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Abstract

In this thesis, we have implemented and evaluated Synchronized Damped Oscillator
Cepstral Coefficients for robust speech recognition. At the beginning, we present
fundamental knowledges about speech production process and hearing mechanism
in order to help understand the theory behind the approach. Then, we describe
the automatic recognition systems including the one we used for the evaluation,
and show the components for extracting Synchronized Damped Oscillator Cepstral
Coefficients in detail. We conclude by showing cases in which these new input
features show promising results.
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Zusammenfassung

In dieser Arbeiten haben wir Synchronized Damped Oscillator Cepstral Coefficients
für robuste Spracherkennung implementiert und evaluiert. Zum besseren Verständ-
nis zeigen wir die Funktionsweise des Sprachproduktionsprozesses und des Hörens
auf. Wir beschreiben Systeme zur automatischen Spracherkennung und insbesondere
das zur Evaluation verwendete System. Insbesondere beschreiben wir die einzelnen
Komponenten die zum Erzeugen der SyDOCCs nötig sind. Zum Schluss zeigen
wir die Experimente, bei denen die SyDOCCs vielversprechende Ergebnisse geliefert
haben.
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1. Introduction

Speech recognition occupies more and more employment fields: From using it as
a replacement of the keyboard to investing it in the automatic translation in in-
ternational conferences or war areas to help other people with different languages.
However, it is still a very wide research field in terms of the speech recognition in
noisy environments.
This thesis has the purpose of implementing and evaluating the Synchronised Damped
Oscillator Cepstral Coefficients (SyDOCCs) for robust speech recognition: A new
method motivated by the hearing mechanism and new scientific findings about hear-
ing in different species. It has the goal to make speech recognition more robust
toward environmental variability, and to achieve insensitivity to all kinds of noises
which the human ear is insensitive to. The current used techniques are very sensitive
to noise, where the performance degrades highly in a noisy environment or by using
a noisy channel.

1.1 Related works

Typically Mel-Frequency Cepstral Coefficients MFCCs are used as acoustic features
in a traditional automatic speech recognition system. MFCCs perform very well
under the clean conditions, but the performance degrades when dealing with noisy
speech. There are many approaches to deal with this problem, for example, RelA-
tive SpecTrA Perceptual Linear Prediction (RASTA-PLP) shows more robustness
under noisy Environment compared to MFCCs. Researchers have explored human
perception based speech analysis techniques for feature acoustic generation, such as
Power Normalized Cepstral Coefficients (PNCC) and Perceptually motivated Mini-
mum Variance DistoRtions (PMVDR).

1.2 The structure of the thesis

To go into the deep details at the heart of this thesis, from the theory until the
evaluation, beginners should understand the basic knowledge about speech produc-
tion, the anatomy of the speech apparatus, and the basic units of speech and their
physical nature. These are subjects of the first part of chapter 2 (Speech production



2 1. Introduction

and auditory system) section 2.1 (speech production) . The hearing mechanism,
in the second part (section 2.2 auditory system), is the core of the theory behind
this work where we explain basic knowledges about ear physiology. However, we
go in more details about the inner ear (basilar membrane and hair cells), and the
function of coding the sound to electrical signals, followed by a brief description of
this signals related to our work. Chapter 3 (automatic speech recognition) describes
the typical architecture of an automatic speech recognition system and the process
of finding a sequence of words being recognized, starting with some details of how
a typical acoustic features are extracted, where we explain the steps of extracting
Mel-Frequency Cepstral Coefficients MFCCs from a row signal. Then, we come to a
component called dictionary or lexicon where we find all words to be recognized by
a system, and the language model, which give information about the frequency or
probability of a word or a sequence of words in a certain language. Chapter 4 (Syn-
chronized Damped Oscillator Cepstral Coefficients) is the main part of this thesis.
It goes step by step through all the components needed to build the Synchronized
Damped Oscillator Cepstral Coefficients (SyDOCCs): First, windowing the signal
then passing it to a form like band-pass filters to analyse the frequency components.
Then, synchronizing the outputs and passing them to the damped oscillators, which
act like hair cells. We also explain the difference in system performance by using
root compression, used in SyDOCCs, and log compression, used in MFCCs. We con-
clude with the evaluation (chapter 5), where we present the experiments performed
to examine SyDOCCs. This chapter is divided into sections, one for each language,
describing the used data for test and training, system settings, and the summery of
the results shown in tables and diagrams.



2. Speech production and auditory
system

2.1 Speech production
Sound travels throw the vocal tract of a speaker taking different wave shapes or, as
we say in the signal processing point of view, the sound wave is being modulated by
the vocal tract filter. We will see the travel way closely in section 2.1.1. The term
phoneme refers to the smallest unit of speech sound in a language, and the term
phone is an acoustic realisation of a phoneme. Phonemes can be divided into two
basic classes [HuAH01]:

• Consonants: articulated in the presence of constrictions in throat or mouth.
The phonemes /m/, /l/ and /k/ are examples.

• Vowels: articulated without major constrictions. The phoneme /a/ in bat is
an example.

More details are in section 2.1.2 and 2.1.3.

2.1.1 Atriculators

Speech is produced by air-pressure waves generated from the lung as an air stream.
Figure 2.1 illustrates at the upper panel the human speech production system. The
speech production process begins with an air stream passes through the vocal folds,
where voiced and unvoiced sound are being distinguished at this stage depending
on whether the vocal folds oscillate or not. The velum controls the air passage
to go in the oral or nasal cavity. This cavities can be better seen in the vocal
tract model in the lower panel of figure 2.1. They play an important role to form
phonemes, for example, the travel of air through the nasal cavity is necessary to
spell the phoneme /m/ or /n/ correctly. The tongue plays a major role to shape
vocal tract configurations. For example, the configuration of the phoneme /L/ is
formed when the tongue touches the hard palate, which is a hard surface at the
roof inside the mouth. Lips are also very important to form vowels, for example,
by rounding lips, and to form consonants such as /m/, /p/ and /b/ as well. Teeth
are also important to form many consonants such as /s/ and /f/.
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Figure 2.1: Vocal tract of the human, and a model of the vocal tract with side branches. The
standing waveforms of four formants are also illustrated in the vocal tract [LuDa08]

2.1.2 Vowels

Like a wind music instrument, the vocal tract acts with each configuration, which
could be a certain lip or tongue shape or tongue positioning, as a filter with certain
resonance frequencies called formants (Figure 2.1 lower panel). For vowels, we have
two major resonance frequencies called the first formant (F1) and the second formant
(F2). Both are very important for the classification task. We see in table 2.1 typical
formant frequencies for English vowels.

