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Abstract

In this work, a system for the Spoken Term Detection (STD) task has
been designed, implemented and evaluated. The system can be used to
perform textual queries on speech data. Emphasis has been placed on
the ability to detect out-of-vocabulary words (OOVs).
Based on confusion network output by a Speech-to-text (STT) system,
an index is created for on-demand querying. Query terms unknown to
the underlying STT system are expanded by orthographically or pho-
netically similar words from the vocabulary. The decision component for
judging detection candidates includes rescoring based on acoustic simi-
larity and term-specific thresholds.
The proposed techniques are evaluated on development data from the
2006 NIST STD evaluation and an analysis of different influence factors
is performed. The system offers a thorough implementation for the task
and achieves competitive results.
On English Broadcast News (BN) and Meeting data, Actual Term-
Weighted Values of 0.75 and 0.32 are achieved with the NIST 2006 de-
velopment term list. On BN OOVs of the DryRun term list, results of
0.36 and 0.40 have been achieved with the orthographic and phone-based
query expansion schemes.
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1. Introduction

Over the past decades, large amounts of audio and multimedia data have been produced
and, enabled by inexpensive storage space, archived. Therefore, sizable repositories of
spoken language, from news shows and recordings of meetings to collections of oral history,
are feasible and archives with over 100,000 hours of audio data exist (e.g. recollections of
Holocaust survivors and witnesses in [GSO+02]).

Such speech corpora generally contain vast amounts of information. However, this infor-
mation is not very accessible in an unprocessed, sequential form. Typically, information
is more useful, if “random access” to particular parts of information is possible. Conse-
quently, it is desirable to have some sort of index of an audio collection and the ability to
answer (textual) queries based on this.

For answering textual queries, it is generally beneficial to also have a textual representation
of the audio data in the repository. Automatic Speech Recognition (ASR) in the form of
Speech-to-Text (STT) systems can be used to generate transcripts of audio recordings.
Subsequently, these transcripts can be indexed and used for text-based search. However,
STT systems are error-prone and the quality of the transcripts needs to be considered
while performing queries.

Several use cases for such an indexing- and query-system immediately come to mind. For
example, indexing recordings of broadcast news enables comparing reports on the same
event in different media or at different times, whereas business analysts could use such a
system to find all mentions of a particular company. Similarly, indexing of the aforemen-
tioned historical recollections eases access for historians. From a linguistic point of view,
it might be useful to retrieve all known occurrences of a word for acoustic comparisons.

Several different approaches and names have been used for these and similar tasks. Spoken
Document Retrieval (SDR) for example has been used for tasks in which a query should
return a list of audio “documents” (for example podcast episodes) that are most “relevant”
to the query (but might not contain it at all) [GAV00]. These tasks focus on information
retrieval techniques, stressing document relevance and result ranking. Exact detections of
words, however, are less important.

Spoken Term Detection (STD) is the process of finding all occurrences of a query in the
audio corpus. It has strong focus on distinct detections of words including the exact
position in the audio. It is, however, not necessary to find the most relevant or prominent
occurrences [FAGD07].
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2 1. Introduction

1.1. Challenges in Detecting Out-of-Vocabulary Words

ASR systems typically have a finite vocabulary, i.e. only a certain set of words can be
recognized. Although these vocabularies contain tens of thousands of words for the English
language, there will generally be e.g. neologisms, names of individuals or foreign words
that are not contained in the vocabulary. These words that are not in the vocabulary of
a particular ASR system are called out-of-vocabulary words (OOVs). Words contained in
the vocabulary, i.e. words that can be recognized by the system, are called in-vocabulary
words (IVs). During the transcription process OOV words in the audio are either replaced
by similar words or a placeholder symbolizing an unknown word.

In the context of Spoken Term Detection, queries containing OOV words are an important
challenge. Since these query words cannot occur in the transcripts, OOV queries will not
return any results unless they are handled specifically.

Since vocabularies contain the “most important” words of a language, one might consider
OOV queries to be negligible. However, names and rare words are especially popular in
searches and have a higher associated information content. In [LMTW00], Logan et al.
report that in an audio search engine context, on average 16% of a user query consists
of OOVs. Consequently, the ability to handle OOV queries becomes especially important
in practical use cases and the performance on out-of-vocabulary words should not be
neglected.

1.2. Objectives of this Work

The main objective of this work is the development and evaluation of a system for the
Spoken Term Detection Task which is formally defined in chapter 2.

Due to the importance of out-of-vocabulary queries as described in section 1.1, emphasis
is placed on their treatment. Using different approaches to detect and handle OOV terms,
the performance of the system on OOV queries is measured and optimized.

In order to enable a comparison with similar work in literature, the evaluation is per-
formed on English audio data from the 2006 STD evaluation of the National Institute of
Standards and Technology (NIST) [FAGD07]. Different STT systems are used to evaluate
the influence of transcription errors on the detection performance.

1.3. Scope of this Work

This work focuses on the detection of terms, given a set of ASR hypotheses. Although
different contrastive STT systems are used, no work has been done to tune these systems
to the particular STD task. The STD system can be seen as a form of “post-processing”
of the speech recognition hypotheses.

Although different languages pose different challenges for STD systems and have varying
need for OOV treatment, tests and evaluation of this work have only been performed on
English broadcast news and meeting data (for details, see 7.1.1).

According to the task definition in 2.2, no work has been done to infer importance or
relevance from the query detections. Only a binary classification into presumably true
occurrences and false alerts is used and results are not ranked according to any measure.

Furthermore, this work does not include any user interface or integration into a partic-
ular use case. However, design and implementation of the system allow for a fairly easy
integration into such scenarios.

2



1.4. Structure of this Thesis 3

1.4. Structure of this Thesis

In chapter 2, a formal task definition is given and fundamentals of both task and work,
such as the evaluation criteria, are provided.

Chapter 3 gives an overview over related work and previous results in the Spoken Term
Detection task.

Basic details and design considerations of the implemented system are provided in chapter
4, whereas chapters 5 and 6 focus on particular approaches in handling OOV queries and
deciding whether possible candidates should be reported as detections.

All approaches proposed in these chapters are tested and evaluated in chapter 7. Chapter
8 summarizes the work and gives a conclusion.
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2. Fundamentals

This chapter contains basic information helpful for reading this thesis. In 2.1, a short
overview of a typical speech recognition system is given and confusion networks are intro-
duced as a form of recognizer hypotheses.

In 2.2, the task of Spoken Term Detection is defined and evaluation criteria for system
performance are described in 2.3.

2.1. Foundations of Automatic Speech Recognition

Automatic Speech recognition (ASR) is the process of automatically creating transcripts
from audio files, typically based on statistical pattern recognition. In Large-vocabulary
Continous-Speech Recognition (LVCSR), the audio waveform is converted to acoustic fea-
ture vectors which are used to find the most probable word sequence. For an overview,
see e.g. [You96].

2.1.1. Posterior Probability of Word Recognition

The posterior probability of a word sequence W given (preprocessed) acoustic features A
can be found with Bayes’ theorem as in Equation 2.1. The factor p(A|W ) can be seen as
an acoustic model score representing the likelihood of the observed pronunciation given the
words. P (W ) as a language model score represents the probability of the word sequence.

P (W |A) =
p(A|W ) · P (W )

p(A)
(2.1)

Typically, only the most probable word sequence Ŵ as defined in Equation 2.2 is needed.
Since p(A) is a constant in this context, simplification yields Equation 2.3 which only
depends on an acoustic and a language model.

Ŵ = arg max
W

P (W |A) (2.2)

= arg max
W

p(A|W ) · P (W )

p(A)

= arg max
W

p(A|W ) · P (W ) (2.3)

5



6 2. Fundamentals

I 0.771

IS 0.106

THINK 0.770

IT 0.107

THEY'RE 0.687

THERE 0.143

THEIR 0.141

TRAVEL 0.964

Figure 2.1.: Exemplary confusion network. Each hypothesis word is shown with its
probability.

The process of finding Ŵ is called Decoding and consists of finding the best path in a
search graph of word hypotheses. Due to computational complexity, only approximations
of Ŵ are calculated in LVCSR context, typically obtained via beam search [You96].

A compressed form of the search graph is called a lattice. In the lattice, words are rep-
resented as edges and hence finding a word sequence represents finding a path in the
lattice.

2.1.2. Confusion Networks

Confusion networks, originally described in [MBS00], are a representation of recognizer
lattices which align the different hypotheses for a certain word based on time. Therefore,
they “replace global search over a large set of sentence hypotheses with local search over
a small set of word candidates” [[MBS00], p. 373].

As seen in Figure 2.1, the confusion network consists of different word clusters that rep-
resent different hypotheses of the same audio segment. Possible hypotheses from the
confusion network would be for example “I think they’re travel” or “Is it their travel” with
the first word sequence being the more probable one.

Simultaneous words are grouped together into a cluster and their posterior probability is
aggregated over all possible paths in the lattice containing the word at this time. Note
that the posterior probabilities of all words in a cluster do not necessarily sum up to 1.

The representation as confusion networks is helpful for indexing and finding words and
their posterior probabilities. Additionally, the clustering helps in identifying simultaneous
words and hence avoiding duplicates. For more information on confusion networks, see
[MBS00].

2.2. The NIST 2006 Spoken Term Detection Task

In 2006, the National Institute for Standards and Technology (NIST) established the task
of Spoken Term Detection (STD) to “facilitate research and development of technology for
retrieving information from archives of speech data”, as stated in the evaluation plan in
[Nat06]. Emphasis was placed on well-defined objectives and evaluation criteria.

The objective of STD is the detection of “terms” in large audio corpora. Terms consists
of one or multiple words in written form. Unless otherwise noted, the words “term” and
“query” will be used synonymously throughout this document.

A detection consists of the start- and end-time of the term occurrence. For diagnostic
purposes, all candidates for detections should be reported accompanied by a confidence

6



2.3. Evaluation Criteria 7

Term List

Detection List

Spoken Term
Detection
System

Figure 2.2.: Example of the term detection input and output

score and a binary decision of the system, whether the candidate is believed to be a “true”
detection. However, only the candidates with a positive decision are considered in the
evaluation process described in section 2.3.

Figure 2.2 shows excerpts from an actual term list and corresponding system output in
XML format. Terms are provided in textual form, covering different topics from “missile
sites”to“red horse”. The expected system output contains the exact location of occurrences
within the audio corpus and also includes diagnostic information such as search time or
OOV rate.

Since the STD objective is motivated by the presence of large amounts of audio data, the
task is split into two separate parts. In the indexing phase, the audio data is processed
without any knowledge about possible query terms. This processing typically consists of
using ASR software to produce transcripts of the audio and storing the transcripts in an
index appropriate for the task.
In the querying phase, the index (and optionally the audio) can be used to retrieve the
occurrences of the elements of a given query list. Generally, the indexing can be considered
as an “offline” preprocessing step, whereas the querying should be possible in an “online”
manner with only short query times.

Although the amount of data used in the 2006 evaluation is not very large, it is a stated
goal of NIST to “simulate the very large data situation” [Nat06]. In order to compare
search efficiency, total indexing time and search times for each query had to be reported
in the 2006 evaluation.

2.3. Evaluation Criteria

The STD task has clear evaluation criteria regarding the definition of a term occurrence
and the metrics used to judge a detection system. A scoring tool is provided by NIST and
all reported results in this document are based on this software. Therefore, the information
in this section is based on the NIST publication [FAGD07] unless noted otherwise.

