September 10,2012]

http://www.voxforge.org/home/docs/faq/faq/what-is-the-difference-between-a-phone-and-a-phoneme
http://www.voxforge.org/home/docs/faq/faq/what-is-the-difference-between-a-phone-and-a-phoneme
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2.2 Gaussian Mixture Models

A single multivariate (=multidimensional) Gaussian distribution N with dimension
N , mean vector (centroid) µ and covariance matrix Σ is defined as

N (x|µ,Σ) =
1√

(2π)N det(Σ)
· exp

(
−1

2
(x− µ)T Σ−1 (x− µ)

)
(2.1)

This distribution is also known as Normal Distribution (e. g. Figure 2.1(a)).
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Figure 2.1: Gaussian and Gaussian Mixture Distribution

It can be used for a mixture distribution, which accordingly is called a Gaussian
Mixture Model (GMM) (e. g. Figure 2.1(b)). This mixture distribution is a linear
combination of M single Gaussians with coefficients ωm, that are called mixture
weights or simply weights. As a GMM itself is a distribution, the ωm must hold∑M

m=1 ωm = 1 and 0 ≤ ωm ≤ 1 ∀m ∈ {1 . . .M}. Then the GMM Γ is defined as

Γ(x) =
M∑

m=1

ωm · N (x|µm,Σm) (2.2)

Gaussian mixtures therefore fulfill the Universal Approximation Theorem, which
means that they can be used to model any probability distribution. In the case
of speech recognition, they are commonly used to represent the acoustic units of
speech.

2.3 Codebooks and Distributions

A set of Gaussians Nm is called a codebook and the set of related mixture weights
ωm its distribution. Figure 2.2 shows an example of three polyphones modeled with
distributions and codebooks.

Having the Gaussians separated from their weights brings some flexibility into their
working:

• A fully continuous system uses one codebook per distribution and thus is the
most accurate approach, but it needs most training data.
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U(F|S) U(P|B) U(K|K)

Figure 2.2: Fully continuous system: Three polyphones modeled by distributions
and codebooks.

• A semi-continuous system instead shares a codebook between several distri-
butions and therefore has less parameters to estimate.

These are two common possibilities to tie codebooks and distributions, which try to
find a trade-off between robust training and smooth modeling.

The task of estimating the parameters µm, Σm and ωm of the GMMs is called
training. It is executed with an expectation-maximization-algorithm, which allows
to use an arbitrary number of Gaussians and weights, so we can use it for each grade
of continuity.

2.4 Clustering

This section gives a short introduction into clustering algorithms in general. Chapter
4 then gives a detailed description of all the procedures involved in our specific
algorithm.

Clustering is the task of dividing a set of objects into subsets (called classes) so
that a class contains objects similar to each other (with respect to a metric) while
objects of different classes are dissimilar. A cluster analysis is a very common tasks
in information theory and thus there is no shortage of clustering algorithms; this
section however is limited to an introduction of hierarchical clustering, as we used
these types of algorithms in this work only.

There are two general strategies for hierarchical clustering:

Agglomerative: All objects are initially in separated classes; similar classes are
then merged to new classes until the number of classes falls below a certain stop
criterion. This is a bottom up approach; Figure 2.3(a) shows a visualization
of the process.

Divisive: The objects are initially in one big class which gets divided into smaller
classes until a desired number of classes is reached. This approach works top
down and is what we used in this work. Figure 2.3(b) shows the process.
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In both cases, there are also refinements of the stop criteria, which for example ensure
to have reasonable distances between the classes or which make sure to always have
enough training samples for all classes.

(a) Agglomerative clustering (b) Divisive clustering

Figure 2.3: Visualization of clustering processes

Algorithm 1 gives a basic recursive definition of divisive clustering. Given a class
containing all objects, it returns the root node of a tree which represents a hierarchy
of the clustered objects.

input : Class of objects
output: Tree of Classes

1 if Class only has one object then
2 return Class
3 end

4 Split Class into n classes Class1 to Classn;

5 for i = 1→ n do
6 TreeNodei = DivisiveCluster(Classi);
7 end

8 Create TreeNode with children TreeNode1 to TreeNoden;

9 return TreeNode
Algorithm 1: Divisive Clustering

In this general definition, the Split-Command in line 4 neither defines the number
of produced classes per split nor the method how to select the objects for each
new class. In order to make this a working algorithm for ASR, we will define both
properties in Section 4.3.

The objects in the classes of our clustering algorithm are polyphones; the algorithm
then clusters similar polyphones into the same class.



3. Analysis

In this chapter, we first analyze the problem background, which at the same time
gives further motivation why clustering is necessary in ASR. Then we describe ex-
isting approaches to solve the problem and their flaws.

3.1 Problem Background

Modeling phonemes in their particular context in form of polyphones improves
the recognition accuracy, because it takes co-articulation effects into account: A
phoneme is pronounced differently depending on its surrounding phonemes. Poly-
phones can be seen as new special phonemes for each slightly different variation of
the pronunciation of one base-phoneme (the center-phoneme).

Depending on the width of the context, there are different types of polyphones. Two
important types are triphones and quinphones : The former ones use a context width
of ±1, so they consider the phoneme before and the one after the center phoneme.
The latter ones use a width of ±2, which means, these polyphones use two phonemes
before and two after the center phoneme.

Using quinphones on a phoneme set of 50 phonemes leads to a theoretical count of
505 = 312,500,000 polyphones. Most of them will never appear in the actual training
data, but as mentioned in Section 2.1, the number of polyphones in a typical speech
database can easily exceed a million.

Figure 3.1 plots the number of polyphones that have a certain count of training
samples in the database against this count. The upper left part of the diagram
illustrates that the majority of the polyphones only have very few samples in the
training data – this is most clearly seen at the topmost data point: about 100,000
polyphones only have one sample in the database. On the other hand, the bottom
right part of the diagram shows that there are only few polyphones that have 1,000
or more samples.