Table 2.1: English vowels and its typical formants [HuAH01]

Vowel Lables Mean F1 (Hz) Mean F2 (Hz)
iy (feel) 300 2300
ih (fill) 360 2100
ae (gas) 750 1750
aa (father) 680 1100
ah (cut) 720 1240
ao (dog) 600 900
ax (comply) 720 1240
eh (pet) 570 1970
er (turn) 580 1380
ow (tone) 600 900
uh (good) 380 950
uw (tool) 300 940
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2.1.3 Consonants

Consonants are being generated with more constricted vocal tract configurations.
For instance, the Arabic phoneme /r/ is pronounced by vibrating the tongue touch-
ing the hard palate. Table 2.2 contains other examples of English consonants.

Table 2.2: Consonant manner of articulation [HuAH01]

Manner Phone Example Mechanism
Polsive /p/ tat, tap Closure in oral cavity
Nasal /m/ team, meat Closure of nasal cavity
Fricative /s/ sick, Kiss Turbulant airstreem noise
Retroflex liquid /r/ rat, tar Vowel-like tongue high and curled back
lateral liquid /l/ lean, kneel Vowel-like tongue central, side airstream
Glide /y/, /w/ yes, well Vowel-like

2.2 Auditory system

The auditory system is the sensory system for hearing, which begins with travelling
the sound, which is a mechanical wave of pressure, to the outer ear and through
the middle ear into the inner ear, where it is analysed and transformed to electrical
waves before it reaches the auditory center of the brain, where it is interpreted.
Figure 2.2 shows the outer, middle and outer ear. The outer ear gathers the sound
waves and plays a major role to help the brain determine the direction of the sound.
sound waves travel through the long ear channel ending with the eardrum, which
is a thin cone-shaped membrane with an area of about 500 mm2. The middle ear
consists of three very small bones known as the malleus, incus, and stapes. The
middle ear collects the sound pressure over the eardrum, and focusses it on the
stapes footplate, whose area is much smaller than the area of the eardrum. This
helps amplify the vibrations to overcome the mechanical resistance of lymph fluid,
which is behind the stapes footplate, filling the cochlea.
Now the vibrations are in the inner ear making the basilar membrane vibrates partic-
ularly greater in a certain places than other dependent on the resonance frequencies
of this places. On the surface of the basilar membrane sit hair cells, which transduce
the mechanic vibrations into neuroelectrical signals. We will have a close sight on
the basilar membrane and hair cells in the next sections.

2.2.1 Basilar membrane

The basilar membrane is inside the cochlea and subdivides it into two spaces filled
with the lymph. A special characteristic of the basilar membrane is the one that
is narrow and stiff at one end and it gets wider and floppier toward the other end.
This is the reason why the basilar membrane has gradually increased resonance
frequencies from one end to the other as figure 2.3 illustrates. We notice also that the
incrementation of this frequencies are not linear but logarithmic. This characteristic
makes the basilar membrane acts like a mechanic frequency analyser. This means
that if we hear a sound with only one frequency, only a small part of the basilar
membrane will vibrate much stronger than others, i.e it will resonate with this
frequency. The hair cells on this part will be simulated to tell our brain the place
of the vibration producing a feeling of hearing that frequency.
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2.2.2 The Hair cell

The task of the hair cell is mainly the translation of mechanical signals into elec-
trical signals. The organ of Corti, shown in figure 2.4, is attached with the basilar
membrane, and runs along its entire length so that the organ of Corti vibrates with
the basilar membrane. We see also in figure 2.4 that this organ curves and folds
back over the hair cell. The fold , which known as tectorial, membrane, comes in
contact to the outer hair cell stereocilia, a tiny hairs on the hair cell, from above.
While the contact of the tectorial membrane transmits the mechanical vibration to
the outer hair cell, the fluid flowing back and forth causes the oscillations of inner
hair cell.

Scala vestibuli

Scala
media

Scala tympani

Basilar membrane

Tectorial membrane

Basilar membraneInner
hair cell

Outer
hair cells

Organ of corti
Cross-section of the cochlea

Reissner’s membrane

Stria
vascularis

Figure 2.4: The organ of Corti; a cross-section and a schematic view [ScNK11].

The hair cells are supplied with many stereocilia on the top of them. As we see
in figure 2.5, the stereocilia do not have the same length, and are connected with
fine protein fiber strands, known as tip links, that cause a synchrony oscillation
of stereocilia. During an oscillation, pushing stereocilia toward the longest stere-
rocilium causes a tension on the tip links, and pushing them to the other direction
causes the release of the tension. This can be seen in Figure 2.5. The tip links are
connected with tiny ion channels, which open during the tension of the tip links,
causing the K+ ions to flow inside the hair cell depolarising it. Greater tension leads
more channels to open causing a greater depolarising of the hair cell. This makes
a correspondence between the mechanical and electrical pattern of vibration. For
more details, see [ScNK11]

We will see that the damping nature of the electrical oscillation which hair cells
exhibit with a certain resonance frequency is particularly important to us in this
work. In the paper [FeFu99], Fettiplace and Fuchs, who made experiments on hair
cells of a turtle, show that hair cells exhibit an electrical dumped oscillation with
a certain resonance frequency in response to the mechanical vibration. The Exper-
iments show also that there is little or no filtering of the acoustic stimuli, by the
basilar membrane for example, before the hair cell mechano-electrical transduction.
This is because the basilar membrane in turtles is not developed like the one in
humans. This means that the hair cell of turtles play the major role in frequency
analysis instead of the basilar membrane. Figure 2.6 shows two hair cells with dif-
ferent resonance frequencies labelled on them. It also shows an electrical resonance
with a damped nature and a frequency equals to the resonance of the hair cell. The
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Figure 2.5: Transduction mechanism of the hair cell[ScNK11]

density of the ion channels as well as the length of the stereocilia determine the
distinct resonance frequency of a hair cell. The higher the density of ion channels is
and the shorter stereocilia are, the higher the resonance frequency is [FeFu99].

Figure 2.6: Schematic drawing of two hair cells from a turtle. Beneath each cell are shown a
representative ion channel record and the electrical response [FeFu99].



3. Automatic speech recognition

Automatic speech recognition (ASR) is the translation of spoken to written words.
Figure 3.1 illustrates a statistical speech recognition system, the most typical in
practice. The voice of a speaker is recorded as the input of the system, and a
sequence of words, a recognition hypothesis, is then computed as the output. The
first component of a recognition system is the signal processing, which extracts the
most relevant information for the speech recognition task, and omit unimportant
ones. More details are in section 3.1.
The extracted information of one time window of the speech is formed in a so
called feature vector. This is then the input of a component called decoder, which
depends for its task on three components: dictionary, language model, and acoustic
model. The dictionary contains all known words to be recognized, mapping them to
phonemes or other word subunits (section 3.2). The language model holds knowledge
about the possibility of a sequence of words in a certain language (section 3.3).
Finally, the acoustic model tells how probable is a sequence of phones, subphones,
or other word subunits given a sequence of words. The most probable word sequence
can be found with graph search algorithms after the following formula:

Ŵ = argmax
W

P (X|W ) • P (W ) (3.1)

Where we search among all word sequences W for the one which maximizes the
posterior probability, which is a probability of W given a sequence of acoustic ob-
servation X = X1X2 . . . Xn; it is given by the Bayesian formula:

P (W |X) =
P (X|W ).P (W )

P (X)
(3.2)

We get p(X|W ) from the acoustic model, and P (W ) from the language model. P (X)
is a normalizing term that does not affect the search for the maximum, and hence
can be ignored here.

