
Automatic Topic Classification of
Media Reports Mentioning KIT

Bachelor Thesis of

Robert Marx

At the Department of Informatics
Institute for Anthropomatics and Robotics

Interactive Systems Labs

Reviewers: Prof. Alex Waibel
Dr. Sebastian Stüker

Advisors: Dr. Sebastian Stüker
Dipl.-Inform. Jan Niehues

Time Period: 1st Decembre 2015 – 31st March 2016

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu





Statement of Authorship

I hereby declare that this document has been composed by myself and describes my own
work, unless otherwise acknowledged in the text.

Karlsruhe, 31st March 2016

iii





Abstract

This thesis evaluates if state-of-the-art text classification methods are able to accu-
rately predict the categories of media reports that mention the "Karlsruher Institut
für Technologie"(KIT). It describes methods to prepare the media reports for further
processing and then focuses on improving the baseline classification methods, which
mainly are a Support Vector Machine (SVM) with linear kernel, Chain Augmented
Naive Bayes (CAN) and the Maximum Entropy method. Based on the results of
multiple experiments it concludes that the SVM ist the best approach with a F-score
of 81.8%.

Deutsche Zusammenfassung

Diese Bachelorarbeit evaluiert, ob moderne Methoden der Textklassifikation in
der Lage sind, die Kategorien von Presseartikeln, die das "Karlsruher Institut für
Technologie" erwähnen, akkurat vorauszusagen. Dabei wird die Methodik beim
Vorbereiten der Presseberichte für die weitere Verarbeitung beschrieben. Ein Großteil
der Bachelorarbeit erklärt die Experimente mit der die grundlegenden Methoden
verbessert wurden. Die hauptsächlich beschriebenen Methoden sind die Support
Vector Machine (SVM) mit linearem Kernel, der Chain Augmented Naive Bayes
(CAN) und die Maximum Entropy Methode. Auf Basis der verschiedenen Experimente
wird gerschlussfolgert, dass die SVM die beste Methode ist mit einem F-score von
81.8%.

v





Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related work 3
2.1 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Text classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.3.1 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.2 Supervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3.3 Unsupervised learning . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3.4 Ensembles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Text classification 7
3.1 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 N-gram language models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2.1 Calculating probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Perplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.4 SRILM toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 Chain Augmented Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4 Scikit-learn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.1 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1.1 Bag of words . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.4.1.2 Term weighting . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4.2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4.4 Maximum entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Cluster analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.6.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6.2 F-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.6.3 Averaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.4 Holdout method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.6.5 Stratified k-fold cross validation . . . . . . . . . . . . . . . . . . . . . 13

4 Database 15
4.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3 Imbalanced data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



Contents

5 Experimental results 19
5.1 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.2.1 Chain Augmented Naive Bayes (CAN) . . . . . . . . . . . . . . . . . 21
5.2.2 Scikit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.3.1 Uniting categories and cross validation . . . . . . . . . . . . . . . . . 23
5.3.2 Inclusion of titles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.3.3 Removal of stop words . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.4 Miscellaneous experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.4.1 Interpolating language models . . . . . . . . . . . . . . . . . . . . . 25
5.4.2 LM probabilities as features . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.3 Chi-squared test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.4.4 Clustering words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.5 Stacking classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.6 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Conclusion 29

Bibliography 31

viii



1. Introduction

1.1 Motivation
Automatic text classification is one of many things that machine learning (ML) made
possible. ML tries to simulate all types of learning processes with a computer. Learning is
a phenomenon every human is capable of but it has many facets like “acquisition of new
declarative knowledge, the development of motor and cognitive skills through instruction
or practice, the organization of new knowledge into general, effective representations,
and the discovery of new facts and theories through observation and experimentation”
([Carbonell et al., 1983]).

Many scientists have the goal to create an artificial intelligence (AI) that works similar to
the human brain and can learn on its own as a consequence. The first step to accomplishing
that was the invention of the perceptron by Frank Rosenblatt 1958. The perceptron is
not enough to correctly model a human brain, but provides the basis for artificial neural
networks (ANN). ANN’s are a popular method for ML nowadays, but AI was and still is in
an early stadium.

In the mean time many other ML approaches were discovered, but before the early 90s
the most popular text categorization (TC) method was knowledge engineering (KE). KE
classifies documents with the help of rules that are manually defined by domain experts.
For example [Hayes and Weinstein, 1990] used such an approach to categorize news stories.
Research was focused on developing new and better methods from the 90s on, because
the increasing use of the Internet and growing number of electronically stored documents
induced a need for methods that can deal with large amounts of data.

[Maron, 1961] introduced probabilistic TC on the basis of Bayes’ theorem, but it took
over 30 years until it was general consensus that probabilistic approaches to ML could
outperform KE and other methods while being easier to use and develop in contrast
to KE and ANN’s. Other ML approaches simultaneously started to gain traction. ML
approaches differ on how they classify documents. They also use different representations
of the documents. Under such circumstances it becomes hard to choose one of the many
state-of-the-art methods, because their performance highly depends on the data used or
the particular task they have to fulfill. Each of these methods has an environment where
it performs good. Due to that, research in the last few years has focused more on the
preprocessing of documents and on building hybrids of established methods.

1



1. Introduction

1.2 Goal
The goal of this bachelor thesis is to evaluate if it is possible to transfer the task of
classifying the category of a media report from human to computer. Human experts can
classify documents like media reports with high accuracy, but have to invest a lot of time, in
order to create and maintain a database with tens of thousands of documents. A computer
is able to complete the classification of many documents in a much shorter time, but in
order to make manual work obsolete, the computer needs to achieve results that are as
close as possible to manual classification. As measurement for results alongside accuracy,
F-score is introduced for the purpose of assessing the quality of the classifier. Ultimately,
the aspiration is to obtain high accuracy and F-score. A lot of established and easy-to-use
libraries, which provide users fast access to ML, exist. Even though these almost trivialize
the creation of multiple classifiers, the performance depends on the selected parameters
and the suitability of a classifier for the available data.

1.3 Outline
First of all, this thesis gives an overview of research that has already been done in terms of
ML and in particular TC. In the course of it, state-of-the-art technology is revealed. In
Chapter 4 the database, consisting of media reports about the KIT, is reviewed. Chapter 3
lists and describes many of the methods that are used in this thesis. The execution and
results of those methods are discussed and improved upon afterwards in Chapter 5. The
final results of this thesis are presented in Chapter 6.

2



2. Related work

2.1 Machine learning
In general, machine learning describes the process of an algorithm, often called learner,
building a model from data to make predictions about more data. There are multiple types
of machine learning, but the most interesting type for this thesis is supervised learning. It
means that the learner has examples with their intended output, called labels, at disposal,
so it can learn how to make predictions about new data. Supervised learning is used in
this thesis, because a manually built database is available which has all the information a
supervised learner needs. Unsupervised learning tries to find structure in given examples to
build a model describing the data. Because there are no labels available, special techniques
are required to get useful predictions, e.g., clustering algorithms, which separate examples
into different categories. If the guidelines for manually annotating data with labels are not
precise, unsupervised learning could find patterns that allow, e.g., a better separation of
data or a different amount of categories.

2.2 Text classification
Automatic classification is a branch of supervised learning and entails text classification.
Most text documents have a large amount of unique words. This characteristic of data
is called dimensionality. High dimensionality can be a problem for general classification
methods, but a lot of research into text classification has been done that suggests methods
to deal with high dimensionality.

The endeavor of this thesis is to assign the best fitting category to an unseen text and is a
special case of text classification named text categorization, which is referred to as TC in
the remainder of the thesis.

The basic steps to classifying a text are:

1. Data preparation

2. Feature extraction

3. Feature selection or dimensionality reduction

4. Model creation with learner

5. Prediction with model

3



2. Related work

This thesis evaluates different supervised learning algorithms to find the best approach to
text categorization with the database at disposal. The database is described in Chapter 4.
The following section will shed light on standard procedures in TC and assess what recent
research is focused on.

2.3 State of the art
2.3.1 Preprocessing

Preprocessing includes all the steps that happen before training a model. How exactly
data preparation is done depends on the available data and differs widely. In Chapter 5
data preparation for this thesis is described (also see Figure 5.1).