7



8 2. Fundamentals

For evaluation purposes, the occurrence of a term is defined based on a reference transcript
of the audio. A term occurs in the corpus, whenever the reference transcript contains the
term’s word sequence in orthographically identical form. For multi-word queries, a certain
amount of time is allowed between the end of a detected word and the beginning of its
successor (set to 0.5 seconds in the 2006 evaluation). Multiple detections of a single
reference occurrence are not allowed.

As an example, the term “thesis” does not match the word “theses” in a transcript since the
plural form is spelled differently. Furthermore, no distinction is made based on context.
Consequently, the term “suit” matches occurrences of the word both in the context of
clothing (“three-piece suit”) and in the context of a judicial system (“law suit”). NIST sees
these characteristics of the task evaluation “as being a relatively minor distortion of the
objective” [Nat06].

2.3.1. Trial-based Evaluation

In a detection task, systems try to detect events in a certain number of trials. System
performance can generally be characterized by two types of correct system decisions and
two types of system errors as shown in Table 2.1. It is desirable to maximize the number
of correct detections (“true positives”) of events (term occurrences in the STD task) while
minimizing the number of spurious detections (“false positives”) and missed events (“false
negatives”).

Typically, all of these types can be treated as discrete quantities, such as the number of
missed term occurrences in the STD task. However, the number of trials, and consequently
the number of correct rejections, have no canonical definition in the context of continuous
speech where the true number of words is unknown for the system. Possible solutions
would be to use for example the number of words in the reference transcript or to use
properties of the audio data.

For the STD evaluation metrics, NIST chose the latter variant. The number of trials
“is defined somewhat arbitrarily to be proportional to the number of seconds of speech”
with one word per second in the 2006 evaluation. Therefore, the number of possible false
alerts, also known as non-target trials NNonTarget, of a term t as defined in Equation 2.4
is dependent on Tspeech, the length of the audio data in seconds, and Ntrue(t), the number
of actual occurrences of a term t in the reference [FAGD07].

NNonTarget(t) = Tspeech −Ntrue(t) (2.4)

2.3.2. Detection-Error-Tradeoff Curves

Based on the availability of a confidence score for each detection and the assumption of a
global threshold θ (identical for all terms), NIST defines Detection-Error-Tradeoff (DET)
curves as plots of miss probability (Equation 2.5) versus false alert probability (Equation
2.6) parametrized by the global threshold [FAGD07].

true false

positive correct detection false alert

negative correct rejection miss

Table 2.1.: Elements of system performance on detection tasks. The true/false columns
describe whether a decision is correct and the positive/negative rows describe
whether a system detection occurred

8



2.3. Evaluation Criteria 9

PMiss(t, θ) = 1− Ncorrect(t, θ)

Ntrue(t)
(2.5)

PFalseAlert(t, θ) =
Nspurious(t, θ)

NNonTarget(t)
(2.6)

A lower value of PMiss represents a higher recall of the system and a lower value of
PFalseAlert represents a higher precision. Consequently, both values should be minimized
and DET curves should be “close to the origin” of the coordinate system. An example
DET curve can be found in Figure 7.5.

2.3.3. Actual Term-Weighted Value

Whereas DET curves give a general overview over a system’s performance and ignore the
binary decision of the detection system, NIST defines the Actual Term-Weighted Value
(ATWV) as a “single performance metric [...] for [...] optimization” [FAGD07] and it is
used as the primary evaluation metric to compare the quality of STD systems.

Given a list of query terms T , the ATWV as defined in Equation 2.7 represents a weighted
combination of miss probabilities and false alert probabilities, averaged over all terms. For
the ATWV-calculation, the binary decision of the system for each candidate detection is
used. Therefore, the ATWV does not depend on a threshold θ, as opposed the definitions
for the DET analysis above.

ATWV (T ) = 1− 1

|T |
∑
t∈T

(PMiss (t) + β · PFalseAlert (t)) (2.7)

=
1

|T |
∑
t∈T

(
Ncorrect (t)

Ntrue (t)
− β · Nspurious (t)

NNonTarget (t)

)
(2.8)

In 2.7, the weight β is term-independent, taking into account a static prior probability of a
term and cost-value-ratio for spurious versus correct detections (for details, see [FAGD07]).
In the 2006 evaluation, β = 999.9.

Since all terms contribute equally to the ATWV score, it is not biased toward terms
with large amounts of occurrences. It should, however, be noted that terms without any
occurrences in the reference data (Ntrue(t) = 0) need to be excluded.

Based on the parameters of the 2006 evaluation, the benefit of an additional correct detec-
tion is much higher than the cost of a false alert. Therefore, significant amounts of false
alerts are tolerable when optimizing for the ATWV metric.

2.3.4. Maximum Term-Weighted Value

Additional to the ATWV, NIST also defines the Maximum Term-Weighted Value (MTWV)
as the maximum ATWV achievable by a system using global thresholds.

MTWV (T ) = max
θ∈[0,1]

1

|T |
∑
t∈T

(
Ncorrect (t, θ)

Ntrue (t, θ)
− β · Nspurious (t, θ)

NNonTarget (t, θ)

)
(2.9)

The definition in 2.9 is very similar to the definition of the ATWV. The actual system
decision is, however, neglected and the best value over all possible thresholds is calculated

9



10 2. Fundamentals

(hence the dependence on θ in the terms). Although the “best” threshold is chosen, this
is not an oracle decision since candidate scores need to be higher than the threshold to be
counted as a detection.

At first, one might expect that the MTWV is always higher than the ATWV. This is,
however, not the case since identical thresholds over all terms are assumed as opposed to
term-specific thresholds as described in 6.2.2.

2.4. Summary

This chapter introduced basic concepts of ASR, the NIST 2006 Spoken Term Detection
task and evaluation criteria for detection systems.

The task requires exact detections of terms within the audio data and relies on reference
transcripts for judging the system performance. Hence, orthographic details of ASR output
heavily influence STD results.

The Actual Term-Weighted Value is the primary evaluation metric for Spoken Term De-
tection. Rewards for correct detections are much higher than penalties for false alerts.
Detection-Error trade-off curves and the Maximum Term-Weighted Value can be used as
secondary performance indicators of a system.
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3. Related Work

Several tasks have been specified in the area of searching in audio data and information
retrieval from speech corpora, both in individual publications and in large evaluations.

Although work on searching in audio data based on spoken queries has been performed
for over 30 years (e.g. template matching approaches to word spotting in [CR76]) and is
still a research topic (e.g. STD with spoken queries in [CL10]), this overview will focus on
fairly recent work using textual queries to search large audio databases.

Although the name “Spoken Term Detection” itself grew primarily due to the NIST 2006
evaluation, basic components and approaches were adapted from the area of Spoken Docu-
ment Retrieval (SDR) and the corresponding evaluations within the NIST Text REtrieval
Conference (TREC).

In the 1998 TREC-7 evaluation, a SDR track consisted of finding relevant audio documents
for a topic. Topics were defined by questions such as “How and where is nuclear waste
stored in New Mexico?”. In [GAV00], NIST researchers consider SDR as somewhat of
a “solved problem” due to the fast advances in research, with only question answering
and obtaining additional non-verbal information of speech being significant challenges.
Therefore, they argue that the additional effort for a SDR track is no longer necessary.

In the overview paper [CHS08], however, Chelba et al. criticize that the recognizers in
the SDR evaluation were heavily tuned to the domain and the reported word error rates
(WERs) between 10% and 15% are generally unrealistic.

In the SDR tasks, emphasis was placed on information retrieval, such as vector space
models, word proximities and language modeling for documents, as described in [CHS08],
whereas these components are not necessary for the “more technical” task of Spoken Term
Detection.

Generally, textual search on audio documents has been performed long before the 2006
evaluation, but mostly with a focus on information retrieval or integrated into larger
systems such as a system for indexing and browsing audio recordings of broadcast news
in [MKL+00]. Hence, the Spoken Term Detection task can be seen as as an individual
evaluation for a search component used in larger systems.

3.1. General Approaches in the 2006 Evaluation

Major research institutions competed in the NIST 2006 Spoken Term Detection Task, e.g.
BBN [MKK+07], IBM [MRS07] and SRI [VSS+07]. Generally, all of these participants

11



12 3. Related Work

Broadcast News Telephone Meeting

Participant ATWV WER ATWV WER ATWV WER

BBN – 0.8335 14.9% –

IBM 0.8485 12.7% 0.7392 19.6% 0.2365 47.4%

SRI 0.8238 23.2%a 0.6652 17.4% 0.2553 44.2%

TUB 0.3890 30.3% 0.1598 0.0500 60.3%

aincl. segments without references, the actual value should be approx. 11% [VSS+07]

Table 3.1.: Results of the NIST 2006 English STD Evaluation and corresponding word
error rates on the development data (Excerpt)

used word-based ASR for in-vocabulary query terms and mainly differed in their index
structure, approach to out-of-vocabulary words and decision strategies.

BBN participated in the conversational telephone speech (CTS) evaluation in English,
Arabic and Mandarin. As reported in [MKK+07], their speech-to-text engine produces
both word lattices for retrieval of in-vocabulary terms and 1-best phonetic transcripts for
out-of-vocabulary queries.
BBN also developed the decision strategy based on term-specific thresholds (see section
3.3) for in-vocabulary terms, whereas for out-of-vocabulary terms, the top k candidates
are returned, with k being a term-independent constant.

IBM who participated in broadcast news (BN), conversational telephone speech and con-
ference meetings (CONFMTG) in English, also follows the approach of combining word-
based recognizer output with phonetic transcripts (phonetic transcripts are not used in the
meeting part). In their system, described in [MRS07], lattices are transformed in confu-
sion networks (see subsections 3.1.2 and 2.1.2) which are searched for in-vocabulary query
terms.
Details on the handling of OOV queries and the decision process are given in subsections
3.2 and 3.3.

SRI also participated in the English BN, CTS and CONFMTG evaluations. Their sys-
tem as described in [VSS+07] solely uses speech recognizer lattices for search. Out-of-
vocabulary words are converted into phones as an intermediate step to get the most similar
word in the ASR output. For the binary decision, SRI originally used different approaches
including multi-layer perceptrons (see 3.3) and also published scores using term-specific
thresholds.

3.1.1. Results of 2006 Evaluation

The results of the evaluation as reported in [FAGD07] and posted on the NIST website1

can be found in Table 3.1, accompanied by the word error rate on the 2006 development
data as reported in the participants’ respective publications. Comparing the results, it is
evident that recognizer performance as indicated by the word error rate is a major influence
factor for the ATWV. In CTS and CONFMTG, the participants with the lowest WER
also reach the highest ATWV. In BN, this cannot be directly inferred since SRI did not
exclude sections without references from the WER calculation. Although each of BBN,
IBM and SRI is leading in one of the domains, it seems as if the neural network-based
scoring approach of SRI performed worse than IBM’s ranking and score boosting—SRI’s
error rates in CTS and presumably BN are better than IBM’s while the ATWV is lower.
IBM achieved the highest ATWV of 0.8485 on the Broadcast News data.