3.1 Speech signal processing

There are many signal processing approaches to extract the information relevant to
the speech recognition task from the audio signal. Linear Predictive Code (LPC)
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Figure 3.1: The block diagram of statistical speech recognition system

and Mel Frequency Cepstral Coefficients (MFCC) are examples of feature extraction
methods.
LPC estimates the common speech parameters. It assumes that the vocal tract can
be represented as a concatenation of lossless tubes and that the glottis produces a
buzz (loudness + pitch). With this model, LPC can approximate the speech signal
and extract only the information important to speech recognition.
MFCC on the other hand uses several steps for constructing the feature vector:
First we calculate the Fast Fourier Transformation (FFT) of a windowed frame of
the audio signal. Typically the windows have a duration of 16 ms, and a shift of
10 ms. A window length of 16ms offers the best compromise between temporal and
frequency resolution. We pass the windowed frame to a filter-bank with triangle
filters (shown in figure 3.2), Mel-scaled center frequencies (see section 3.1.2), and
increasing bandwidth. Then, we calculate the log-energy at the output of filters, and
calculate the Cepstrum explained in section 3.1.1. From the Cesptrum coefficients
we take the first 13 as MFCC vector for one frame. We usually stack a number of
vectors together to capture dynamic information (changes over time), or we calculate
delta features explained in section 3.1.3 for the same purpose.

Figure 3.2: Mel scaled triangle filter bank used in MFCC [MuBE10].

3.1.1 Cepstral processing

After the source-filter model of speech production (see chapter 6 of [HuAH01]), we
can consider the speech signal as in the following equation:

fn = en ∗ hn

where fn is the speech signal produced from a filtered excitation en; hn is the impulse
response of the filter. This model considers nasal and mouth configuration as a filter.
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The excitation originates from the glottis in vocals and a white noise in consonants.
For the Source-Filter separation, Cepstral processing convert the convolution in the
equation into a sum. This is showed in the following equations [Schu95]

FT{fn} = FT{en} · FT{hn}

logFT{fn} = logFT{en}+ logFT{hn}

FT−1{logFT{fn}} = FT−1{logFT{en}}+ FT−1{logFT{hn}}

With the absolute value, we call FT−1{log|FT{fn}|} real Cepstrum. In the Prac-
tice, we use Fast Fourier Transformation (FFT) or Discrete Cosine Transformation
(DCT) (see [HuAH01]) instead of Fourier transformation.
After calculating the Cepstrum coefficients, we take those with low order that rep-
resent the macrostructures of the signal, which contain the formants information.

3.1.2 Mel-frequency-scale

The auditory system performs a frequency analysis of sounds. The cochlea acts like
overlapping filters with different bandwidths, which are not placed linearly. The
Mel-scale is linear under 1 KHz and logarithmic above that. This scale is more close
to sensitivity of human ear. It can be approximated by [HuAH01]:

B(f) = 1125 · ln(1 + f/700) (3.3)

where f is a frequency to which a part of the basilar membrane resonate, and b(f) is
its bandwidth. Figure 3.3 illustrates the Mel scale together with the Bark scale and
a uniform (linear) scale. As MFCCs are being calculated with Mel scale, BFCCs
are based on Bark scale. In [ShPa03] it is shown that MFCCs and BFCCs yield
similar performance, but with little advantage for both compared to the uniform
scale. In this work, we use another scale called equivalent rectangular bandwidth
(ERB, section 4.2)
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Figure 3.3: Mel scale compared with Bark scale and linear scale (uniform)[ShPa03]



12 3. Automatic speech recognition

3.1.3 Dynamic Features (delta coefficients)

The dynamic information contains temporal changes in spectra which play an im-
portant role in human perception (see [HuAH01]). Delta coefficients measure the
change to the neighbour features. We append them usually to other static features
like MFCCs. Different order of delta coefficients can be calculated as following:
1st-order delta: ∆c = ck+1 − ck−1.
2nd-order delta: ∆∆c = ∆ck+1 − ∆ck−1 where ck are static feature vectors like
MFCCs feature vectors.

3.2 Dictionary

A very important unit of any speech recognition is the dictionary. It contains a list
of all words to be recognised by a system. The use of words as basic units for the
classification is not efficient, because of the need of a very large training dataset to
cover all the words and their contexts. The solution is then to use subunits such as
phonemes or subphonemes in phoneme based system. These subunits make better
use of the available training data, because subunits come more frequently in the
training set than a whole word; therefore, we need smaller training data set for
subunits based systems. The dictionary maps each word to its subunits, and may
additionally contain alternative pronunciations of word. Dictionaries are created by
experts or generated automatically.
In some languages, like Italian, the mapping of letters to sounds is close to 1:1. Here,
it is possible to use the written letters as acoustical units. These units are called
graphemes used in grapheme based systems.

3.3 Language model

In a speech recognition system, we use in addition to the acoustic model the in-
formation about the possibility of a given word sequence. The language model is
represented by the term P (W ), which gives the priori probability of the sequence of
words W = W1W2 . . .WT .
One way to estimate P (W ) is using a parser, which decides whether a certain word
sentence follows a given grammar or not. Such parsers are used with programming
languages as well. But by using this approach, P (W ) will be either 0 or 1 depending
on whether the sentence is allowed by the grammar used or not. The first problem
is that we need more information about how probable a sentence is. The second
problem is that spoken languages do not necessarily follow grammars.
Another approach are stochastic language models (SLM). N-Gram is the most widely
used SLM .

3.3.1 N-Gram Language Models

Since P (W ) tells how probable a word sequence W comes in a language, we can
write it as[HuAH01]:

P (W ) = P (w1, w2, . . . , wn)

= P (w1)P (w2|w1)P (w3|w1, w2) . . . P (wn|w1, w2, . . . , wn − 1)

=
∏

p(wi|w1, w2, . . . , wi−1) (3.4)
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where p(wi|w1, w2, . . . , wi−1) is the probability of the word wi when it appears after
the sequence w1, w2, . . . , wi−1, which is called the history of the word wi. Since the
training corpus only has a finite number of sentences, the use of a a so called n-
gram language model helps estimate more robust probabilities, where it compute
the probability of words by only using a history of length n − 1 words. We call
p(wi) unigram, p(wi|wi−1) bigram where the probability of wi only depends on the
previous word, and p(wi|wi−2, wi−1) trigram. To estimate the trigram, we use the
following equation [HuAH01]:

p(wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
(3.5)

where C(wi−2, wi−1, wi) is count of the sequence wi−2, wi−1, wi, and C(wi−2, wi−1) is
count of the history: wi−2, wi−1 in the corpus, which is a big collection of texts in a
language.

