
Approaches to Compound Splitting in
German Spoken Term Detection

Bachelor Thesis of

Ge Wu

At the Department of Informatics
Institute for Anthropomatics (IFA)

Reviewer: Prof. Dr. A. Waibel
Second reviewer: Dr. S. Stüker
Advisor: Asst. Prof. Dr. F. Metze (CMU)
Second advisor: M.Sc. Y. Zhang

Duration: July 1, 2012 – October 31, 2012

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu



This work has been supported by the scholarship of Baden-Württemberg Stiftung. It
has largely been produced at the Language Technologies Institute of Carnegie Mellon
University within the interACT exchange program.

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Karlsruhe, October 30, 2012

Ge Wu



Abstract

In this work, a Spoken Term Detection system for German speech data has been designed
and evaluated. The design and evaluation of the system comply with the standards speci-
fied by the NIST 2006 Spoken Term Detection evaluation. Emphasis is placed on the ability
to detect out-of-vocabulary words, especially compound words in German language.

The system uses confusion network as input for the detection, which is generated by a
speech-to-text system. The confusion network is stored and indexed in a database for on-
demand querying. A compound splitting component of the system splits the compound
words into basic words for detection. A query expansion component is used to generate
more detection candidates for the out-of-vocabulary words. After the detection of the
search terms, a decision component decides if each detection should be output in the final
result.

Different approaches to splitting compound words and expanding search terms are applied
in the system and they are also analyzed and compared with each other in the experiments.
The system is tested on detecting spoken terms on German lecture speech data. By using
random selected spoken terms from the speech transcripts for evaluation, an Actual Term
Weighted Value of 0.7365 is achieved.

iii





Contents

1. Introduction 1
1.1. Challenges in German Spoken Term Detection . . . . . . . . . . . . . . . . 1
1.2. Objectives of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3. Scope of This Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4. Structure of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. Background and Related Work 3
2.1. The NIST 2006 Spoken Term Detection Task . . . . . . . . . . . . . . . . . 3
2.2. System from English STD Evaluation . . . . . . . . . . . . . . . . . . . . . 5

3. System Setup and Experimental Design 9
3.1. System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2. Compound Splitting Component . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3. Query Expansion Component . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4. Decision Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5. Adding OOVs to ASR System . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4. Algorithms for Compound Splitting 13
4.1. Basic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2. Algorithm Based on Word Formation Rules . . . . . . . . . . . . . . . . . . 15
4.3. Algorithm Based on Word Similarity . . . . . . . . . . . . . . . . . . . . . . 15

4.3.1. Primitive Idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.2. Using Efficient Data Structure: BK-Tree . . . . . . . . . . . . . . . . 16

4.4. Implementation and Computational Complexity . . . . . . . . . . . . . . . 19
4.4.1. Similarity Threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.4.2. Time and Space Complexity . . . . . . . . . . . . . . . . . . . . . . . 19

4.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5. Experimental Results and Evaluation 21
5.1. Spoken Term Detection Task . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1.2. Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.2. Compound Splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2.1. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2.2. Results and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6. Conclusion and Future Work 31

Bibliography 33

Nomenclature 35

v



vi Contents

Appendices 37
A. Source Code of BK-Tree Implementation . . . . . . . . . . . . . . . . . . . . 38
B. Word List of Compound Splitting Task . . . . . . . . . . . . . . . . . . . . . 40

vi



1. Introduction

In our highly developed modern societies, there is an increasing demand of information.
People need information to make decisions, arrange their own activities or simply know
what’s going on and get connected to the world. On the other hand, people are also
generating, processing and spreading information all the time. In other words, everything
is driven by information.

Under this background, the information retrieval (IR) technique has achieved remarkable
progress, at least for text-based information. Speech-based information, like audio or other
media is different than text-based information in nature. It’s may be not as clear as the
text, because it can contains noise too. Besides it is also not “random accessible”, because
it’s also very hard to locate the useful information that we are interested in a long speech.
So there still remains a difficult problem about how to retrieve useful information in speech.

The speech-based information retrieval covers a range of different topics including key word
spotting, topic discovery, spoken document retrieval (SDR), spoken data mining (SDM),
etc. In this work, we focus on a fundamental problem under the branch information
retrieval: Spoken Term Detection (STD).