1www.nist.gov/speech/tests/std/

12

www.nist.gov/speech/tests/std/


3.2. Handling of Out-of-Vocabulary Terms 13

3.1.2. Lattice-based Approaches

Using an ASR system to convert audio data into textual information raises the question,
which form of output should be used as a bases for term search. Although the 1-best tran-
script already represents a textual form of the audio, experiments in [CSA07] have shown
that on lecture data, using information from the lattice (a graph containing alternative
word hypotheses) a word error rate (WER) of 30% can be obtained while the single-best
transcript results in a WER of 55%. Hence it is evident that indexing lattice information
as opposed to the 1-best hypothesis is helpful and improvements in ATWV scores have
been shown, e.g. in [VSS+07].

Typically, lattices can contain multiple different paths containing the same detected word
for a time segment, therefore a search for unique occurrences or subsequent words in lattices
is nontrivial. In [CA05], Chelba et al. propose Position Specific Posterior Lattices (PSPLs)
as a lattice representation appropriate for indexing and report that in the context of SDR
in the lecture domain, PSPLs achieve a 20% higher value in Mean Average Precision
(MAP) compared with single-best transcripts.

Confusion Networks, as proposed by Mangu et al. in [MBS00] and described in 2.1.2, offer
an alternative way of storing time-aligned word hypotheses based on lattice information.
They offer posterior probabilities and rank amongst alternatives for simultaneous words
and have been used both in the context of Spoken Document Retrieval [MCH06] and
Spoken Term Detection [MRS07].

3.2. Handling of Out-of-Vocabulary Terms

As mentioned in 1.1, Out-of-Vocabulary words pose a challenge to purely word-based
detection approaches, but are also very relevant as user queries.

Several different techniques for handling the problem of out-of-vocabulary query terms
have been proposed. In [NZ00], Ng and Zue look into using phone-based subword-units
for Spoken Document Retrieval. Using overlapping phone sequences, phonetic classes,
non-overlapping phone multigrams and syllable units, they investigate the respective SDR
performance on clean transcripts and STT-based transcripts of Broadcast News data.
Overlapping phone sequences perform best on the data, roughly 10% better than long
multigram and syllable units. Although these subwords units should enable detection of
OOV queries, no results on OOV data were reported.

In [LVTM05], Logan et al. examine OOV queries and propose the usage of particles,
i.e. variable-length phoneme sequences learned on a corpus, as an indexing unit. As an
additional approach, they generate the “most confusable” in-vocabulary words for an OOV
query and use them as an expanded query. In SDR experiments on news data, they found
that the particle system performed worse than the acoustic query expansion, but with a
lower false alarm rate.

In [WFTK08], Wang et al. compare phone-based and grapheme-based STT engines, the
latter one similar to work in [KSS03], on English and Spanish in a STD task. While the
phone-based system performed better than the grapheme based one on English overall,
the latter achieved better results in Spanish. Taking into account the higher word error
rate of the grapheme-based system in English, they found that it performed better than
the phone-based one at same word error rates.

For the 2006 STD evaluation, BBN and IBM used phonetic transcripts to detect OOV
words. Whereas BBN uses the STT engine to directly produce single-best phonetic tran-
scripts [MKK+07], IBM used a STT engine based on sub-word units for recognition and
subsequently converted the sub-word lattices into phonetic lattices [SRM06].

13



14 3. Related Work

BBN performs queries with at least one out-of-vocabulary word by first predicting a pro-
nunciation for the query terms as a reference. Afterwards, possible alignments with the
phonetic transcript are generated and accepted if the phonetic edit distance between align-
ment and reference are less than a certain fraction of the reference length.

In the IBM system, OOV query terms are converted to phones by a Joint Maximum
Entropy N-gram Model [Che03] and searched for in the phonetic index. In the system,
phones are treated similar to words, which means that phone insertions are allowed as long
as a maximum time gap (0.2 seconds between phones as opposed to 0.5 seconds between
words) between two adjacent phones is maintained.

Whereas the last two approaches allow a soft match between phonetic transcripts and a
single reference pronunciation, in [WKF09] Wang et al. propose a stochastic pronunciation
modeling allowing multiple reference pronunciations including different confidences of the
respective pronunciations. Using this method yields to an improvement of 17% over an
ATWV value of 0.28 with a single reference pronunciation.

Instead of using a phone edit distance to obtain the similarity between two pronunciations,
[CP07] proposes higher order confusions based on phone N-grams. Recall and precision
were improved by using higher order confusions when searching a phone n-gram index.

An alternative approach to OOV detection in [RSM+09] is the use of both word and
fragment-based sub-words units in the ASR vocabulary and using fuzzy search. Results
on the 2006 corpus showed that such a flat hybrid system is more robust at higher word
error rates than a purely word-based one.

A flat hybrid model has also been proposed by Akbacak et al. in [AVS08] for OOV detection
in the STD task. They use “graphones” as a sub-word unit which have been introduced
by [BN05] and are based on the assumption of an underlying base unit for orthographic
representation and pronunciation of a word, consisting of pairs of short sequences of letters
phonemes. About half of the original OOVs can be recovered by adding graphones and
improvements for in-vocabulary words are also reported. On a 60k word vocabulary with
a word error rate of 14%, they achieve an OOV-ATWV of 0.25.

In [PSR09], Parada et al. use a Query-by-Example system to detect OOV words in (tex-
tual) Spoken Term Detection. Using a two-step process, they first perform an STD search
using grapheme-to-phoneme conversions for query terms and subsequently retrieve audio
samples of query terms by lattice cuts of high scoring results. In a second step, acous-
tic lattices are searched to find occurrences corresponding to the samples. They report
improvements in ATWV when adding the second-pass results to the purely text-based
search.

3.3. Decision Strategies

An essential part of a STD system is the binary decision whether the system expects a
detection candidate to be an actual occurrence. Several different approaches have been
developed for and after the 2006 evaluation.

In [MKK+07], Miller et al. introduce term-specific thresholds (TSTs) as a decision process
tuned to the ATWV metric. The concept—described in detail in section 6.2— adapts the
detection threshold for each term to the respective candidate set and generally results in
lower thresholds for rare terms and vice versa.

In [VSS+07], Vergyri et al. compare global thresholds, term-specific thresholds and a
neural network-based regression as decision strategies and find that TSTs give the best
results and generalization. In the 2006 evaluation they relied on the neural network based

14
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approach which worked well on the development set but did not generalize well to the
evaluation meeting data. In the workshop presentation, overtraining is given as a possible
cause [VSGW06].

IBM [MRS07] used a different scoring and decision strategy in their 2006 system. While
term-specific thresholds are dependent only on the posterior probabilities, IBM uses the
rank of a word detection (within all hypotheses starting at the same time) as an explicit
factor in their score. For phonetic matches, where they only use single-best transcripts,
the score is based on the proximity of detected phones (for details, see [MRS07, section
3.4.2]).
For multi-word queries, the multiplied word scores are boosted by an empirically deter-
mined exponent of 1/n to account for the claimed lower probability of false alerts on
multi-word queries. Generally, IBM uses global thresholds for each audio category for
their final decision.

In [CS09], Can et al. propose a thresholding method based on the estimation of an ex-
ponential mixture model of the class (correct/incorrect) of a detection. Evaluations on
Turkish news programs show that this approach can achieve a higher maximum precision
than—but is typically outperformed by—term-specific thresholds.

Typically, the posterior scores (confidences) of the STT engine, which do not depend on
the query term, are used as the sole feature for the decision process. In [WKFB09], Wang
et al. propose a different approach using term-dependent confidence measures. They
formulate the idea of term-specific thresholds as term-specific confidence transformations
(with a fixed global threshold) instead. By modifying these transformation functions with a
multilayer perceptron or a support-vector machine, optionally taking into account the esti-
mated false alarm and occurrence rate, improvements were shown in ATWV on individual-
microphone meeting data when using a phoneme-based recognition system. However, the
impact on a (generally better performing) word-based ASR system is reported as “very
little”.

In [CLYL10], Chen et al. propose an approach for reranking query results in a STD/SDR-
like task. Based on acoustic similarity among candidates calculated with dynamic time
warping, they use a pseudo-relevance feedback technique to rerank results and achieve im-
provements in Mean Average Precision (MAP). In [CCL+11], a graph-based version of this
approach is adapted, building on similar work in video reranking in [HKC07]. Using MAP
as an evaluation metric—hence considering the result rank—they report improvements of
20% over a baseline only based on posterior scores. A similar approach has been adapted
for this work and is described in 6.1.

3.4. Summary

Spoken Term Detection has been a popular research topic since the 2006 NIST evaluation,
but has also been used before as a component in larger systems. Typically, an ASR
system is used to transcribe the audio and generate lattice representations which, in case
of in-vocabulary terms, are searched for occurrences.

For out-of-vocabulary terms, different strategies have been used. Many are based on
predicting a pronunciation for the term and searching phonetic transcripts for a simi-
lar phoneme sequence. Other approaches use STT engines based on sub-word units like
fragments or graphones to detect OOV terms.

As a decision strategy, term-specific thresholds have been found to be well-performing in
the STD task. They offer substantial improvements over global thresholds.
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4. Design and Implementation
Framework

This chapter describes both the architecture and implementation details of the Spoken
Term Detection system developed for this thesis.
After an overview of the general architecture, the different steps in processing the au-
dio, indexing word hypotheses and querying the database are explained in the following
sections.

4.1. Basic Setup and Design Considerations

The Spoken Term Detection system can be split up into parts for indexing and for querying
the index. The top half of Figure 4.1 shows the indexing part. The audio data is processed
by a speech recognizer which produces confusion networks (cf. subsection 2.1.2). In the
next step, these confusion networks are used by the indexing engine to insert all word
hypotheses into the CouchDB database which processes them for the query engine (cf.
4.3).
During the querying (the bottom half of Figure 4.1) all terms of a given term list are
searched for in the database, all candidates are scored and, with a binary decision, output
to the detection list.

In order to ease modifications and reduce coupling, the developed system has been mod-
ularized along functional borders. The rough structure corresponds to Figure 4.1, with
finer substructures in the more complex components, e.g. for the approaches in 5.3 or 6.1.

For indexing and storing, CouchDB1 is used. As an “off-the-shelve” open-source software,
it is reasonably well documented and the use of HTTP as a protocol allows for easy access
from different software environments or hosts.

TCL has been used as the primary language for implementation. This allows easy inte-
gration into the existing ASR environment. Parts of the rescoring approach described in
section 6.1 have been implemented in C within the Janus ASR system to reuse existing
audio and feature infrastructure. Small portions of JavaScript and Scheme have been used
for defining the CouchDB views (4.3) and accessing the Festival text-to-speech system
(5.3), respectively.

1http://couchdb.apache.org/
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Figure 4.1.: Basic Setup of Spoken Term Detection system with major components

4.2. Decoding and Indexing

The audio data is processed by the Ibis Decoder of the Janus Speech Recognition Toolkit
[SMFW01]. Details concerning the different decoder setups can be found in section 7.1.
After decoding of an utterance, the hypotheses are transformed into confusion networks
(cf. 2.1.2) and subsequently inserted into the database.

4.3. Database Setup

CouchDB is used for storing and indexing the word hypotheses of the confusion networks.
CouchDB can be accessed via the HyperText Transport Protocol (HTTP). This enables
direct access to the database from within Janus instances and ensures compatibility with
a wide variety of programming environments.