However, there are many different options to consider for feature extraction and selection.
Most classifiers can not process raw text data. They need numerical values, which are
called features. These can be binary, but the most common method to extract features
is the bag of words, which uses word counts as features. In the last few years research
focused on alternative document representations, e.g., [Elberrichi et al., 2008] use WordNet
to capture relations between words.

TC works without feature selection, but it is commonly included, because it can improve
the performance of many classifiers, e.g., the Naive Bayes classifier, drastically. Feature
selection tries to select the features that are the most valuable for classification and fewer
features mean lower dimension. Though a dimensionality reduction does not necessarily
have a positive impact on the performance of a classifier, it at least accelerates creating it
and making predictions. Measures are needed to determine the value of various features.
With their aid a feature ranking is created to determine the best features. [Lux, 2012]
describes some of the commonly used measures:

• Term frequency measures how often a term appears in the data.

• Mutual information measures how much features contribute to making the correct
classification.

• Information gain is based on the concept of Entropy, which measures the purity of
a category.

• Chi-squared test, also seen as χ2, uses the measure of independence between term
and category.

More complex alternatives are, e.g.: Principal Component Analysis (PCA) ([Pearson, 1901])
and Latent Semantic Analysis (LSA) ([Deerwester et al., 1990]). [Yu et al., 2008] report
dramatic dimensionality reduction and good classification results with LSA.

2.3.2 Supervised learning

Naive Bayes is a core technique in information retrieval. It has been used in a lot of research
over a long period of time and is despite its simplicity and assumptions a viable option
in text classification as shown by [Lewis, 1998]. [Domingos and Pazzani, 1997] find it to
be optimal for some datasets. But [Kohavi, 1996] indicates that more complex classifiers
are better suited for larger amounts of training data and proposes a fusion of Naive Bayes
with decision trees.

The theory of decision trees and their representation as a graph is easy to understand, and
they can perform quite well. A popular method for synthesizing decision trees is the ID3
Algorithm from [Quinlan, 1986] and its successors C4.5 ([Quinlan, 1993]) and C5. In TC
they are often used as baseline classifiers, but are commonly outperformed.

4



2.3. State of the art

[Nigam et al., 1999] show that maximum entropy models, also called logistic regression,
can sometimes outperform Naive Bayes significantly in text classification tasks and their
results indicate that it is a promising technique for text classification.

The nearest-neighbors algorithm also is a very simple method for TC, but it has an
obvious disadvantage in the time it takes to make predictions. It was introduced to TC by
[Masand et al., 1992]. This thesis will refer to it as k-NN, because it classifies a document
on basis of the k documents that are closest to it. In a high dimensionality space it is time
expensive and the accuracy also tends to deteriorate.

Two neural network (NN) approaches to TC were made by [Wiener et al., 1995] and
[Ng et al., 1997]. A disadvantage of NNs is their time consuming training, but Wiener et
al. remark that they can predict multiple topics simultaneously and model a higher order
interaction between terms. They also use Latent Semantic Indexing(LSI), which is similar
to LSA, which was mentioned before, for feature selection.

Support vector machines (SVMs) were introduced by [Vapnik, 1995] and are one of the most
promising models for TC, because they outperform many of the older models. They can
perform very well without tuned parameters, which is a big advantage. [Joachims, 1998]
provides theoretical and empirical evidence which supports that SVMs are suited for text
categorization while being easy to use.

2.3.3 Unsupervised learning

Clustering techniques try to divide the data into groups with high similarity. A ba-
sic procedure is the K-means algorithm which splits the data into k clusters. An effi-
cient K-means algorithm is described by [J. A. Hartigan, 1979] who also published the
first iteration in 1975. There are multiple ways to incorporate clustering into text
classification. It can be used for feature selection or can supply additional features
([Kyriakopoulou and Kalamboukis, 2006], [Takamura, 2003], [Yong et al., 2009]).

Latent Dirichlet Allocation (LDA), introduced by [Blei et al., 2003], is an unsupervised
learning method that is able to find distinct topics in documents and can match the
most appropriate topic to a document. [Bíró et al., 2008] use LDA in combination with
supervised methods to classify spam.

2.3.4 Ensembles

There are various options for using more than one classifier at the same time. [Rokach, 2010]
gives a very detailed overview of ensembles. Ensembles are a very active field of research.
Creating an ensemble of classifiers can result in improved performance or more stable
results. Negative effects include an increase in memory usage and calculations proportional
to the amount of classifiers. The classifiers have to be different to achieve a positive effect.
The three basic ensemble options are:

• Train classifiers with various learning methods:

The resulting predictions are combined and either an algorithm or an additional
classifier, sometimes called president, has to make a final prediction. This procedure is
called stacking. Majority voting, which returns the most frequent prediction, is an ex-
ample for an algorithm. [Sakkis et al., 2001] stack a naive Bayes classifier and a k-NN
classifier and uses another k-NN classifier as president. [Dzeroski and Zenko, 2004]
show that always stacking classifiers is a viable option in comparison to seeking the
best single classifier.

• Use different parameters for each classifier

5



2. Related work

• Train classifiers on different training subsets:

[Utami et al., 2014] use this approach in combination with SVMs and decision trees.
Boosting is a more refined approach. It tries to create a strong classifier out of many
weak ones by adjusting the weights of misclassified documents. A popular boosting
algorithm is AdaBoost developed by [Freund and Schapire, 1995]. [Zhu et al., 2006]
augmented it for use with multiple categories. [Xue and Li, 2015] describes the
random forest classifier, which is a famous ensemble method that combines multiple
decision trees trained on random subsets.

6



3. Text classification

3.1 Naive Bayes
The Naive Bayes classifier is based on Bayes’ theorem. [Sebastiani, 2002] gives a detailed
overview of probabilistic classifiers like the Naive Bayes classifier. For a given category c
and document d, the theorem is:

P (c|d) = P (c) ∗ P (d|c)
P (d) (3.1)

This theorem calculates the posterior probability with knowledge of a prior probability and
a likelihood. In the case of TC, the prior probability of c is the probability of randomly
choosing a document of category c. The denominator P(d) can be ignored, because it
is a constant for every category. The Naive Bayes classifier gets his name from Bayes’
theorem and from making the naive assumption that all of the features of d, which are
words or n-grams in TC, are conditionally independent given c. So the likelihood P(d|c)
for a document vector d = (v1, v2, ...vK) can be calculated by multiplying the likelihood of
each feature. This leads to:

P (c|d) = P (c) ∗
K∏
j=1

P (vj |c) (3.2)

Then the optimal prediction c* would be the category that maximizes the posterior
probability.

c* = arg max
cεC

{P (c|d)} (3.3)

Another assumption can be made. There are different possible prior distributions, e.g.,
Dirichlet distribution and uniform distribution. A maximum likelihood Naive Bayes classifier
is the result of assuming an uniform distribution, which makes the prior probability obsolete:

c* = arg max
cεC

{
K∏
j=1

P (vj |c)} (3.4)

3.2 N-gram language models
Speech recognition made up most of the research regarding statistical language models
for a long time. Since the beginning of the 21st century they are used for information
retrieval tasks frequently. [Hiemstra, 2001] summarizes the expansion of language models
and recent research in information retrieval.

7



3. Text classification

3.2.1 Calculating probabilities

A language model should assign high probability to words or n-grams that occur often
and vice versa. N-grams are sequences of n words. They can overlap and, for the sentence
"This is a nice example", following n-grams can be extracted:

• 1-grams / unigrams: This, is, a, nice, example

• 2-grams / bigrams: This is, is a, a nice, nice example

• 3-grams / trigrams: This is a, is a nice, a nice example

The probability of a sequence of words w1w2...wT is calculated on basis of the chain rule
of probability:

P (w1w2...wT ) =
T∏
i=1

P (wi|w1w2...wi−1) (3.5)

This is not a proper approach, because for training the language model only a limited
amount of text is available. Thus, a long and unique sequence will be rare and its probability
very low. A possible solution to this problem is theMarkov n-gram independence assumption
which approximates the probability of a word by only considering the last n-1 words. The
probability of the example above can be calculated with the extracted n-grams.