Spoken Term Detection aims to retrieve spoken terms from a large volume of speech
archives reliably and efficiently [Wan10]. It has strong focus on distinct detections of
words including the exact position in the audio. However, it is not necessary to find the
most relevant or prominent occurrences [Kol11].

In order to detect the spoken terms in the speech, Automatic Speech Recognition (ASR)
in the form of speech-to-text (STT) systems is used to convert the speech into text form.
But since the speech may contains noises and the ASR system is also error-prone, so the
correctness of the result generated by ASR system must be taken into consideration. Some
methods or algorithms may be adopted by the Term Detector to reconstruct the spoken
terms, which are missed or incorrectly recognized before by the ASR system. Finally the
a Decision Maker examines each detection and decides if it should be output in the final
result depending on its detection confidence. Figure 1.1 shows the general structure of a
STD system and a prerequisite ASR system.

1.1. Challenges in German Spoken Term Detection

The so-called out-of-vocabulary (OOV) problem is particularly significant in languages
with a rich morphology and active compound such as German [MS09]. Unlike in English,

1



2 1. Introduction

Figure 1.1.: The standard STD architecture [WKFB10]

people use a lot of compound words in German. A Compound word is a word formed
by combining several basic words together. In German language, compound words can
be combined by basic words in a very arbitrary way and therefore they are generally not
included in the vocabulary, because a vocabulary that can hold all the compound words
will be extremely large.

Since these words are not in the vocabulary, the ASR system can not recognize them
and put them in the output, so the STD detection can not detect them too. Under this
background the commonly used compound words in German raise the challenge: how to
make the STD system more suitable for German language?

1.2. Objectives of This Work

The main objective of this work is to design and evaluate a STD system that aims at
German language. Due to the importance and frequency of compound words in German
language, different approaches are designed to handle them. Besides the treatment of
compound words, other OOVs are also taken into consideration to improve the detection
result. At the end different approaches, which are used to improve the STD system, are
evaluated and compared with each other.

1.3. Scope of This Work

This work focus on the STD task on German language. Different confusion networks may
be used as input to evaluate the detection systems, but in all cases, an ASR system is
always presumed as a prerequisite component to generate the confusion networks. The
ASR system is not part of the STD system and is therefore not discussed or analyzed in
this work.

1.4. Structure of This Thesis

In chapter 2, the NIST 2006 Spoken Term Detection Task is described and the STD system
for English language is introduced.

In chapter 3, the basic architecture of the German STD system and the general consider-
ation of experimental design are introduced.

In chapter 4, the different approaches to splitting compound words are discussed in detail.

In chapter 5, the experimental results and evaluation are presented. The different ap-
proaches to improving the detection result are compared, especially the approaches to
splitting compound words.

2



2. Background and Related Work

2.1. The NIST 2006 Spoken Term Detection Task

In 2006, the National Institute for Standards and Technology (NIST) established the task
of Spoken Term Detection. According to the evaluation plan of the STD task, it can be
simply summarized as “find all of the occurrences of a specified ‘term’ in a given corpus of
speech data” [Nat06].

The speech data provided by NIST cover three different languages and three different
source types. The three languages are English, Arabic and Mandarin Chinese, the three
source types are Broadcast News (BN), Conversational Telephone Speeches (CTS) and
Conference Meetings (CONFMTG) respectively. The speech durations of different lan-
guage and source type varies. Table 2.1 lists the languages, source types and durations of
the audio speech data.

Table 2.1.: Langauge/Source Type pairs to be tested and the durations of audio speech
data [Nat06]

There are two sets of search terms, both contain approximately 1000 widely selected terms
per language. The search terms include both single-word and multi-word terms and are
presented in the language’s native orthography. They are also encoded differently ac-
cording to the languages: ASCII for English, UTF-8 for Arabic, and GBK for Mandarin
Chinese. For an occurrence of a multi-word term, the time gap between each two succes-
sive words should be less than a specific value. In the 2006 evaluation this value was set
as 0.5 second.

3



4 2. Background and Related Work

NIST defined the Actual Term Weighted Value (ATWV) as a major metric for the system
evaluation, which is shown in formula 2.1.