CouchDB is a non-relational database that is based on documents, each consisting of
key-value pairs. In the STD setup, each document represents a single hypothesis word
alongside metadata such as start and end time and posterior probability.

Instead of supporting dynamic queries in a particular query language, CouchDB offers a
MapReduce-based framework, in which custom JavaScript functions can be used to build
“views” on the data. Each view consists of key-value mappings that are indexed by the key.
Since the database serves only as storage in the STD task, only two views are defined, both
consisting only of a map function. One view, Vw(word), uses the hypothesis word as a key
and is used to retrieve candidate sets for the first word of a query. For subsequent words in
multi-word queries, an additional view, Vwu(word, utt), consisting of the word-utterance
pairs as keys is used. It allows searching for words in specific utterances.

4.4. Querying

Given a search term, the view Vw is queried for occurrences of the term’s first word in the
complete corpus. Results contain the start and end times of the word detections, an ASR
posterior score, the original file name and the utterance name from the Janus database.
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Query VWU for 
 - ("airline", utt1)
 - ("airline", utt9)

-file=utt1,ts=15.1,te=15.5
-file=utt1,ts=37.9,te=38.2
-file=utt9,ts=27.3,te=27.6

-file=utt1,ts=18.5,te=19.1
-file=utt1,ts=38.5,te=39.1
-file=utt9,ts=26.6,te=27.1

Query VW for 
 - ("major")

Figure 4.2.: Example of a query process for the term “major airline”

4.4.1. Treatment of Multi-Word Queries

Multi-word queries are treated as a sequence of single word queries. According to the
evaluation criteria in [Nat06], the time between a query word wi and its successor wi+1

must not be longer than Tgap = 0.5s in the reference transcript. Since the STT system
might have recognized other words in such a time period, no general assumptions about
direct succession in the confusion networks can be made.

Therefore, for each hit hk = (wi, startk, endk, uttk, posteriork) of word wi (retrieved
by querying view Vw(wi)), the view Vwu(wi+1, uttk) is queried for all occurrences hl =
(wi+1, startl, endl, uttl, posteriorl) of the subsequent query words in the same utterance.
If the word wi+1 occurs within the allowed time, i.e. startl − endk ≤ Tgap, the word is
matched and the querying continues with wi+2 or a new detection is reported if wi+1 is
the last word of the query. If startl − endk > Tgap, the possible detection is rejected.

4.4.2. Example

Figure 4.2 shows an exemplary querying process for the two-word term “major airline”.
First, all occurrences for the first word are retrieved and as a second step, follow-up words
are found. The first result of the second query does not start within 0.5 seconds of the
end of an occurrence of the first word and is rejected. The second results of the queries
match and hence form a detection candidate. The third results occur within 0.5 seconds
of each other, but in the wrong order and are consequently rejected. Hence, one possible
term occurrence is detected.

4.5. Summary

The implemented STD system is divided into two parts, an indexing and a query engine.
The first one processes confusion networks and inserts them into a document-oriented
database while the second one can be used to query this database for term occurrences.

Querying is performed on a word level, disregarding possibly inserted words and finding
word sequences based on the maximal time gap allowed in the evaluation.
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5. Query Expansion for
Out-of-Vocabulary Words

The term query expansion describes the process of adding related terms to the original
query in order to increase the result set. The NIST Spoken Term Detection task uses
the exact orthographic transcription of words to identify hits, therefore a query expansion
using e.g. stemmed word forms or synonyms would actually be counterproductive. For
in-vocabulary words, query expansion typically leads to more false alerts. However, some
query expansions with normalized forms can be beneficial and expansion with similar words
can be used to find out-of-vocabulary words.

Generally, the original query and expanded queries should be treated differently in the
decision process since query expansions are potentially error-prone. For example when
replacing an OOV word with a similar sounding one, the degree of similarity should be
taken into account.

Hence, the score of a detected candidate c for a query term w with ASR confidence P (c)
is obtained by Score(c) = P (c) ·Sim(w, c). The function Sim(w, c) represents the quality
of the query expansion (the similarity to the actual term) and depends on the type of
query expansion. Different variants will be mentioned in the following subsections and
experimental results of the strategies are presented in chapter 7.

It should be noted that all of these approaches operate on the same confusion network
output. Since no adaptation or retraining of the ASR system is necessary, the STD system
can be easily adapted to different setups and languages.

5.1. Normalization

For example, the hyphenation of terms in the recognizer output is typically not completely
conforming to dictionaries and query input. Query terms such as “brother-in-law” are
often recognized as multiple words (“brother in law”). Therefore, the STD system expands
hyphenated terms into their components and uses results of both query terms as output.
It can be configured to penalize results from the expanded query. Typically, however,
Simnorm ≡ 1 is used for the normalizations unless otherwise noted.

Similarly, the system can be configured to normalize apostrophes. Although this can
occasionally avoid OOV words (e.g. “form’s”), it can also add additional ones (e.g. “he’s”).
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Levenshtein Similarity

alexis 0.8333 alessio 0.6923 alexei 0.6667 alex 0.6

alexi 0.8182 flexion 0.6923 alex’s 0.6667 aleo 0.6

Dice coefficient

alexi 0.8889 alex 0.7500 flexion 0.7273 exiles 0.6

alexis 0.8000 lexical 0.7273 exile 0.6667 exiled 0.6

Figure 5.1.: Most similar words for the out-of-vocabulary search term “alexio” based on
55k vocabulary

Additionally, the system can be configured to use GLM files containing mappings between
different orthographic forms of the same words, e.g. expanding the title “dr” to the word
“doctor” which is typically found in the recognizer results.

Depending on the dictionary used by the speech recognizer and the orthographic format
of the queries, it can be necessary to perform additional normalizations. For example, the
NIST 2006 term lists spell acronyms as a series of one-letter-words (“u. s. a.”, “t. v.”),
whereas the Quaero ASR system (see section 7.1.2) uses a single word spelling (“USA”,
“TV”).

5.2. Orthographic Query Expansion

As mentioned in section 3.2, there are several approaches to find occurences of query terms
that are not in the recognizer dictionary. One such approach is identifying words in the
recognizer vocabulary which are orthographically similar to the query word.

Orthographic similarity can be defined in a multitude of different ways. Two arguably
common ones are string similarities based on Levenshtein distance and the Dice coefficient.
Based on these similiarity measures, additional searches are performed and subsequently
their results are combined.

5.2.1. Levenshtein distance

The Levenshtein distance between two strings is an edit distance based on the minimum
number of substitions, insertions or deletions necessary to transform one string into the
other (5.1). As opposed to the approach in 5.3, uniform substitution penalties are used
due to the difficulty of estimating the confusability of single letters. This distance measure
can then be used to retrieve the words of the vocabulary most “similar” to a particular
out-of-vocabulary query term .

Dlev(s1, s2) = Nsub +Nins +Ndel (5.1)

For the decision process, however, this distance measure cannot be directly integrated with
the posterior probabilities into a final score. Additionally, the Levenshtein distance itself
is highly dependent on the length of words compared and should therefore be normalized.
One possibility is to subtract the number of character edit operations necessary for trans-
forming both strings into each other from the number of total characters and normalize
them based on the total length, as seen in Equation 5.2 where | . . . | represents the number
of characters in a string.
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Figure 5.2.: Phone-based Query Expansion

Simlev(s1, s2) =
|s1|+ |s2| − 2 ·Dlev(s1, s2)

|s1|+ |s2|
(5.2)

An example of word similarities can be found in Figure 5.1.

5.2.2. Dice coefficient

An alternative similarity measure based on the orthographic word representation is the dice
coefficient as seen in Equation 5.3. It emphasizes the number of shared character bigrams
of two words. Apart from the bigram structure, the order of characters is, however,
discarded.

Simdice(s1, s2) =
2 · |B1 ∩B2|
|B1|+ |B2|

Bi = {cjcj+1|cj is jth character of wi} (5.3)

An example of word similarity based on the dice coefficient can be found in Figure 5.1.

5.3. Phone-based Query Expansion

An alternative to using orthographically similar words for query expansion is the utilization
of the phonetic representations of words to find phonetically similar ones. All words
in the recognizer vocabulary are accompanied by their respective pronunciation. The
(presumptive) pronunciation of out-of-vocabulary words can be obtained by using speech
synthesis tools such as Festival ([TBC98]) which include letter-to-sound rules for unknown
words.

The general process is depicted in Figure 5.2. As a first step in the phoneme-based query
expansion approach, a pronunciation is generated by Festival. Subsequently, the simi-
larity of this reference pronunciation and the pronunciation of every vocabulary word is
calculated and the k most similar words are used for query expansion.

Since the speech synthesis component of Festival is not needed, the pronunciation can be
retrieved by a lex.lookup command and possibly necessary conversions from the Festival
phone set to the speech recognizer phone set are performed subsequently.

To calculate the similarity Simphone between two pronunciations, a dynamic programming-
based algorithm is used. The probabilities of substituting two phones are based on the
confusion matrices in [CWSC04] and the probability of phone insertions and deletions can
be parameterized.

It should be noted that, opposed to the approach in section 5.2, the phone-based query
expansion is not language-independent. It relies on the availability of letter-to-sound rules
(included within Festival) and phone confusion estimates for the particular language or
dialect.
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Find most
similar words
in vocabulary

AX L EH K S IY OW
alessio
alexi

delicacy ...

Predict
pronuciation
using Festival

Figure 5.3.: Example of phone-based Query Expansion for the OOV word “alexio”

Figure 5.3 shows an example for phone-based query expansion. First a pronunciation for
the word is predicted by Festival’s letter-to-sound rules and, if necessary, mapped to the
recognizer phone set. Subsequently, the similarity of this predicted pronunciation to all
words in the recognizer dictionary is calculated and the top results are returned and used
for query expansion.

5.4. Summary

Queries containing out-of-vocabulary words can be expanded to (multiple) similar words
and the search is performed with expanded queries, taking into account the degree of
similarity to the search term.

Expansion can be performed based on text normalizations and orthographic or phonetic
similarity to in-vocabulary words. The results of the corresponding implementations de-
scribed in this chapter can be found in chapter 7.
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6. Decision Strategies

As depicted in Figure 4.1, the decision process is the final step while performing a term
query. It includes possible modifications of the detection confidences as described in section
6.1 and the binary decision process for each detection candidate as described in section
6.2. Results and evaluations of the approaches in this chapter are presented in chapter 7.

6.1. Rescoring Based on Acoustic Similarity

The approach in this section utilizes the acoustic similarities among the detection candidate
set of a particular term to perform a random walk over a candidate context graph and
update the candidates’ confidences.

Generally, the scores of candidate detections are based on the posterior probabilities (con-
fidences) of the STT system. There are, however, approaches that also include information
from the candidate set, especially the similarity of different candidates.

Relevance Feedback is a popular technique in information retrieval to refine queries. Based
on an initial result set, a user identifies relevant results. Features of these relevant results
(e.g. term frequencies) are then used to refine the query or reweigh the results, yielding
substantial improvements [SB90].

Pseudo-Relevance Feedback (PRF) is a method to apply the concepts of relevance feedback
without the need for user interaction. It assumes that the top results (based on some
scoring metric) of a query are the most relevant [CYF+97]. Hence, other rather low-
scoring candidates that are very similar to the “relevant” top results should be given a
higher score (or better rank in ranked result lists). In [CCL+11], Chen et al. propose
a PRF approach to Spoken Term Detection based on acoustic similarity which has been
used and adapted for this work.