This leads to a problem: the majority of the polyphones have not enough speech
samples available for a robust and reliable training. Also, the computation during
the recognition process takes too long if millions of polyphones are involved.
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Figure 3.1: How many polyphones have how many training samples?

These are two of the reasons why in speech recognition often clustering algorithms
are used to create an arbitrary number of classes of similar polyphones and thus
reduce the millions of polyphones to a desired number of classes. The objective of
this work is to try out different distance measures that determine which polyphones
are “similar” and thus belong into one class and which not.

3.2 Existing Approaches

The clustering algorithm as described in Section 2.4 needs to calculate the distance
between polyphone classes as a measure of their similarity. This is done several times
in each split step (line 4) – depending on the specific settings, in our experiments
one run of the clustering needs to calculate a total of 1.5–2.6 million distances.

This necessitates to restrict the complexity of the models in order to be processable
with the available computing power. A common approach is to use semi-continuous
acoustic models, where several distributions share one codebook, as introduced in
Section 2.3. This means that the single acoustic units, e. g. polyphones, use the same
codebook, but differ in the mixture weights of the Gaussians. Figure 3.2 shows an
example of three distributions sharing one codebook.

Using semi-continuous models offers a good compromise between few parameters
and smooth modeling: As most of the parameters are in the means and covariance
matrices of the Gaussians, sharing them reduces their number drastically, which
makes the training more robust – but the feature space is still continuous as it is
when using fully-continuous models.

One advantage of semi-continuous models concerning computing performance is the
simplicity of calculations on the distribution weights: During the clustering there is
no need to evaluate the emission probabilities of the Gaussian mixtures. A distance
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U(F|S) U(P|B) U(K|K)

Figure 3.2: Semi-continuous system: Three polyphones modeled by distributions
over one codebook.

measure that benefits from that is the entropy distance, which works on the distri-
bution weights only: it measures the distance as the entropy gain of the distribution
weights when the the classes are split.

The entropy H of a discrete distribution f [Shan48] is defined as

H(f) = −
k∑

i=1

f(i) log2 f(i) (3.1)

The entropy is a measure for the unpredictability of the information content of a
random variable. A high value represents a high uncertainty – with the maximum
reached at equal distribution and the minimum (0) reached for certain events.

To use this as a distance on distribution weights, let C1 and C2 denote two poly-
phone classes and fC1 , fC2 be their discrete mixture weights distribution, defined as
fC(m) = ωC,m. The counts of training samples for the classes be n1 and n2, which
means there are n-many samples in the speech database that belong to the classes.

For the actual distance measure, we need the distribution of the union C1 ∪ C2 of
the two classes3:

fC1∪C2(m) =
n1 · fC1(m) + n2 · fC2(m)

n1 + n2

(3.2)

Then we can use the simple entropy distance

dSimEntr(C1, C2) = H(fC1∪C2) −
1

2
·H(fC1) −

1

2
·H(fC2) (3.3)

or the weighted entropy distance

3This union is actually the same polyphone class that was split into C1 and C2 during the
clustering.



10 3. Analysis

dWeiEntr(C1, C2) = (n1 + n2) ·H(fC1∪C2) − n1 ·H(fC1) − n2 ·H(fC2) (3.4)

to measure the distance between C1 and C2.

The motivation to use the entropy as a distance measure is visualized in Figure 3.3:
Joining two similar distributions results in a distribution which is similar to both
(Figure 3.3(a)), so their entropy values also are similar and thus the distance is
small; joining distinct distributions leads to a different distribution (Figure 3.3(b)),
which is closer to an equal distribution and so the entropy value is higher than the
single entropy values of the input distributions, which makes the distance between
them bigger.

(a) Two similar distributions (b) Two distinct distributions

Figure 3.3: Distributions and their union

As mentioned, this approach only takes the distribution weights of classes defined
over the same codebook into consideration. This makes it easy to calculate and thus
it is a good distance measure for the clustering algorithm when computation power
is limited. In Chapter 4 we instead present a clustering algorithm which works on
fully-continuous models and introduces new helper codebooks for the classes during
the clustering and therefore uses more of the available information.



4. Concepts

This chapter describes the functions and techniques used in this study as parts of the
clustering algorithm. The distance measures are the subject of investigation of this
work, so they are described first. The concepts of merging models and splitting with
questions follow, before finally the clustering algorithm is described, which depends
on both concepts.

4.1 Distance Measures

As mentioned in Section 3.2, this study tries out new distance measures for the
clustering algorithm that are based on codebook distances instead of the distribution
weights only. This implies the use of a fully continuous acoustic model, because in
order to use codebooks as the basis to measure polyphone distances, they have to
be distinct.

This section discusses the distance measures used in this work, following [Stü09]:

• the Euclidian distance

• the Kullback-Leibler divergence

• the Extended Mahalanobis metric

• the Bhattacharyya metric

First, we will describe variants of the measures that operate on two Gaussians and
afterward we suggest a method for the application of the measures to GMMs with
an arbitrary number of Gaussians.

For the following sections let two multivariate Gaussian distributions g1 and g2 have
the dimension N , both given as gi = N (µi,Σi) with means µi and covariances Σi.
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4.1.1 Euclidian Distance

The Euclidian distance measures the distance between two Gaussians by simply cal-
culating the distance between their means µi as given by the Pythagorean theorem:

dEucl(P,Q) =
√

(µ1 − µ2)(µ1 − µ2)T (4.1)

It solely relies on the means and does not take the covariances into account, which
leaves out some of the available information.

4.1.2 Kullback-Leibler Divergence

The Kullback–Leibler (KL) divergence is a measure for the dissimilarity of two prob-
ability distributions. For distributions P and Q over a discrete random variable X
[Runn07], it is:

dKL,Base(P,Q) =
∑
x∈X

P (x) · log2

P (x)

Q(x)
(4.2)

In a typical application, P represents a theoretical, exact probability distribution
whereas Q is an approximation model to describe P . It can then be interpreted as
the number of bits wasted when using a code based on Q to encode observations
that actually result from P .