3.3.2 N-Gram Smoothing

If the training corpus for n-Gram calculation is not large enough, the count of some
word sequences could be zero This leads to the fact that the nominator of equation
3.5, and the Term P (W ) could be zero. This would mean that this sequence is
impossible and will be excluded. Some other sequences would be assigned a very
small probability and as a result lose weight in the searching.
There are many solutions which depend on a better distribution of the probability
mass to be more robust for the unseen data. Deleted Interpolation Smoothing
interpolates, for example, a bigram and a unigram as follows[HuAH01]:

PI(wi|wi−1) = λp(wi|wi−1) + (1− λ)p(wi) (3.6)

where (0 ≤ λ ≤ 1). This equation says that the probability of a sequence of two
words would not be zero if the the first word is probable. Other techniques like
Backoff Smoothing could be read in [HuAH01].
It is also worth to mention the Adaptive Language Model, where the idea is to
create a local dynamic n-Gram model online from the so far dictated speech. We
interpolate a static (offline trained) h-Gram with it, for example, the online bigram
to give the new dynamic (cached) n-Gram. With more dictating, we weight the
cache bigram more, because it is going to be more informative.

3.4 Acoustic model

We have seen in equation 3.1 that we need the term P (X|W ), which is the probability
of an acoustic observation X = X1X2 . . . Xn given a sequence of words W . As
the dictionary map words to subunits, i.g phonemes in phoneme based system or
graphemes in grapheme based system, observation vectors then work at the level of
this subunits. The best statistical method to find the probability of an observation
is the hidden Markov model, which we will see closer in the section 3.4.1. For
hidden Markov model, we use Gaussian mixture model to describe the likelihood
of the acoustic subunits after training precisely. To do that, we need a so called
Estimation Maximisation (EM) algorithm for Gaussian mixture model explained in
section 3.4.2.
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3.4.1 Hidden Markov models

The Hidden Markov Model (HMM) is a statistical method of characterizing the
observed data sample of a discrete-time series [HuAH01]. As known by now, we
extract the feature vector from discrete windowed time frame, and become a discrete-
time series of speech frames; therefore, HMM is very suitable to model speech signal,
and this is proofed empirically.
The word ”hidden” characterizes a Markov chain with the property of generation of
the output observation in any state, not in a certain one. Now it is important to
mention the Markov assumption: Let X = (X1, X2, . . . , Xn) be random variables.
We have the following after Bayes’ rule:

P (X1, X2, . . . .Xn) = P (X1)
n∏
i=2

P (Xi|X1, X2, . . . Xi−1) (3.7)

The Markov assumption says that the probability of a random variable at a given
time depends only on the value at the preceding time. Hence equation 3.7 becomes

P (X1, X2, . . . .Xn) = P (X1)
n∏
i=2

P (Xi|Xi−1) (3.8)

The Markov assumption allows us to model Markov model as finite state process,
because we need the probability of transition between only two neighbour states
independent of the previous states. Figure 3.4 illustrates a HMM with 3 states. The
topology of a HMM used in speech recognition is the left-to-right topology which
have only forward edges. This is logical since the speech makes only a forward
progress. Figure 3.4 clears also the 5 tuples of the formal definition of HMM
[HuAH01]:

• O = {o1, o2, . . . , oM}: the output observation alphabet In the speech recog-
nition, it is the different acoustic realisations (the feature vectors) of the
phonemes, subphonemes or graphemes depend on the system at hand.

• Ω = {1, 2, . . . N}: a set of states. Each state st at time t are a subword emites
different acoustic realisation (an observation symbol ok).

• A = {aij}: a transition probability matrix, aij is the probability of taking
transition from the state i to the state j, aij = P (st = j|st−1 = i). In our
application, for example, it is the probability to say a phoneme after another.

• B = {bi(k)}: an output probability matrix, where bi(k) is the probability
of emitting a symbol ok when a state i is entered: bi(k) = P (Xt = ok|st =
i), where X = X1, X2 . . . Xt, .. the observation output of the HMM. In our
application its the probability of a certain acoustic realisation of a phoneme
or grapheme.

• π = {πi}: an initial state distribution where π(s0 = i).

We have the following constraint since we deal with probabilities: aij ≥ 0, bi(k) ≥ 0,
πi ≥ 0 ∀i, j, k and

N∑
j=1

aij = 1 (3.9)
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M∑
k=1

bk = 1 (3.10)

N∑
i=1

πi = 1 (3.11)
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Figure 3.4: HMM diagram illustrates the five tuples

First-order HMM is a HMM with two assumptions. First the Markov assump-
tion seen above, and second the output independence assumption, which says that
emitting an observation symbol at time t depends only on the state st and is con-
ditionally independent of the past observation. This constraint of memory reduces
the number of parameter to be estimate, and does not affect the performance in
practice.
There are three basic problems when dealing with HMMs:

• The evaluation problem:
What is the probability that a HMM generate an observation. Solution: The
Forward Algorithm.

• The decoding problem:
What is the most likely state sequence in a HMM that generate a certain
observation. Solution:The Viterbi Algorithm

• The learning problem:
How can we adjust the HMM parameters to maximize the probability of emit-
ting a certain observation. Solution: Baum-Welch Algorithm or known as
Forward-Backward Algorithm.
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The algorithm details are beyond the scope of this work; for further reading see
[HuAH01].

It is important to distinguish between discrete, continuous and semi continuous
HMMs.

• Discrete HMMs use a discrete output probability distribution bj. However,
the output vectors x itself are from continuous space. We solve the problem
of assigning a continuous range of vectors discrete probabilities, by quantizing
the observation vector to a vector x̂k ,called codeword, with a minimum dis-
tortion (minimum distance), where there is a collection (called codebook) of
pre-existent indexed vectors x̂ have the pre-calculated probability b(k).

• Continuous HMMs use a continuous density for the output probability dis-
tribution. We choose usually Gaussian mixture model (section 3.4.2).

• Semicontinuous HMMs is a bridge between the discrete and continuous
HMM. We use the discrete output probability bj as weights for a Gaussian
mixture to calculate the output probability of bj(x) of a vector x:

bj(x) =
M∑
k=1

gj(k)f(x|ok) =
M∑
k=1

N(x, µk,Σk) (3.12)

where ok is the kth codeword. The codeword contains a mean vector and a
covariance matrix. The codebook is shared from many models which weights
the Gaussian densities with own weights to become the probability value.