ATWV (T ) = 1− 1

|T |
∑
t∈T

(PMiss(t) + β · PFalseAlert(t)) (2.1)

where PMiss is the miss probability of the detection and and PFalseAlert is the false alert
probability of the detection. The weight β is a term-independent coefficient used to coop-
erate the two probabilities, since PMiss is generally much more bigger than PFalseAlert. In
the 2006 NIST evaluation, it was chosen as 999.9 [Kol11, Nat06].

NIST also defined the Maximum Term Weighted Value (MTWV) as another metric used
to assist the evaluation, which is shown in formula 2.2.

MTWV (T ) = max
θ∈[0,1]

(PMiss(t, θ) + β · PFalseAlert(t, θ)) (2.2)

where a global threshold θ is used to measure the miss and false alert probability [Kol11,
Nat06].

Generally, higher ATWV or MTWV corresponds to better system output: less misses and
less false alerts.

NIST also defined Detection-Error-Tradeoff (DET) curves to characterize the general de-
tection performance. The curves are computed as “a function of language and source type
as well as for various selections of data and terms” [Nat06].

NIST suggested the system structure presented in figure 2.1 for the STD task.

Figure 2.1.: System and evaluation inputs and ouputs [Nat06]

The system suggested by NIST has two major components: the Indexer and the Searcher.
The Indexer reads the audio data and the Experiment Control File (ECF) to pre-process
the data and store them in Site Files (e.g. databases). The Searcher reads the ECF, the
pre-processed data as well as the search terms from term list and then generate the STD
List, where the detection result is stored. STDEval is the evaluation tool provided by
NIST, which is not part of STD System from the participants. It compares the STD result
list of the participants with the Rich Transcription Timer Mark (RTTM) file, evaluates
the system and generates the final reports.

The system has a strict two-phase structure, which means, the Indexer has no knowledge
about what terms will be detected later and the Searcher has no access to the audio data.

4



2.2. System from English STD Evaluation 5

All the data that the Searcher obtains are the pre-processed data in Site Files and the
experiment control information in the ECF files.

The RTTM file is basically the transcripts in a specific file format, in which the beginning
time and duration of each word is given. The ECF files define “the excerpts within
audio files to be used for specific experiments and the language/source type of each file”
[Nat06]. The Term List and STD List are both presented in the Extensible Markup
Language(XML) format.

A lot of research institutes participated the NIST 2006 STD evaluation. Part of evaluation
result is presented in table 2.2.

Table 2.2.: Results of the NIST 2006 English STD evaluation and corresponding word error
rates on the development data [Kol11]

IBM, BBN and SRI achieved the best result in Broadcast News, Conversational Telephone
Speeches and Conference Meetings respectively. One thing noticeable is, high Word Error
Rate (WER) doesn’t necessarily leads to low ATWV. For example, the system from IBM
has higher WER for the CTS data than SRI, but has also achieved higher ATWV result.

2.2. System from English STD Evaluation

Henrich Korlkhorst designed a STD system and tested it with the NIST 2006 STD eval-
uation task. His system is originally intended to be used for English STD task. Its basic
structure is depicted in figure 2.2.

Figure 2.2.: Basic setup of STD system with major components [Kol11]

The system uses Confusion Networks as system input, which are created through ASR
system. The confusion network has a lattice-based structure. Each lattice presents a time

5



6 2. Background and Related Work

interval, in which several hypotheses with their corresponding probabilities are given. A
confusion network also contains other information like the beginning and ending time of
each lattice and the best hypothesis in each lattice. A detailed description of confusion
networks can be found in [MBS00]. Figure 2.3 shows a brief sketch of confusion networks.

Figure 2.3.: Exemplary Confusion Network [Kol11]

The Indexing Engine of the system reads data from the confusion networks, and stores
them in the CouchDB database for searching later.

The search terms are read from the Term List, The searching processes for in-vocabulary
(IV) words and out-of-vocabulary words are different. IV queries are directed searched
by looking up the database. OOV queries will first be expanded by the Query Expansion
Component, which means using similar words from the vocabulary to replace the queries
for searching. The definition of similar words varies according to different criteria, such as
orthographic similarity or pronunciation based similarity. And then a list of similar words
are generated as query candidates and each candidate will be searched in the database.
Finally the Decision Component makes the decision about which detections are treated as
real occurrences of the OOVs. All the results about detections and decisions are stored in
the Detection List in the XML file format.

