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Abstract

Maschinelle Übersetzung, d.h das Übersetzen von Text von einer Sprache in eine an-

dere, ist in den letzten Jahren zu einer wichtigen Bereicherung unseres Alltags gewor-

den. Trotz gewisser Unzulänglichkeiten oder manchmal unnatürlicher Übersetzun-

gen, erfreut sich maschinelle Übersetzung Beliebtheit, wenn menschliche Übersetzer

zu teuer sind. Während das Übersetzen von Wörtern einfach mit einem Lexikon be-

werkstelligt werden kann, bleibt reordering (der Platzwechsel der einzelnen Wörter)

eine große Herausforderung in der maschinellen Übersetzung. Besonders phrasen-

basierte Ansätze haben hier Probleme, da sie nicht von sich aus mit syntaktischer

Information arbeiten.

Ein neuerlicher Ansatz, dieses Problem in der maschinellen Übersetzung anzuge-

hen, ist es, solche reordering-Regeln automatisch zu erlernen und vor der eigentli-

chen Übersetzung auf die Quellsätze anzuwenden. Dieser Ansatz ist kürzlich durch

ein verfeinertes Reorderingmodell erweitert worden, das die Informationen aus Syn-

taxbäumen nutzt, um mögliche Umordnungen zu bestimmen. Dieses Modell ist

erfolgreich auf zwei europäischen Sprachpaaren getestet worden. In dieser Thesis

wenden wir diesen Ansatz auf ein sehr gegensätzliches Sprachpaar an: Englisch und

Japanisch. Japanisch ist eine Subjekt-Objekt-Verb (SOV) Sprache, d.h. das Sub-

jekt steht an vorderster Stelle, gefolgt vom Objekt und am Ende steht das Verb.

OSV Sätze sind auch möglich, es ist aber zwingend, dass das Verb an letzter Stelle

steht. Dies ist ein Leichtes für ein regelbasiertes System, aber in der statistischen

maschinellen Übersetzung müssen wir ein Modell entwickeln. Wir vergleichen wort-

klassenbasierte Regeln mit Regeln die auf Syntaxbäumen aufbauen. Außerdem ex-

perimentieren wir zum einen mit Variationen, z.B. rekursive Regelanwendung, lattice

phrase extraction, bei der wir unsere phrase table aus der umgeordneten Quellseite

des Trainingscorpus aufbauen, zum anderen mit verschiedenen Ansätzen zum Par-

sen.

Wir testen unsere Systeme auf einem Satz von Wikipedia-Artikeln zum Thema

Kyoto. Zur Evaluation unserer Experimente nutzen wir BLEU und RIBES für eine

umfassende Einschätzung unserer Konfigurationen, so wie Kendall’s τ und chunk

fragmentation, eine Metrik, die die Anzahl der Satzfragmente misst, die nicht korrekt

angeordnet sind, um eine Einschätzung der reordering-Qualität alleine zu erhalten.

Weiterhin führen wir eine manuelle Analyse auf 100 Sätzen durch, um zu sehen, ob

unsere Systeme in der Lage sind, das Verb ans Ende des Satzes zu schieben. Wir

melden eine maximale Verbesserung von 1.95 BLEU-Punkten über ein System ohne

Regeln. Wir zeigen außerdem, dass der Einsatz von discontinuous reordering rules



vi

einen starken Einfluss auf die essentielle Bedingung, das Verb an das Satzende zu

setzen, hat. Darüber hinaus können wir berichten, dass konstituentenbasiertes Par-

sen dependenzenbasiertes Parsen als Basis der reordering-Regeln übertrifft und dass

das es die Qualität verbessert, Regeln aus einem breiten Spektrum zu lernen. Mit

einer manuellen Analyse zeigen wir, dass unsere Systeme lattices erzeugen, die in

85% der Fälle einen Satz mit dem Verb am Ende beinhalten.

vi



Abstract

In recent years, machine translation, i.e. translation of text from one language to

another by a computer, has become an important complement in our daily lives. De-

spite its flaws like incorrect or sometimes unnatural translations, machine translation

(MT) is popular where human translators are too expensive. While the translation

of words can be easily managed with a dictionary, reordering remains a major chal-

lenge in machine translation. Especially phrase based approaches are having trouble

with this because they do not work with syntactic information on their own.

In MT, a recent approach to tackle this problem is to automatically learn reordering

rules and apply them prior to decoding. Lately, this approach has been extended

by a refined reordering model that uses information from syntax trees to determine

possible reorderings. This model has successfully been tested on two European lan-

guage pairs. In this thesis we apply this approach to a very distant language pair:

English and Japanese. Japanese is a subject-object-verb (SOV) language meaning

that the subject is at foremost position, followed by the object, which itself is suc-

ceeded by the verb. While OSV sentences are possible as well, it is mandatory that

the verb is at the last position. This is an easy task for a rule-based MT system, but

in statistical machine translation(SMT) we have to develop a model. We compare

solely part of speech (POS) based rules with rules that also deploy syntax trees. Ad-

ditionally, we experiment with variations such as recursive rule application, lattice

phrase extraction, where we build our phrase table using the reordered source side

of the training corpus, as well as different approaches to parsing.

We test our experiments on a set Wikipedia articles related to ”Kyoto”.

For the evaluation of our experiments, we use four automatic metrics: We use BLEU

and RIBES to obtain a comprehensive estimation of our configurations. Moreover,

we use Kendall’s τ and chunk fragmentation, a metric that examines the number of

chunks that are not ordered correctly, to get an estimation of the reordering quality

alone. In addition to that, we perform a manual analysis of a set of 100 sentences to

see whether our systems are able to place the verb at the end of the sentence. We

report a maximum improvement of 1.95 BLEU points over a plain system. Besides,

we show that the use of discontinuous reordering rules has a strong impact on the

essential condition to shift the verb to the end of the sentence. We can further report

that constituency parsing outperforms dependency parsing as a foundation for our

reordering rules and that learning rules from a broad domain increases quality. With

a manual analysis we show that our systems can provide lattices that offer a sentence

with the verb at the end in 85% of the cases.
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1. Introduction

Automatic translation of text has become an integral part of our daily lives within
recent years. While human translators remain a crucial necessity in many pro-
fessional areas where the production and translation of foreign text is mandatory,
automatic translation gains relevance in areas where human translators are not con-
sidered because they are either too expensive or their service is deemed unnecessary.
For scientific conferences, for instance, or when reading websites in a foreign lan-
guage, the question is not whether to consult a human translator or use a machine
translation system, but whether to have a cheap translation or none at all. When
translating text with a statistical machine translation system, systems face the issue
of word reordering. A good translation requires every word to be not only translated
correctly, but also reordered to the right position. When translating to English, the
expression of time is usually shifted to the beginning or end of the sentence. A
rule-based machine translation system would use predefined hand made rules that
recognise the expression of time via part of speech tagging or keywords and reorder
the sentence. A statistical machine translation system on the other hand does not
work with handmade rules. The only reordering in a simple statistical machine
translation system is done in the decoder, but since this takes much time, various
methods have been proposed to address this issue prior to decoding. A common
method is to learn a reordering model and pass an already reordered source side to
the decoder. This is sometimes referred to as ‘preordering’. Recently, an approach
has been proposed that provides a variety of possible reorderings to the decoder by
building a lattice of possible reorderings from the original source sentence. This ap-
proach has been tested on European language pairs which are in terms of grammar
relatively alike compared to more distant languages. Thus, the idea was to test the
approach on a more distant pair of languages: English and Japanese. The Japanese
language consists of three alphabets which allows to express the same sound with
multiple characters. Even though there is a convention which character set to use
for which word, within the large set of Kanji characters there are a few ambiguities.
However, since the possibility to have two writings for one word is reasonably rare,
we did not handle it. English and French, the language pair where the approach
has been tested on, are both SVO(subject-verb-object) languages, i.e. the verb is
between subject, which comes first, and object. Japanese, however, is an SOV lan-
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2 1. Introduction

guage meaning that the verb is always at the end of the sentence. This fundamental
difference in word order introduces an additional challenge on which we wanted to
test the method.

1.1 Overview

In Chapter 2, we explain the fundamentals of Machine Translation. First, we will
explain how a statistical machine translation system is built by explaining the intu-
ition of statistical machine translation and introducing the various models, as well
as fitting everything together in the decoder. Since this thesis deals with reordering,
we will also discuss the most prominent approaches used in reordering. After that,
we will exemplify the different evaluation metrics that we will use later on. We will
pay special regard to the intuition behind the individual metrics to establish under-
standing why we use so many.
Chapter 3 will introduce various approaches that have been taken in the field. We
will report important works that tackle the reordering problem, as well as papers
dealing with the English-Japanese language pair. Also, we will describe the work
that led to the systems we are using in the thesis on hand.
In Chapter 4, we describe how our systems modelled reordering. We will start by
explaining the data we used for training and testing our models. Then, we will de-
scribe the respective experiments.
The results of the experiments are presented and discussed in Chapter 5.
In Chapter 6, we summarise our findings and give suggestions on additional experi-
ments to improve translation quality even further.

2



2. Machine Translation

2.1 General Description

Machine translation seeks to automatically translate a source sentence F into a tar-
get sentence E. Statistical machine translation (SMT) tries to achieve this by using
only statistical information: In training, probabilistic models are generated. Then,
while translating, many possible translations, so called hypotheses or candidates,
are generated on the basis of these models and the most likely hypothesis, subject
to these models, is chosen.

P (e|f) =
P (f |e) ∗ P (e)

P (f)
(2.1)

The foundation of statistical machine translation is Bayes’ theorem, as shown in
Equation 2.1. It allows us to express the probability that sentence f translates to
sentence e as a combination of other probabilities: The probability of sentence e or
f alone and the probability that sentence f is a translation of sentence e. The goal
is to find the sentence ẽ that maximizes the formula. Since the probability of the
given sentence P (f) in the denominator does not depend on any candidate e, we
come to the formula

arg max
e

P (f |e) ∗ P (e).