3.4.2 Estimation Maximization(EM) for Gaussian mixtures

Gaussian mixtures are the weighted sum of many Gaussian density functions
(Gaussian bells). The mixture can approximate any density more precisely as we
use a large number of Gaussian density. The formal equation is given as follows:

P (x|c, {µ,Σ}) =
N∑
ν=1

cνN(x|µν ,Σν) (3.13)

where x is a random variable and c are the vector of weights; N(x|µν ,Σν) denote a
single Gaussian density function with the means vector µ and the covariance matrix
Σ. Figure 3.5 shows a Gaussian mixture with about 10 weighted Gaussian bells.
We reach such forms with Estimation Maximization (EM) algorithm, runs on the
training data.
The (EM) algorithm is a statistical method to find a likelihood where a distribu-
tion P (x, u|θ) is to estimate. Whereas values of the random variable x are observable,
values of u are not; θ are the parameters to estimate. For Gaussian mixtures the
parameters are vectors of means, covariance matrices and weights. The unobserv-
able u inform us which data item belongs to which class (Gaussian bell), which is
not known. To be able to apply maximum likelihood estimator that maximises the
term

£EM(θ) = logP (x|θ) = log

∫
u

P (x, u|θ)du (3.14)

we need to have u or θ to be known. For this reason the EM algorithm optimises
the parameter iteratively. It iterates over two steps:
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• 1.Expectation step (E step): Calculates the expectation over all data (x,u)
under the current estimate of parameter θ

Q = (θ, θ̂) = E[logP (x, u|θ̂)|x, θ]. (3.15)

• 2.Maximization step (M step): Finds the new parameter set:

θi+1 = argmax
θ

Q(θi, θ) (3.16)

with initial parameter θ0

For further reading see [Schu95].

x1

x2

fX(X)

Figure 3.5: A Plot of a 2 dimensional Gaussian mixture distribution

3.5 Evaluation of ASR systems

It is important to have a measure of evaluation for ASR system performance in order
to assess the performance, and to compare different systems. This helps to develop
the system and to increase the performance.
The three typical types of word recognition errors are[HuAH01]

• Substitution: an incorrect word was substituted for the correct word.

• Deletion: a correct word was omitted in the recognized sentence.

• Insertion: an extra word was added in the recognition sentence.

Which help to form the equation of the Word Error Rate (WER):

Word Error Rate = 100%× Subs+Dels+ Ins

No. of words in the correct sentence
(3.17)
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where Subs is the number of substitutions, Dels the number of deletion, and Ins is
the number of insertion.
The Word Error Rate (WER) is a widely used and typical measurement for the
performance of a speech recognition system.

As an example of calculating the WER, Suppose we have the following two sentences:
Reference: my love is automatic speech recognition.
Hypothesis: mail is automatic peek race condition.
where the first is what is being uttered (the reference) and the second is what the
recognition system recognized (the hypothesis). We notice that in the Hypothesis
the words: ”my”, ”speech”, and ”recognition” are substituted by the words ”mail”,
”peek” and ”race” so we have 3 substitution. The Word ”love” is deleted and the
word ”condition” is inserted, so we have one deletion and on insertion. Then we
have WER = 100%× 3+1+1

6
= 66.66%, which we consider as a high value.

We evaluate the system by generating hypothesises from a test-set, which empirically
need to be more than 500 sentences and are from 5 to 10 different speakers to reliably
estimate the recognition error rate[HuAH01]. We have also a so called dev-set, which
are unseen data in the training, for tuning the parameters at the development stage.



4. Synchronized Damped
Oscillator Cepstral Coefficients

Synchronized Damped Oscillator Cepstral Coefficients or shortly SyDOCCs is based
on a new feature extraction method, performed in [MiFG13], for a robust speech
recognition. The idea behind SyDOCCs extraction is modeling some components of
the human auditory system. The block diagram of figure 4.1 illustrates the steps
used to perform the feature extraction. At first, we filter the speech signal using a
high pass filter called pre-emphasis filter (section 4.1). Then, we use a gamma-tone
filter-bank, which models the way the basilar membrane analyses the signal to its
frequency components. As we will see in section 4.2, gamma-tone filter bank has an
advantage of smooth filters compared to sharp pick filter used for MFCC. Next com-
ponent in figure 4.1 is the synchronized forcing functions (section 4.3). They shift
the output of the gamma-tone filter bank to become in phase and then perform a
product to amplify the correlated components and suppress the uncorrelated parts,
which we suppose to be noise. After synchronizing, damped oscillators, which model
hair cell, amplify the frequencies of the input signals equal to their resonance fre-
quencies, and suppress all others; see section 4.4 for more details. Modulation filter,
at the next step, gives out the envelope of the input signals. Modulation filter and
power computation are described in section 4.5. Before the last step, we perform
a root compression, which has advantages of energy compaction, and robustness
with noise, compared with logarithmic compression used in MFCC (see section 4.6).
The last component is the calculation of the cepstral coefficients by calculation the
discrete cosine transformation and the dynamic features delta, discussed in chapter
3; so we will not talk about it any further in this chapter.

4.1 Pre-emphasis filter

Pre-emphasis filter is a high-pass filter used to emphasis high frequencies, i.e. to
amplify high frequency formants. Figure 4.2 illustrates frequency response of a
pre-emphasis filter. Pre-emphasis filter can be given as a first order finite impulse
response (FIR) filter:

y[n] = x(n)− α · x(n− 1) (4.1)
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Figure 4.1: Block diagram of the synchronized damped oscillator based features[MiFG13]

Figure 4.2: Amplitude response of the pre-emphasis filter
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where x(n) is a time discrete input speech signal, and α is a real value coefficient.
We get a high pass filter when α < 1. The Z-transformation of Equation 4.1 gives
the following:

Y (z) = X(z)− αz−1X(z)⇒
Y (z) = (1− αz−1)X(z) (4.2)

In the implementation, we use the Matlab function filter(a, b, x), where, after the
documentation of this function, a is the coefficients vector of the denominator, and
b is the coefficients vector of the numerator of the following equation:

Y (z) =
b(1) + b(2)z−1 + · · ·+ b(nb+ 1)z−nb

1 + a(2)z−1 + · · ·+ a(na+ 1)z−na
X(z). (4.3)

We get the coefficients vectors a = [1], and b = [1,−α] by comparing equations 4.2
and 4.3.

4.2 Gamma-tone Filter-bank

We have seen in section 2.2.1 that the cochlea operates as a kind of mechanical
frequency analyser. We can consider the cochlea as a set of filters, each based on
a piece of the basilar membrane that vibrates maximal (resonate) in response to a
certain frequency. We will call this the center frequency of the filter. These cochlear
filters are spaced approximately logarithmic after a scale called equivalent rectan-
gular bandwidth (ERB), derived by Glasberg and Moore [GlMo90]. At moderate
sound levels, the ERB in Hz is given analytically in [GlMo90]:

ERB(f) = 24.7(4.37F + 1) (4.4)

where ERB(f) is the bandwidth in Hz and F is the center frequency in kHz. Figure
4.3 shows the ERB scale approximations.

Now we come to the gamma-tone filter-bank, which is a set of linear filters, gives
an approximation of cochlear filters; It is published in [PNSHR87] by R. Patterson,
I. Nimmo-Smith, J. Holdsworth and P. Rice in 1987. Figure 4.4 illustrates the
frequency responses of a gamma-tone filter-bank, and the distribution of center
frequencies with respect to these on the basilar membrane.