The system of Henrich uses several different methods to expand the queries by using
different criteria about similarity. And these methods achieved different ATWV results in
his experiments. The first type of similarity is based on orthography, i.e. the spelling of
words. One option is the Levenshtein similarity, which is defined by formula 2.3. In the
formula, Len(wi) means the length of word wi and DistLev(wi, wj) means the Levenshtein
distance between word wi and word wj .

SimLev(w1, w2) =
Len(w1) + Len(w2)− 2×DistLev(w1, w2)

Len(w1) + Len(w2)
(2.3)

Another option is the Dice coefficient, which is defined in formula 2.4. In the formula, Bi
means the set of bigrams for wi.

SimDice(w1, w2) =
2× |B1

⋂
B2|

|B1|+ |B2|
(2.4)

The system also uses pronunciation-based similarity for the query expansion. The pronun-
ciations of the OOVs are predicted by using speech synthesis tool such as Festival, and
a dynamic programming based algorithm is used to compare the predicted pronunciation
with the pronunciations of words in the vocabulary. The calculation of the similarities in-
volves using the confusion matrices, which specifies the substitution probabilities of phones.

The last step of the spoken term detection system is the binary decision. In this step
all the detection candidates are decided to be a final detection or not depending on its

6



2.2. System from English STD Evaluation 7

detection score, which is calculated by multiplying the ASR confidence P (c) and query
expansion similarity Sim(w, c). The calculation of the score is shown in formula 2.5.

Score(c) = P (c) · Sim(w, c) (2.5)

The system uses two types of thresholds to make the decisions. First one is the global
threshold: all the detection candidates with score better than a certain global threshold
will be accepted. The other one is the so called term-specific threshold. It’s designed to
improve the ATWV and for each search term. The calculation of the adapted threshold is
shown in formula 2.6.

θ(t) =
β ·Ntrue(t)

Tspeech + (β − 1) ·Ntrue(t)
(2.6)

In the formula, Tspeech is the total length of the speech in seconds, β is the weight used to
balance the miss detection probability and false alert probability, which was also introduced
in formula 2.1, and Ntrue(t) is the number of real occurrences of term t, which can be
estimated by “the sum of the candidates’ scores” [Kol11][MKK+07].

7





3. System Setup and Experimental
Design

Although the NIST 2006 Evaluation and the system from Henrich are not designed for
German language, it’s not hard to adapt them to the German STD task. Compound is
very common phenomenon in German language and therefore also a core problem we need
to solve in order to improve the STD systems for German. The difficulties in detecting
compound words is that, they can be composed by putting random basic words successively
together in an arbitrary way and the compound word itself can normally not be found in
the vocabulary. In order to detect these compound words, they need to be split into basic
words at first.

The words contained in the search terms can basically be classified as in-vocabulary words
or out-of-vocabulary words. Compound words in the search terms are generally also OOVs
but since this work puts a particular emphasis on compound words, the OOVs are further
divided into compound OOVs and other OOVs. Therefore the words in search terms can
be divided into categories presented in figure 3.1.



IVs

OOVs



compound OOVs

other OOVs


company and proper names
words with text normalization(acronyms, initialisms)
foreign or misspelt words
words using wildcards or other unsupporte query syntax
other words(rare words, rude words)

Figure 3.1.: IVs, compound OOVs and other OOVs [LMT+96]

3.1. System Structure

Our detection system for German language is very similar to the system used for the NIST
task. Confusion networks are also used as a prerequisite component for our system and

9



10 3. System Setup and Experimental Design

they are generated by Janus ASR system1. The major difference is in the Query Engine,
here a Compound Splitting Component is used to handle the compound words in term
list. The generated search candidates include not only the query expansions from Query
Expansion Component but also splitting results from Compound Splitting Component.
Figure 3.2 shows the structure of the STD system.

Candidate
Generat ion

Decision

Query Engine

Query
Expansion

Compound
Spli t t ing

T e r m
List

Detect ion
List

Database

Figure 3.2.: Structure of the STD System

3.2. Compound Splitting Component

The basic idea to split component words is trying out all the sensible splitting possibilities
and check if every word segment corresponds a word in the vocabulary. The reason for
this “correspondence” is that not every compound word only uses the original form of a
word as a part of it. It’s quite often that a word is slightly modified before it is put in
a compound word. An example is the word “Esszimmer”. It can be split into two parts:
“ess” and “zimmer”, but apparently the former part is not a proper word and may not be
found in the vocabulary. Figure 3.3 demonstrates how the word “Startmenge” is splitted.