P (e) will be realized by the language model, P (f |e) by the translation model.

2.2 Language Model

A language model is used to assign a probability to any sequence of words. The
foundation of any language model is a preferably large sample of that language.
This sample is usually given in the form of sentences that have been used in some
context1 and revolve around a certain topic. While common words will appear with

1e.g. newspaper articles, conference material, wikipedia entries

3



4 2. Machine Translation

... ...

あなやま 0.01677
あに 0.01677
あね 0.02298
... ..

Figure 2.1: Schema of a language model.

similar frequency in different text corpora, the frequency of topic specific terminology
is highly dependent on the topic of the corpus. It is therefore important to choose the
right corpus for training the language model to model the jargon of the translation
task. To adapt existing language models to the topic of the task, it is an easy
measure to interpolate them. If we compute the likelihood of a n-word sequence, i.e.
an n-gram solely as the fraction #occurrances of n-gram in corpus

#n-grams in corpus
, sequences not contained

in the corpus will obtain a likelihood of zero. This can be the case because a word
in the sequence has not been encountered in training or because this specific order
of words has not been observed. To improve this situation, smoothing is used: to
avoid assigning a zero probability, every observed n-gram donates a certain amount
of probability mass to use for n-grams we have not seen yet. Figure 2.1 shows a
possible form of a language model: observed n-grams are on the right side and their
respective probability on the left. In practice, language models do not store the
probability, but its negative binary logarithm in order to avoid near zero values
and exchange multiplication for the computationally safer addition. Also additional
weights for smoothing might be stored.

2.3 Alignment Model and Translation Model

... ... ...

かきます to write 0.8
かけます to hang 0.3
かけます to lock 0.6
... ... ...

Figure 2.2: Schema of a translation model

The translation model is the heart of every translation system. It provides a word
to word mapping from source to target language along with probabilities assigned to
each translation. Figure 2.2 shows an example of a translation model. Such a model
alone can already provide a glossing, i.e. an automatic word for word translation
which for close language pairs can already give an idea what the text is about. Since
words usually change position during translation, an alignment model is introduced
to provide a probability distribution for each word position in the source sentence to
any position in the target sentence. Since manually aligned parallel corpora are rare
(there is no use case where alignment would be a by-product), the alignment has to
be estimated. The estimation, however, is a chicken and egg problem: In order to
know which target word a source word aligns to, we need a lexicon that provides us
with possible translations. This lexicon model, though, can only be built if we have

4



2.4. Phrase Translation Table 5

an alignment that provides us with target words for a source word. This problem
is solved with the expectation-maximization algorithm where we initially assume
an alignment that maps source word i to target word j. Now a lexicon is created
on that alignment and, with the help of this lexicon, a more accurate alignment is
estimated. This is repeated until convergence.

2.4 Phrase Translation Table

Phrase based translation systems use translation tables that map whole sequences
of words, i.e. phrases. The idea is to translate whole chunks of text to a sequence of
words that we know is natural (because we extracted it from real world examples)
and provide more context to choose the right translation. If we look again at Figure
2.2, we see that ‘かけます’ can mean ‘to hang’ as well as ‘to lock’.

While we see from the word based translation table that “to lock” is overall more
likely in the corpora used for training, the 2 words that precede ‘かけます’, ideally
the object ‘かけます’ refers to, could give us valuable information how to translate
the phrase.

2.4.1 Phrase Extraction

Previously, we referred to phrases as a sequence of words. It is important to note
that phrases in the context of SMT are not restricted to linguistic phrases since our
main goal is to get more contextual information and not to segment the sentence
linguistically. We cannot extract every subsequence of a sentence, but only those for
which we can determine an alignment to a phrase of the target sentence. We define
a pair of subsequences from source and target (En, Fm) with En = e1, ..., en, Fm =
f1, ..., fm) as consistent with an alignment A if there is at least one alignment between
the sets and no word is aligned to a word outside the other set. Mathematically, we
can write this as:

∃ei ∈ E, fj ∈ F : (ei, fj) ∈ A
∀ei ∈ E, (ei, fj) ∈ A : fj ∈ F
∀fj ∈ F, (ei, fj) ∈ A : ei ∈ E

F and E are the source and target sentences, A is the alignment between them and
fj and ei are the respective words.

Figure 2.3 shows an example phrase extraction from a sentence. While“My dog also”
is an intuitive choice, we decided to highlight “also likes to eat sausage”. Although
not contiguous, it is a consistent alignment: No word of either source or target
phrase is aligned to a word outside the alignment box and the box is non-empty.
The whole sentence or any word pair also qualify as a consistent alignment.

5



6 2. Machine Translation

My

dog

also

likes

to

eat

sausage

.

私 の 犬 も ソ
ー
セ
ー
ジ

食
べ
る

好
き
で
す

。

Figure 2.3: An instance of an alignment matrix, with one phrase pair highlighted

2.4.2 Phrase Scoring

A simple way of assigning probabilities to phrases is to use maximum likelihood, as
we did in the translation model:

φ(f̄ |ē) =
count(ē, f̄)∑

fi

count(ē, f̄i)
,

where count(a, b) is the number of sentences in the training corpus where phrase a
is aligned to phrase b. The phrase pair ē, f̄ gets a conditional probability as the
fraction of the count of phrase pair ē, f̄ by the count of any pair with ē. However,
this measure is very imprecise as it pays no attention to the length of the phrases for
instance. To refine the scoring of phrases a variety of models is used, four of which
we introduce in the following.

2.4.2.1 Lexical Weights

If a phrase pair is encountered only once, its conditional probability is 1. The high
probability in this case is misleading, as it suggests a high certainty, but is only
due to a lack of occurrences in the training data. To smooth such cases down,
we introduce a lexical weight model that falls back on the word based translation
model. Repetition of words is much more frequent than repetition of phrases, so the
certainty here is much higher.

lex(ē|f̄ , a) =
I∏
i=1

∑
∀(i,j)∈a

w(ei, fj)

|(i, j) ∈ a|
(2.2)

6



2.4. Phrase Translation Table 7

Equation 2.2 shows a formula for lexical weighting. Given the phrase pair ē, f̄ and
the alignment a between them, we multiply the averaged translation probabilities
for every word in the target phrase ē. As average translation probability, we define
the sum of translation probabilities p(ei|fj) from the word based translation model,
over all fj in the source phrase that align to ei.

2.4.2.2 Distance-Based Reordering Model

A reordering model is introduced to penalise misplacement of phrases on the target
side. The models’ intuition is to avoid jumps in the alignment of phrases on the
target side. Therefore, it favours a phrase by phrase translation and even penalises
reordering rules i.e. shifting the verb to the end, which we need for a natural
translation. Such rules will be addressed in Section 2.7.

p(f̄ |ē) =
I∏
i=1

d(starti − endi−1 − 1) (2.3)

Equation 2.3 shows the formula for scoring the reordering of a sentence e. For every
phrase fi from the source sentence F , we look at starti, the position of the first word
in ei, and endi−1, the position of the last word in ei−1, where ei is always the target
phrase aligned to fi.

kpe: 1 2 3 4 5 6 7 8 9

kpf: 1 2 3 4 5 6 7 8

d(start1−end0−1)
= d(1− 0− 1)
= d(0)

d(start2−end1−1)
= d(1− 5− 1)
= d(−5)

d(start3−end2−1)
= d(6− 2− 1)
= d(3)

Figure 2.4: A simple example for a distance-based reordering model

Figure 2.4 illustrates how the score is obtained. The words have been exchanged
for their position names for convenience. For the source phrase f2 “3 4”, we look at
end0 and start1. The preceding phrase of f2, f1 is aligned to e2, so the position of
the last word in e2,5, is end0. Next, we look at start2, the first word of the target
phrase aligned to f2. f2 translates to e1, so start2 is the first position in e1,1. Thus,
we obtain a score of −5 for the second phrase. Phrase 1 gets a score of 0 since there
is no reordering in relation to the 0th phrase. At last, we need to define d(). While
we could define d as a probability function dependent on the involved phrases, an
exponentially falling function will suffice. We define d(x) := a|x| with 0 < a < 1. So
if we choose a = 0.8, we get a reordering score of d(0)∗d(−5)∗d(3) = 0.8|0|+|−5|+|3| ≈
0.1678.

7



8 2. Machine Translation

2.4.2.3 Lexicalized Reordering Model

While the distance-based reordering model scores reordering regardless of the phrases
themselves, based on shift distance alone, we still need another model to score re-
ordering based on phrases. Thus, we introduce the lexicalized reordering model.
With this model, we estimate the probability for any phrase to be reordered based
on its content alone. We define 3 reordering orientations: monotone, swap, and
discontinuous.

My

dog

also

likes

to

eat

sausage

.

私 の 犬 も ソ
ー
セ
ー
ジ

食
べ
る

好
き
で
す

。

M

D

S

a

b

c

Figure 2.5: An example for the 3 types of orientation: Monotone, Discontinuous and
Swap.

Figure 2.5 shows these three types. We say a phrase pair is reordered monotone
when it has an alignment point at the top left, such as phrase pair a. A swap
occurs when there is an alignment point at the top right, as with phrase pair b;
and if there is no alignment point at the top, we have a discontinuous orientation.
The count of occurrence is determined during phrase extraction. Probabilities are
calculated via maximum likelihood, similar to the translation probabilities of the
phrases themselves.

p(orientation|f̄ , ē) =
count(f̄ , ē, orientation)

count(f̄ , ē)

The problem of data sparsity can be reduced by smoothing with the overall proba-
bility of the orientation. Koehn (2010) present 2.4 as an example,

p(orientation|f̄ , ē) =
δp(orientation) + count(f̄ , ē, orientation)

δ + count(f̄ , ē)
(2.4)

p(orientation) being the overall probability of orientation over all phrases.