Using Dynamic Time Warping as a similarity measure (cf. 6.1.1.1), results are rescored
based on their acoustic similarity, but also taking into account their prior ASR confidence
score. Using a random walk over a candidate context graph adapted from [HKC07], new
scores are calculated and integrated into the candidate score.

This rescoring approach is different from the rest of this work in the way that it takes into
account the audio underlying candidate detections and hence uses additional information
not stored in the CouchDB index.
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26 6. Decision Strategies

6.1.1. Acoustic Similarity

The pairwise similarity between all audio segments ci, cj from the set of detection candi-
dates C is calculated based on a distance measure d between the lMEL feature vectors of
the respective audio segments as shown in Equation 6.1. Two different distance measures
have been implemented, dDTW as described in 6.1.1.1 and dSelfSim as described in 6.1.1.2.

Sim(ci, cj) = 1− d (ci, cj)− dmin
dmax − dmin

(6.1)

dmin = min
ck,cl∈C

d (ck, cl) , dmax = max
ck,cl∈C

d (ck, cl)

6.1.1.1. Dynamic Time Warping-based Distance

The distance measure dDTW between two audio segments is based on Dynamic Time
Warping (DTW). DTW is based on the frame-wise (Euclidean) distance between feature
vectors. However, to allow for time variations, a frame alignment between the two segments
is calculated with Dynamic Programming. For details, see e.g. [SC78]. No constraints have
been used to find the DTW path.

6.1.1.2. Self-Similarity-based Distance

An additional distance measure dSelfSim between two audio segments is based on the
concept of Self-Similarity Matrices (SSMs) as proposed by Muscariello et al. in [MGB11].
SSMs can be seen as “fingerprints” of audio data and for example cancel out constant
additive noise within the audio.

Given a candidate audio segment c with n frames, with (F (c))i being the feature vector
of the i-th frame, the Self-Similarity matrix MSSM (c) of this segment is based on the
pair-wise Euclidean distance between the frames’ feature vectors as shown in Equation
6.2.

MSSM (c) =
(
mij

)
, mij = ||(F (c))i − (F (c))j ||2, 1 ≤ i, j ≤ n (6.2)

Interpreting this matrix as an image, a feature vector Φ(MSSM (c)) can be calculated based
on Histograms of Oriented Gradients (HOGs) that have been introduced by Dalal et al.
and shown to be useful in image classification tasks [DT05]. For details on the calculation
of these feature vectors, see [DT05] and [MGB11]. Since the size of the feature vectors
vary based on matrix dimensions, two SSMs MSSM (ci), MSSM (cj) are first time-aligned
by Dynamic Time Warping to create two matrices of identical dimensions, M ′

SSM (ci) and
M ′
SSM (cj).

dSelfSim(ci, cj) =
∣∣∣∣Φ(M ′

SSM (ci))− Φ(M ′
SSM (cj))

∣∣∣∣
1

(6.3)

The distance between two candidate audio segments is then defined as the 1-norm of the
difference of their HOG feature vectors as depicted in 6.3.

6.1.2. Constructing a Candidate Context Graph

As in [CCL+11], a complete directed graph is calculated for the candidate set C. Each
candidate c ∈ C corresponds to a vertex and the edges are weighted based on the similarity
of their incident vertices.
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6.1. Rescoring Based on Acoustic Similarity 27

A(C) =
(
a(ci, cj)

)
, a(ci, cj) =

Sim(ci, cj)∑
ck∈C\{ci} Sim(ci, ck)

(6.4)

The weight of a directed edge (ci, cj) is the acoustic similarity between the corresponding
candidates as defined in 6.1.1, normalized over all outgoing edges of ci. Equation 6.4 shows
the edge weights in the form of the adjacency matrix A(C) of the candidate context graph.

6.1.3. Score Update

The score update u(ci) for each candidate (vertex) is then defined recursively as the in-
terpolation of a candidate’s original confidence score sASR(ci) and the other candidates’
updated score, weighted by the similarity to the respective other candidate over the in-
coming edge (cj , ci) as seen in Equation 6.5. s′ASR(ci) := sASR(ci)/

∑
ck∈C sASR(ck) is the

normalized confidence score and α is an interpolation weight to adjust the influence of the
original score.

u(ci) := (1− α) · s′ASR(ci) + α
∑

cj∈C\{ci}

a(cj , ci) · u(cj) (6.5)

This update formula 6.5 can be seen as a form of Pseudo-Relevance Feedback. Each
candidate score is based on the original confidence score, but the scores of candidates that
are similar to other “high-scoring” (i.e. top-ranking) candidates are boosted by the second
summand.

Based on the observation that ∀ci ∈ C :
∑

cj∈C\{ci} a(ci, cj) = 1, the adjacency matrix

A(C) of the candidate context graph can also be seen as a stochastic matrix defining path
probabilities. The solution to 6.5 can then be found as the stationary probabilities after a
random walk [HKC07].

Converting Equation 6.5 in vector form yields Equation 6.6. u := (u(c1), . . . , u(c|C|))
is the vector of all candidates’ score updates, s′ASR := (s′ASR(c1), . . . , s

′
ASR(c|C|)) is the

vector of all candidates’ normalized original confidence scores and e = (1, . . . , 1) is the
|C|-dimensional 1-vector. 6.7 follows from

∑
ci∈C u(ci) = 1 (cf. Equation 6.5).

u = (1− α) · s′ASR + α(A(C))>u (6.6)

=
(

(1− α)s′ASRe> + α(A(C))>
)

︸ ︷︷ ︸
=:Q

u (6.7)

Equation 6.7 states an eigenvector problem that is similar to the PageRank problem
[CCL+11]. It is shown in [HKC07] and [LM05] that, based on the structure of Q, u
exists and is unique.

The update u(ci) can be interpreted as a distribution of the original candidate probability
mass based on acoustic similarity as defined by dDTW or dSelfSim.

sRescored(ci) = sASR(ci) · (u(ci))
δ (6.8)

The new score sRescored for each detection candidate is calculated as seen in 6.8 based
on the score update and a smoothing parameter δ, typically set to 1. However, sRescored
cannot necessarily be interpreted as the probability of a correct detection any more.
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28 6. Decision Strategies

Hence, experiments have been performed with different types of additional score process-
ing, for example histogram equalization-like normalization on the whole probability range
or the original probability range.

Results of the rescoring approaches are reported in 7.2.5.

6.2. Thresholds

The final step in the Spoken Term Detection process is the binary decision, whether a
candidate should be reported by the system as a detection or not. This is done based on
thresholds—a detection is reported if and only if the candidate score is greater or equal
to a threshold. Both a global threshold that is identical for every term and term-specific
thresholds have been implemented.

6.2.1. Global Threshold

A natural way for the decision process is the use of a global threshold (GT). Based on a
held-out development dataset, the global threshold that maximizes the ATWV is chosen.

This simple approach is assumed by NIST and the evaluation and diagnostic tools are
optimized for it. DET curves as described in 2.3.2 are based on the assumption of global
thresholds and a Maximum Term-Weighted Value (MTWV) based on the ATWV, but
using the best global threshold instead of the system decision.

6.2.2. Term-Specific Thresholds

Term-specific Thresholds (TSTs) are a decision strategy specifically optimized for the
ATWV metric and have been first published by [MKK+07]. They are based on two ideas.
First, every term contributes equally to the ATWV score. Hence, thresholds should also
be optimized/adapted for every term. Second, the detection score, interpreted as the
probability of a correct detection, should be used to adapt the threshold to the cost/benefit
ratio of the evaluation metric.

Let Icorr(c) be an indicator variable that is 1 if candidate c is correct detection and 0 if
c is spurious detection. Then the definition of the ATWV for a term list T in 6.9 can be
reformulated as a sum over all detection candidates C(t) of a term t ∈ T as in Equation
6.10.

ATWV (T ) =
1

|T |
∑
t∈T

(
Ncorrect (t)

Ntrue (t)
− β · Nspurious (t)

NNonTarget (t)

)
(6.9)

=
1

|T |
∑
t∈T

∑
c∈C(t)

(
Icorr(c)

Ntrue (t)
− β · 1− Icorr(c)

NNonTarget (t)

)
(6.10)

It is evident that the expected value of each summand in the inner sum of Equation
6.10 should be maximized in order to maximize the ATWV. Furthermore, each summand
should be greater than or equal to zero in order to improve the ATWV.

Assuming that a candidate score s(ci) represents the actual probability of a correct detec-
tion (and hence 1− s(ci) the probability of a spurious detection), a threshold θ should be
chosen so that the expected value of each inner summand in 6.10 is greater or equal zero
for s(ci) ≥ θ. Assuming a general benefit Bhit for a correct detection and a cost Cfa for a
false alert, this leads to Equation 6.11.
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6.3. Summary 29

θ(t) ·Bhit − (1− θ(t)) · Cfa
!

= 0 ⇐⇒ θ(t) =
Cfa

Bhit + Cfa
(6.11)

Using the parameters of the ATWV evaluation metric for Bhit and Cfa, this leads to the
term-specific threshold in Equation 6.13.

Bhit =
1

Ntrue(t)
, Cfa =

β

NNonTarget (t)

=⇒ θ(t) =
β ·Ntrue(t)

NNonTarget (t) + β ·Ntrue(t)
(6.12)

=
β ·Ntrue(t)

Tspeech + (β − 1) ·Ntrue(t)
(6.13)

The number of true occurrences Ntrue(t) from Equation 6.13 is obviously unknown during
the decision process. It can, however, be approximated by the sum of the candidates’
scores. This expected value holds only true if the scores are a reasonable approximation
of the actual probability of a correct detection.

6.3. Summary

In the decision process, a rescoring based on acoustic similarity between detection candi-
dates can be performed. Similar to pseudo-relevance feedback, scores of detections similar
to the best search results are boosted.

Term-specific thresholds as an ATWV-oriented concept are motivated and introduced as
the primary decision strategy of the system. These concepts have been implemented and
are evaluated in chapter 7.

29





7. Experimental Evaluation

This chapter describes the experiments performed with the previously described configura-
tions. The data and setup used for the experiments is described and ASR performance as
a basis of STD is evaluated. Subsequently, the results of different approaches are described
and contrasted. At the end of the chapter, findings are evaluated in context.

7.1. Experimental Setup

The experiments in this chapter have been performed on the NIST 2006 development and
DryRun data. Due to the similarity of corpus and term lists, this enables a comparison
with the final 2006 NIST STD competition and an evaluation in the context of the 2006
results.

The experiments are relying on an available speech-to-text system as a prerequisite. There-
fore, the experiments have been limited to the English broadcast news and meeting data.

7.1.1. Evaluation Data

The audio data used in the experiments consists of approximately three hours of English
broadcast news and about two hours of round-table meetings.

The broadcast news data consists of six programs recorded in February 2001.
The meeting data consists of ten single channel recordings based on distantly placed mi-
crophones and has been produced in 2001 and 2005.
More details on the used data can be found in the NIST STD 2006 Evaluation Plan [Nat06].