However, it is neither symmetric nor does it obey the triangle inequality and thus
is not a metric in this form.

Figure 4.1 illustrates the Kullback–Leibler divergence for two Gaussian distributions:
Figure 4.1(a) shows the distributions, while the area under Figure 4.1(b) symbolizes
the value of their distance. The asymmetry is clearly visible.
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Figure 4.1: Illustration of the Kullback–Leibler divergence

In order to use it as a distance function, we combine the Kullback-Leibler divergence
between P and Q with the divergence between Q and P :

dKL,Sym(P,Q) = dKL,Base(P,Q) + dKL,Base(Q,P ) (4.3)
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Furthermore, the use of Gaussians as distributions simplifies the Kullback-Leibler
measure [LoSa01] to

dKL(g1, g2) =
Σ1

Σ2

+
Σ2

Σ1

+ (µ2 − µ1)2 ·
(

1

Σ1

+
1

Σ2

)
(4.4)

This is the form of the KL distance we use for the experiments.

4.1.3 Extended Mahalanobis Metric

The Mahalanobis distance measures the distance between a multidimensional vector
x and a set X of samples that result from a distribution with mean µ and covariance
matrix Σ:

dMah,Base(x,X) =
√

(x− µ)T Σ−1 (x− µ) (4.5)

It is an extension to the Euclidian distance4 that takes the covariance into account.

If we see Σ as an ellipsoid, the Mahalanobis distance can be interpreted as the
distance of the vector x to the mean µ with respect to the width of the ellipsoid
in the direction between them. Figure 4.2 shows an illustration of the Mahalanobis
distance: The points on each of the ellipses given by Σ have the same distance to
the center µ.

μ

Σ

Figure 4.2: Illustration of the Mahalanobis distance

The Extended Mahalanobis distance [BoNA10] adopts this to Gaussians by using
the means µi and the sum of the covariances Σi as parameters:

dMah(g1, g2) =
√

(µ2 − µ1)T (Σ1 + Σ2)−1 (µ2 − µ1) (4.6)

However, as the covariances are first combined into one, this metric also does not
take full advantage of the available information.

4If Σ is the identity, the Mahalanobis distance in fact becomes the Euclidian distance.
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4.1.4 Bhattacharyya Metric

The Bhattacharyya distance metric is a common distance between two probabil-
ity distributions. For distributions P1 and P2 over a discrete random variable X
[LiTz00], it is:

dBha,Base(P1, P2) = − ln

(∑
x∈X

√
P1(x)P2(x)

)
(4.7)

It is symmetric but does not necessarily obey the triangle inequality.

For multivariate Gaussian distributions [SoBo01, RiTJ00, MaBa96] it is defined as

dBha,Full(g1, g2) =
1

8
(µ2 − µ1)T

(
Σ1 + Σ2

2

)−1

(µ2 − µ1)

+
1

2
ln

det(Σ1 + Σ2)

2
√

det(Σ1) · det(Σ2)

(4.8)

Note that the first term of this resembles Equation 4.6 in Section 4.1.3.

Using diagonal covariance matrices [LiTz00] simplifies this to

dBha,Diag(g1, g2) =
1

4

N∑
i=1

|µ2,i − µ1,i|2

σ2
1,i + σ2

2,i

+
1

2

N∑
i=1

ln
σ2

1,i + σ2
2,i

2
√
σ2

1,i · σ2
2,i

(4.9)

where the variance σ2 denotes the diagonal elements of the matrices Σ.

4.1.5 Application to GMMs

All the above measures are defined to calculate the distance of two Gaussians from
each other. One possibility to apply the measures to GMMs is to find a mapping
between the single Gaussians of the two GMMs and compute the distance on pairs
of mapping Gaussians (e. g. [GoGG03, GoAr05]).

In this work we map all components of the GMMs pairwise and calculate the distance
as the sum of the distances, weighted with the distribution values ωi of the Gaussians:

dGMMs(Γ1,Γ2) =
∑
g1∈Γ1

∑
g2∈Γ2

ω1 · ω2 · d(g1, g2) (4.10)

where the different measures defined above are used as distance function d(g1, g2) in
the experiments. This means, we calculate the distance between each Gaussian of
the first mixture and each Gaussian of the second mixture and add up these |Γ1|·|Γ2|
distances using the ωi as weights.

It is however disputable whether this method is suitable to describe the similarity
between mixture models. We therefore run our experiments on GMMs as well as
on single Gaussian models. As we will see in Chapter 6, the systems using mixture
models do not score as good as systems with only one Gaussian due to this flaw.
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4.2 Merging Models

For the clustering algorithm we will need to merge a set of GMMs into a single
new auxiliary GMM: The distance measures operate on single Gaussians and single
GMMs respectively, but not on sets of them. In the clustering however we will have
classes of polyphones that contain a set of GMMs each. We will need to calculate
the distance between two of those classes, so this section presents methods to merge
all GMMs of one class into a single one.

Figure 4.3 shows how three Gaussian mixture models in a polyphone class are merged
into a helper model representing the whole class.

Polyphone Class

U(F|S) U(P|B) U(K|K)

Helper Model

Figure 4.3: Merging Gaussians

Let a polyphone class contain a set G = {Γ1, . . .Γm} of m GMMs for its polyphones
and let every Γi be estimated on a set of training samples Xi. The task is then to
obtain the parameters of a new auxiliary GMM Γh that most likely emits the unified
samples Xh =

⋃m
i=1Xi. The following two subsections will present methods for this

depending on the number of Gaussians in the GMMs.

This newly created GMM Γh is merely a temporary helper used to calculate the
distance between two polyphone classes. It will be used in line 8 of Algorithm 2 and
discarded immediately after calculating the distance.