8



2.5. Log-Linear Model 9

2.4.2.4 Word Penalty

To penalise hypotheses with too many or too few words, a factor ω is introduced
that is multiplied with itself for every word in the hypothesis, yielding ω|words| as
score. The right value is determined by tuning. An ω < 1 penalises long sentences,
ω > 1 penalises short sentences.

2.4.2.5 Phrase Penalty

A phrase penalty is used to score the number of phrases a sentence is segmented
into. Similar to the word penalty, a factor p is taken to the power of the number
of phrases in the sentence: p|phrases|. p < 1 penalises many, i.e. short phrases, p > 1
penalises few, i.e. long phrases.

2.5 Log-Linear Model

In section 2.1, we defined the search problem as

arg max
e

P (f |e) ∗ P (e),

where we realised P (f |e) as our translation model (TM) and P (e) as our language
model (LM). But in order to create these models efficiently, we made some sim-
plifications. Our n-gram language model for instance, takes only preceding words
into account when computing a probability. In order to even that out, weights for
language model and translation model are introduced which leads us to

arg max
e

P (f |e)λLM ∗ P (e)λTM .

To incorporate the other models, we abandon the Bayes’ theorem entirely and sub-
stitute a log linear model. First, we multiply other models with weights, resulting
in

arg max
e

∏
i

mλi
i

where mi is the output of model i and λi the respective feature weight. To avoid
underflows, the formula is further rewritten to

arg max
e

exp(
∑
i

log(mi) ∗ λi) = arg max
e

∑
i

log(mi) ∗ λi

This formula will be the foundation for evaluating any hypothesis in the decoding
step.

2.6 Decoder

Essentially, the Decoder uses the different models to create different hypotheses for
the source sentence, score them and choose the best one. We will shortly explain

9



10 2. Machine Translation

how this works.
In a very simple translation system with a word-based translation model, the decoder
simply translates the source sentence word by word. This results in one hypothesis
being chosen as translation. However, a good translation model provides translation
of whole phrase pairs (n-grams) and multiple possible translations for the same
phrase. This leads to two sources for multiple hypotheses: on the one hand, there
are several ways to segment a sentence into phrases, on the other hand, multiple
translations exist for the same phrase. In order to choose the best hypothesis, each
hypothesis is attributed a score. Previously created models are used for determining
this score. The translation model, for example, provides a score for the translated
phrase and the language model evaluates how ‘natural’ and fluent a hypothesis is.
Additionally, a variety of other so called features can be evaluated, e.g. the ratio of
the number of words in the hypothesis and in the source sentence.

2.6.1 Minimum Error Rate Training

Minimum error rate training (MERT) in SMT has been introduced by Och (2003).
The basic idea is that the decoder generates a list of N candidate translations and
chooses the best one by analysing each candidate translation for a set of features,
summing up those feature values, and selecting the one with the highest score. By
feature we mean a number, typically between 0 and 1, that is the output of a
model. Some features can be more important than others, depending on the specific
translation task and domain, thus a weighted sum is taken with feature values and
weights ranging from 0 to 1 for convenience. As the importance of each feature
varies with the task, the goal is to calculate proper feature weights. To do so, an
optimization step is performed in which a translation is carried out on a development
set that is similar to the test set on which the actual translation will be performed.
Ideally, development and test set are subsets of the same corpus. Since we know
the reference translations for each sentence from the development set, k-dimensional
optimization is performed on the n-best lists to find the k weights that lead to the
selection of the most promising translation candidates, i.e. the set of translations
that get the highest score from the specified evaluation metric.

2.7 Reordering

The methods introduced so far enable us to build a translation system that performs
reasonably well on European languages. However, for distant language pairs such as
English-Japanese, we need means to effectively reorder the source sentence. While
the decoder allows reordering to a limited degree, sophisticated rules such as shifting
a certain words to the end or switching not-consecutive phrases cannot be realized.
It would be possible to set the reordering window as infinite, but then the number of
hypotheses would explode. In this section, we look at different approaches to reorder
a sentence during translation. We will first regard reordering within phrases, which
is realized through the phrase table. Then, we will deal with lexicalized reordering
which we have already seen in Section 2.4.2.3. Afterwards, we will introduce the
concept of reordering the source side prior to decoding, which is followed by reorder-
ing during decoding time. This section is concluded by a glance at parsing sentences
as an addition to purely statistical methods.

10



2.7. Reordering 11

2.7.1 Reordering within Phrases

Reordering within phrases is handled implicitly through the phrase table. If we
take the English term “European Union” and its French counterpart “L’Union eu-
ropéenne”, we see that the tokens for “Europe” and “union” simply switch places.
If this term appears in the test set, we can expect it to be captured in training,
given that test and training data have the same topic. However, this approach is
unreliable towards phrases with words that do not necessarily appear together. For
instance, the term “an interesting book” features two words, “interesting” and “book”,
that can appear in many word pairs. There is a good chance that we observe many
phrases with “interesting” objects and possibly many descriptions of a “book”, though
not in this particular combination. In that case, we have to resort to higher level
approaches.

2.7.2 Lexicalized Reordering

In Section 2.4.2.3, we introduced a model that provides probabilities given a phrase
pair within a sentence and an orientation type. During decoding, this model can be
used to score hypotheses in order to discard unlikely ones.

2.7.3 Reordering of the Source then Monotone Translation

A popular approach is to reorder the source side prior to decoding. The advantage
here is that the reordering in the decoder addressed in Section 2.7.4 can be restricted
to a smaller window or even abandoned at all, allowing for faster decoding. This
approach is the main focus in this thesis.

2.7.4 Reordering During Decoding with Jumps

The decoder allows reordering to a limited degree. Instead of monotone translation
we can use a sliding window to allow the decoder to process any word within the
window instead of the immediate next word.

My dog kpalso kplikes kpto kpeat kpsausage

私の も

Figure 2.6: An example of a sliding window of size 3 in the decoding process

Figure 2.6 shows an example: The first word has already been translated, hence,
the sliding window has advanced to the second word. Now any word or n-gram in
the window, here ‘also’, can be translated and directly appended to the hypothesis.
Therefore ‘dog’ is skipped but it has to be translated eventually since the window
cannot move on any sooner.

11



12 2. Machine Translation

2.7.5 Syntax Approaches to Generate Grammatical Target
Sentence

Another way to generate a grammatical target sentences is to augment the decoder
with a syntactic parser. In string-to-tree systems, for instance, the target sentences
of the training data are parsed into tree structures. Subsequently, pairs of subtrees
and phrases are extracted. During decoding, such subtrees are connected to one
target tree. Here, the idea is that, given an reliable parser, the resulting target trees
are automatically grammatical.

2.8 Evaluation

Evaluation usually compares a translation by a machine translation system with a
human generated reference translation. However, for better precision we will also
compare alignments. An automatic evaluation by a computer is usually preferable
over human evaluation. It can give fast, reproducible, and objective results. The
performance does not decrease over time and it is inexpensive compared to a hu-
man evaluator. The advantage of a human evaluator, who actually understands the
meaning of the sentence and the exact type of error the system makes, is easily
outweighed by those factors.

In the following, we present the metrics needed for automatic evaluation in this
thesis. The first two metrics evaluate translation quality, while the subsequent two
measure reordering quality. After that, we will shortly discuss manual evaluation,
because we performed it on a reasonable subset of sentences to gain more insight
into the reordering process.

2.8.1 BLEU

BLEU (“Bilingual Evaluation Understudy”) was introduced by Papineni et al. in
2002 as an automatic evaluation metric that should mimic human evaluators but,
at the same time, be quick and affordable. It is the most commonly used automatic
evaluation metric in SMT. The idea is to measure the frequency with which n-grams
(i.e. a sequence of n words) in the candidate translation appear in a reference
translation for that candidate. This frequency is measured with a modified form of
precision measure. It is possible to work with a set of possible reference translations
per candidate to allow for multiple correct translations of the same word.

2.8.1.1 Precision

Precision in the context of classification is defined as the number of true positives
by the number of positives. So if we have a given set A and a system tries to classify
the members a∗ of a subset A∗ of A that fulfill a certain condition (i.e. are true) the
precision is the number of items which are correctly labelled as a∗ (the true positives)
divided by the number of items of A that are labelled as a∗ (the positives).

Figure 2.7 shows an example precision for a classifier that is meant to recognise
triangles.

In the context of machine translation we want to compare words in the candidate
with words in the reference, which is essentially precision: The true positives are

12



2.8. Evaluation 13

Figure 2.7: A classifier recognises 7 triangles and 2 other polygons as triangles. It
has therefore a precision of 7

9

words which are in the candidate and can be found in any reference translation
while the positives are the words in the candidate. Hence, we get the formula

PRECISIONadapted =

∑
c∈C

count(c, C) ∗ δ(c ∈ R)∑
c∈C

count(c, C)
(2.5)

The numerator denotes the number of words from the candidate that can be found
in any reference. The denominator denotes the number of words in the candidate. δ
serves as a decision function that translates the boolean values true, i.e. c ∈ R and
false, i.e. c 6∈ R into 1 and 0, respectively.

2.8.1.2 Modified Precision

Precision is intended to evaluate a classification task, i.e. to evaluate how many
given items were correctly recognised. In Machine Translation however, we have a
generative task. A SMT system generates candidates and we have to label them
into correct ones and incorrect ones afterwards. So if the candidate contains the
word ‘a’ twice but the reference contains it only once, we do not know which one is
correct. In the above attempt of transferring precision to SMT it has been decided
that every word in the candidate is correct if it can be found in any reference. This
can yield good scores for actually poor candidates as in Figure 2.8 where the word
‘a’ has clearly been overgenerated.

cand: an apple a day a a a
ref1: an apple a day keeps the doctor away
ref2: an apple a day keeps doctors away

Figure 2.8: The candidate translation has overgenerated the phrase ‘a’.