For a better understanding of how this filters work, we are going to see their impulse
responses (see figure 4.5). The impulse response of each filter is a sinusoid with a
certain center frequency. The sinusoid is in turn windowed with a gamma function,
which approximates a shape of a bell. Figure 4.6 illustrates filtering of FM sweep
or chirp signal (a signal with increasing frequency) with a gamma-tone filter. The
output has a maximum amplitude in the same place where the frequency of the FM
sweep is the same as the center frequency of the gamma-tone filter. In this way, we
can analyse a signal with whole filter-bank with different center frequencies like the
cochlea does.

An advantage of using gamma-tone is the smooth frequency response of its filters
compared to the sharp peaks of the triangular filters used in MFCC as we saw in
chapter 3. The sharp peaks makes the filter sensitive to small changes of frequency,



22 4. Synchronized Damped Oscillator Cepstral Coefficients

Figure 4.3: ERB scale approximations [GlMo90].

Figure 4.4: Frequency responses of a gamma-tone filter-bank with ten filters whose center fre-
quencies are equally spaced between 50 Hz and 4 kHz on the ERB-rate scale [Ma].
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Figure 4.5: a gamma-tone filter-bank can serve as a simplified model of the basilar
membrane[ScNK11].

Figure 4.6: An FM sweep(chirp signal) filtered by a gamma-tone filter[ScNK11].
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to which (changes) we are perceptually insensitive [RaAS].

In the implementation, we choose after [MiFG13] 50 channels for gamma-tone filter-
bank, and a range of center frequencies between 200 Hz and 7 kHz for 16 kHz sam-
pling rate. For 8 kHz sampling rate, we choose 40 channels, and center frequencies
between 200 Hz and 3750 Hz.

4.3 Synchronized forcing function

The outputs of gamma-tone filters (section 4.2) give information about how much
of each center frequency is contained in the input signal. Suppose that the outputs
of the filters with center frequency fi would be Fe,i[n] for i = 1, · · · ,m, where m is
the number of gamma-tone filters, then we call the result of the following equation:

Fsyn,i[n] = Fe,i−1[n−∆i,i−1] · Fe,i[n] · Fe,i+1[n−∆i,i+1] (4.5)

the synchronized output of the filter i, where ∆i,j is the time lag between Fe,i[n] and
Fe,j[n]. It expresses the similarity shift; We will see more about this later in this
section.
Equation 4.5 shifts three adjacent signal so that they have the most similarity, and
then multiplies them all. In the first and second plots of 4.7, we can see the shift
result. In the third plot, we see the resulting signal of the multiplication of synchro-
nized signals in blue, and of unsynchronized in red. The idea of synchronizing is
to approximate the cross-correlation coefficient of adjacent outputs. The result pre-
serves the sinusoid components of the output and suppresses the noisy uncorrelated
components [MiFG13].

To obtain the time lag ∆i,j between the output of channels i and j we use the
Average Magnitude Difference Function (AMDF). To do this we calculate first:

γi,j[k] =
∑
m

|Fe,i[n+m]w[m]− Fe,j[n+m− k]w[m− k]| (4.6)

where w[m] is a rectangular window with the duration of four periods: 4fs/fi, and
fs is the sampling rate of the signal. Then we take the minimum

∆i,j = min
k
γi,j[k]. (4.7)

When we shift the signal Fe,j by ∆i,j , we would have the most similarity of it with
Fe,i, because ∆i,j is equal k, which makes the absolute of the difference of the first
signal and the second signal shifted by k at its minimum.

4.4 Damped oscillator

As we saw in section 2.2.2, the hair cell demonstrates a damped oscillations. In
SyDOCC features, we use the synchronized outputs of a gamma-tone filter-bank as
a forcing function (Fe[n]) for the oscillators. The equation

x[n] =
(2ζΩ2

0)Fe[n] + 2(1 + ζΩ0)x[n− 1]− x[n− 2]

(1 + 2ζΩ0 + Ω2
0)

(4.8)
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Figure 4.7: (b) Unsynchronized signals. (b) signal after apply the synchronizing. (c) The signal
in blue is the product of the signals in (b), in red is the product of signals in (a)

is derived in [MiFG13] from the physical equations of a simple and damped har-
monic oscillator, where ζ is called the damping ratio, and Ω0 = ω0T , where ω0 is
the undamped angular frequency of the oscillator, and T = 1/fs, where fs is the
sampling rate. When ζ < 1 we get damped oscillations as we see in Figure 4.8.

Damped oscillators amplify the frequencies equal to their resonance frequency and
suppress all others with different grades. Figure 4.9 illustrates the amplitude re-
sponse diagram, where the pick is at the frequency 100Hz, which represents in this
example the resonance frequency. After being synchronized, each output of the
gamma-tone filter-bank channels stimulates a damped oscillator whose resonance
frequency is the same as the center frequency of that channel. The output of the
damped Oscillator, as we see in figure 4.10, smooths the signal, and keeps mainly
the resonance frequency undamped. The phase shift of the output has no effects in
our task.

To use the equation 4.8 in the implementation, we use ,like in section 4.1, the Matlab
function filter(a, b, x). The Z-transformation of 4.8 gives the following:

X[z] =
(2ζΩ2

0)FE[z] + 2(1 + ζΩ0)z
−1X[z]− z−2X[z]

(1 + 2ζΩ0 + Ω2
0)

(4.9)

We bring equation in a form to be compared with the transfer function of the
Matlab filter function 4.3 to extract the coefficients vectors, where here X[z] is the



26 4. Synchronized Damped Oscillator Cepstral Coefficients

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−80

−60

−40

−20

0

20

40

60

80

100

Impulse Response

Time (seconds)

A
m

p
lit

u
d

e

Figure 4.8: Impulse response of a damped oscillator with a damped ratio ζ = 0.09 and center
frequency Ω = 100Hz

10
1

10
2

10
3

10
4

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

M
a
g
n
it
u
d
e
 (

d
B

)

Bode Diagram

Frequency  (Hz)

Figure 4.9: Amplitude response of a damped oscillator with a damped ratio ζ = 0.09 and a center
frequency ω = 100Hz, showing a pick at 100Hz



4.5. Modulation filtering and power computation 27

110 120 130 140 150 160 170 180 190 200

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x 10
−12

Time in samples

A
m

p
it
u

d
e

 

 

input

output

Figure 4.10: input and output of a dumped oscillator

Z-transformation of the filter output x[n] and FE[z] is the Z-transformation of Fe[n].
From

X[z] =
(2ζΩ2

0)

(1 + 2ζΩ0 + Ω2
0)− 2(1 + ζΩ0)z−1 + z−2

FE[z] (4.10)

we get the coefficients: a(1) = (1 + 2ζΩ0 + Ω2
0), a(2) = −2(1 + ζΩ0), a(3) = 1, and

b(1) = (2ζΩ2
0)