Two term lists provided by NIST have been used for the experiments. The DryRun term
list contains 1108 terms and the Dev term lists contains 1100 terms. As listed in Table 7.1,

# of words in query
Term List 1 2 3 4 Average

DryRun 597 410 68 32 1.55
Dev 599 400 85 15 1.56

Table 7.1.: Length of Queries
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32 7. Experimental Evaluation

System Vocab size WER BNews WER Meeting

TUB 2006 47k 30.31% 60.25%
Quaero 1rst pass 128k (104k ci) 22.99% 65.40%
Quaero adapted 128k (104k ci) 19.88% 64.69%

Table 7.2.: Vocabulary sizes and Word Error Rates of different recognizer systems

both lists contain primarily short queries (about 1.6 words on average) and the queries
consists of four words at most.

Generally, all words in multi-word queries also occur as a single-word query in the 2006
term lists. Although this approach allows a separate view on each word in a multi-word
query, it also results in questionable queries for terms such as “e.s” that are contained in
multi-word queries like “g. r. e.s aren’t”.

7.1.2. Speech Recognition Systems

Experiments were performed with hypotheses produced by two different speech-to-text
systems.

The first STT system used is identical to the one used by the TU Berlin submission in
2006. It will be referred to as the “TUB” system subsequently. It is based on the first pass
setup of ISL RT2004 Meeting system [MFPW05].

The second STT system has been developed for the Quaero evaluations and is therefore
referred to as the “Quaero” system. It is based on the MFCC system with CMU dictionary
from [SKN11]. Hypotheses from both the first run and an adapted second run (referred
to as “Quaero Adapted”) have been used.

The vocabulary sizes differ significantly as can be seen in Table 7.2. The TUB system has
a case insensitive vocabulary, whereas the Quaero vocabulary is case sensitive. Based on
the number of (case insensitive) words, the Quaero vocabulary is more than twice as large
as the TUB one.

Table 7.3 contains an overview of the number out-of-vocabulary words in corpus and
queries. The OOV rate on the corpus is relatively low (around 3%). Although there are
more OOVs in the query terms (between 4% and 10%), it is noteworthy that the relation
between query OOV rate and corpus OOV rate is much lower than Logan et al. report in
a scenario with actual user queries [LMTW00].

There is, however, a mismatch between the Quaero vocabulary and the query term struc-
ture concerning the handling of acronyms. The Quaero vocabulary does not contain any
single letters and treats acronyms as single (capitalized) words (“TV”), whereas the TUB
vocabulary and the term list split acronyms into single letters (“t. v.”). While this mis-
match can be normalized by splitting acronyms in the Quaero hypotheses, single letters
lead to the surprisingly high OOV rate on the data despite the higher vocabulary size of

# of OOV words in corpus # of OOV queries
System BNews Meeting DryRun Dev

TUB 341 (1.38%) 583 (2.59%) 66 (5.96%) 57 (5.18%)
Quaero 774 (3.14%) 666 (2.96%) 105 (9.48%) 47 (4.24%)

Table 7.3.: Statistics of Out-of-vocabulary words in corpus and term lists
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7.2. Results 33

the Quaero system. Additionally, they also affect the scores due to numerous single letter
queries (as mentioned in 7.1.1).

7.1.3. Recognizer Performance

The different systems perform significantly different on the audio data used in the experi-
ments. The word error rates on broadcast news, as listed in Table 7.2, range from 30.31%
with the TUB system to 19.88% with the adapted Quaero system. On the meeting data,
the TUB system performs best with a 60.25% word error rate, the adapted Quaero system
achieves 65.40% with the first-pass result being slightly worse.

The results on meeting data are much worse than on the broadcast news, severely effecting
the ability of term detection. This is, however, not a particular problem of the used
recognition systems. As shown in Table 3.1, the participants of the 2006 evaluation also
reported word error rates of over 40%.

The word error rate as a whole can only give a single impression of the quality of the
recognizer in the STD task, since its components, deletions, insertions and substitutions,
contribute differently to the detection task.

Deletions, i.e. words not detected at all, generally result in a lower hit rate since less
candidates for a particular query are detected. Insertions, i.e. words in the hypotheseis
which are not in the reference, do not affect the number of correct detections, but increase
the false positive rate, therefore decreasing the ATWV score. Substitutions both lower the
correct detection rate and increase the number of false positives.

If term-specific thresholds are used, additional elements need to be considered. Since the
number of true occurences in formula 6.13 depends on the posterior sum of all candidates,
an increase in the number of candidates results in a higher threshold, typically decreasing
the number of correct detections.

The use of confusion networks reduces the influence of the previously mentioned errors in
the single-best transcript and the word error rate can be only an indicator of recognition
quality.

7.2. Results

This section contains the results of the approaches described in previous chapters on the
2006 development data. Different approaches and configurations are primarily evaluated
based on the ATWV as defined in 2.3.3. More detailed results with overall detection
statistics can be found in the appendix.

7.2.1. Overall results

An overview over the ATWV results of the basic approaches can be found in Figure
7.1. It contains results of the same STD system configuration (phone-based expansion as
described in 5.3) on different data. The different groups corresponds to the different STT
systems generating the hypotheses.

First, it can be observed that within each of the three groups (each system) the order of
ATWV scores on different term lists is identical. The Dev term list is “easier” in the way
that all systems achieve higher scores on it than on the DryRun term list.

Second, all systems perform much better on Broadcast News than on Meeting data. Con-
sidering the WERs from Table 7.2, this is not very surprising. Similarly, the Quaero
systems perform better on BN data and worse on Meeting data compared with the TUB
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TUB 0.5503 0.6097 0.2351 0.3175
QuaeroFirst 0.6548 0.7398 0.2135 0.2776

QuaeroAdapted 0.6722 0.7491 0.2119 0.2924

Figure 7.1.: Overview of ATWV results of different STT systems and term lists

system. The ASR confidences of the meeting hypotheses are quite high compared with
the recognition accuracy. Therefore, an empirically chosen confidence penalty of 0.15 has
been applied to all term occurrences in meeting data.

More details on system performance on the DryRun and Dev term lists can be found in
A and B, respectively.

7.2.2. Influence of Word Error Rate

As mentioned in the previous subsection, the word error rate plays a critical role in the
achievable ATWV value. Figure 7.2 shows the (monotone) relationship between word error
rate and ATWV. All experiments in the plot use an identical STD system configuration
and vary only in the accuracy of the underlying confusion network hypotheses. Different
accuracies based on the same ASR system can be produced by varying the master-beam
setting in the Ibis decoder, i.e. adjusting the search-depth of the recognizer. The leftmost
marker in the plot corresponds to the adapted Quaero system, the next two “+”-markers
correspond to the Quaero first-pass system at different master-beam configurations and
the “x”-markers correspond to the TUB system at different master-beam configurations.

The general observation is that a better WER results in a better ATWV score and e.g.
the Quaero system with reduced master-beam at 26.5% WER still performs better than
the TUB system. However, while the relative increase in WER from the Quaero first-pass
system to the one with reduced master-beam is 15% and the increase to the TUB system
is 32%, the ATWV values experience a relative drop of 12% and 16%, respectively. Hence,
the reduce in search-depth of the Quaero system hurts the ATWV more than the WER
compared with the TUB system. This could be attributed to the fact, that especially
unlikely word hypotheses that do not affect the WER are not contained in the confusion
networks.

Since the STD system is based on the confusion networks whereas the WER only reflects
the quality of the 1-best transcript, Figure 7.2 certainly has shortcomings. Nevertheless,
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Figure 7.2.: Broadcast News performance of STD system with phone-based expansion on
different ASR hypotheses with different Word Error Rates

it gives a good impression of the influence of transcription quality on the ASR value and
shows that word error rate on a single-best transcript can be used as an indicator even
though confusion networks are searched.

For comparison, the ATWV of the original TUB STD system is also plotted in Figure
7.2. Core differences between the different STD systems operating at identical WER are
a more robust term retrieval, query normalizations/expansion and the use of term-specific
thresholds.

7.2.3. Influence of Thresholds

The type of thresholds used for the binary classification of candidate occurrences as de-
scribed in 6.2 makes a substantial difference. Figure 7.3 gives an overview of the ATWV
performance of different global threshold values compared with the performance of term-
specific thresholds. Whereas 0.4424 is the highest ATWV with global thresholds (at a
threshold of 0.571), term-specific thresholds yield an ATWV of 0.5502.

The large“plateau” in the center of the curve indicates that most detection candidates have
either a relatively high or a relatively low score and therefore varying thresholds between
0.3 and 0.6 make few differences.

7.2.4. Results on Out-Of-Vocabulary terms

The different query expansion approaches described in chapter 5 enable the detection of
out-of-vocabulary words. As seen in the Broadcast News results in Figure 7.4, the use
of the different query expansion techniques do not affect the overall ATWV very much,
whereas they make a significant difference on the actual OOV words. All experiments in
this subsection are based on TUB ASR hypotheses with the DryRun term list.

First, basic term-normalization as described in 5.1 already gives the ability to detect a
substantial amount of term occurrences. The ATWV value of 0.2712 is largely based on
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Figure 7.3.: Different Thresholds on TUB Broadcast News Data
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Figure 7.5.: Detection-Error-Tradeoff curves for OOVs compared with all terms; phone-
based expansion on TUB hypotheses

the detection of expanded hyphenated terms (e.g. “brother-in-law”) or normalization of
apostrophes (e.g. “form’s”).

Using orthographic expansion as a way to generate “similar” words for OOVs, the ATWV
value of 0.3560 shows the ability to improve the results without any language-specific
knowledge by using string similarity metrics. For this experiment, the Levenshtein distance
(5.2.1) has been used. The Dice coefficient performs slightly worse on the DryRun term
list, but generally very similar.

The phone-based expansion scheme to generate similar words based on the presumed
pronunciation of an OOV query yields further improvements. Using Festival pronunciation
rules as described in 5.3 improves the ATWV on DryRun OOVs to 0.4042. This makes it
the best performing system on OOV queries.

The typical relation of precision and recall of the OOV results can be seen in Figure 7.5.
Although this DET curve is based on the use of global thresholds, it gives some insight
into the structure of OOV query results. Whereas the curves for all terms look relatively
similar with MTWVs at a false alarm probability of about 0.01, the OOV curve has more
of a “ladder” form with the MTWV at a false alarm probability of less than 0.001.

The two step-like decreases in miss probability can be interpreted as the recognition of
different types of OOV queries. Whereas normalizable OOV words are detected at a
relatively low false alarm probability, several other typical OOV terms can only be detected
at a much higher false alarm probability. Considering the relatively low number of OOV
terms, the long “horizontal stretch” of the OOV curve is probably rather an effect of the
term data than of general OOV considerations.
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Figure 7.6.: Effect of query expansion item count on DryRun ATWV score with phone-
based expansion

The previously reported experiments use 50 query expansion terms generated based on
orthographic or acoustic similarity to dictionary words. Figure 7.6 shows the influence of
the number of expansion terms on the ATWV value based on the phone-based expansion
technique. Naturally, most improvements over the original ATWV value come from the
first, i.e. most similar, query expansion words. However, the score does not deteriorate
with a higher item count. This can be attributed both to the decreasing similarity fac-
tors that reduce the probability of a ”YES” decision for an occurrence and to the use of
term-specific thresholds which take into account the number of detection candidates by
estimating Ntrue (cf. subsection 6.2.2).

7.2.5. Influence of Acoustic Similarity-Based Rescoring

Using the rescoring approach discussed in 6.1 with term-specific thresholds does not yield
major improvements as shown in Table 7.4. On the TUB system with DryRun term list
and phone-based query expansion, the ATWV on OOV terms rises slightly from 0.3838 to
0.3857.