In the above example, the word ‘a’ appears four times while it is found not more
than once in any of the reference translations. However, it contributes four times
positively to the score. This leads to an unjustifiably high score of 1. One would
expect the 2nd to 4th occurrences to be treated as false positives since there is no
2nd occurrence of it in any reference translation.

13



14 2. Machine Translation

So the intuitive solution to this is that a word w is not allowed to score more often
than it appears in any reference. Therefore its occurrence is clipped down by the
maximum times it appears in any reference translation. We define clipped as

countclipped(w,C) = Min(CountC(w),max
r∈R

(Countr(w)))

and a modified precision as

precisionmod(C) =

∑
c∈C

countclipped(c, C) ∗ δ(c ∈ R)∑
c∈C

count(c, C)
=

∑
c∈C

countclipped(c, C)∑
c∈C

count(c, C)

The decision function δ now becomes obsolete as the check for occurrence is handled
by countclipped. Thus, the sentence from Figure 2.8 gets a modified precision score
of 4

7
.

In order to compute the precision of a whole corpus of candidates the clipped count
of all words per candidate is summed up over all candidates and divided by the
overall number of words in the corpus. This gives us the following formula2

precisionmod(corpus) =

∑
C∈corpus

∑
c∈C

countclipped(c, C)∑
C∈corpus

∑
c∈C

count(c, C)
(2.6)

2.8.1.3 n-gram Precision

So far we can evaluate the use of right words, i.e. adequacy, but not their order,
i.e. fluency. If we sort the example sentence lexically, we obtain the same modified
precision score. To penalise such a lack of fluency we also look at sequences of n
words. Thus, the formula for precision is generalized to:

precisionn-gram(corpus) =

∑
C∈corpus

∑
n-gram∈C

countclipped(n-gram, C)∑
C∈corpus

∑
n-gram∈C

count(n-gram, C)
(2.7)

precision precisionmod precisionn-gram

a an apple away day doctor keeps the 1 1 10
21

an apple a day keeps the doctor away 1 1 1

Table 2.1: n-gram precision for a candidate that has the wrong order, with a maxi-
mum of 3-grams.

Table 2.1 depicts the modified n-gram precisions for a senseless permutation of the
reference from Figure 2.8. In the second line, the reference itself is also scored for

2One might be tempted to average over the modified precision for each sentence, but this would
weight each sentence equally, regardless of their length. Therefore, the average over all words
is taken.
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2.8. Evaluation 15

comparison. The columns precision, precisionmod, precisionn-gram correspond to the
Equations 2.5, 2.6, 2.7. We use up to 3-grams in this example. While every unigram
can be found in the reference, only two bigrams and zero trigrams can be found.
If we were to account for 4- and 5-grams as well, the score would further decrease,
since zero matching 3-grams implies zero matches for all higher n-grams. The values
for n are commonly 4 or 5 at most since higher values do not seem to gain enough
information to justify the additional computing time.

2.8.1.4 Brevity Penalty

It is further desirable that the candidate translation matches its reference transla-
tions in length. Too many words in the candidate are already penalised through
the use of precision measure, but short candidates can still obtain unjustifiably high
scores. A candidate that consists of an arbitrarily small sequence of a reference
translation would even get a precision of 1 since every n-gram can be found in a
reference. Therefore, an external penalizing factor is used. To allow for some free-
dom on sentence level the brevity penalty is computed on the whole corpus and not
for each sentence individually. If the candidate is not shorter than the reference, it
should equal 1 in order to have no effect. If it is shorter, it should decrease. Pap-
ineni et al. (2002) decided on an exponential decrease relative to r

c
where c is the

sum of all words in all candidates and r is the sum of the references that match the
corresponding candidate best in length. They get the following formula:

BP =

{
1 c > r

e1−
r
c c ≤ r

2.8.1.5 Combination of n-gram Precisions

Since the various n-gram precisions have very different ranges (a high 5-gram pre-
cision is rather unlikely and a k+1-gram always implies 2 k-grams) the geometric
mean( n

√
p1 ∗ p2 ∗ ... ∗ pn) is more appropriate than the arithmetic mean. Thus, the

formula is BLEU = BP ∗ n
√
p1 ∗ p2 ∗ .. ∗ p5.

2.8.2 RIBES

Since BLEU accounts for global word order only by n-grams, the RIBES (“Rank-
based Intuitive Bilingual Evaluation Score”) (Isozaki, Hirao, et al., 2010) metric has
been established for distant language pairs such as English and Japanese in an effort
to explicitly address word order.

RIBES =
∑
c∈C

nkt ∗ precisionα ∗BP β

#Words in c

As in BLEU, the Brevity penalty is BP = min{1, e1− r
c }, r being the number of

words in the reference and c being the number of words in the hypothesis. Kendall’s
τ was introduced by Kendall (1938) as a mean to compare orderings by different
subjects. It computes as

#increasing pairs−#decreasing pairs

#all pairs
.

15



16 2. Machine Translation

We assume a reference order of 1, 2, ..., n and a permutation of this sequence gener-
ated by the subject. Now it is determined for every pair of ranks in the permutation
whether the ranks are increasing as in the reference and are, thus, correctly ordered,
or whether they are decreasing. A more in-depth analysis of Kendall’s τ will be
given in 2.8.3. The introduced version of Kendall’s τ ranges between −1 and 1. In
order to keep the score positive, Isozaki, Hirao, et al. use normalized Kendall’s τ
which computes as

nkt =
#increasing pairs

#pairs
.

Precision is the number of words from the hypothesis that can be found in the
reference divided by the number of words in the hypothesis. α and β are parameters
with values between 0 and 1, in our case 0.25 and 0.1 were used.

2.8.3 Kendall’s τ

BLEU and RIBES compare the output of the translation system with a reference in
the source language. Hence, many factors influence the score, for instance alternate
translations. The hypothesis “This is my home” for reference “This is my house” will
have a lower score because the metric can only score “home” as a translation error
although the reordering is correct. The next two metrics have been used to solely
examine the quality of reordering. We used Kendall’s τ as described in Neubig,
Watanabe, & Mori (2012). Kandall’s τ is a measure for the accuracy of pairwise
ordering, i.e. the ratio of the sum of correctly ordered pairs and the sum of pairs
which can be written as

τ = 1− #incorrectly ordered pairs

#all possible pairs
.

A few changes(ties, unaligned) have to be made to apply this metric to translations.
For every word f ′j aj is the set of indices in the target sentence that f ′j is aligned to.
For aj we define aj1 as the first index in aj and aj$ as the last index. With these sets,
a ranking function r(fj) can be defined. For two words fj and f ′j+1, r(f

′
j) < r(f ′j+1)

holds if aj1 < aj+11 ∧ aj$ ≤ aj+1$ or aj1 ≤ aj+11 ∧ aj$ < aj+1$ .
r(f ′j) = r(f ′j+1) holds if neither r(f ′j) < r(f ′j+1) nor r(f ′j+1) < r(f ′j) hold. Since the
above formula for Kandall’s τ was made assuming a strict order, we subtract the
number of words, which have the same rank assigned, from the denominator and
come to an adjusted formula:

τ = 1−

J−1∑
i=1

J∑
j=i+1

δ(r(f ′i) > r(f ′j))∑
i<j∈J

δ(r(f ′i) 6= r(f ′j))
.

Words with no alignment are assigned the same rank as the next word to the right or
left, depending on the type of language. Neubig, Watanabe, & Mori (2012) suggest
to group such words to the next word on the left for head-final languages, such as
Japanese, and to the right for head-initial languages, such as English. We follow
this approach.

An example score can be seen in Figure 2.9.

16



2.8. Evaluation 17

kpwaka kpcompose kpwho kpthe kppeople kpkajin kppoets kpcalled kpare kp. reference

kpcompose kpwaka kpwho kpthe kppeople kpare kpcalled kpkajin kppoets kp. hypothesis

Figure 2.9: There are a total of six pairs where the respective words in the reference
have a different order. With a total of 45 pairs we get an accuracy of
1− 6

45
= 13

15

2.8.4 Chunk Fragmentation

kp̂ kpwaka kpcompose kpwho the people kpkajin poets kpcalled kpare kp. $ reference

kp̂ kpcompose kpwaka kpwho the people kpare kpcalled kpkajin poets kp. $ hypothesis

Figure 2.10: An example for chunk fragmentation. There is a chunk border between
‘people’ and ‘are’ because their corresponding ranks in the reference
differ by more than one.

While chunk fragmentation has been described in earlier works, we use the version
described in Neubig, Watanabe, & Mori (2012), as it is explained very detailed
there. Chunk fragmentation counts the number of times the reader has to jump in
a sentence of J words in order to read it in the right order.
A jump occurs whenever the immediately following word f ′j+1 has not the same or
immediately following rank as f ′j. So an indicator function DISCONT is defined that
returns 1 in the case of a jump:

DISCONT (f ′j, f
′
j+1) =

{
0 r(f ′j) = r(f ′j+1) ∨ r(f ′j+1) = r(f ′j) + 1

1 else

We use the ranking function r that we defined in Section 2.8.3. It can easily be
seen that two following jump points always delimit a chunk: If there are two or
more chunks in between, there has to be at least one jumping point in between,
and if the chunk exceeds the second jumping point, then there is no second jumping
point. With the DISCONT function, we can just sum up all jumping points via
J−1∑
j=1

DISCONT (f ′j, f
′
j+1). Since the first and last word of the reordered sentence are

only compared once and are, hence, underrepresented, artificial sentence delimiters
f∧ and f$ are introduced with r(f∧) = 0 and r(f$) = max

F ′
r(f ′j) + 1. Thus, we obtain

the accuracy formula:

1−

J∑
j=0

DISCONT (f ′j, f
′
j+1)

J + 1
,

where the denominator describes the number of comparisons.