Using unigrams:

P (This is a nice example) ≈ P (This) ∗ P (is) ∗ P (a) ∗ P (nice) ∗ P (example) (3.6)

Using bigrams:

P (This is a nice example) ≈ P (is|This) ∗ P (a|is) ∗ P (nice|a) ∗ P (example|nice) (3.7)

It is easy to calculate these probabilities. For unigrams it is the ratio of occurrences of the
word to the total amount of words. N-grams of order n > 1 are estimated with:

P (wi|wi−n+1...wi−1) = #(wi−n+1...wi)
#(wi−n+1...wi−1) (3.8)

Trigrams are a good compromise between computational effort and accuracy, but usage of
4-gram and 5-gram language models is not uncommon.

3.2.2 Smoothing

Finally, the language model needs a mechanism that accounts for n-grams that were not
learned with the training data, because if it would assign a probability of zero to an
unknown n-gram, Equation 3.5 would result in a probability of zero for the whole sequence.
This mechanism is called smoothing and multiple techniques are described in detail by
[Peng and Schuurmans, 2003].

3.2.3 Perplexity

The quality of a language model for a certain document is measured by its perplexity (3.9).
A small perplexity value indicates high quality.

Perplexity = T

√√√√ T∏
i=1

1
P (wi|w1...wi−1) (3.9)

8



3.3. Chain Augmented Naive Bayes

3.2.4 SRILM toolkit
[Madnani, 2009] also explains n-gram language models and additionally shows how to
implement them with Python. For trigrams and higher he proposes using the SRILM
toolkit. [Stolcke, 2002] gives an overview of the software’s possibilities and its design
philosophy. It is mainly for building and applying statistical language models and is widely
used in natural language processing tasks like speech recognition or machine translation.
Development started in 1995 and is still ongoing. The programming language used is C++
and SRILM runs on UNIX and Windows. Furthermore it provides multiple smoothing
algorithms.

3.3 Chain Augmented Naive Bayes
The work of [Peng and Schuurmans, 2003] tried combining Naive Bayes and n-gram lan-
guage models for text classification and achieved very good results even though it is a
simpler technique than many other of the methods in the following sections, which is why
his approach is used in this thesis.
The basic idea behind his approach is to use the approximated probability of a sentence,
calculated with Equation 3.5, as likelihood in the maximum likelihood Naive Bayes classifier
(Equation 3.4). At first separate language models are generated with the training documents
of each category. Then a new document will be evaluated by each of the models. The
model achieving the highest likelihood represents the most probable category for the given
document.
One advantage over the standard Naive Bayes classifier is the consideration of words that
are unknown. Also language models can employ advanced smoothing techniques. Another
advantage is the involvement of Markov dependencies between adjacent words while the
simplifying assumption of Naive Bayes considers words conditionally independent given a
category. These differences are noticeable in performance in favor of the proposed approach.

3.4 Scikit-learn
Scikit-learn is a library for the programming language Python and is utilized in this thesis,
because it integrates many state-of-the-art machine learning algorithms allowing this thesis
to evaluate multiple algorithms in shorter time. It is an open source project aiming at
making machine learning accessible to non-specialists and inter-operates with NumPy and
SciPy, which are commonly used Python libraries for numerical and scientific purposes.
[Pedregosa et al., 2011] give a detailed overview of the still ongoing project.

3.4.1 Feature extraction
The goal of feature extraction is to take the data, in this case text, and process it to get
numerical features that can be used by the learner, because most of them can not handle
raw text with variable length. Scikit provides utilities for tokenizing, which in this case
means splitting sentences into words and giving each of them an identification number, as
well as counting occurrences of each token and normalizing and weighting them. In Scikit
the class with these capabilities is called CountVectorizer.

3.4.1.1 Bag of words
The most popular representation of a text in TC is the bag of words. It is a simplifying
representation, because it just stores every word on its own. Thus it ignores the order of
words in a sentence although some phrases could be useful for classification. It is possible
to use n-grams (fragment of n consecutive words) with the bag of words approach, but the
main part of semantic information lies in the internal structure of a document, which is
not represented by this approach.

9



3. Text classification

3.4.1.2 Term weighting

The bag of words also assigns a weight to every word in the document. A simple weighting
scheme is the term frequency (tf) which indicates how often a term t is mentioned in
a document d, but tf does not tell how important the term is for classification of the
document. Some terms with high tf could appear in multiple documents from different
categories.

tft,d = occurrences of t in d
amount of all terms in d (3.10)

Inverse document frequency (idf) indicates how common a term is in the available data. It
is obtained by calculating the fraction of documents the term appears in and inversing as
well as logarithmically scaling that fraction.

idft = log amount of all documents
amount of documents that include t (3.11)

By multiplying tf and idf (tf-idf) a term can only achieve a high weight, if it appears multiple
times in a document while being rare in general. Tf-idf weights can be calculated in Scikit
with the TfidfTransformer class. Instead of using CountVectorizer and TfidfTransformer,
TfidfVectorizer can be used.

3.4.2 Feature selection

Although tf-idf weighting should weigh non-informative features low, there is still room for
explicit feature selection. Due to the high dimensionality of text data the learning process
of a classifier can be a computationally expensive task. Reducing the dimensions with
feature selection can reduce memory usage and processing time greatly.

There are a lot of words that lack significant information in English as well as in German
though they can be important for phrases. These are mostly function words, e.g., con-
junctions and articles. In information retrieval they are called stop words and are often
removed from the data. Instead of removing them beforehand, Scikit also allows passing a
list of stop words as parameter to the Count- or TfidfVectorizer class.

Scikit provides feature selection with χ2 as scoring function, which ranks features according
to their score. On basis of this ranking, features are selected. This thesis uses SelectKBest
to select a variable amount of features.

3.4.3 Support Vector Machines

The support vector machines (SVMs) used nowadays made their first appearance in the
work of [Cortes and Vapnik, 1995] about structural risk minimization. Since then they
quickly became one of the state-of-the-art methods for classification. [Joachims, 1998]
applied SVMs to text categorization with good results and also explained why SVMs are
good at text categorization. His research showed that feature selection is not needed,
when using SVMs, because they can handle high dimensionality. [Taira and Haruno, 1999]
achieved the best results in their work without feature selection, which supports the results
of Joachims. Furthermore, parameter tuning is obsolete, because the default parameters
theoretically provide the best effectiveness.

A linear SVM has the goal of separating positive and negative examples with a hyperplane.
Simply separating the examples is not enough, so it tries to maximize the margin between
hyperplane and the closest examples. The best separating hyperplane is determined by the

10



3.5. Cluster analysis

Figure 3.1: Linear support vector machine from [Dumais et al., 1998]

support vectors, which are a small subset of the data. Figure 3.1 shows the SVM approach
to linearly separable data with two dimensions. Not every data is linearly separable. A
SVM penalizes examples that are on the wrong side of the decision boundary. It can also
use kernel functions to classify nonlinearly. Kernel functions fit the maximum-margin
hyperplane into a new feature space that can be nonlinear and high dimensional.

Scikit includes two popular libraries for SVMs. The class SVC is based on libsvm and
accepts different kernel functions. The library liblinear is used by the class LinearSVC.
It is similar to the SVC class with a linear kernel, but because the underlying libraries
are different and they handle multi-class data differently, performance can vary from each
other.

3.4.4 Maximum entropy

[Nigam et al., 1999] has a detailed look at maximum entropy classifiers and applies them to
TC. On the basis of a data set maximum entropy is a technique that estimates probability
distributions. These should be as uniform as possible, because of the principle of maximum
entropy. It claims that the distribution which represents the available information best is
also the one with maximal entropy. In order to model the available information, constraints
are derived from the data. Multiple algorithms are able to use these constraints to find a
maximum entropy distribution, e.g., Improved Iterative Scaling (IIS) and Limited-memory
BFGS (LBFGS). Features are needed to create constraints and in TC word counts can be
used.

A big difference to the Naive Bayes classifier is, that maximum entropy classifiers do not
assume independence between words. These circumstances imply easier use of n-grams as
features, but it does not make it a better classification method.

In Scikit the class implementing maximum entropy classifier is called LogisticRegression.
The included algorithms for the optimization problem are either based on the liblinear
library or implement Newton’s conjugate gradient method, LBFGS or the Stochastic Average
Gradient method.