Different weighing parameters or normalization strategies as mentioned in 6.1.3 do not
improve the ATWV either and the rescoring decreases the ATWV if orthographic query
expansion is used. For more details, see A.1.2 and A.1.3.

Expansion type and Rescoring OOVs ATWV OOVs MTWV

phone-based without Rescoring 0.3838 0.3044
phone-based with Rescoring 0.3857 0.3883
phone-based with Rescoring & Self-Sim 0.3857 0.3890
orthographic without Rescoring 0.3706 0.2667
orthographic with Rescoring 0.3270 0.3874

Table 7.4.: Influence of Rescoring on different system configurations on OOVs with TUB
hypotheses
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Thresholds) with TUB system and phone-based query expansion on OOV
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Broadcast News Meeting All OOVs
System ATWV ATWVo ATWV ATWVo ATWV ATWVo
no expansion 0.5322 0.6888 0.2350 0.4930 0.0000 0.0000
normalization 0.5342 0.6891 0.2278 0.4673 0.2507 0.2546
orthographic expansion 0.5456 0.7143 0.2364 0.4923 0.3706 0.4321
phone-based expansion 0.5502 0.7152 0.2327 0.4862 0.3838 0.4676

QuaeroAdapt (phones) 0.6722 0.7890 0.2119 0.4444 0.3463 0.3534

Table 7.5.: Maximal DryRun oracle scores ATWVo achievable by perfect decisions regard-
less of detection score. Candidates are based on TUB hypotheses for the first
four system

If, however, global thresholds are used instead, improvements can be seen both in the
overall DET curve and in the Maximum Term-Weighted Value (see Figure 7.7 and Table
7.4). While the phone-based expansion approach without rescoring results in a MTWV
of 0.3044, using a DTW-based distance measure for similarity calculations (6.1.1.1) yields
a MTWV of 0.3883. The use of a self-similarity-based distance measure as described in
6.1.1.2 improves the MTWV further to 0.3890.

When using rescoring, the MTWV of 0.3883 actually tops the ATWV of 0.3857 with term-
specific thresholds without rescoring. As depicted in the DET plot in 7.7, the rescoring
improves recall at fixed precisions compared with the baseline. However, since the under-
lying detection candidates are identical, the best recall cannot be improved (curves are
almost identical at high false alarm probabilities).

Additional experiments have shown that the parameters values of α = 0.9 and δ = 1 work
well in praxis for the rescoring described in 6.1.3. Rescoring has only been used for terms
with at least one OOV word. If used for all words, it deteriorates the results.

7.2.6. Influence and Potential of System Decision

Ignoring confidence scores and decision strategies, it is interesting to evaluate the maxi-
mally possible results based on the ASR hypotheses. Table 7.5 shows the corresponding
ATWVO results using oracle decisions from the references for each candidate.

Usually, the oracle scores are substantially higher than the actual ones, with the perfor-
mance on OOVs using normalizations or the Quaero system being exceptions. Whereas
optimal decisions improve the ATWV on Broadcast News data by about 30%, the value
more than double on meeting data. This is likely a symptom of the less accurate ASR con-
fidences on the meeting data. Contrarily, the Quaero system seems to perform better with
actual decisions compared with the maximum ATWV. This can similarly be attributed to
an improved confidence estimation in the hypotheses.

Whereas the calculated scores combined with term-specific thresholds seem to work well
on OOVs for normalizations and in the phone-based expansions of the Quaero system,
there are substantial shortfalls in the actual decision with orthographic and phone-based
expansion. Although this suggest improvable similarity estimations for query expansion,
the shortfalls are still smaller than on all terms.
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7.3. Evaluation

Based on the results reported in the previous section, different conclusions can be drawn
and the influence of different techniques on the STD task can be evaluated.

Generally, the word error rate and improvements in the underlying ASR technology result
in large differences in STD performance. Hence, using the hypotheses from the Quaero
system instead of the TUB system on the BN data increases the ATWV score by over 20
percent. Nevertheless, also the generalized infrastructure and system design with better
detection performance contribute to the score improvement over the existing 2006 system.

At large, the biggest single improvement is the use of term-specific thresholds as a decision
strategy. They have both strong analytical motivation and offer a substantial increase in
ATWV score. Furthermore, an advantage of TSTs is the nonnecessity of threshold tuning
on held-out data.

It is generally helpful to avoid out-of-vocabulary terms resulting from a major mismatch
between the vocabulary or word structure of the ASR system and the task evaluation
term lists or tools, e.g. the handling of acronyms with the Quaero system. Although
normalizations are possible, they typically still result in score deterioration and require
additional (ASR configuration-specific) adaptation of the STD system.

7.3.1. OOV Strategies

Considering the overall result, the handling of OOV terms makes only a small difference
in the ATWV, with a deterioration of less than 5 percent if OOVs aren’t treated at all.
Nevertheless, this is a characteristic of the existing term lists and there is strong motivation
for OOV handling from the practical application of a STD system.

Normalizable OOV terms can be seen as “low hanging fruits” in the OOV detection task.
With some basic adjustments to query terms such as hyphenation normalization, the
ATWV improves significantly. However, none of these normalizable terms would be judged
as “real” OOV terms by a human whereas the two main query expansion approaches offer
detections of the latter kind.

The phone-based query expansion approach performs better than the orthographic one.
This can be mainly attributed to the lower false alarm rate of the first technique. Consider-
ing the rather poor grapheme-phoneme relation in the English language, the orthographic
expansion performs fairly well.

Although the false alarm rate of the expansion techniques is relatively high, this does not
represent a major obstacle for their application. In the STD task, it is generally beneficial
to find occurrences instead of decreasing false positives. For example, finding one out of
two term occurrences with two false alerts still results in a positive ATWV. Hence, the
ATWV metric encourages extensive query expansion.

7.3.2. Rescoring

Despite promising results in [CCL+11], the rescoring based on acoustic similarity does not
yield significant improvements over the best ATWV. The approach is primarily a re-ranking
which is quite helpful when using rank-based evaluation metrics such as Mean Average
Precision as in [CCL+11] whereas it makes less of a difference in the binary decision task
of STD.

As seen in Figure 7.7, the rescoring makes more of a difference in the detection-error trade-
off when comparing the maximum term-weighted values with global thresholds. Over all
OOV queries, correct and incorrect detections become better separable, e.g. showing an
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MTWV increase from 0.3044 to 0.3883 due to rescoring. Although this shows that rescoring
might conceptually help in the task, it is primarily of diagnostic interest. The MTWVs
are still close to the ATWVs (0.3838 in the previous example) and can only be realized
when the perfect threshold is known which is unrealistic for actual tasks.

A major drawback of general rescoring approaches is the debatable meaning of the scores
after application. Whereas the original confidence values can be seen as the probability
of a correct detection, this typically cannot be said after rescoring. Since the calculation
of term-specific thresholds in 6.2.2 assumes such a probability, rescoring should be used
rather reluctantly in the STD task.

Considering that the rescoring uses direct acoustic information whereas the rest of the sys-
tem is essentially text-based, the additional amount of information and query complexity
is not rewarded by an appropriately higher system result. Consequently, the technique as
described in 6.1 is not very beneficial and possible improvements are negligible compared
with other adjustments.

7.3.3. Comparison to Published Results

Although the evaluation term lists and references for the 2006 NIST task are not available
and hence a direct comparison with the evaluation results is not possible, the term structure
and audio difficulty was very similar to the development data and competitors reported
similar scores.

Looking at the ATWV scores in Table 3.1, both the IBM and the SRI system achieve better
results on broadcast news. However, the word error rate of the IBM and (presumably) the
SRI system are much lower than the one of the Quaero system. Taking into account the
influence of word error rate on ATWV result as depicted in Figure 7.2, the performance
of the STD system itself can be seen as comparable although the overall result is not on
same level as the competitors’.

The results on meeting data are generally worse than the ones on broadcast news, both
with the implemented system and the competitors in the 2006 evaluation which achieve
a lower word error rate. However, SRI’s evaluation ATWV of 0.26 corresponds to an
ATWV of 0.24 of the implemented system on the DryRun term list. On the development
data using term-specific thresholds, SRI reports an ATWV of about 0.45 with a WER of
37% whereas the implemented system on TUB data achieves 0.32 with a WER of 60%.
Although the ATWV scores differ significantly, the large difference in word error rate can
be seen as the major influence factor.

Aside from the worse recognizer hypotheses, the system performance seems to be compa-
rable to the results in literature.
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7.4. Summary

This chapter presented the experimental evaluation of the implemented Spoken Term
Detection system. The best results on the 2006 development term list are an ATWV
of 0.7491 on Broadcast News and an ATWV of 0.3175 on Meeting data. The use of term-
specific thresholds contributes most to the large improvement over a previously existing
system (from 0.38 to 0.55 on same data).

The accuracy of the underlying ASR system is crucial for the STD task. Using a current
Quaero ASR system instead of the 2006 TUB system improves the Broadcast News ATWV
values by more than 20 percent.

Using orthographic or phone-based expansion, the detection of out-of-vocabulary words is
possible and the corresponding ATWV has been increased to 0.3560 and 0.4042, respec-
tively.

Using rescoring based on acoustic similarity does not yield substantial improvements. Al-
though gains can be seen when using global thresholds, the rescoring does not significantly
benefit the overall result when using term-specific thresholds.
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8. Conclusion

In this work, a system for the Spoken Term Detection task has been implemented and
evaluated with prevalent data and evaluation metrics from the NIST 2006 English Spoken
Term Detection task.

Based on confusion network output of the Janus ASR system, the hypothesized textual
content of the audio is indexed and stored in a database including metadata such as
recognizer confidences. Given a term list, this index is searched and all occurrences are
reported along with a binary decision whether the system expects this detection to be
correct.

Using this common implementation framework, different techniques for search and retrieval
have been evaluated. Generally, the quality of the underlying transcription is crucial for
the STD task. The requirement of reporting the individual detection timestamps and
disregard of result ranking puts more emphasis on the fine-grained transcription quality
than other tasks like Spoken Document retrieval which focus more on information retrieval.

At large, the results using the primary evaluation metric, the ATWV, have been improved
to 0.5503 compared with 0.38 of an existing STD system from 2006. The best overall
results of 0.7491 is comparable to other published scores and deficits can be primarily
attributed to the underlying ASR accuracy.

The detection of terms containing out-of-vocabulary words has been a focus of this work.
Whereas none of these query words can be detected in a baseline system, two different
approaches for detection based on query expansion have been proposed, implemented and
evaluated.

Using orthographically similar words accompanied by some query normalizations yields
an ATWV of 0.3560 on out-of-vocabulary terms. This largely language-agnostic approach
yields an acceptable ATWV and finds about 40 percent of term occurrences that would
otherwise not have been detected.

The phone-based query expansion approach, using a text-to-speech engine to predict OOV
pronunciations and calculating acoustically similar words, finds slightly more OOV occur-
rences, but primarily results in a better precision, yielding an ATWV of 0.4042 on the
DryRun OOV words.