17



18 2. Machine Translation

Figure 2.10 shows an example sentence with chunks drawn in. With the helper
tokens f∧, f$ there are eight chunks, so the reader has to jump seven times. The
sentence consists of ten words(twelve if we count delimiters), consequently, there are
eleven comparisons which results in an accuracy of 1− 7

11
= 4

11
.

2.8.5 Manual Evaluation

While the automatic measures introduced so far can evaluate an enormous amount
of hypotheses, there are also reasons to perform a manual evaluation. First of all,
automatic evaluation metrics evaluate many features at once. A manual evaluation
can be helpful to look at one particular feature alone, especially, if it is tedious to
write it in code. Secondly, a human has an intuitive sense for the qualities that
we expect from a good translation, such as adequacy and fluency, while a machine
has no sense for that and has to fall back on statistical measures. Moreover, the
eventual goal is to produce translation results that satisfy human requirements, so
it is intuitive to use human evaluators additionally. Another advantage of human
translators is their ability to generalize. While it is difficult enough to acquire
parallel corpora, there is virtually no dataset with multiple reference translations,
so an automatic evaluation has to assume that there is only one correct translation
for every sentence. If we take the reference sentence “I go home.” and a hypothesis
“I go to my house.”, a human evaluator could see that despite a little odd choice of
words, the hypothesis is adequate, while an automatic metric could only determine
that the hypothesis is comparatively long and one third of the reference is missing.

18



3. Related Work

In this Chapter, we will introduce different approaches that have been taken to
address either reordering or the English-Japanese language pair. We will start with
an overview of approaches regarding translation from and to Japanese. This is
followed by important approaches in the topic of reordering. Finally, we will give an
overview of the work that our systems are built upon.

Because Japanese and English are barely related as opposed to English and other Eu-
ropean languages, rule-based systems are traditionally preferred for machine trans-
lation in this area. Nagao (1981) suggests working with analogies, i.e. mimicking
the human process of using phrases known from different contexts. In addition to
phrase extraction, an artificial thesaurus is built to deal with similarities. Sumita et
al. (1990) compare this example-based approach with rule-based machine translation
and point out that an example-based system is more robust and easier to adapt and
maintain. For dealing with segmentation and morphology, Neubig, Watanabe, Mori,
& Kawahara (2012) suggest to use an inverse transduction grammar framework and
look at sentences on a character instead of a word level.

There are various approaches to capture and make use of the structure of sentences.
A very interesting approach was developed by Chiang (2005). He uses synchronous
context free grammars to capture the hierarchy of a sentence. Synchronous context
free grammars extend context free grammars insofar that every rule has a source and
target language. This is realized by extracting phrase pairs with wildcards. Since
every wildcard can be replaced with a different phrase pair, the phrase pairs model
a context free grammar. To reduce the number of extracted rules, a series of filters
is applied, among them a filter which restricts rules to have only two nonterminal
symbols. Parsing is done by a CKY parser in combination with beam search. An
annotated source side is not needed, all rules are obtained based on frequencies.

Figure 3.1 shows a possible set of rules extracted from the sentence “Australia is
one of the few states that have diplomatic relationships with North Korea.” and its
Japanese translation. Note that the first two rules are not extracted but hard coded
since they are needed to enable parsing in the first place.

Another approach are tree driven methods where the decoder works directly on parse
trees. An early work in this area is Liu et al. (2006) who employ a syntactic parser
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S → 〈S1X1, S1X1〉
S → 〈X1, X1〉
X → 〈isX1, X1ある〉
X → 〈haveX1 withX2, X2とのX1持っている〉
X → 〈X1 X2, theX1 thatX2〉
X → 〈one ofX1, X1の一つで〉
X → 〈Australia, オーストラリアは〉
X → 〈few countries, 数少ない国〉
X → 〈diplomatic relations, 外交関係〉
X → 〈North Korea, 北朝鮮〉

Figure 3.1: A possible set of rules from a synchronous context free grammar for
English and Japanese.

on the source side and extract alignment information between tree nodes and target
sentences. By mapping not only leaf nodes, i.e. words from the parse tree, but
also non-leaf nodes, i.e. POS-tags, both, word and phrase level, are addressed. A
dependency-to-string approach is introduced by Quirk et al. (2005).

A different approach in preordering is done by Isozaki, Sudoh, et al. (2010). We
mentioned before that Japanese is a SOV language. Although its word order is
generally very free, it is mandatory for the verb to be placed at the end of the
sentence. Additional to the order of subject, object and verb, languages can also
be categorized by their ‘heads.’ The head of a linguistic phrase is the word whose
POS tag describes the whole phrase. So for a noun-phrase, the head is one of the
contained nouns, and for every verb-phrase the head is a verb. Depending on the
position of this head within a phrase, languages can be categorized. A language is
head-initial if the head tends to be the first word of a phrase and head-final if the
head tends to be at the end. English is an example for a head-initial language while
Japanese is an example for a head-final language. Head driven phrase structure
grammar (HPSG) parsers can parse a sentence into phrases and mark the heads.
Isozaki, Sudoh, et al. (2010) used such a parser to head-finalize the source side in an
English to Japanese translation task. In a preprocessing step, they used the parser
to recognise the head of every phrase and shift it to the end of the respective phrase.
While one might argue that this is essentially hard coding a rule, the used parser
still relies on probabilities and the head-finalized source side can still serve as a
foundation for more subtle statistical reordering. A combination of head finalization
and our approach seems promising, but was discarded for lack of time.

A very promising approach in tree-to-string systems are packed forests as proposed
by Mi et al. (2008). While most systems use one parse tree, they use many possible
parse trees and store them in a hyper graph. This is basically a tree with additional
edges between root and leaves. This hyper tree is used to store several parse trees
for the same sentence

In contrast to hyper graphs, Rottmann & Vogel (2007) use a system that stores pos-
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sible reorderings in a lattice, which can be seen as a hyper path. Their work is based
on Crego & Marino (2006) and uses an aligned parallel corpus with a POS annotated
source side. They extract short range rules by searching for crossing alignments be-
tween source and target side. Besides, they develop four types of rules, among them
two that provide context in form of POS tags/words. This approach has been ex-
tended by Niehues & Kolss (2009), who introduce discontinuous rules that allow for
reordering over longer distances. Since the decoder translates a reordered test set,
the phrase table can be built from the reordered source side of the training set as
well. Herrmann et al. (2011) suggest to learn phrases from both, the monotone and
the reordered source side. The idea is to enable a better match between test and
training data. Some phrases are only observed after reordering. A translation model
that extracts phrases in their original order from the corpus would not recognise
such a reordered phrase and thus, not know how to translate it. Herrmann et al.
(2013) combine both, POS based rules and discontinuous rules, with tree-based rules
in order to address many linguistic levels of reordering.
This thesis will examine this work.
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4. Modelling Reordering in
English to Japanese Translation

4.1 Motivation

After Herrmann et al. could report positive results for the language pairs German-
English and German-French, we wanted to try out the used methods on an English-
to-Japanese task. German and Japanese are both head-final and, although there are
certain liberties, both are SOV languages. English and French on the other hand are
both SVO languages and head-initial with some exceptions in French. So it appears
to be just a change in reordering direction: Herrmann et al. experimented on SOV to
SVO, head-final to head-initial, and we try SVO to SOV, head-initial to head-final.
However, there are several additional challenges. The language pairs Herrmann et al.
worked with are European languages and quite close whereas English and Japanese
are very distant. For instance, the Japanese language uses particles that reflect
information such as subject of the sentence or directions. Consequently, Japanese
word order is very variable. Only one reference sentence per test sentence,however ,
can not reflect this properly.

4.2 Used Data

The number of corpora at the beginning of experiments was rather limited, so we
took what was available at the time and eventually settled for four corpora:

KFTT The Kyoto Free Translation Task (KFTT) Neubig (2011) is a collection
of “Wikipedia articles related to Kyoto”, for which a hand made annotation is
freely available. This enabled us to evaluate reordering regardless of the quality
of other models, so we chose it as test set. Strictly speaking, KFTT adds only
a hand crafted alignment (and tokenization) to the Japanese-English Bilingual
Corpus of Wikipedia’s Kyoto Articles released by the National Institute for
Information and Communication Technology (NICT). We treat the KFTT as
a subset of this corpus that adds alignment information. So even if we only
mean the original date without the alignment, we will refer to it as the KFTT

23



24 4. Modelling Reordering in English to Japanese Translation

to avoid confusion. The corpus itself contains 443849 lines, of which 1235 are
used as test set.

TED The TED-corpus is a collection of subtitles from different TED-talks. Cettolo
et al. (2012) transformed the data gathered by the TED Open Translation
Project into an easy to process corpus. The version we used was segmented
by the people at the Nara Institute for Science and Technology (NAIST) and
contains 96833 sentences. TED-talks cover a variety of subjects from sciences
and arts to personal stories. While the tone is of course restricted due to the
occasion of a presentation, TED is a very diverse corpus that is available in
many language pairs and was therefore our first choice as a test set. However,
since TED does not provide an alignment between English and Japanese words
in the subtitles, we eventually opted for KFTT.

Tatoeba The Tatoeba(jap. example) corpus stems from tatoeba.org, a site where
everyone can submit sentences and translations to sentences. The project
works with all language pairs simultaneously by assuming that translations
are in a transitive relation. If the system holds a Japanese sentence which has
an English translation and the same English sentence is translated into German
by a user, the Japanese sentence is automatically mapped to the German one
as well. We used a 176976 sentence subset of those translations. As the project
relies on ‘the crowd’ the accuracy and fluency of translations cannot be guar-
anteed, yet like wikipedia the project has mechanisms to improve the quality of
translations. A considerable amount of sentences within the Japanese-English
pair of tatoeba stems from the Tanaka corpus1 added to tatoeba in 2006. The
Tanaka corpus is a student crafted Japanese-English corpus whose compilation
was overseen by Professor Yasuhito Tanaka at Hyogo University. A description
for the methods to obtain the data can be found in Tanaka (2001). During
incorporation in WWWJDIC, another online dictionary, prior to incorporation
into Tatoeba, the Tanaka corpus was cleansed.