3.5 Cluster analysis
The goal of cluster analysis or clustering is to create groups called clusters for similar
objects and assign every object to one of these groups. In TC possible objects are either

11



3. Text classification

words or documents. This task can be solved by many algorithms with completely different
strategies and cluster definitions.

The word clustering tool used in this thesis is named mkcls and belongs to the Giza++
distribution. In [Och, 1999] the creator of the tool explains the theory which it is based on.

3.6 Evaluation
As shown in this chapter, multiple different classification techniques are at issue. It is
desirable to use the classifier providing the best outcome in a finished product and it is
important to know how it would perform in the future. Therefore methods or formulas for
estimating performance are needed.

3.6.1 Accuracy

Accuracy indicates the probability that a random sample is classified correctly and is
calculated by dividing the amount of correctly classified samples by the complete amount
of samples. It definitely can be a good measure of performance, but can lead to misjudging
the quality of a classifier. If a classifier always predicts the most frequent category in an
imbalanced dataset it can achieve high accuracy without being able to classify any other
categories. To avoid problems like this other measurements can be used.

3.6.2 F-score

The F-score or F-measure (3.14) is the harmonic mean of two other measurements named
precision (3.12) and recall (3.13). A confusion matrix (see Figure 3.2) simplifies the
calculation of these measures, e.g.: the prediction is a true positive, if the prediction and
the actual label of the data are both positive.
If a classifier has high precision for a category c and predicts c, it will probably be a correct
prediction. If the classifier also has high recall for c, it will identify a high percentage of
documents belonging to c. High precision and low recall will lead to rarely predicting c,
but predicting c correctly. In contrast, low precision and high recall will result in often
predicting c leading to wrong classifications.

Figure 3.2

Actual
value

Prediction

p n total

p′ True
Positive

False
Negative P′

n′ False
Positive

True
Negative N′

total P N

(a) Confusion matrix

Precision = #TP
#TP + #FP (3.12)

Recall = #TP
#TP + #FN (3.13)

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

(3.14)

(b) Measures

12



3.6. Evaluation

3.6.3 Averaging

Applying these measures for single categories is trivial, but there are two possible methods
to get an overall performance estimation:

1. Micro-averaging:
Stack the predictions of each category and then calculate the measures.

2. Macro-averaging:
Calculate the measures for each category and then calculate the average of these
measures.

If the data is imbalanced, micro-averaging is the preferred method for estimating the future
performance, because macro-averaging assumes a uniform distribution.

3.6.4 Holdout method

The holdout method is splitting the available data into two sets at the minimum. One set is
for training a classifier and the other set is for testing it. In order to build a good classifier
as much training data as possible is needed so this thesis makes use of 90% of the data as
training material and 10% for testing purposes. Unfortunately a wider confidence interval
for the performance evaluation is a drawback of a smaller test set. Tuning parameters
of classifiers and selecting the best one should not be done by interpreting the results
achieved with the test set, because it might improve performance only for that specific
dataset. Therefore another 10% of the training set is split off to receive a validation set.
Now if performance of classifiers is tested on the validation set there will still be the test
set which consists of purely unseen data and can be used to evaluate final performance of
the selected classifier. Since the available data is very unbalanced, every set of documents
has to have the same distribution of categories. If one category would be underrepresented
in one of the sets, it would simultaneously be overrepresented in the others which in turn
could severely impact the performance estimation.

3.6.5 Stratified k-fold cross validation

A single validation set can consist of samples that are better or worse to classify than the
average sample. So instead of using a single validation set, stratified k-fold cross validation
is used in order to get a better representation of the average performance.

In k-fold cross validation the data is split into k mutually exclusive partitions, called folds,
and in stratified cross validation the folds share the same distribution of categories as the
original dataset. For every single fold a classifier is trained on the data set excluding the
fold which in turn represents the validation set to be used for testing. A more detailed
background to cross validation methods can be found in [Kohavi, 1995]. His results indicate
that 10-fold stratified cross validation is the best method for model selection. K values
between 10 and 20 reduce variance sufficient and are not as computationally expensive as
higher k values.

13





4. Database

4.1 Description
The database this thesis is based on is manually administered with the purpose of gathering
all media reports mentioning the Karlsruhe Institut für Technik (KIT). At the time of the
first classification experiments, it contained reports from July 2011 to November 2015. All
types of background information of a report are stored in the database in German. As a
result it gets easier to search for specific coherences.

4.2 Content
Apart from the data supplied by each report, e.g., title and authors, the database contains
other interesting annotations. The category of a report is the most important annotation
for this thesis, but the others can support classification or could be subjects for similar
experiments. Tables 4.1 and 4.2 show a few examples of reports with the following
annotations:

1. Category
There are 8 main categories and 22 subcategories (see Figure 4.3). The subcategories
represent fields of research, e.g., informatics, and are independent of the main
categories. It is mandatory that a media report belongs to a single main category.
Subcategories however are optional and multiple subcategories can be assigned to a
report.

2. Tendency
The tendency is the perceived sentiment of the report towards the KIT. It can be
positive, neutral or negative. Sentiment analysis is a form of TC, but uses sentiment
instead of categories.

3. Genre
This is the literary genre of a report, e.g., interview, news, commentary, blog, gossip
or even radio and video.

4. Thematic priority
Arts, politics, economics, science and miscellaneous are the 5 possible themes.

5. Media attention
This considers if the KIT is the main theme, a sub-theme or just a side issue in the

15



4. Database

report. Nearly a quarter of the reports have the KIT as main theme and 15% as
sub-theme. The majority only mentions the KIT incidentally.

6. Language
A lot of different languages are represented, but for this thesis German is the main
concern. Figure 4.2b shows how many reports are German.

7. Elite
Roughly 0.5% of the reports are about the status of the KIT in the German Univer-
sities Excellence Initiative.

8. Event
Around 11.75% of the reports are about an event.

9. Ranking
Approximately 0.75% are about the the ranking of KIT with respect to other univer-
sities.

10. Content edited
The content of a quarter of all reports was edited, which leaves a lot of data unprepared
for processing. Data preparation is covered in Section 5.1.

11. Keywords
Keywords like "Fukushima" are either active or not active. They simplify searching
for reports about relevant topics.

4.3 Imbalanced data
[Japkowicz and Stephen, 2002] studied the effect of imbalanced data on performance and
deduced that it significantly decreases performance of classifiers. Especially for binary
classification a lot of methods exist, which can improve performance on imbalanced data.
The easiest being over- and under-sampling of data. [He and Garcia, 2009] describe a lot of
these methods and multiple others (e.g., [Abe et al., 2004] and [Zhou and Liu, 2010]) try
to do the same for multi-class problems, which are an active field of research. Imbalance is
not the only problem the available data has. Classifying with a balanced training set will
still perform bad, if the training set is too small.

Figure 4.1a shows that the portion of reports with negative sentiment is very small in
comparison to the other sentiments. After removing non-German reports there would be
even less negative articles. If a classifier for sentiment analysis were built, the classification
accuracy of negative reports would probably be very low, because there are not enough
examples the classifier could be trained on.

Similarly are the problems with the categories of the reports. The distribution of categories
is very imbalanced as Figure 4.3 shows. 42,345 is the sum of reports that are labeled with
one of the eight categories, but not every report in the database has its original content
available and many reports are not German (see Figure 4.1b). Because this thesis wants to
classify the category of German text, the amount of usable reports shrinks significantly. In
Table 5.1 the remaining reports per step of data cleaning are listed. Categories 3 and 4 are
underrepresented and might hinder the performance of a classifier. A possibility to remedy
this, is uniting categories that are underrepresented.

16



4.3. Imbalanced data

Ta
bl
e
4.
1:

Ex
ce
rp
t
fr
om

th
e
co
nt
en
t
ta
bl
e.