4.5 Modulation filtering and power computation

In the block diagram 4.1, we see modulation filter Block comes after the damped
oscillators. Its task is to give a smoothed envelop of the output of the damped
oscillators. We see in figure 4.11 such an output and its modulation filtered signal
with a little phase shift. The idea behind modulation filtering is to keep the macro
structure, and to make the power computation, which will follow directly, not sen-
sitive to the high frequency noise. We calculate the power of the signal using the
following:

P =
∑
n

(x[n])2 (4.11)

4.6 Root compression

After calculating the power of the signal, we do then the root compression (·)α with
0 < α < 1. As described in [MiFG13], we choose for SyDOCC α = 1/7. Paper
[RaAS] revalidate a previous result shows that root compression is better than log-
arithmic compression for noise robustness. Figure 4.12 shows some performance
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Figure 4.11: input and output of the modulation filter

results of a classifier using MFCC features once with root and once with log com-
pression.
Paper [RaAS] performs another experiment, which shows that root compression
followed by Discrete Cosine Transformation (DCT) leads to better compaction of
energy. The experiment compares the results of reconstruction error of a signal am-
plitude, which compressed once with log and once with root. The results at both
times are DCT transformed. The experiment, as seen in figure 4.13, shows that
even with a few number of coefficients, the reconstruction error in the case of root
compression is very small compared to log compression.
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5. Evaluation

Now we discuss the evaluation results of the speech recognition system with SyDOCCs.
We have made many experiments to tune SyDOCCs parameters. The value of the
damping ratio, as we have seen in section 4.4, determines how much the oscillators
are damped, the smaller the damping ratio is the more the frequencies are damped
and the more formed peak we get at the resonance frequency of the oscillator. The
other parameter is the resonance frequency of the damped oscillator itself. After
[MiFG13], the resonance is given as user defined, and after the earlier version, it is
given as the center frequency of the corresponding gamma-tone filter. One of our ex-
periments shows that the results for the resonance 200 Hz for all damped oscillators
with damping ratio 0.9 is better than the resonance equal to the center frequency of
gamma-tone filter bank with damping ratio 0.09. Another experiment without using
the damped oscillators shows worse results than the one with damped oscillators.
Other free parameters are the number of gamma-tone filter-bank channels and the
bandwidth. For the experiments we chose 50 channels for 16 kHz data sampling
rate with a bandwidth from 200 Hz to 7 kHz, and 40 channel for 8 kHz with the
bandwidth from 200 to 3750 Hz. For splitting the signal into frames, we have other
free parameters: window duration and its overlapping . We have tested with 16 ms
and 25 ms window duration with 10 ms overlapping in the both cases. The results
are a little better for the duration 25 ms.
Following sections describe the experiments and the results of comparison between
SyDOCCs and MFCCs as baseline.

5.1 Experiments with Italian

We have performed experiments with Italian language data, where the training set
are 70 hours recordings of broadcast news from Euro-news channel. The test-set is
a relatively small data set with about 24 minutes recordings from 12 speakers.
The recordings for the training set and test set are direct and do not contain noise.
We use the word clean to denote this set. To simulate the experiments in a noisy en-
vironment, we mix street noise and white noise with this set. We used a grapheme
based system with N-gram language model trained on the ECI corpus (about 3
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million sentences), the transcription of the training, and webcrawl text (a collec-
tion of text from the world wide web). The system is bootstrapped using a flatstart
approach, which starts a system with randomly chosen weights for the Gaussian mix-
ture models. We first build a context-independent system, and then use its labels
to build a context-dependent system with 6000 Gaussian models, where preliminary
experiments have shown that this number of models yields to the best performance.

5.1.1 Comparisons MFCC with SyDOCC

As we see in table 5.1 and its visualisation in figure 5.1, we perform three comparisons
between SyDOCCs and MFCCs. In both cases, we stack the features using 15
adjacent feature vectors together to capture the dynamic information. In the first
comparison, we consider the experiments with a clean training set and clean test
set. Then we use a test with an additive street noise. We noticed that MFCCs
show better performance at both experiments, however the performance difference
is smaller with the noised test set.
In the third comparison, we considered the experiment with a training set with
additive white noise and the same clean test set. The signal noise ratio (SNR) is
about 9.38 dB. The performance of SyDOCC is much better than MFCC. We will
see this phenomena in another experiment.

training test MFCC SyDOCC
clean clean 26.2% 30.1%
clean with street noise 36.3 % 38%
with white noised clean 80.6 % 73.8%

Table 5.1: Comparison of SyDOCCs with MFCCs for the language Italian. The percentage values
are the WER of the best results

Figure 5.1: Comparison of SyDOCC and MFCC for the language Italian.
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5.1.2 Comparison of MFCCs with the combination MFFC
and SyDOCC

In these experiments, we compare the combination (MFCC ,SyDOCC) with MFCC.
The combination, denoted as a tuple (, ), is done simply by stacking a vector of
MFCCs upon the one of SyDOCCs. We use the same clean and noised data like
in section 5.1.1. We also use the stacking of adjacent frames. Table 5.2 shows the
results of the comparison, and figure 5.2 visualises them. We noticed that in the first
and second comparisons, the combination is still a tiny worse than MFCC. However
the combination is better with the training with additive street noise for both clean
and noisy test. It is the same remarkable situation like the previous section.

training test MFCC (MFCC,SyDOCC)
clean clean 26.2 % 28.3 %
clean with street noise 36.3 % 37.5 %
with street noise clean 27.7 % 27.5 %
with street noise with street noise 36.4 % 35.1 %

Table 5.2: Comparison of MFCC with (MFCC,SyDOCC) for the language Italian. The percentage
values are the WER of the best results

Figure 5.2: Comparison of MFCC with (MFCC,SyDOCC) for the language Italian. The descrip-
tion of the data set is under the columns, where we denote ”street” for the data set with an additive
street noise, and ”white” for the one with additive white noise

5.1.3 Comparison SyDOCC and MFCC with noised test

In this comparison, we will see the ability of SyDOCCs to deal with noise. We tested
and trained two systems with a clean training set, one uses SyDOCCs and the other
MFCCs. Both use stacked 15 adjacent vectors to capture the dynamic information.
The test set is noised with an additive white noise with increasing volume. We see
in Table 5.3 the decreasing noise signal ratio (SNR) of the test data signal. Figure
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5.3 visualises the results in Table 5.1. We see at the very beginning that MFCCs
are better than SyDOCCs but the performance of the system with MFCCs degrades
more rapidly and almost quadratic, while the line of the performance of the system
with SyDOCCs is flatter. This leads us to the conclusion that SyDOCCs is robuster
towards this type of noise.