In every cluster step we will need to calculate many distances, and as the classes
change in each step, there is no possibility for caching mechanisms. This necessitates
an efficient method for merging the models.
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4.2.1 Merging Single Gaussians

If the GMMs Γi of the polyphone class contain only one Gaussian gi each5, there is
a closed form to calculate the Gaussian resulting from merging them. It is sufficient
to describe how to merge two Gaussians g1 and g2, as this process can be repeated
successively for each element of the polyphone class then.

We will use the following computational formula for the variance σ2 of a set X of
random variables with n = |X| elements and mean µ = 1

n

∑
x∈X x:

σ2 =
1

n

∑
x∈X

(x− µ)2

=
1

n

(∑
x∈X

x2 − nµ2

)

=
1

n

∑
x∈X

x2 − µ2 (4.11)

Now let the two Gaussians g1 and g2 as in Section 4.1 be estimated from training
sample data sets X1 and X2 with counts n1 = |X1| and n2 = |X2|.

Based on these we want to create a new helper Gaussian gh = N (µh,Σh) that most
likely emits the data Xh = X1∪X2 of both given Gaussians, thus having nh = n1+n2

training samples.

The mean is simply a weighted sum of the given means:

µh =
n1

nh

µ1 +
n2

nh

µ2 (4.12)

We get the diagonal covariance matrix Σh by calculating the variances σ2
h for each

dimension:

σ2
h =

1

nh

·
∑

xh∈Xh

(xh − µh)2 (4.13)

=
1

nh

·
∑

xh∈Xh

x2
h − µ2

h

=
1

nh

·
∑

x1∈X1

x2
1 +

1

nh

·
∑

x2∈X2

x2
2 − µ2

h

=
1

nh

(
n1σ

2
1 + n1µ

2
1 + n2σ

2
2 + n2µ

2
2 − nhµ

2
h

)
(4.14)

5This is called a monogaussian model, which actually is not really a mixture model.
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Equation 4.13 is the default formula for variance given the sample data Xh; by
applying 4.11 twice, we get 4.14. This form only uses variables that are given by g1

and g2, so we can directly calculate the new variance σ2
h without using the sample

data.

We now have calculated the parameters µh and Σh of gh from the two original
Gaussians without using their sample data, which allows a reduction of needed
computing resources.

4.2.2 Merging GMMs

If the GMMs however have more than one Gaussian each, there is no closed analytic
solution known to us to derive a common Gaussian mixture that maximizes the
emission probability for the union of the given set of GMMs. To obtain the helper
GMM Γh in this case, we need to train it on the combined sample data Xh =

⋃m
i=1 Xi

of all polyphones in the class.

Our training data contains about 56 million sample vectors and during the clustering
there are about 2 ± 0.5 million distances to calculate – while for each of them at
least two helper models have to be trained. To use a full training for this is not
achievable, so we use a simplified algorithm:

Given the set G = {Γ1, . . .Γm} of m Gaussians mixtures and the sample data X =
{X1, . . . Xm} on which they were originally estimated, we get the helper model Γh

in these steps:

1. Initialize the helper model with values (means, covariances, mixture weights)
from a random model Γi ∈ G. This avoids an expensive run of the k-means
algorithm, while still being a reasonable initialization for the given data.

2. Run an expectation-maximization-algorithm on a subset of X. We cannot use
all the available data here for performance reasons, so we choose to take a
maximum of 5.000 random samples. This is sufficient for a reliable estimation,
but still small enough for fast computation.

3. Repeat step 2 for a total of 4 iterations in order to converge the parameters.
We use a different random subset in each repetition to maximize the number
of samples seen during this training.

This returns the helper GMM, albeit it is more expensive then the direct calculation
for single Gaussians.

4.3 Splitting with Questions

The clustering algorithm works divisive, which means it splits classes into smaller
classes. As stated in Section 2.4, we need to provide information on how to execute
these splits. This is the subject of this section.

The split method for polyphone classes is based on questions concerning the poly-
phones. Questions can ask for specific phonemes of the polyphone’s context, for
example 0=T asks whether the center phoneme is a T, or -1=B asks if the first
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phoneme in the left context of the polyphone is a B. The answer to a question
can either be “yes” or “no”6, which divides a polyphone class into two new classes
concerning the question and thus results in a split.

Figure 4.4 shows an example of some polyphones divided into two classes based on a
question: All polyphones with a vowel on the right are classified in the “yes”-branch,
the others in the “no”-branch.

+1=vowel

yesno

A(L|O)

A(H|U)

A(R|O)

A(L|O)

A(M|K)

A(H|U)

A(N|F)

A(R|O)

A(D|F)

A(M|K)

A(N|F)

A(D|F)

Figure 4.4: Splitting with Questions

We now can determine the distance between these two polyphone classes in two
steps:

1. Merge the models of the polyphones in each class to a single model per class
using the methods described in Section 4.2.

2. Now we have one model for the “yes”-class and one model for the “no”-class
and can calculate their distance as in Section 4.1.

This distance can be interpreted as a score of how well the splitting is: the bigger
the distance, the more the question is suitable for splitting. If the distance between
two classes is small, this means they are similar to each other with respect to the
question that created them, and thus the question is not a good candidate for a split.
However if the distance is big, the classes are distinct and the question provides a
good discrimination for a split.

Equipped with this, we can find the question that scores best to split a given poly-
phone class with Algorithm 2. In line 8, we use the two steps from above to calculate
the distance between two classes.