ID
G
en

re
T
he

m
at
ic

Pr
io
rit

y
M
ed

ia
at
te
nt
io
n

Te
nd

en
cy

Te
xt

La
ng

ua
ge

El
ite

Ev
en
t

R
an

ki
ng

Ed
ite

d

27
6

N
ac
hr
ic
ht
/B

er
ic
ht

Po
lit
ik

R
an

dt
he

m
a

ne
ut
ra
l

B
efi

nd
en

sic
h
im

...
de

ut
sc
h

0
0

0
-1

27
7

N
ac
hr
ic
ht
/B

er
ic
ht

W
irt

sc
ha

ft
R
an

dt
he

m
a

ne
ut
ra
l

Vo
n
A
lfr
ed

D
ür
r
...

de
ut
sc
h

0
0

0
-1

28
2

K
om

m
en
ta
r/
G
lo
ss
e

W
iss

en
sc
ha

ft
R
an

dt
he

m
a

ne
ut
ra
l

Ih
r
N
am

e
ha

t
...

de
ut
sc
h

0
0

0
-1

28
3

N
ac
hr
ic
ht
/B

er
ic
ht

W
iss

en
sc
ha

ft
H
au

pt
th
em

a
po

sit
iv

K
ar
lsr

uh
e.

M
or
ge
n
...

de
ut
sc
h

0
-1

0
-1

Ta
bl
e
4.
2:

Ex
ce
rp
t
fr
om

th
e
ca
te
go

rie
s
ta
bl
e.

ID
C
at
eg
or
y

27
6

7.
Fo

rs
ch
un

gs
-u

nd
H
oc
hs
ch
ul
po

lit
ik

27
6

En
er
gi
e,

N
uk

le
ar
e

27
7

2.
St
ud

iu
m

un
d
Le

hr
e

27
7

A
rc
hi
te
kt
ur

un
d
B
au

w
es
en

28
2

1.
W

iss
en

sc
ha

ft
un

d
Fo

rs
ch
un

g

28
2

N
an

oM
ik
ro

28
3

1.
W

iss
en

sc
ha

ft
un

d
Fo

rs
ch
un

g

28
3

A
rc
hi
te
kt
ur

un
d
B
au

w
es
en

28
3

K
at
as
tr
op

he
nm

an
ag

em
en
t

17



4. Database

Figure 4.1

13412

30443

371

positive

neutral

negative

(a) Sentiment of media reports in the database.

30475

13755

German

non-German

(b) German reports in the database.

19003

4423

2692

617

5845

1482

3131

5152

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Figure 4.3: Distribution of categories in the database.

18



5. Experimental results

5.1 Data preparation
Preparing the data for further processing needs to be done before text classification. If the
data is in a consistent format, it is easier to read it and store it in the computer’s memory.
In this thesis two formats are used. For one every line in a file represents a whole media
report and for the other every line represents a single sentence of a report.

The database was provided as a Microsoft Excel table, but only a few columns are necessary
in the scope of this thesis. Specifically important are content, title, category, language and
the content identification number (ID) of each report. They were extracted and saved as
three comma-separated values (CSV) files to preserve the structure of rows and columns.
Figure 5.1 is a flowchart of the whole data preparation process.

Initially the content of each report had to be unified, because a lot of reports that originated
from websites still had their original formatting, meaning that line breaks had to be removed
and indentation had to be corrected in order to get one report or sentence per line. The
extracted language and category files were prepared by keeping only IDs of German reports
for the former and removing all subcategories for the latter. Afterwards the files had to be
joined on every content ID to get a file where every report is German and is labeled with
its corresponding category.

Since not every report is German nor has a corresponding text in the database, the amount
of documents shrinks by 57% overall. The distribution of the documents over the 8 main
categories is presented in Table 5.1. In this table step 1 of data preparation is the extraction
of labeled reports. Step 2 is the removal of reports without stored text and step 3 is the
removal of non-German reports.

Next every document was searched for punctuation characters, e.g., periods, and on every
occurrence a line break was inserted in order to create a file with the beforehand mentioned
format of one sentence per line. Due to the fact that periods are not only used as end of
sentences but in multiple other cases like abbreviations and dates, compromises had to be
made with imperfect but sufficient results. Without further need for punctuation, both files
underwent a cleaning process stripping all punctuation, e-mail addresses, Internet links and
other noise. It replaced German umlauts with their English equivalents and transformed
each word into lowercase. Both of the cleaned files were then split to create 10 stratified
cross validation sets according to Section 3.6.5.

19



5. Experimental results

Start

Database

Extraction

Categories ContentLanguages

Join

One 
sentence per 

line

Split 

One report 
per line

Clean data and split 
into 10 folds for 
cross validation

Clean data and split 
into 10 folds for 
cross validation

Text classification

Figure 5.1: Flowchart of data preparation

20



5.2. Baselines

Category Overall

Step 1 2 3 4 5 6 7 8 Amount Loss

1
19003 4423 2692 617 5845 1482 3131 5152 42345

-
45% 10.5% 6.4% 1.5% 14% 3.5% 7.4% 12% 100%

2
17061 3070 534 306 3195 529 910 2363 27968

33%
61% 11% 2% 1.1% 11.4% 2% 3.2% 8.5% 100%

3
11001 2051 170 148 2111 426 724 1741 18372

57%
60% 11.2% 1% 0.8% 11.5% 2.3% 4% 9.5% 100%

Table 5.1: Distribution of documents after data preparation.

5.2 Baselines
The major baseline approaches are SVMs, maximum entropy and CAN. SVM was chosen,
because it is easy to deploy and supposedly does not need tuning of parameters. Maximum
entropy and CAN are used, because the former focuses more on the connection between
words and the latter uses language models. All in all they cover a lot of different approaches
to text classification and might lead experiments in a certain direction, if one greatly
outperforms the others.

Randomly guessing a category without the distribution in mind would only achieve an
accuracy of 12.5%. If Category 1 is always predicted instead, the prediction would be
right 60% of the time. The goal of the experiments is to maximize classification accuracy
and therefore at the minimum excel the 60%. It is important to note that in tables that
show results of following experiments the recall measure equals the accuracy. Additionally
support is the amount of media reports, whose category was evaluated.

5.2.1 Chain Augmented Naive Bayes (CAN)

The approach with language models was to train an n-gram language model for each
category. SRILM demands a training file with one sentence per line, which was already
created, but had to be split into one file per category. On basis of these files and a
vocabulary, trigram language models with Kneser-Ney smoothing, which is considered
the most effective smoothing method, were generated. The vocabulary was created by
extracting all unique words from the training files.

Then the generated language models were used to evaluate every media report. The input
consisted of one file, containing multiple sentences, per report. The evaluation results
were the likelihood and perplexity of each sentence and the entire report. This evaluation
procedure took approximately one second for each combination of language model and
report. Circa 1,600 reports in each validation set and 8 language models add up to many
hours of evaluation.
The resulting likelihood of a report was used in a maximum likelihood naive Bayes classifier
(see Equation 3.4), which was very fast.

The baseline experiment was done with the holdout method instead of cross validation
and only the achieved accuracy was measured. This lead to the results in Table 5.2 that
seemed acceptable, but in reality were pessimistic (see Section 5.3.1). The accuracy on

21



5. Experimental results

Category 1 stands out, which was not surprising, because the language model of category 1
had by far the most training documents at disposal. Categories 2, 5 and 8 have good to
medium accuracy. All the categories with a very low amount of training documents are
seemingly not classifiable. The first idea to solve this was to unite the smaller categories
into a single category.

Category

1 2 3 4 5 6 7 8 Overall

Support 890 147 12 14 188 21 44 132 1448

Accuracy 0.931 0.728 0 0.071 0.489 0.381 0.16 0.425 0.759

Table 5.2: CAN baseline.

5.2.2 Scikit

The library Scikit makes it easy to evaluate many classification methods, which is why
next to linear SVMs and maximum entropy other similar methods were evaluated at the
same time. This allows to make assumptions about the qualities of the different data sets
that are used throughout the experiments. The following methods performed best after
tuning parameters and thus will be included in following experiments:

• Ridge regression, which is an improved version of linear regression, with a higher
tolerance than default.

• Passive-Aggressive (PA), which also is a linear model introduced by [Crammer et al., 2006],
with default parameters.

• Multinomial Naive Bayes (MNB) with less smoothing than default.

• K-nearest-neighbors (k-NN), which is different from the others, because it does not
construct an internal model of the data, with a k of 10 and weights based on the
distance to neighbors.

• Perceptron, a linear model mentioned in chapter 1, with 10 iterations over the
trainings data.

The linear SVM did not need parameter tuning, but the maximum entropy classifier
improved a lot by weakening the regularization. For the optimization problem of maximum
entropy the Stochastic Average Gradient method performed best. In Table 5.3 the exact
results with the tuned classifiers can be seen. The linear SVM achieved the highest F-score
while needing the least amount of parameter tuning. This is consistent with the research
of [Joachims, 1998].