These two implemented approaches enables a fairly good detection of OOV terms. Al-
though the influence on the overall results is rather small on the 2006 material, this ability
is highly desirable, especially considering practical detection applications.
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46 8. Conclusion

Given a set of detection candidates, two methods of enhancing the decision process and
ATWV results have been evaluated. Term-specific thresholds as an optimized decision
strategy for the ATWV metric vary the detection threshold based on the probabilities of
detected candidates. They largely avoid the necessity to optimize the thresholds and offer
major gains in the overall results.

Using a rescoring approach based on acoustic similarity and pseudo-relevance feedback,
the decision process takes into account both the recognizer confidence for a candidate and
the acoustic similarity to other (especially probable) candidates. Although this approach
improves the global separability of correct and incorrect candidates based on score, it does
not work very well with term-specific thresholds and has only a small positive impact on
the best ATWV results.

Aside from the phone-based expansion and some rather language-specific normalizations,
the STD system does not rely on specifics of the English language. Assuming a STT
system able to produce confusion network output, the STD system should be easily usable
with different languages.

Overall, the resulting system represents a thorough implementation for the Spoken Term
Detection task. It offers an extensible framework for the detection of both in-vocabulary
and out-of-vocabulary terms that reaches competitive evaluation scores.

This work has been focused on the detection component of the STD task, i.e. the under-
lying ASR systems have only been varied for diagnostic purposes and not been optimized
for the STD task and evaluation metrics. Consequently, such an optimization would be
a natural component of future work. Starting from adjustments to the direct recognizer
output such as varying the probabilities of word or filler detections, an abundance of adap-
tations to the task on various ASR stages could be envisioned. Additionally, the potential
benefit of combining the output of various recognizers could be evaluated.

Albeit the text-based evaluation metric and discouraging results in the rescoring part of
this work and in literature, it might be worthwhile to use additional information and
features aside from the transcription to enhance the detection performance or to make
results more robust.

Whereas all results in this thesis have been produced on English data to allow comparison
with other works, it would be helpful to evaluate performance on other languages, especially
ones with fewer resources, less optimized speech recognizers or non-existing letter-to-sound
rules. Besides the general sensitivity to ASR accuracy, varying languages with varying
grapheme-phoneme relations will pose different challenges to the query expansion strategies
used to recognize out-of-vocabulary words.
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Nomenclature

ASR Automatic Speech Recognition

ATWV Actual Term-Weighted Value

BN Broadcast News

CONFMTG Conference Meetings

CTS Conversational Telephone Speech

DB Database

DET Detection-Error-Tradeoff

DTW Dynamic Time Warping

FA False Alert

GT Global Threshold

HOG Histogram of Oriented Gradients

HTTP Hypertext Transfer Protocol

IV In-vocabulary [word]

MAP Mean Average Precision

MFCC Mel-Frequency Cepstral Coefficients

MTWV Maximum Term-Weighted Value

NIST National Institute for Standards and Technology

OOV Out-of-vocabulary [word]

PRF Pseudo-Relevance Feedback

PSPL Position Specific Posterior Lattice

SDR Spoken Document Retrieval

SSM Self-Similarity Matrix

STD Spoken Term Detection
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52 Nomenclature

STT Speech-to-text [system]

TREC Text REtrieval Conference

TST Term-Specific Threshold

WER Word Error Rate

XML eXtensible Markup Language
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Appendix

This appendix contains detailed results of the experiments performed. Each table with
with detection statistics is preceded by a short definition list of the systems described.
The “System ID” corresponds to the name used for archiving the detection files.

The BN and MTG statistics correspond to the results on broadcast news and meeting
data for all terms. The OOV statistics correspond to the result on out-of-vocabulary
terms from both audio types. Note, that the set of OOV terms differs between the TUB
and the Quaero STT system.

For each term subset, ATWV (using term-specific thresholds), MTWV (assuming an op-
timal global threshold) along with correct detections, false alerts (FAs) and missed occur-
rences of the actual system decision (i.e. the basis of ATWV calculation) are reported.

A. Results on DryRun term list

A.1. TUB STT system

A.1.1. Basic Configurations

couch3 noNorms
Basic STD system without any normalizations or query expansions or rescoring

couch3 noSubs ignoreAp
system with normalizations including ignoring apostrophes but without GLM sub-
stitutions or query expansions or rescoring

System ID couch3 noNorms couch3 noSubs ignoreAp

BN ATWV 0.5322 0.5342

BN MTWV 0.4305 0.4319

BN Correct 3954 3939

BN FAs 1158 1175

BN Misses 1713 1728

MTG ATWV 0.2350 0.2278

MTG MTWV 0.1558 0.1337

MTG Correct 707 661

MTG FAs 335 310

MTG Misses 3289 3335

OOV ATWV 0.0000 0.2507

OOV MTWV 0.0000 0.2520

OOV Correct 0 22

OOV FAs 0 6

OOV Misses 0 60
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A.1.2. Orthographic Expansion

fuzzy3 noSubs ignoreAp
system using orthographic expansion (Levenshtein) with normalizations including
ignoring apostrophes but without GLM substitutions or rescoring

fuzzy3 dtw noSubs ignoreAp
system using orthographic expansion and DTW rescoring with normalizations in-
cluding ignoring apostrophes but without GLM substitutions

System ID fuzzy3 noSubs ignoreAp fuzzy3 dtw noSubs ignoreAp

BN ATWV 0.5456 0.5442

BN MTWV 0.4235 0.4157

BN Correct 3958 3950

BN FAs 1249 1218

BN Misses 1709 1717

MTG ATWV 0.2364 0.2368

MTG MTWV 0.1337 0.1337

MTG Correct 665 665

MTG FAs 324 311

MTG Misses 3331 3331

OOV ATWV 0.3706 0.3270

OOV MTWV 0.2667 0.3874

OOV Correct 33 25

OOV FAs 73 29

OOV Misses 49 57

54



A. Results on DryRun term list 55

A.1.3. Phone-based Expansion

phones3 noSubs ignoreAps
system with phone-based query expansion

phones3 dtw noSubs ignoreAps
system with phone-based query expansion and rescoring based on Dynamic Time
Warping (rescoring and normalization for OOV queries only)

phones3 dtw selfSim noSubs ignoreAps
system with phone-based query expansion and rescoring based on Self Similarity
Matrices (rescoring and normalization for OOV queries only)

phones3 dtw probNorm noSubs ignoreAps
system with phone-based query expansion and rescoring based on Dynamic Time
Warping and subsequent confidence normalization (rescoring and normalization for
OOV queries only)

System ID phones3
noSubs

ignoreAps

phones3 dtw
noSubs

ignoreAps

phones3 dtw
selfSim noSubs

ignoreAps

phones3 dtw
probNorm

noSubs
ignoreAps

BN ATWV 0.5502 0.5503 0.5503 0.5489

BN MTWV 0.4313 0.4281 0.4287 0.4291

BN Correct 3964 3964 3964 3960

BN FAs 1195 1194 1194 1193

BN Misses 1703 1703 1703 1709

MTG ATWV 0.2327 0.2331 0.2331 0.2331

MTG MTWV 0.1383 0.1383 0.1383 0.1383

MTG Correct 663 663 663 663

MTG FAs 312 310 310 310

MTG Misses 3333 3333 3333 3331

OOV ATWV 0.3838 0.3857 0.3857 0.3608

OOV MTWV 0.3044 0.3883 0.3890 0.2810

OOV Correct 34 34 34 30

OOV FAs 15 12 12 11

OOV Misses 48 48 48 52
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A.2. Quaero STT system

quaero phones3 noPeriodExpansion
system based on Quaero hypotheses and phone-based query expansion

quaero fuzzy3 noPeriodExpansion
system based on Quaero hypotheses and orthographic query expansion

quaeroAdapt phones3 noSubs noAcronymExpansion
system based on hypotheses of the adapted Quaero system using phone-based query
expansion

quaeroAdapt fuzzy3 levenshtein noAcronymExpansion
system based on hypotheses of the adapted Quaero system using orthographic ex-
pansion

System ID quaero
phones3 noPe-
riodExpansion

quaero fuzzy3
noPeriodEx-

pansion

quaeroAdapt
phones3
noSubs

noAcronymEx-
pansion

quaeroAdapt
fuzzy3

levenshtein
noAcronymEx-

pansion

BN ATWV 0.6548 0.6612 0.6722 0.6766

BN MTWV 0.5788 0.5697 0.6129 0.5885

BN Correct 3787 3803 3896 3910

BN FAs 876 881 825 870

BN Misses 1880 1864 1771 1757

MTG ATWV 0.2135 0.2138 0.2119 0.2102

MTG MTWV 0.2135 0.1621 0.1379 0.1375

MTG Correct 610 618 684 685

MTG FAs 277 287 371 386

MTG Misses 3386 3378 3312 3311

OOV ATWV 0.1223 0.3760 0.3463 0.3643

OOV MTWV 0.1053 0.3206 0.3382 0.3388

OOV Correct 21 34 31 32

OOV FAs 31 37 13 39

OOV Misses 104 48 51 50

Comment The number of OOV words for the Quaero systems is unusually high due to
the mismatch in acronym handling (cf. 7.1.2. Although the expansion of acronyms into
single letters is possible and greatly increases the number of detected OOV words, the
number of false alerts also increases significantly, making the ATWV score worse than the
one without acronym expansion.
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B. Results on Development term list

Results in this section are based on the development term list. Details can be found in
7.1.1.

B.1. TUB STT system

The following two systems use TUB hypotheses

dev phones3 noSubs ignoreAp
system using phone-based expansion

dev fuzzy3 levenshtein noSubs ignoreAp
system using orthographic expansion with Levenshtein distance

System ID dev phones3 noSubs ignoreAp dev fuzzy3 levenshtein noSubs
ignoreAp

BN ATWV 0.6097 0.5951

BN MTWV 0.5189 0.5027

BN Correct 3502 3499

BN FAs 882 990

BN Misses 1386 1389

MTG ATWV 0.3175 0.3175

MTG MTWV 0.1746 0.1746

MTG Correct 530 530

MTG FAs 179 188

MTG Misses 2640 2640

OOV ATWV 0.1604 -0.0033

OOV MTWV 0.0222 0.0222

OOV Correct 8 3

OOV FAs 8 99

OOV Misses 49 54
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B.2. Quaero STT system

dev quaero phones3
system based on Quaero hypotheses using phone-based expansion

dev quaeroAdapt phones3 noAcronymExpansion
system based on hypotheses from the adapted Quaero system using phone-based
expansion

dev quaeroAdapt fuzzy3 levenshtein noAcronymExpansion
system based on hypotheses from the adapted Quaero system using orthographic
expansion with Levenshtein distance

System ID dev quaero phones3 dev quaeroAdapt
phones3

noAcronymExpan-
sion

dev quaeroAdapt
fuzzy3 levenshtein
noAcronymExpan-

sion

BN ATWV 0.7398 0.7491 0.7425

BN MTWV 0.6667 0.7087 0.6513

BN Correct 3507 3581 3575

BN FAs 679 642 673

BN Misses 1381 1307 1313

MTG ATWV 0.2776 0.2924 0.2918

MTG MTWV 0.2106 0.2258 0.2258

MTG Correct 473 520 520

MTG FAs 149 203 211

MTG Misses 2697 2650 2650

OOV ATWV 0.1817 0.1404 0.0093

OOV MTWV 0.0658 0.0658 0.0000

OOV Correct 9 8 2

OOV FAs 30 21 60

OOV Misses 448 449 455
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