Line 5 uses the function | · |, which returns the total number of training samples
|C| =

∑
X∈C |X| for the polyphones of the class C. The condition in this line

provides a criterion to prevent splits whose resulting classes have to few training
samples to be trained reliably: Only if both resulting classes have a total of more

6Also, “unknown” is a possible answer, for example if the question asks for a context wider then
the given context of the polyphone: -3=F is not applicable to the polyphone E(B|R). We avoided
this answer by using a padding phoneme that fills gaps and returns “no” to every question.
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input : PolyphoneClass, QuestionSet
output: The Question that best splits PolyphoneClass and its Distance

1 BestDistance = 0;
2 BestQuestion = NULL;

3 foreach Question in QuestionSet do

4 Split PolyphoneClass into two classes Cyes and Cno according to Question;

5 if |Cyes| < SplitMinCount or |Cno| < SplitMinCount then
6 continue

7 end

8 Calculate Distance between Cyes and Cno;

9 if Distance > BestDistance then
10 BestDistance = Distance;
11 BestQuestion = Question;

12 end

13 end

14 return BestQuestion, BestDistance
Algorithm 2: Find Question

than SplitMinCount training samples, this split is considered. Section 5.2 will go
into detail about this parameter.

The essential choice before starting this algorithm is the selection of a suitable set
of questions: They aim is to split a class of polyphones into two classes that sound
“different”, so a good question distinguishes different sounds. Instead of asking for
specific phonemes as introduced in the first paragraphs of this section, we therefore
use questions about groups of similar phonemes.

For example, -1=voiced asks if the phoneme on the left involves vibration of the
vocal cords when pronounced7 or the question +1=plosive asks if the next phoneme
is pronounced with blocking the vocal tract8 – which means, both ask for specific
properties of the sounds to find similarities. Appendix B lists all groups of phonemes
used to build the question set.

4.4 Clustering Algorithm

The clustering algorithm is the core of our experiment’s calculations: its goal is to
find classes of polyphones that are similar to each other with regard to a distance
metric. It uses all the methods described above and returns a tree of questions with
polyphone classes as leafs; each leaf contains then a class of similar polyphones.
These kind of trees are called classification and regression trees (CART)9 as de-
scribed in [BFOS84].

In opposition to other clustering methods like agglomerative clustering, the use of
decision trees ensures that also polyphones that occur in the testing data but not in

7These are the vowels and some other phonemes like N or M.
8For example, the phonemes K, P and T.
9The original CARTs however use only the entropy distance to find the best split.
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the training data are assigned to the correct polyphone class: When walking down
the tree, even for unseen polyphones all questions can be answered unambiguously.

Algorithm 3 presents the essence of the steps involved.

input : PolyphoneClass, QuestionSet
output: SplitTree of Questions and Classes

1 Add PolyphoneClass as root to new SplitTree;
2 (BestQuestion, BestDistance) = FindQuestion(PolyphoneClass, QuestionSet);
3 Add (PolyphoneClass, BestQuestion, BestDistance) to new SplitList;

4 while SplitList not empty do

5 (Class, Question, Distance) = Dequeue first element of SplitList;

6 if |Class| < TreeMinCount then
7 continue

8 end

9 Split Class into two classes Cyes and Cno according to Question;
10 Replace Class in SplitTree by split node containing Question;
11 Attach children Cyes and Cno to this node;

12 (BestQuestion, BestDistance) = FindQuestion(Cyes, QuestionSet);
13 Add (Cyes, BestQuestion, BestDistance) to SplitList, sorted by Distance;

14 (BestQuestion, BestDistance) = FindQuestion(Cno, QuestionSet);
15 Add (Cno, BestQuestion, BestDistance) to SplitList, sorted by Distance;

16 end

17 return SplitTree
Algorithm 3: Cluster

The algorithm works top-down, which means it starts with one big polyphone class
and splits it into smaller classes. In the initialization (lines 1 to 3), we create the
SplitTree, which will be the algorithm’s result, and use the given PolyphoneClass
with all polyphones as the initial root node. For this class we then find the best
scoring question and use it to initialize the SplitList of possible splits, which is
sorted by the distance between the classes resulting from a split.

As the SplitList is always sorted, we ensure that the main loop (lines 4 to 16)
performs the best possible next split in each iteration: We split a class (line 9),
replace its node in the SplitTree by the according question (line 10) and for both
classes resulting from the split now find best questions and add them to the SplitList
(lines 12 to 15).

Line 6 is a criterion that applies if the polyphone class has too few samples in
the speech database to be trained reliably. This means that a polyphone class is
not further divided if the total number of samples is below TreeMinCount. The
function | · | again returns the total number of training samples |C| =

∑
X∈C |X| for

the polyphones of the class C. Section 5.2 will further explain this min count.

The resulting decision tree of the algorithm contains questions on every branch,
which split the original polyphone class, and the leafs are the polyphone classes. If
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these classes are used as representatives of polyphones, they are called generalized
polyphones. A generalized polyphone thus is a phoneme which is modeled in the
context of its class (given by the questions of the split tree), instead of being modeled
in a specific context of surrounding phonemes.

Figure 4.5 shows a part of a decision tree.

+1=vowel

-1=stop-1=nasal

yesno

-1=labial

yesno

A(P|F)

A(D|L)

A(M|K)

A(N|G)

A(N|M)

A(L|O)

A(R|O)

A(H|U)

A(F|E)

A(F|O)

A(B|I)

A(D|I)

A(M|O)

yesno

yesno

Figure 4.5: Part of a Split-Tree after Clustering

The classification resulting from our clustering algorithm is then used to train and
evaluate ASR systems. Details on that are subject of Chapter 5.
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5. Implementation

This chapter covers the practical realization of the concepts in order to test their
performance in an ASR system. First, we describe the environment of the experi-
ments and the system setup. After a description of the settings used to parametrize
the algorithms, the experiment setup lists the steps involved to evaluate our distance
measures.

5.1 System Setup

The implementation of the system as presented in Chapter 4 is build upon the Janus
Recognition Toolkit (JRTk) version 5.1.1. This ASR system is developed since 1993
at the Interactive Systems Labs, which is based at Karlsruhe Institute of Technology,
Germany, and at Carnegie Mellon University, USA. The system is similar to the one
described in [FiRo97].