Reiji, Waei Reiji and Waei are partitions of the Eijiro corpus. Started by one
person to keep track of his vocabulary, it soon increased when he invited friends
to contribute. Reiji and Waei sum up to 2428711 sentences.

4.3 System Description

After we have described the used corpora, we now want to give an overview of our
baseline system. In a first step, we used GIZA++ (Och & Ney, 2003) to train
alignments from all KFTT, TED, Tatoeba, Reiji and Waei. After that, we built
several language models with SRILM (Stolcke, 2002) and several phrase tables with
Moses. We then ran a series of combinations and chose the one that performed best.
For the language model, we compared a model based on the KFTT corpus alone,
one based on all five corpora and a model that was a linear combination of all five
corpora optimized on the KFTT development set.
For the phrase table, we compared a phrase table over the KFTT corpus and one over
all corpora. The evaluation of the resulting six systems showed that the combination
of a KFTT only language model and a KFTT only phrase table perform best on the

1http://www.edrdg.org/wiki/index.php/Tanaka_Corpus
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test set from KFTT. Therefore, we used this combination for all further experiments.
The final language model contains 3932728 entries, for the phrase table we extracted
4473902 pairs. The reordering rules were extracted from all corpora, unless explicitly
stated otherwise. As a decoder, we used our in-house decoder(Vogel, 2003). The
resulting translations were evaluated using four different metrics:

BLEU was used because it is widely used and can be seen as a standard in the SMT
community.

RIBES was added because it pays more attention to reordering and is popular
among researchers on Japanese-English tasks.

τ and chunk were added because they focus on alignment alone and cannot be
influenced e.g. by a faulty language model. We used the implementation from
the lader parser2 described in Neubig, Watanabe, & Mori (2012). Because
we need the alignment rather than the translated sentence, we extracted the
alignment by retracing the path in the lattice that was chosen by the decoder.
For this path we were able to compute the alignment by looking at the logs
from the creation process. Therefore, our alignment given to the τ and chunk
metric is the reordering caused solely by our reordering rules. It lacks two
aspects of reordering that will take place only later in the decoder: Reordering
during decoding time by jumps as exemplified in Section 2.7.4 and reordering
within phrases mentioned in Section 2.7.1.

4.4 Reordering Experiments

Herrmann et al. (2013) were able to improve over POS based rules and discontinuous
rules with the use of treerules for German to English and German to French transla-
tion. The goal of this thesis is to evaluate treerules on an English-to-Japanese task.
In order to achieve this, we analysed the influence of different reordering methods
to translation quality.
Like Herrmann et al., we use a reordering step prior to decoding in which the original
sentence is reordered. The found permutations and the original sentence are stored
in a lattice structure.

0

1
 the 

2
 Days 

3

 Shinran 

4
 Days 

5

 of 

6 Shinran 

7 of 

 the 

8
 the 

9

 of 
10

 Shinran 

 Days 

11
 of 

12
 Shinran 

13
 of 

14
 Shinran 

 of 

 Days 

 Days 

 Days 

Figure 4.1: An example of a lattice that stores our reorderings.

2http://phontron.com/lader/
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26 4. Modelling Reordering in English to Japanese Translation

A lattice is a partially ordered set with two special elements: A unique upper bound
and a unique lower bound. We store our tokens on the edges in the lattice. Figure
4.1 shows an instance of such a lattice. The numbers on the nodes depict the order:
14 is the upper bound, 0 the lower bound.

We will now give an overview of the essential experiments. First, we built a sys-
tem that uses no preordering(plain) as described in 4.3. This baseline system was
extended by several approaches as illustrated in the following sections.

4.4.1 Short-Range Reordering Rules

First, we extended the plain system by adding the POS-based reordering rules de-
scribed in Rottmann & Vogel (2007) who based theirs on Crego & Marino (2006).
To obtain these rules, an aligned parallel corpus is needed where the source side is
annotated with POS tags. Whenever we encounter two source words with crossed
target words, we check for a rule. Formally speaking, we look for two source words
at positions i < j with aligned target words at ai > aj. When found, we can extract
a sequence of POS tags. Rottmann & Vogel also allow a context of one or two tags
or words either preceding or following the extracted sequence. Also they allow the
sequence to be in form of plain words but in that case no context is used. For a rule
to be saved, a threshold of five occurrences in the corpus has to be reached. For
accepted rules a frequency is calculated based on the number of times such a pattern
occurred and the number of times the rule was extracted in such a situation. These
rules can handle local reorderings like the peculiarity of the French language to have
the adjective follow the noun, as in “an interesting book” and “un livre intéressant”.
We were able to extract an overall of 689333 short range rules. Adding them to the
existing plain system resulted in the +short system.
However, as a matter of fact, the extracted rules are of short range (on average
4.61 tokens in our case) and since we only look at sequences, long-range reorderings,
where the 2 sequences in question are non-consecutive, cannot be modelled properly.

4.4.2 Long-Range Reordering Rules

The next system(+long) added discontinuous rules as depicted by Niehues & Kolss
(2009). Discontinuous rules were introduced in an effort to tackle long-range reorder-
ings. They allow the translation system to perform long-range reordering without
the need to look at words in between.

“Das wird mit derart unterschiedlichen Mitgliedern unmöglich sein.”

“That will be impossible with such disparate members.”

Figure 4.2: An example for a long-range rule.

As an example, they give the German sentence and its English translation in Figure
4.2: ‘wird’ and ‘sein’ translate to the English words ‘will’ and ‘be’. But while
‘wird’ and ‘sein’ enclose the object, the corresponding English counterparts stand
together. Such a reordering cannot be modelled with shortrules since they rely on
an explicit sequence to reorder and cannot abstract a subsequence. A rule such as:
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MD ∗ V B → MD VB ∗ however could model the reordering correctly, where
MD matches ‘will’ and V B matches ‘be’. A depiction of all four rules introduced
by Niehues & Kolss (2009) can be seen in Figure 4.3.

Left All:
fj ∗ fi+1...fk′

fj fi+1...fk′ ∗

Right All:
fj′ ...fi ∗ fk

∗ fj′ ...fi fk

Left Part:
fj fj+1 ∗

::::::
fi+1...fk′

fj fi+1...fk′ fj+1∗
:::::

Right Part:
fj′ ...fi ∗fk−1

:::::
fk

∗ fk−1
::::::

fj+1...fi fk

Figure 4.3: Discontinuous rules: fj and fk are the words before/after the reordering.
f ′j and f ′k are the first aligned word after fj and the last aligned word

before fk respectively.

Here, we could extract 433189 rules.

4.4.3 Tree-Based Reordering Rules

These systems were followed by a system that adds the treerules described by Her-
rmann et al. (2013)(+tree). We will describe shortly these rules. So far we have
looked at reordering on the basis of sequences and ignored the structure of the sen-
tence. To handle reordering on a constituent level, we use reordering rules based on
parse trees as outlined by Herrmann et al. (2013). Since they operate on parse trees,
in addition to the requirements stated in 4.4.1, now a parse tree for each sentence
on the source side is required. To extract the rules, the parse tree of any sentence on
the source side is traversed top-down and if a subtree contains a crossing alignment,
a rule is extracted.

An example for a rule extraction is shown in Figure 4.4. A reordering takes place
between the constituents VVPP and NP, hence, the rule VP PTNEG NP VVPP
→ VP PTNEG VVPP NP is extracted. The first POS tag in the rule, VP, denotes
the head constituent of the respective subtree, the following tags describe the child
nodes. For this system additional 11506 rules were obtained.

4.4.4 Partial Tree Based Rules

Working on top of those 3 systems, we built a system that added partial application
of treerules as described in the same paper. We will refer to this system as +partial.
For treerules the head of a subtree and all its child nodes are extracted. The idea of
partial treerules is that a treerule does not necessarily depend on all child nodes. So
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S
1-n
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...
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2-5

VVPP
3-3
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NP
4-5

NN
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2-2
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VAFIN
2-2
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PPER
1-1

Wir
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We

2
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3

choose

4

artificial

5

scenarios

Figure 4.4: A sample parse tree, source Herrmann et al. (2013)

for a subtree the head and every continuous sequence of child nodes are extracted.
This system added another 10752 rules.

In addition, we evaluated different variants of the reordering approach using tree-
based rules. Beside the basis tree reordering, we also restricted the source for re-
ordering rules, applied rules recursively, worked with lattice phrase extraction and
used a different parsing approach. Those experiments are described in more detail
later on. As in the paper by Herrmann et al., the order of systems is inclusive, i.e.
+tree adds treerules on the lattice produced by +long. We will shortly discuss the
reasons for this to avoid confusion. The decision to built this series of experiments
in a cumulative manner causes erroneous reordering in +short to prevail into later
systems and act as noise for the decoder in all following systems. System long for
instance might even perform better if examined isolated. But as Herrmann et al.
argue, the different methods address distinct linguistic levels, so pairwise comparing
the different approaches isolated gives us little information. Comparing how much a
new technique can add to an existing system however, gives us valuable information
about what we actually gain. In the following, we will describe the afore mentioned
variations to the +tree system.

4.4.5 Restricting Rules to KFTT

Since the Japanese grammar allows for a wide variety of correct word orders but
our test set provides only one reference per hypothesis, we wanted to match the
style of word order used in the test set better. In order to do so, we restricted the
extraction of rules to the development set of the KFTT corpus from which our test
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Reordering rules kpPhrase Table Language Model

KFTT KFTT KFTT

TED

Eijiro

Tatoeba

Figure 4.5: Juxtaposition of the corpora used for different components. For bet-
ter adaption TED, Eijiro and Tatoeba (dashed) are removed from the
reordering rules.

set is derived. A depiction of the components can be found in Figure 4.5. This
restriction left us with 547911 rules, about half as much as in Section 4.4.