SNR(test) MFCC SyDOCC
24.93 27% 30.10%
18.99 28.9 % 30.50%
15.42 30.9 % 31.80%
12.90 35.1 % 32.60%
11.03 41.4% 34.60%
9.38 48% 36.70%
8.08 55% 39.60%
6.90 62.1% 43.80%
5.87 70.6% 48.60%
4.97 77.1% 52.9%

Table 5.3: Comparison of MFCC with (MFCC,SyDOCC) for the language Italian with decreasing
Noise Signal Ratio (SNR) of the test data. The percentage values are the WER of the best results.

Figure 5.3: Comparison of MFCC with (MFCC,SyDOCC) for the language Italian with decreas-
ing noise signal ratio (SNR) of the test data.

5.2 Experiments with Pashto

In this experiment, we will train a speech recognition system for the language Pashto.
In addition to artificially noised data, there is genuine noise like telephone conver-
sations in noisy environments, conversations in car, street and office. This data set
is taken from IARPA BABEL program: Pashto FullLP1, in length of 100 hours of

1This effort uses the IARPA Babel Program language collection release IARPA-babel104b-
v0.4bY
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training data. The test-set is development data with a length 10 hours from 136
speakers. The system we trained is grapheme based system. We use N-grame Lan-
guage model trained on training utterances because of the lack additional resources
in Pashto. The system, like the one which trained for Italian, is bootstrapped using
a flatstart approach to initialize the parameters. We built context-independent sys-
tem and then a context-dependent system using 8000 models because preliminary
experiments have shown that this amount of models yields to the best performance.
As we see in table 5.4 and its visualisation in figure 5.4, we compare MFCCs with
the combination (MFCC,SyDOCC) with different delta features. The results show
a difference for about 3% WER in mean for the MFCC.

MFCC (MFCC, SyDOCC) (MFCC, SyDOCC d3)
(MFCC d7,
SyDOCC d1)

71.5 % 76% 75% 74.2 %

Table 5.4: Comparison of MFCC with (MFCC,SyDOCC) and delta features, denoted with ”d”,
for the language Pashto. Overall, where there is no ”d”, delta7 is used as default. The percentage
values are the WER of the best results

Figure 5.4: Comparison of MFCC with (MFCC,SyDOCC) and delta features, denoted with ”d”,
for the language Pashto. Overall, where there is no ”d”, delta7 is used as default.

For the sake of error analysis, we show in table 5.5 and its visualization in figure
5.5 three comparisons of results of the previous experiment. We show only results
of certain subsets of speakers, out of 136 speakers, on which SyDOCCs combined
with MFCCs outperform MFCCs. By analysing these subsets, we could get more
information about noises, with which SyDOCCs perform better.

Table 5.6 and figure 5.6 show the relative gain only for a subset of speakers.
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MFCC SyDOCC combinations number of speakers
(SyDOCC,MFCC) 71.86% 69.93% 38
(SyDOCC,MFCC delta3) 71.11% 69.47% 23
(SyDOCC delta1,MFCC) 70.97% 69.75% 26

Table 5.5: Comparison of MFCC with (MFCC,SyDOCC) and deltas for the language Pashto.
Where no delta mentioned, delta7 is used. The percentage values are the word error rate WER of
the best results of a subset of speakers, the first column describes the combination of SyDOCC,
their results are in the third column

Figure 5.5: Comparison of MFCC with (MFCC,SyDOCC) and deltas for the language Pashto.
Where no delta mentioned, delta7 is used. The title under the column are related to the red one,
whereas the blue one is for MFCC

SyDOCC,MFCC (SyDOCC,MFCC delta3) (SyDOCC delta1,MFCC)
2.76 2.36 1.75

Table 5.6: Comparison of MFCC with (MFCC,SyDOCC) and deltas for the language Pashto.
Where no delta mentioned, delta7 is used. the values are the relative gain for some speakers.
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Figure 5.6: Comparison of MFCC with (MFCC,SyDOCC) and deltas for the language Pashto.
Where no delta mentioned, delta7 is used. the Y axis indicate to the relative gain for some speakers.

5.3 Experiments with Tagalog

The data2 and the setting of the system are like those we used with Pashto in the
previous section. However, The Test-set are development data with length 10 hours
from 146 speakers, and we build context-dependent system using 10000 models.

Table 5.7 and its visualisation in figure 5.7 show the best result among all speakers.
The system with MFCCs show 2.4% less WER, For Analysing errors we did the
same as with Pashto. As we see in Table 5.8 and figure 5.8, the best result of a
subset of speakers (43 of 146 total speaker) on which the SyDOCCs combined with
MFCCs with delta 3 outperformed the MFCCs.

MFCC (MFCC,SyDOCC delta3)
75.5 % 77.9%

Table 5.7: Comparison of MFCC with (MFCC, SyDOCC delta3) for the language Tagalog. Where
no delta mentioned, delta7 is used. The percent values are the WER of the best results

MFCC (SyDOCC,MFCC delta3) number of speakers
83.53% 76.55% 43

Table 5.8: Comparison of MFCC with (MFCC,SyDOCC delta3) with deltas. Where no delta
mentioned, delta7 is used. The percent values are the WER of the best results of a subset of
speakers

5.4 Summary

We have investigated the tuning of several free paramters of SyDOCCs; however,
there are still many parameter combinations to be examined in order to reach better

2This effort uses the IARPA Babel Program language collection release IARPA-babel106-v0.2f
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Figure 5.7: Comparison of MFCC with (MFCC, SyDOCC delta3) for the language Tagalog.
Where no delta mentioned, delta7 is used.

Figure 5.8: Comparison of MFCC with (MFCC,SyDOCC delta3) deltas. Where no delta men-
tioned, delta7 is used.
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results with SyDOCCs. We found that SyDOCCs are robust towered white noise.
We found also that SyDOCCs outperform MFCCs when using noisy training, where
we use once white noise and once an additive street noise for the training and tested
with clean and a street noised data.
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6. Summary and outlook

In this thesis, we have implemented the Synchronised Damped Oscillator Cepstral
Coefficients (SyDOCCs) as a new feature for robust speech recognition. These fea-
tures are motivated by the hearing mechanism of the human ear, to take advantage
of its insensitivity towards some kind of noises. We have simulated the function of
basilar membrane with the gamma-tone filterbank, and the function of hair cells
with the damped oscillators. There is still some research to be done to simulate
more features like amplifying sound by the hair cells, otoacoustic emission features
of outer hair cell, or synchrony of the hair cell stereocilia.
We have seen that SyDOCCs are robuster towards white noise compared to MFCC
features. In a clean environment, SyDOCCs bring not much advantage and MFCCs
are a tiny bit better. Many experiments have shown that SyDOCCs could improve
the performance if combined with MFCCs. We have evaluated SyDOCCs with ar-
tificial noise and partly with a real word noise. Test with additional languages from
Option Period 1 of the BABEL program, which have greater acoustic mismatch
between speakers, can give us more informative statement about SyDOCCs. More
experiments and more parameter tuning for SyDOCCs can still give an improvement
on the recognition task. It would also be beneficial, to implement SyDOCCs directly
as a part of the Janus Recognition Toolkit.
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