The environment used for this work provides diagonal covariance matrices instead of
full covariance matrices – that means only the diagonal elements are different from 0
and represent the variances σ2 of the Gaussians. As a consequence the codebooks are
only able to represent uncorrelated features, which makes some of the calculations
easier while keeping the modeling relatively smooth.

The used speech data consisted of audio recordings in English. We use broadcast
news and broadcast conversations from the Quaero Project10. The advantage of
using broadcast data is the cleanness of the speech: news anchormen are trained
for clear pronunciation and the channel is mostly undisturbed by noise, which both
makes the recognition process easier and more reliable.

The data is divided into two parts:

1. A training database, consisting of about 187 hours of speech, is used as basis
for the clustering algorithm as well as for the training of the final system.

2. A testing database, consisting of almost 4 hours of speech, is then used to test
this system and to evaluate and score it.

10 cf. http://quaero.org [Online; accessed October 1, 2012]

http://quaero.org
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The evaluation is carried out by quantifying the Word Error Rate (WER) of the
different systems for each set of parameters as described in the next section.

5.2 Settings

There are several parameters that influence the clustering algorithm. The following
listing describes the parameters and explains the decisions on which values to use
for them:

Distance measure: Trying out the different distance measures as presented in
Section 4.1 is the objective of this work – we run the experiments using the
Euclidian distance, the Kullback-Leibler distance, the Extended Mahalanobis
distance and the Bhattacharyya distance.

Number of Gaussians: The helper models as introduced in Section 4.2 cope with
an arbitrary number of Gaussians to model the GMMs for polyphone classes.
Therefore, this parameter determines how many Gaussians are used for the
models and helpers to calculate the class distances. Incrementing this number
makes the modeling of the acoustic features smoother – but at the same time
the GMM distances loose significance, as mentioned in Section 4.1.5.

Maximum number of splits: This number determines how many different splits
are created during the clustering and thus is the number of final classes that
result from the algorithm. One has to find a tradeoff for the number of these
classes: On the one hand, the higher their number, the more accurate a system
can detect different polyphones (provided that enough training data is available
for each of them). On the other hand, if their number is small, each single
class accumulates more sample data and thus can be training more reliably.

Split Min Count: This stop criterion is used in line 5 of Algorithm 2 in Section
4.3. It ensures that only those splits are considered as possible that result in
two classes with enough sample data to train both reliably.

Treenode Min Count: In line 6 of Algorithm 3 in Section 4.4 we use this count as
a criterion to decide when the clustering algorithm should not further split a
polyphone class. It assures that classes that are already too small for splitting
(they cannot be trained reliably) are left out in further clustering.

The difference between the two min counts is small, as both determine a threshold
when to not further split a class – so the system could work with only one of them.
But still both influence the algorithm at different points: While the Split Min Count
decides which splits are possible for a class, the Treenode Min Count applies even
before a class is split.

5.3 Experiment Setup

Given the system as described in the previous sections, the following steps are per-
formed for each set of parameters in order to run and evaluate the clustering with
different distance measures:
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1. Extract samples: The first step is to generate samples for all polyphones from
the speech database. As we use a fully continuous acoustic model in the
clustering algorithm, we need to extract one set of samples for each of the
almost 800,000 polyphones separately.

2. Train the codebooks: Before the cluster algorithm can calculate distances be-
tween the codebooks of the single polyphones, they have to be trained on the
given data. For this purpose we initialize them with a k-means algorithm and
run four Expectation-Maximization iterations.

3. Run the cluster algorithm: The core of the experiments is the actual clus-
tering, where the concepts from Chapter 4 are applied. The result of this is a
decision tree which describes the polyphone classes.

4. Train the system: This decision tree is then used to build new codebooks and
distributions for the classes (generalized polyphones) resulting from the clus-
tering; using them, an ASR system is trained on the training database.

5. Test and score the system: This system finally is evaluated on the testing
database and the outcome in form of the WER is measured.

Figure 5.1 shows two exemplary generalized polyphones as they are used in step 4.
The dashed lines are the single Gaussians used in the codebook of each polyphone;
the continuous lines show the weighted mixture of the Gaussians and therefore rep-
resent the probability density of the complete polyphone.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

-6 -4 -2  0  2  4  6

DH-e(16)
IH-b(37)

Figure 5.1: Generalized Polyphones

In order to keep the calculations efficient, steps 2–3 are run on each center phoneme
separately. Their results are then joined by generating a new decision tree combining
the splits sorted by their distance before starting with steps 4 and 5.
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With this setup, we are able to measure the ability of the distance measures for
polyphone clustering by comparing the resulting Word Error Rates. This evaluation
is the subject of Chapter 6.



6. Evaluation

This chapter discusses the results of our experiments with different distance measures
and compares them to the entropy distance as described in Section 3.2. As we use the
same training and testing data for all the experiments, they are directly comparable.
The benchmark is evaluated in form of the Word Error Rate (WER) – the entropy
distance reached a WER of 28.1%. Our goal is to get below this value.

As described in Section 5.2, there are various parameters to configure our system.
For each set of parameters, at least steps 3–5 of Section 5.3 have to be executed
individually11, which takes about one week on our computer cluster. Thus, evalu-
ating all permutations of the parameters is not feasible, which is why we set some
parameters to established values from experience with similar systems.

The settings of our experiment are as follows: The maximum number of splits is set
to 6000, which is a good compromise to have enough, but still well trainable, models
for discrimination; the split min count is set to 1000, the treenode min count to 2000.
Again, these values allow the clustering algorithm to create a significant number of
classes on the one hand, and on the other hand make sure to have sufficient data
for a reliable training of each model.

Using these fixed parameters, we now can modify the number of Gaussians and run
evaluations for each distance measure. Table 6.1 shows the Word Error Rates using
1, 4, 8, 16 and 32 Gaussians for the helper models. For better visualization, Figure
6.1 shows the same results as a graph.