4.4.6 Recursive Rule Application

Reordering Rules

Source Text Lattices

Figure 4.6: Schema of the concept of recursive rule application.

The correct reordering of a sentence cannot necessarily be described with just one
rule. To handle such cases, where a grammatical rule needs two or more tree-rules,
we allowed this system to apply rules not only on the original source side sentence
but also on an already reordered sentence. The set-up is depicted in Figure 4.6.
To avoid infinite loops, once reordered constituents are excluded from additional
reordering.

4.4.7 Examination of Long Range Reordering

Niehues & Kolss (2009) present two types of rules: right rules, where the anchor
tag is on the right side of the reordering, and left rules, where the anchor is on
the left side of the reordering. While it is intuitive to use both types to extract
as exhaustively as possible, we expected that one type will dominate. Therefore,
we performed an additional experiment and built a +left and a +right system to
compare with the +long system. Niehues & Kolss used left rules for German to
English and German to French. As we argued in 4.1, English to Japanese can be
seen as an opposite translation direction looking at subject, object and verb order,
and head movement. So we expect better results for the right rules. Surprisingly, we
could extract more left rules than right rules. We see this as an indication that the
right rules generalise better, thus a smaller number is needed to express the same
phenomena.
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30 4. Modelling Reordering in English to Japanese Translation

4.4.8 Lattice Phrase Extraction

kpTrain

kpTest

Reordering
Rules

kpPt

kpD

kpTranslations

Figure 4.7: Schema of the changes made through LPE. The dashed connection is
added.

As we decode reordered lattices we expected an improvement when using a phrase
table trained on a reordered source side. In order to obtain such a phrase table,
we extended the existing phrase table by phrases extracted from the lattices of the
reordered source side of the training corpus. Figure 4.7 shows the different setup of
the translation system. Like the previous one, this experiment uses only POS and
discontinuous reordering rules.

4.4.9 Approaches to Parsing

In Section 4.4.3, we mentioned that we use parse trees for our tree-based rules. These
parse trees are obtained through a parser that assigns POS-tags to every word and
also sorts the single words into a tree structure. We use two approaches in this
thesis, which we will briefly explain.

S

VP

VP

NP

NN

sausage

VBG

eating

VPS

likes

ADVP

RB

also

NP

NN

dog

PRP

my

likes

dog

my

also eating

sausage

Figure 4.8: The same sentence parsed as constituents on the left and as dependencies
on the right

4.4.9.1 Constituent Parsing

In constituent parsing words are grouped into linguistic phrases, which are grouped
into other phrases until one phrase characterises the whole sentence. The tree on
the left in Figure 4.8 shows a constituent tree. Nagao (1981) explicitly disproves of
constituency because of its free word order, so we considered alternatives.
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4.4.9.2 Dependency Parsing

In dependency parsing, no additional tokens are introduced. Every word, except the
root word is ‘dependent’ on another word directly. An example for a dependency
parse tree can be seen on the right side in Figure 4.8. POS information is not shown.
While some authors view dependencies as a data structure opposed to trees, we do
treat them as trees to fit our purpose. To compare both approaches, we executed
all experiments again using dependency parse trees for the rule creation.

4.5 Manual Analysis

The Japanese language allows for a very flexible word order, but there are two basic
requirements: the subject must be at the beginning of the sentence and the verb
at the end. While these conditions influence all four automatic metrics, there is no
way to identify the extend to which any condition alone is satisfied. To see to what
extend the second condition is satisfied, we did a manual evaluation of 100 lattices
for the elementary configurations where we successively added new rule types. We
analysed two questions:

1. Is there a path in the lattice which has the verb at the end?

2. Is such a path chosen as hypothesis by the decoder?

As some verb constructs such as “be called” consist of two words, we made an excep-
tion for them: As long as a verb and its auxiliary occupied the last two positions, we
did not mind if the verb was only at the second to last position. It seems possible
to automate this behaviour, but for a lack of time we decided against it.
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5. Results

In this chapter, we present the results for the experiments illustrated in the previous
Chapter 4. To eliminate statistical anomalies, every system was run five times. The
values presented in the tables are averages of these five scores. All experiments use
a subset of the KFTT corpus as a test set.

5.1 Constituent parsing

metric plain +short +long +tree +partial

BLEU 14.77 16.29 16.22 16.51 16.49
RIBES 62.88 64.54 64.77 65.44 65.48
chunk 63.094 62.918 61.226 61.107 61.115
τ 78.154 78.893 78.802 78.757 78.781

Table 5.1: Scores for syntax trees

Table 5.1 shows our results for reordering experiments without any extensions. Look-
ing at the RIBES scores, we see the expected increase over more exhaustive methods.
On BLEU we also see an overall improvement compared to the plain system and
POS-only rules. The chunk values are all worse. τ values on the other hand can all
improve.

5.1.1 Restricting Rules to KFTT

In the Japanese language, word order is relatively free. Therefore, in this experiment
we restricted rule extraction solely to the KFTT corpus.

The results for this are shown in Table 5.2. While the overall BLEU and RIBES
scores are lower, especially for the treerules, we get a monotonous increase. Chunk
and τ improve for treerules. Chunk can additionally improve for discontinuous rules,
τ for partial.
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all rules kyotorules

metric +short +long +tree +partial +short +long +tree +partial

BLEU 16.29 16.22 16.51 16.49 16.07 16.21 16.26 16.33
RIBES 64.54 64.77 65.44 65.48 64.37 64.76 64.81 64.98
chunk 62.918 61.226 61.107 61.115 62.669 61.534 61.412 60.066
τ 78.893 78.802 78.757 78.781 78.723 78.756 78.803 79.816

Table 5.2: Scores for syntax trees with rule extraction restricted to the Kyoto corpus

5.1.2 Recursive Rule Application

We will now look at the results for our systems where we allowed reordering rules to
be executed several times on the same path. The scores for recursive rule application

non-recursive recursive

metric +tree +partial +tree +partial

BLEU 16.51 16.49 16.72 16.67
RIBES 65.44 65.48 65.59 65.6
chunk 61.107 61.115 61.683 61.038
τ 78.757 78.781 80.089 78.936

Table 5.3: Recursive Rule Application

are depicted in Table 5.3. As expected, in BLEU and RIBES score, we can see that
the systems outperform the plain system as well as the non-recursive treerules and
partial systems: The BLEU score increases by 0.21 and 0.18 while RIBES increases
by 0.15 and 0.12. τ can improve over both, treerules and partial, and chunk increases
clearly over the non-recursive treerules.

5.2 Dependency Trees

In this section we present the results for configurations where we exchanged con-
stituency parsing for dependency parsing. For comparison we show the results for
shortrules and longrules as well. Please keep in mind that they are the same results
as for constituency parsing since POS rules do not rely on a parser.

syntax dependency

metric +tree +partial +tree +partial

BLEU 16.51 16.49 16.5 16.46
RIBES 65.44 65.48 65.03 65.01
chunk 61.107 61.115 61.319 61.247
τ 78.757 78.781 78.712 78.848

Table 5.4: Scores for dependency trees

In Table 5.4 the scores for the standard line of experiments based on dependency
parsing are listed. While still outperforming the plain system, we could not improve
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over tree-based rules parsed with constituency trees. BLEU shows a decrease of 0.01
and 0.03, RIBES decreases by 0.41 and 0.47. A higher decrease in RIBES is usual
as the metric punishes reordering explicitly. The decrease itself may be explained
by the fact that the rules where developed for constituency trees. An exhaustive
examination of all parameters used in extraction and application of the rules, e.g.
the pruning threshold, may lead to better results. However, Chunk and τ do improve,
save for the treerules in τ .

5.2.1 Restricting Reordering Rules to KFTT

constituency dependency

metric +short +long +tree +partial +tree +partial

BLEU 16.07 16.21 16.26 16.33 16.24 16.24
RIBES 64.37 64.76 64.81 64.98 64.77 64.82
chunk 62.669 61.534 61.412 60.066 61.544 61.718
τ 78.723 78.756 78.803 79.816 78.745 78.547

Table 5.5: Scores for dependency trees with rule extraction restricted to the Kyoto
corpus

Table 5.5 depicts the scores for reordering rules solely based on the KFTT corpus.
Compared to the constituency parsed rules, we see a decrease again. However, if
we compare the relative decrease to the values for the systems with rules from all
corpora in Table 5.4, the decrease in BLEU points is roughly the same while the
decrease in RIBES is smaller: The decrease on the constituency side is 0.63 and 0.5
while on the dependency side we have 0.26 and 0.19. For chunk, the scores decrease,
except for +tree. τ decreases overall. Compared to Table 5.4 however, we see an
increase in both chunk values and in +tree for τ .

5.2.2 Recursive Rule Application

constituency dependency

non-recursive recursive non-recursive recursive

metric +tree +part +tree +part +tree +part +tree +part

BLEU 16.51 16.49 16.72 16.67 16.5 16.46 16.62 16.58
RIBES 65.44 65.48 65.59 65.6 65.03 65.01 65.41 65.13
chunk 61.107 61.115 61.683 61.038 61.319 61.247 61.285 61.085
τ 78.757 78.781 80.089 78.936 78.712 78.848 78.712 78.831

Table 5.6: Recursive Rule Application

Depicted in Table 5.6 are the scores for recursive rule application with rules on a
dependency basis. As expected, recursive rule application can again outperform the
non-recursive system in BLEU and RIBES. The values for chunk both decrease.
For τ +tree remains unchanged and in partial we have a slight decrease. The gain
over the non-recursive system in BLEU cannot improve compared to constituency
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parsing. On constituency based parsing the scores improved by 0.21 and 0.18 (Table
5.3), on dependency we have 0.12 each. Looking at chunk and τ the improvement in
the constituent table is bigger as well. Interestingly, RIBES can improve more than
for constituency trees: On constituency we had an improvement of 0.15 and 0.12,
each over the standard line, on dependency we have 0.38 on treerules but only 0.12
on partial rules.