22



5.3. Improvements

Classifiers Precision Recall F-score

Linear SVM 0.801 0.807 0.799

Maximum Entropy 0.802 0.807 0.797

Ridge 0.800 0.805 0.794

PA 0.796 0.802 0.797

MNB 0.789 0.793 0.787

k-NN 0.787 0.795 0.786

Perceptron 0.780 0.787 0.782

Average 0.793 0.799 0.791

Table 5.3: Baselines.

5.3 Improvements
This section lists the experiments that lead to a higher F-score or a decreased computation
time without impairing classification results.

5.3.1 Uniting categories and cross validation

For the next experiment all documents labeled with categories 3, 4, 6, 7 and 8 were instead
assigned to category 3, which effectively reduced the amount of categories from eight to
four. Category 5 was changed to category 4.

With CAN the first noticeable effect was the shorter amount of time needed for likelihood
calculation. This is attributable to the use of four instead of eight language models. As
Table 5.4 shows the accuracy did not change.

Category Precision Recall F-score Support

1 0.826 0.926 0.873 890

2 0.613 0.667 0.638 147

3 0.860 0.394 0.540 188

4 0.495 0.453 0.473 223

avg / total 0.758 0.758 0.744 1448

Table 5.4: Results of uniting categories with CAN.

The experiment was repeated, but with cross validation. The results in Table 5.5a show
the advantages of stratified cross validation in comparison with the holdout method. The
overall accuracy and F-score are about 5% higher with cross validation. This could be
attributed to certain folds performing much better and thus increasing the average, but
there is no fold standing out positively or negatively. The most likely explanation for
such a difference is that the validation set of the holdout method did not contain random
reports, but rather the first 10%, which might be especially bad examples. From now on
only 10-fold cross validation with random reports was used. Validating ten folds takes
much more time, but it is unavoidable, if results as close as possible to reality are desired.

23



5. Experimental results

Table 5.5b shows all cross validation results of this experiment. The average f-score
improved by 0,8% and the linear SVM achieved the highest f-score again, which increased
by 0,6%. It is questionable, if these minor performance gains justify effectively removing
four categories. For this reason the original and the united categories were both used in
the following experiments.

Fold Precision Recall F-score

1 0.798 0.798 0.789

2 0.798 0.805 0.798

3 0.792 0.800 0.792

4 0.814 0.820 0.812

5 0.800 0.806 0.796

6 0.796 0.802 0.792

7 0.786 0.797 0.787

8 0.798 0.805 0.795

9 0.799 0.806 0.798

10 0.790 0.798 0.787

Average 0.796 0.804 0.795

(a) CAN cross validation results

Classifiers Precision Recall F-score

CAN 0.796 0.804 0.795

Linear SVM 0.804 0.811 0.805

MaxEnt 0.802 0.809 0.803

Ridge 0.801 0.808 0.800

PA 0.799 0.805 0.801

MNB 0.800 0.804 0.801

k-NN 0.791 0.799 0.793

Perceptron 0.787 0.793 0.789

Average 0.797 0.804 0.799

(b) Overall results

Table 5.5: Performance with 4 categories.

5.3.2 Inclusion of titles
The data preparation process was repeated to include the title of each report. Unfortunately
not every report had a corresponding title. The experiment was interesting, because it
showed how much the performance is affected by additional training data. In the end
the inclusion of titles increased the size of the training data by 1.75%. Based on the
average results in Table 5.6 the F-score with four categories was 0,1% higher and with eight
categories 0,2% higher. These minor improvements however are not statistically significant
and the stagnation of the linear SVM’s performance indicates that the contribution of titles
is too small.

5.3.3 Removal of stop words
It is a common procedure in TC to remove stop words from the data. The expected results
are a significant reduction in time needed for feature extraction and training of the model.
Additionally it can sometimes improve performance. A list of German stop words from
[Doyle, 2016] was used to remove all occurrences of stop words in the data. This reduced
the size of the data by more than 20%. Table 5.7 presents mixed results. The experiment
affected some classifiers positively and some negatively, but the differences in performance
were negligible. Interestingly the linear SVM improved with four categories and worsened
with eight categories. The main improvements of the experiment become apparent when
reviewing the computation times, which are significantly lower. It can be concluded that
the removal of stop words is beneficial for all classifiers, which is why further experiments
will operate on the reduced data.

24



5.4. Miscellaneous experiments

4 Categories 8 Categories

Classifiers Precision Recall F-score Precision Recall F-score

CAN 0.798 0.806 0.797 0.794 0.802 0.790

Linear SVM 0.804 0.811 0.805 0.802 0.809 0.800

Maximum Entropy 0.803 0.810 0.804 0.803 0.808 0.799

Ridge 0.803 0.810 0.803 0.802 0.807 0.796

PA 0.801 0.807 0.803 0.798 0.803 0.797

MNB 0.803 0.807 0.803 0.790 0.794 0.788

k-NN 0.792 0.800 0.793 0.788 0.796 0.787

Perceptron 0.791 0.796 0.793 0.781 0.788 0.784

Average 0.799 0.805 0.800 0.794 0.801 0.793

Table 5.6: Results of adding titles to data.

4 Categories 8 Categories

Classifiers Precision Recall F-score Precision Recall F-score

Linear SVM 0.805 0.812 0.806 0.802 0.808 0.800

Maximum Entropy 0.802 0.809 0.803 0.802 0.808 0.798

Ridge 0.802 0.810 0.802 0.801 0.806 0.795

PA 0.800 0.806 0.802 0.797 0.803 0.797

MNB 0.802 0.806 0.803 0.790 0.794 0.788

k-NN 0.792 0.800 0.793 0.789 0.798 0.789

Perceptron 0.793 0.799 0.795 0.782 0.790 0.785

Average 0.799 0.806 0.800 0.796 0.801 0.793

Table 5.7: Performance without stop words.

5.4 Miscellaneous experiments
The following experiments include the use of meta features and feature selection, but did
not improve the accuracy and F-score of the various classifiers.

5.4.1 Interpolating language models

It is a common technique to interpolate language models to combine, e.g., a unigram model
with a bigram model in order to achieve better performance. A short attempt was made to
combine the language models of each category with the model of the entire training data.
The motive was the small amount of training data for some of the categories.
SRILM provides linear interpolation of language models with a interpolation weight.
Experimenting with multiple different weights always decreased overall performance, but
sometimes increased performance on a specific category. All in all the results were negligible.

25



5. Experimental results

5.4.2 LM probabilities as features

Instead of using the maximum likelihood Naive Bayes to classify with the calculated
likelihood of each category, the scores can be used as feature for other classifiers. In a
first experiment only these features were used for training. The idea here is that always
choosing the maximum likelihood might be outperformed by other methods, if they can
learn distributions where the highest likelihood would classify the wrong category and
instead predict the right one. Depending on the amount of categories a single feature
vector consisted of only 4 or 8 features, which is a big difference to the high dimensional
data used in the other experiments. Most of the classification methods used before did not
perform well on the new and low dimensional data. The only two methods coming close to
the baseline approach were k-NN and Random Forest.

5.4.3 Chi-squared test

Further feature selection was attempted with the chi-squared test to only use the best
features for classification. The original data consists of about 180,000 words or in this case
features. In steps of at first 10,000 then 20,000 the original amount of features was reduced
and a proportional but low decline in performance could be observed. Unlike stop words, a
lot of the removed features are not abundant in the data, so a lot of unique or rare words
have to be removed to achieve a similar reduction of data as in the previous experiment.
Mostly the linear classification models still performed well. With only 20,000 features the
f-score of the linear SVM, which was consistently the best classifier so far, decreased by
only 1.2% while training was 60% faster. However, because the predictions worsened and
faster classification is only subsidiary, the data without stop words remained the basis for
experiments.

5.4.4 Clustering words

At first similar words were grouped into one of 1,000 clusters with the mkcls tool. Then
for one experiment the words were exchanged with their corresponding clusters and for the
other the clusters were used as meta features. Former can be helpful, if the available data
is sparse, because unique words normally have low weights, but the corresponding clusters,
that appear multiple times in the data, do not. Both experiments were not successful.
The best F-score achieved in the first experiment, with a k-NN classifier (k=5), was 1,8%
worse than the linear SVM and the meta features did not increase performance of the SVM
either.