As easily can be seen, none of our results outperforms the entropy distance directly.
This seems to have mainly two reasons:

On the one hand, helper models with only one Gaussian have the least number of
parameters to estimate, as they only need one mean vector and one covariance matrix
per model, which thus is robust. The more Gaussians are used for the helpers, the
fewer training data is available for each of them – this is one reason why the WER
constantly increases when using more Gaussians. Also, using only one Gaussian

11Step 1 (Sample Extraction) is only done once, as all following steps use the same samples;
step 2 (Codebook Training) needs to be done once for each number of Gaussians.
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Number of Gaussians
1 4 8 16 32

Euclidian 30.3 33.0 33.7 34.2 34.6
Kullback-Leibler 30.1 33.6 34.1 35.3 35.5

Mahalanobis 30.2 33.3 34.2 34.4 35.1
Bhattacharyya 30.3 33.4 34.0 35.0 35.8

Table 6.1: Word Error Rates for different number of Gaussians
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Figure 6.1: Word Error Rates for different number of Gaussians

for the helper model allows to use the simple merging of Gaussians for the helpers
as presented in Section 4.2.1, which makes the successive training of helper models
unnecessary.

On the other hand, the method to calculate the distance between GMMs as presented
in Section 4.1.5 has its flaws: We calculate a weighted sum of the distances between
all pairs of Gaussians of the two GMMs. This method does not take the actual
distribution into consideration, but rather picks its single elements one after another
as representatives for the whole – which in fact they are not. Summing these elements
up still does not incorporate the distribution as a whole.

Furthermore, it is striking that the WER mainly depends on the number of Gaus-
sians, but not much on the distance measure itself. This is another indicator that
the weak point lies in the general method for calculating the GMM distance, but
not in the single Gaussian measures.

It is interesting that the Euclidian distance performs best for all Gaussian mixtures:
as it leaves out the covariances, it does not consider all the information of the
Gaussians, so one would expect it to score less well. This indicates that the means
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of the Gaussians are more reliably trained than the covariances. Perhaps this could
be solved by using more training data.

The described results and weaknesses all lead to one conclusion: The distance mea-
sures between single Gaussians may be established and broadly accepted by the
research community, but using them on Gaussian mixtures does not lead to the de-
sired results, at least not with the method we used. This is due to the fact that our
method does not represent a reasonable distance between GMMs. Chapter 7 will
present two approaches for further investigation on distance measures that instead
directly work on Gaussian mixtures.
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7. Conclusion and Outlook

In this work we presented different acoustic distance metrics and evaluated their
effects on the quality of a divisive polyphone clustering algorithm using fully con-
tinuous acoustic models. We therefore compared the Euclidian distance, the Kull-
back–Leibler divergence, the Extended Mahalanobis distance and the Bhattacharyya
distance to the entropy distance.

As Chapter 6 showed, the clustering resulted best in terms of the Word Error Rates
in case of single Gaussian helper models – but scored significantly worse if the number
of Gaussians was increased.

This can possibly be attributed to the fact that the helper models have more pa-
rameters to estimate while still having a constant amount of training data available.
Moreover, our method to calculate the distance between GMMs has its disadvantages
and may not be suitable to represent a reasonable distance between two GMMs.

For further investigations, the following two approaches may therefore be interesting:

1. Using a different method for the calculation of the distance between GMMs:
We calculated it as the weighted sum of all pairwise distances between the single
Gaussians of the GMMs. Another approach is to find pairs of minimal distances
and only use them.

This means, we first calculate all pairwise distances between the Gaussians, then find
the pair with minimal distance, the one with the second smallest distance (excluding
both Gaussians from the first pair), and so on, and add up only these distances to
get the total distance of the GMMs.

2. Using a distance measure, that does not use single Gaussians but rather
measures the distance between GMMs as a whole. A good distance between two
polyphones determines how differently the probability mass is distributed; therefore,
an interesting measure for further investigations is to use the volume between the
two distributions as a distance as showed in Figure 7.1(a).

The figure shows two GMMs and the (2-dimensional) volume between them. This
volume represents a distance: If the distributions are similar to each other, they
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(a) Volume between two Gaussian mixtures (b) Sample points to estimate the volume

Figure 7.1: Volume between GMMs as a distance measure

largely overlap – so the distance is small. However, if they are distinct, the volume
gets bigger. The maximal distance between two distributions is the sum of their
single volumes, if they do not overlap at all12.

This distance can be expressed as

dvol(Γ1,Γ2) =

∫ ∣∣Γ1(x)− Γ2(x)
∣∣ dx (7.1)

As the Gaussian integral is involved in an analytical solution to this, it may be easier
to use an estimation of the distance instead. One possibility is to use a set Ω of
sample points and measure the distance only at these points:

dest(Γ1,Γ2) =
∑
x∈Ω

∣∣Γ1(x)− Γ2(x)
∣∣ (7.2)

The sample set Ω can either be random or deterministic. Figure 7.1(b) uses the
means µ of all involved Gaussians as a deterministic set of samples to visualize this
estimation. Additionally to the means, one could include the inflection points and
their “multiples” µ ± n · σ, n ∈ N (in each dimension) in the set Ω in order to get
more samples and thus a closer estimation.

Summing the results up, we can conclude that our experiments did not yield the
desired results, but still offer potential for further research. As this chapter showed,
there are still refinements and concrete approaches to exploit the outcome of poly-
phone clustering. Future research can possibly outrun the benchmark of the entropy
distance by using the full potential of fully continuous acoustic models.

12Actually, there still will be an infinitesimal overlapping, as Gaussian distributions never reach
zero.



A. Phonemes

The following listing presents the phonemes used in our system along with examples
for them.