5.3 Closer Examination of Long Range Rules

As we mentioned in Section 4.4.2, there are two different types of rules that make
up the discontinuous rules: left rules, which have an anchor that is not shifted on
the left part of the pattern, and right rules, which have the anchor on the right.

metric +left +right +both

BLEU 16.45 16.44 16.22
RIBES 64.25 64.79 64.77
chunk 61.345 61.46 61.226
τ 78.145 78.97 78.802

Table 5.7: Results for the comparison of discontinuous rules.

Table 5.7 shows the results of the comparison. The +both system is identical to +long
and was merely renamed to fit in the context. While left rules get a slightly higher
BLEU score, for RIBES, chunk and τ right rules perform better. This confirms
our hypothesis in 4.4.7 that right rules would outperform left rules. Interestingly,
choosing only one type yields mostly better results than the combination. Right
rules alone can outperform the combination of both rules on every metric. For left
rules BLEU and chunk give better results than the combination while RIBES and τ
are considerably weaker.

5.4 Lattice Phrase Extraction

metric +left +right +both

BLEU 16.25 16.53 16.4
RIBES 64.17 65.09 64.91
chunk 61.595 61.321 61.081
τ 77.603 79.042 78.772

Table 5.8: Results for LPE

Table 5.8 shows the scores for lattice phrase extraction (LPE), where we worked
with a phrase table built from the reordered source side. We compared again with
only left and right rules, respectively. Compared with non-LPE, we see gains in
BLEU and RIBES for the combination of both rules. For left rules alone, we see a
decrease except for chunk. For right rules alone, we see an increase in scores except
for chunk. If we compare the LPE systems between each other, we see again that
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+right is leading in scores. Among non-LPE systems +right was outperformed only
by +left in the BLEU metric by 0.01 points, now it is only outperformed by +left
in the chunk metric by 0.274.

5.5 Manual analysis

condition plain +short +long +tree +partial

in Lattice - 24 68 85 85
Taken 6 12 19.8 25.8 25.8

Table 5.9: Manual analysis. Since the plain configuration does not use lattices the
respective entry is empty.

We will now have a look at the scores from the manual evaluation of the experiments
without extensions. For each system we evaluated 100 sentences for which the ref-
erence translation definitely required the verb at the end of the sentence. As with
the previous automatically scored systems, we worked with five runs per system.
For every run we counted the number of lattices that contain a path which has the
correct verb shifted to the end. After that, we determined for every lattice whether
such a path was chosen by the decoder. Then we averaged over the five runs per
system. Table 5.9 shows the results. Depicted in the first row is the percentage of
hypotheses that have a path in the lattice which has the correct verb at the end.
In the second row we listed the percentage of hypotheses where such a path was
chosen. We notice a strong increase in paths that offer a hypothesis with the correct
verb at the end, especially from short to long. This is expected behaviour as lon-
grules are the first to offer word shifting over a distance, which is necessary for the
English-Japanese language pair. Please note that while many lattices contain paths
with some verb at the end, we required the correct one which might explain that the
treerules can get only 85%. Though, we could not analyse every system manually
due to time constraints, since most of our systems extend the +partial system, we
can assume them to offer at least 85% lattices with such a valid path in the lattice.
The percentage of cases where such a path was chosen is of course lower. While
the constraint to have the verb at the end is successively satisfied, the numbers stay
very low. This could be improved by having the decoder to pay special regard to
this issue. An extra pruning step filtering out paths that violate this constraint or
adding an extra feature to the decoder, which tests if the last word of a hypothesis
is a verb, might point the decoder in the right direction. However, such a step would
come very close to hardcoding information about the language when the main goal
should be to find generic algorithms and models to solve the problem.

5.6 Discussion

We will shortly discuss the implications of the results presented above.
In BLEU and RIBES, we have seen a mostly monotone increase by addressing more
grammatical layers through the introduction of POS-based, discontinuous and tree-
based rules. This confirms our hopes that adding these rules can improve the scores
in conventional metrics.
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In an attempt to adapt more closely to the test set, we restricted the source of rule
extraction from all corpora to KFTT. However, we got lower scores, indicating that
it is in fact desirable to extract as many rules as possible.
Herrmann et al. (2013) suggest to use rules multiple times by applying reordering
rules to already reordered source sentences in order to express more complex rules.
This conjecture is supported by our findings.
To get a better grip at the syntax, we experimented with dependencies as an alterna-
tive grammatical structure. We can see no clear advantage of choosing dependencies
over constituents: For the plain system as well as the two variations, the BLEU
and RIBES scores slightly decrease and the reordering based scores slightly increase
in some cases. Therefore, on the basis of our experiments, we cannot recommend
dependency parsing. We mentioned in 5.2 that this might be due to the fact that
the reordering rules we use were developed with constituency trees in mind. An
adjustment to their extraction process might improve the scores.
The discontinuous rules we use in the +long system have two types of rules. To
better adapt to the language pair we ran systems with only one type each, expecting
the system with right rules only to perform better. This could be confirmed by our
data. The right rules alone could outperform the combination on every metric. For
lattice phrase extraction, where we built the phrase table from a reordered source
side, the right rules only system was able to outperform the combination again. The
improvement over the left only system is even clearer here.
In our manual analysis we examined whether the condition to have the verb at the
end of the sentence was satisfied or not. We see that while in the best system only
every fourth eventually chosen translation hypothesis has the verb at the end, 85%
of the lattices contain such a hypothesis. We can deduce that our reordering rules
capture this rule quite well. Since the decoder can see whether his currently chosen
path in the lattice complies with the rule only at a very late state, we suggest a
pruning step prior to decoding to filter such noisy paths out.

Another point are the rather disappointing values for chunk and τ . Both metrics
were introduced in the hope to give a deeper insight to the reordering that would
not be tainted by the translation choices for example. Accordingly, we expected
that improvement for the lexical metrics BLEU and RIBES would always imply an
even clearer improvement for chunk and τ which look at reordering alone. Espe-
cially, because our goal was to improve translation quality specifically by tackling
reordering. For chunk however, the plain system outperforms every experiment we
conducted. Despite extensive efforts, we were unable to find a satisfying answer for
this in the given period of time. We did debug the software we used for evaluation
and were able to find and resolve an error in our toolchain but the chunk scores
remain low. We can only suggest the following explanations for this behaviour: One
idea is that we optimise our systems on BLEU, so other metrics have a bit weaker
scores. Also, one could argue that an essential part of reordering happens in the
decoder. In Section 4.3, we noted that the alignment we score is the one before
decoding, therefore lacking reordering during decoding and within phrases. This
could be an explanation for the relatively low scores for chunk. Additionally, as we
already mentioned, our target language has a very free word order but we have only
one reference sentence available, so our hypotheses might be better than they score.
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Reordering is an important issue in statistical machine translation. Statistical ma-
chine translation systems struggle to provide a reordering mechanism which is able
to abstract from observed example sentences to general rules. Among many pro-
posed solutions, this thesis focuses on preordering combined with a small reordering
window in the decoder. We extract reordering rules from the plain sentences as well
as tagged parse trees in order to address three word levels. The source sentence in
original order is stored in a lattice along with all permutations according to the ex-
tracted rules. The resulting lattice is processed by a decoder with a small reordering
window. This approach has been tested successfully on the language pairs German-
English that displays similar grammatical characteristics as Japanese-English. While
English is an SVO (subject-verb-object) language, Japanese and German can be seen
as SOV languages. This means we have to shift the verb across the whole sentence.
We conducted experiments on English to Japanese translation using part-of-speech
and tree-based reordering. We compared the translations produced by a system
using POS based reordering with the translations produced by a system using both
POS and tree-based reordering. Furthermore, the benefits of partial rules and recur-
sive rule application were investigated. In addition to that, we performed a deeper
analysis of discontinuous reordering rules and compared these rules with a system
that obtained phrase table entries from a reordered training set. To evaluate the
overall translation quality of the different systems we used BLEU and RIBES. For
the evaluation of the reordering alone we used Kendall’s τ , a rank based metric along
with ‘chunk’ which looks at consecutive word sequences. Besides, we performed a
manual analysis to one critical condition: Is the verb always shifted to the end of
the sentence?
We could show that discontinuous rules help to put the verb at the end of the sen-
tence by automatic and manual evaluation. Additionally, we have shown that our
system performs better with constituency based parse trees than with dependency
parsed trees. We could also report that learning rules from a broad domain increases
quality. With our experiments with recursive application of reordering rules, we were
able to reproduce the finding of Herrmann et al. (2013) that recursive rule appli-
cation outperforms non-recursive application. We can further report that lattice
phrase extraction can improve the scores, as does the refinement of discontinuous
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rules. Our manual analysis showed that a system with the reordering methods de-
scribed in Herrmann et al. (2013) alone, offers lattices that provide a path where
the verb gets shifted to the end of the sentence 85% of the time.

6.1 Future Work

There are several possible extensions to the experiments we presented. Future work
will include testing out combinations with other approaches such as reordering on
an already head finalized source side or comparison with an other parser, i.e. an
HPSG parser, or combination of parsed lattices.

While we could not report any reason for using dependency parsing, it might be
worthwhile to use it in the translation direction Japanese-to-English as the idea to
capture Japanese grammar with dependencies sounds very appealing.

Also, the afore mentioned automatic evaluation of where the verb is shifted would
be a possibility to refine the analysis. Using the POS-tags assigned by the parser,
we could filter out sentences without a verb in both source and reference and at the
last position in the reference. From the remaining sentence pairs, the correct verb in
the source sentence could be identified using the gold alignment from KFTT. Then,
we could automatically check whether this token appears at a late position in the
lattice and whether the chosen path has the verb at the last position. For this thesis,
we decided against it for lack of time to develop such a tool but with enough time,
it would allow us to test the condition on every experiment.
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