5.5 Stacking classifiers
After trying to improve performance by tuning parameters and features of single classifiers,
the next approach was to use the best performing classifiers in an ensemble. During cross
validation each of the classifiers had predicted every document of the trainings set. These
predictions were combined into a new meta trainings set with the same labels as the former
set. So one of the new feature vectors contained the category of the original document and
the predictions the different classifiers made for that document. The ensemble needs an
additional classifier called president to make a final prediction. Cross validation was used
again to choose the best performing president and to evaluate the best possible setup for
the meta trainings set, because using the predictions from a large amount of classifiers is
not necessarily good for performance. Linear models performed poorly on the meta data.
In Table 5.8 the two best presidents are listed namely a Random Forest classifier, which
used an ensemble of 100 decision trees, and a SVM with a radial basis function (rbf) kernel.
The best performing ensembles:

26



5.6. Computation time

• Four categories: CAN, k-NN, linear SVM, MNB and Maximum Entropy

• Eight categories: CAN, linear SVM, MNB and Maximum Entropy

4 Categories 8 Categories

Classifiers Precision Recall F-score Precision Recall F-score

Random Forest 0.813 0.818 0.813 0.806 0.812 0.805

rbf SVM 0.811 0.817 0.812 0.810 0.815 0.807

Table 5.8: Performance of ensembles.

5.6 Computation time
Most of the experiments were done on a computer with an Intel i5 2500k 4x3.3GHz processor
and 12 gigabytes of memory. Figure 5.2 depicts the average elapsed time of the classifiers
using Scikit. There are clear differences between the data sets. The use of less categories
did not shorten feature extraction, but training was much faster in comparison to the
original data set. Removing stop words was equally beneficial for both sets.

Figure 5.2: Elapsed time after cross validation in seconds.

In Table 5.9 the training and classification times of single classifiers is listed. The linear
SVM classifies fastest and k-NN slowest, because it is a lazy learner and classifies without
building a model beforehand. Therefore it almost does not need time for training. The
maximum entropy method however is the slowest in training a model. Training language
models and evaluating sentences is even slower, e.g., evaluating a single validation set takes
about 1,200 seconds if done parallel on multiple cores.

27



5. Experimental results

4 Categories 8 Categories

Classifiers Training Test Training Test

Linear SVM 16.89 0.040 26.736 0.058

Maximum Entropy 85.77 0.071 227.772 0.115

Ridge 28.937 0.073 55.636 0.124

PA 2.683 0.073 5.133 0.111

MNB 0.549 0.070 0.924 0.115

k-NN 0.213 18.081 0.212 18.032

Perceptron 4.06 0.072 8.059 0.120

Table 5.9: Elapsed time in seconds.

5.7 Summary
Until now all experiments were done to choose the best classification method and the best
feature set. The best single classifier was the linear SVM, but the ensemble performed
slightly better. The experiments also revealed that the data with titles and without stop
words performed best. Uniting categories also lead to a small performance gain, but
predicting only four categories is not desired for real data as long as the database has eight
categories. Both of the methods were tested as well as the dataset with four and with eight
categories.

The final results in Table 5.10 show that the linear SVM outperformed the ensemble in
every aspect. There are several possible reasons for that. The linear SVM might scale
better to a larger training set or the test set is an outlier where the SVM can perform
especially good. It is also possible that the president of the ensemble was overfitted and only
performs good on the validation sets. Even if the ensemble would have better performance,
the linear SVM is a lot easier to use, because it did not need tuning, and the training and
classification times are much faster.

4 Categories 8 Categories

Classifiers Precision Recall F1-score Precision Recall F1-score

Linear SVM 0.818 0.823 0.818 0.808 0.812 0.803

Ensemble 0.815 0.820 0.817 0.805 0.807 0.800

Table 5.10: Final test results.

28



6. Conclusion

The goal of this thesis was to evaluate if the task of classifying the categories of media
reports mentioning the KIT can be automated. Because the categories are manually
annotated at the moment, a text classifier needs too achieve very high accuracy to replace
manual work. The approach to reach the goal of the thesis was composed of multiple parts.
At first the data had to be prepared, because it needed to be in a format that is easy to
process. Many of the reports were not manually edited after copying them from web pages.
This lead to a lot of unusable data inside of the reports. After data preparation only half
of the available reports were left, because they were not German or because they did not
have stored text data available.
The beforehand selected classification baseline methods were then used with the prepared
data to obtain a first baseline. The linear SVM performed good right from the beginning.
To further improve the baseline the amount of categories was reduced, which improved
overall performance. Other experiments like word clustering and interpolation of language
models failed, but the inclusion of titles and the removal of stop words enhanced speed of
classification and increased the F-score of many classification methods. Finally the best
classifiers were chosen to create an ensemble. In experiments with cross validation this
stacking procedure turned out to perform better than each of the single classifiers.

The goal of the thesis was partly met. The best result obtained was a F-score of 81.8%
and an accuracy of 82.3% with a linear SVM. In comparison with the minimum accuracy
of about 60%, which is the proportion of reports belonging to the first category, the results
are good. The SVM operated on a modified data set that had four categories instead of the
original eight and no stop words. Additionally the titles of reports were included. With the
original eight categories the same classifier achieved a F-score of 80.3% and an accuracy of
81.2%. These are the outcomes that could be expected, if manual categorization would be
automated, but the results were not good enough to support automating categorization.
All of the classification methods performed poorly on five of the eight categories. The only
category that was correctly predicted most of the times was the first category. This can
be attributed to the massively imbalanced data set. Another problem was the size of the
test set, which was too small to back the results in a statistically solid manner. The cross
validation results show that, with more data or a different holdout split, the presented
stacking classifier might have performed better than the linear SVM. Also, the linear SVM
needed the least amount of tuning compared to all other applied methods and was one of
the fastest methods. This matches the claims of many researchers that SVMs are one of
the best text classification methods to date.

29



6. Conclusion

The experimental results imply that additional data has a positive effect on prediction
accuracy. That is why the approach of this thesis could obtain considerably better results,
if it would be applied to a larger corpus of media reports in the future. Minor improvements
could be, e.g., the advanced usage of meta features or other ensemble methods than stacking.
It could also be beneficial to deal with the data imbalance with under- and oversampling
or superior methods, but without compromising the amount of categories.

30



Bibliography

[Abe et al., 2004] Abe, N., Zadrozny, B., and Langford, J. (2004). An iterative method
for multi-class cost-sensitive learning. In Proceedings of the tenth ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 3–11. ACM.

[Bíró et al., 2008] Bíró, I., Szabó, J., and Benczúr, A. A. (2008). Latent dirichlet allocation
in web spam filtering. In Proceedings of the 4th International Workshop on Adversarial
Information Retrieval on the Web, AIRWeb ’08, pages 29–32, New York, NY, USA.
ACM.

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet
allocation. J. Mach. Learn. Res., 3:993–1022.

[Carbonell et al., 1983] Carbonell, J. G., Michalski, R. S., and Mitchell, T. M. (1983).
Machine learning: A historical and methodological analysis. AI Magazine, 4(3).

[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.

[Crammer et al., 2006] Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., and Singer,
Y. (2006). Online passive-aggressive algorithms. The Journal of Machine Learning
Research, 7:551–585.

[Deerwester et al., 1990] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K.,
and Harshman, R. (1990). Indexing by latent semantic analysis. JOURNAL OF THE
AMERICAN SOCIETY FOR INFORMATION SCIENCE, 41(6):391–407.

[Domingos and Pazzani, 1997] Domingos, P. and Pazzani, M. (1997). On the optimality
of the simple bayesian classifier under zero-one loss. Machine Learning, 29(2):103–130.

[Doyle, 2016] Doyle, D. (2016). German stopwords. http://www.ranks.nl/stopwords/
german. Accessed: 12.03.2016.

[Dumais et al., 1998] Dumais, S., Platt, J., Heckerman, D., and Sahami, M. (1998). Induc-
tive learning algorithms and representations for text categorization. In Proceedings of
the seventh international conference on Information and knowledge management, pages
148–155. ACM.