Phoneme Example Words

AA arm, article
AE avenue, axe
AH about, above
AO awesome, force
AW bounce, down
AX account, alert

AXR capture, liter
AY mike, psycho
B brain, about

CH chain, chicken
D development, destiny

DH the, thank
EH error, excellent
ER versus, term
EY weight, take
F f ilter, f lag
G gold, gun

HH hack, hammer
IH history, image
IX illusion, intensive, ...ing
IY jewellery, magazine, ...ty
JH major, merge
K micro, kill
L long, life
M man, manual
N novel, nice

NG language, bank, ...ing
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Phoneme Example Words

OW bold, code
OY appointment, deploy
P Pittsburgh, party
R reason, record
S senior, setup

SH shield, short
T time, today

TH thumb, theatre
UH would, look
UW you, loose
V over, provider
W queen, way
XL able, angle
XM rhythm, tourism
XN certain, button
Y young, year
Z advice, is, ...s

ZH measure, usual



B. Phoneme Sets

This listing shows the sets of phonemes used as questions in the clustering algorithm
in Section 4.3.

When splitting a class of polyphones, a question concerning a phoneme set asks for
each polyphone in the class if a specific phoneme of it is part of that phoneme set.
For example “-1=LABIAL” asks, if the phoneme on the left of the center phoneme
is part of the labial set. This can return yes or no and therefore splits the class into
two new classes.

Phoneme Set Elements

PHONES PAD IY IH EH AE IX AX AH UW UH AO AA EY
AY OY AW OW L R Y W ER AXR M N NG CH JH
DH B D G P T K Z ZH V F TH S SH HH XL XM
XN SIL GARBAGE +FILLER+ +BREATH+
+HUMAN+ +LAUGH+ +NOISE+

HUMANSND IY IH EH AE IX AX AH UW UH AO AA EY AY OY
AW OW L R Y W ER AXR M N NG CH JH DH B D
G P T K Z ZH V F TH S SH HH XL XM XN

VOLATILE AO EY AY OY AW OW L R Y W ER AXR M N NG
CH JH DH B D G P T K Z ZH V F TH S SH HH
XL XM XN

NOISES GARBAGE +BREATH+ +FILLER+ +HUMAN+
+LAUGH+ +NOISE+

FILLERS +FILLER+
BREATH +BREATH+
HUMAN +HUMAN+
LAUGH +LAUGH+
NOISE +NOISE+
NOISE2 +BREATH+ +FILLER+ +HUMAN+

+LAUGH+ +NOISE+
NOISE3 +BREATH+ +HUMAN+ +LAUGH+ +NOISE+
HUMANS +BREATH+ +HUMAN+ +LAUGH+



36 B. Phoneme Sets

Phoneme Set Elements

SILENCES SIL
CONSONANT P B F V TH DH T D S Z SH ZH CH JH K G

HH M N NG R Y W L ER AXR XL XM XN
CONSONANTAL P B F V TH DH T D S Z SH ZH CH JH K G

HH M N NG XL XM XN
OBSTRUENT P B F V TH DH T D S Z SH ZH CH JH K G
SONORANT M N NG R Y W L ER AXR XL XM XN
SYLLABIC AY OY EY IY AW OW EH IH AO AE AA AH UW

UH IX AX ER AXR XL XM XN
VOWEL AY OY EY IY AW OW EH IH AO AE AA AH UW

UH IX AX
DIPHTHONG AY OY EY AW OW
CARDVOWEL IY IH EH AE AA AH AO UH UW IX AX
VOICED B D G JH V DH Z ZH M N NG W R Y L ER AY

OY EY IY AW OW EH IH AO AE AA AH UW UH
AXR IX AX XL XM XN

UNVOICED P F TH T S SH CH K
CONTINUANT F TH S SH V DH Z ZH W R Y L ER XL
DEL-REL CH JH
LATERAL L XL
ANTERIOR P T B D F TH S SH V DH Z ZH M N W Y

L XM XN
CORONAL T D CH JH TH S SH DH Z ZH N L R XL XN
APICAL T D N
HIGH-CONS K G NG W Y
BACK-CONS K G NG W
LABIALIZED R W ER AXR
STRIDENT CH JH F S SH V Z ZH
SIBILANT S SH Z ZH CH JH
BILABIAL P B M W
LABIODENTAL F V
LABIAL P B M W F V
INTERDENTAL TH DH
ALVEOLAR-RIDGE T D N S Z L
ALVEOPALATAL SH ZH CH JH
ALVEOLAR T D N S Z L SH ZH CH JH
RETROFLEX R ER AXR
PALATAL Y
VELAR K G NG W
GLOTTAL HH
ASPIRATED HH
STOP P B T D K G M N NG
PLOSIVE P B T D K G
NASAL M N NG XM XN
FRICATIVE F V TH DH S Z SH ZH HH
AFFRICATE CH JH



37

Phoneme Set Elements

APPROXIMANT R L Y W
LAB-PL P B
ALV-PL T D
VEL-PL K G
VLS-PL P T K
VCD-PL B D G
LAB-FR F V
DNT-FR TH DH
ALV-FR SH ZH
VLS-FR F TH SH
VCD-FR V DH ZH
ROUND AO OW UH UW OY AW
HIGH-VOW IY IH UH UW IX
MID-VOW EH AH AX
LOW-VOW AA AE AO
FRONT-VOW IY IH EH AE
CENTRAL-VOW AH AX IX
BACK-VOW AA AO UH UW
TENSE-VOW IY UW AE
LAX-VOW IH AA EH AH UH
ROUND-VOW AO UH UW
REDUCED-VOW IX AX
REDUCED-CON AXR
REDUCED IX AX AXR
LH-DIP AY AW
MH-DIP OY OW EY
BF-DIP AY OY AW OW
Y-DIP AY OY EY
W-DIP AW OW
ROUND-DIP OY AW OW
LIQUID-GLIDE L R W Y
W-GLIDE UW AW OW W
LIQUID L R
LW L W
Y-GLIDE IY AY EY OY Y
LQGL-BACK L R W
X-LMN XL XM XN
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