[Dzeroski and Zenko, 2004] Dzeroski, S. and Zenko, B. (2004). Is combining classifiers
better than selecting the best one? In MACHINE LEARNING, pages 255–273. Morgan
Kaufmann.

[Elberrichi et al., 2008] Elberrichi, Z., Rahmoun, A., and Bentaallah, M. A. (2008). Using
wordnet for text categorization. Int. Arab J. Inf. Technol., 5(1):16–24.

[Freund and Schapire, 1995] Freund, Y. and Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application to boosting.

31

http://www.ranks.nl/stopwords/german
http://www.ranks.nl/stopwords/german


Bibliography

[Hayes and Weinstein, 1990] Hayes, P. J. and Weinstein, S. P. (1990). Construe/tis: A
system for content-based indexing of a database of news stories. In IAAI, volume 90,
pages 49–64.

[He and Garcia, 2009] He, H. and Garcia, E. A. (2009). Learning from imbalanced data.
Knowledge and Data Engineering, IEEE Transactions on, 21(9):1263–1284.

[Hiemstra, 2001] Hiemstra, D. (2001). Using language models for information retrieval.
Taaluitgeverij Neslia Paniculata.

[J. A. Hartigan, 1979] J. A. Hartigan, M. A. W. (1979). Algorithm as 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108.

[Japkowicz and Stephen, 2002] Japkowicz, N. and Stephen, S. (2002). The class imbalance
problem: A systematic study. Intell. Data Anal., 6(5):429–449.

[Joachims, 1998] Joachims, T. (1998). Machine Learning: ECML-98: 10th European
Conference on Machine Learning Chemnitz, Germany, April 21–23, 1998 Proceedings,
chapter Text categorization with Support Vector Machines: Learning with many relevant
features, pages 137–142. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Kohavi, 1995] Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy
estimation and model selection. pages 1137–1143. Morgan Kaufmann.

[Kohavi, 1996] Kohavi, R. (1996). Scaling up the accuracy of Naive-Bayes classifiers: A
decision-tree hybrid. AAAI Press, Menlo Park, CA (United States).

[Kyriakopoulou and Kalamboukis, 2006] Kyriakopoulou, A. and Kalamboukis, T. (2006).
Text classification using clustering. In In Proceedings of the ECML-PKDD Discovery
Challenge Workshop.

[Lewis, 1998] Lewis, D. D. (1998). Naive (bayes) at forty: The independence assumption
in information retrieval. pages 4–15. Springer Verlag.

[Lux, 2012] Lux, E. (2012). Feature selection for text classification with naive bayes.

[Madnani, 2009] Madnani, N. (2009). Querying and serving n-gram language models with
python. The Python Papers, 4(2).

[Maron, 1961] Maron, M. E. (1961). Automatic indexing: an experimental inquiry. Journal
of the ACM (JACM), 8(3):404–417.

[Masand et al., 1992] Masand, B., Linoff, G., and Waltz, D. (1992). Classifying news
stories using memory based reasoning. Ann Int ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR’92), (15):59–64.

[Ng et al., 1997] Ng, H. T., Goh, W. B., and Low, K. L. (1997). Feature selection, percep-
tron learning, and a usability case study for text categorization. In Proceedings of the
20th Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, SIGIR ’97, pages 67–73, New York, NY, USA. ACM.

[Nigam et al., 1999] Nigam, K., Lafferty, J., and Mccallum, A. (1999). Using maximum
entropy for text classification.

[Och, 1999] Och, F. J. (1999). An efficient method for determining bilingual word classes.
In Proceedings of the Ninth Conference on European Chapter of the Association for
Computational Linguistics, EACL ’99, pages 71–76, Stroudsburg, PA, USA. Association
for Computational Linguistics.

32



Bibliography

[Pearson, 1901] Pearson, K. (1901). Liii. on lines and planes of closest fit to systems of
points in space. Philosophical Magazine Series 6, 2(11):559–572.

[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion,
B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas,
J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011).
Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830.

[Peng and Schuurmans, 2003] Peng, F. and Schuurmans, D. (2003). Combining naive
Bayes and n-gram language models for text classification. Springer.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,
1(1):81–106.

[Quinlan, 1993] Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[Rokach, 2010] Rokach, L. (2010). Ensemble-based classifiers. Artificial Intelligence Review,
33(1-2):1–39.

[Sakkis et al., 2001] Sakkis, G., Androutsopoulos, I., Paliouras, G., Karkaletsis, V., Spy-
ropoulos, C. D., and Stamatopoulos, P. (2001). Stacking classifiers for anti-spam filtering
of e-mail. In in ‘Empirical Methods in Natural Language Processing, pages 44–50.

[Sebastiani, 2002] Sebastiani, F. (2002). Machine learning in automated text categorization.
ACM computing surveys (CSUR), 34(1):1–47.

[Stolcke, 2002] Stolcke, A. (2002). Srilm – an extensible language modeling toolkit. In
Proc. Intl. Conf. on Spoken Language Processing, volume 2, pages 901–904.

[Taira and Haruno, 1999] Taira, H. and Haruno, M. (1999). Feature selection in svm text
categorization. In AAAI/IAAI, pages 480–486.

[Takamura, 2003] Takamura, H. (2003). Clustering Approaches to Text Categorization.
PhD thesis.

[Utami et al., 2014] Utami, I. T., Sartono, B., and Sadik, K. (2014). Comparison of single
and ensemble classifiers of support vector machine and classification tree. Journal of
Mathematical Sciences and Applications, 2(2):17–20.

[Vapnik, 1995] Vapnik, V. N. (1995). The nature of statistical learning theory.

[Wiener et al., 1995] Wiener, E., Pedersen, J. O., and Weigend, A. S. (1995). A neural
network approach to topic spotting.

[Xue and Li, 2015] Xue, D. and Li, F. (2015). Research of text categorization model based
on random forests. In Computational Intelligence Communication Technology (CICT),
2015 IEEE International Conference on, pages 173–176.

[Yong et al., 2009] Yong, Z., Youwen, L., and Shixiong, X. (2009). An improved knn text
classification algorithm based on clustering. Journal of Computers.

[Yu et al., 2008] Yu, B., ben Xu, Z., and hua Li, C. (2008). Latent semantic analysis for
text categorization using neural network. Knowledge-Based Systems, 21(8):900 – 904.

[Zhou and Liu, 2010] Zhou, Z.-H. and Liu, X.-Y. (2010). On multi-class cost-sensitive
learning. Computational Intelligence, 26(3):232–257.

[Zhu et al., 2006] Zhu, J., Rosset, S., Zou, H., and Hastie, T. (2006). Multi-class adaboost.

33


	Contents
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Outline

	2 Related work
	2.1 Machine learning
	2.2 Text classification
	2.3 State of the art
	2.3.1 Preprocessing
	2.3.2 Supervised learning
	2.3.3 Unsupervised learning
	2.3.4 Ensembles


	3 Text classification
	3.1 Naive Bayes
	3.2 N-gram language models
	3.2.1 Calculating probabilities
	3.2.2 Smoothing
	3.2.3 Perplexity
	3.2.4 SRILM toolkit

	3.3 Chain Augmented Naive Bayes
	3.4 Scikit-learn
	3.4.1 Feature extraction
	3.4.1.1 Bag of words
	3.4.1.2 Term weighting

	3.4.2 Feature selection
	3.4.3 Support Vector Machines
	3.4.4 Maximum entropy

	3.5 Cluster analysis
	3.6 Evaluation
	3.6.1 Accuracy
	3.6.2 F-score
	3.6.3 Averaging
	3.6.4 Holdout method
	3.6.5 Stratified k-fold cross validation


	4 Database
	4.1 Description
	4.2 Content
	4.3 Imbalanced data

	5 Experimental results
	5.1 Data preparation
	5.2 Baselines
	5.2.1 Chain Augmented Naive Bayes (CAN)
	5.2.2 Scikit

	5.3 Improvements
	5.3.1 Uniting categories and cross validation
	5.3.2 Inclusion of titles
	5.3.3 Removal of stop words

	5.4 Miscellaneous experiments
	5.4.1 Interpolating language models
	5.4.2 LM probabilities as features
	5.4.3 Chi-squared test
	5.4.4 Clustering words

	5.5 Stacking classifiers
	5.6 Computation time
	5.7 Summary

	6 Conclusion
	Bibliography