Plural and genitive case are the most used word forms to create compound words in
German language, but other forms are also possible. And the interfix s is also frequently
used between words. In order to restore the splits of compound words into words which
can be found in the vocabulary, there are two different strategies. First one is by using
the word formation rules: in most cases the interfixes s, es, n, en, er and e are inserted
between basic words. The other strategy is to check if there’s any words in the vocabulary
which are close to the word segments. We can defined some thresholds about how close
the word should be. The threshold can be the maximal number or percentage of letters
that differ between a word segment from compound word and a word found in vocabulary.

Normally the algorithms generate a lot of splitting results. In order to find the compound
word in the confusion network without brutally examining all the results, the criterion in
formula 3.1 is designed to select good splitting results for searching.

Quality(S) = (
∏
pi∈S

count(pi))
1
n (3.1)

In other words, to calculate the quality of a splitting result, we multiple the word count of
each word segment and then calculate its nth root. The word count is calculated from the
confusion network. The insight for that is, only if a word occurs in confusion networks, it
makes sense to search for it, and the more frequently the word segments occur, the bigger
the possibility that the splitting is correct [KK03].

1http://isl.ira.uka.de/english/1406.php

10



3.3. Query Expansion Component 11

All Splitting
Possibilities

Vocabulary
Compound

Word

Startmenge

s tartmenge

st artmenge

. . .

start menge

startm enge

startme nge

startmen ge

. . .

st ar tm en ge

. . .

. . .

Menge

. . .

Start

. . .

DP Search

Figure 3.3.: Demonstration of splitting word “Startmenge”

3.3. Query Expansion Component

As the compound splitting component handles the compound words, the query expansion
component handles other OOVs. In the experiments we also used the methods which
were used by Henrich to see how they improve the detection results. The query expansion
methods involved are based on Levenshtein distance, Dice coefficient and pronunciation
respectively. The pronunciations of the OOVs are generated by the German version of
speech synthesis tool Festival.

3.4. Decision Component

The decision component is used to decide if a detection candidate is treated as a final
detection. The threshold used to make the decisions can be configured: global threshold or
term-specific threshold. We also try to use different types of thresholds in our experiments
to test how it influences the detection results.

3.5. Adding OOVs to ASR System

Another strategy to improve the detection result is to add OOVs to the ASR system and
run the recognizer again. In this way the original OOVs are presented as normal words
in the new confusion networks and can be found easily by the detection system and the
ATWV will also improved.

3.6. Summary

In this chapter, the general structure of spoken detection system and the basic considera-
tion of experimental design were introduced. The detailed compound splitting algorithms
will be further talked in the next chapter. And the experimental results will be presented
in chapter 5.

11





4. Algorithms for Compound Splitting

This chapter describes different compound splitting algorithms in detail. Depending on
the way how we check if a certain word segment corresponds a word in the vocabulary, two
principally different approaches are introduced. One approach is based on word formation
rules and introduced in section 4.2, the other approach is based on word similarity and
introduced in section 4.3. Furthermore, the data structure BK-Tree is also introduced in
section 4.3, which can be used to accelerate searching Levenshtein-similar words in the
vocabulary. By using BK-Tree we get a more efficient implementation of the approach
based on word similarity.

Section 4.1 describes the basic process to split a compound word.

In section 4.4, some implementation issues are discussed and the time and space complexity
of the algorithms are analyzed in theory.

In order to keep the description in this chapter clear, we define some concepts explicitly.
A string mentioned here is a sequence of letters, it doesn’t have to be an existing word in
the vocabulary. And a basic word always indicates a word that exists in the vocabulary.
A compound word is the word to be split into basic words, it’s generally an OOV. A
sub-word or word segment means a continuous part of a compound word.

4.1. Basic Processes

The basic idea of the compound splitting algorithms is to split the long compound words
into sequences of sub-words, which are included in the vocabulary as basic words.

The algorithms use basic dynamic programming technique to check if a substrings of com-
pound words can be split into word sequences. Meanwhile the splitting schemes are saved
for later backtracking. The backtracking procedure generate a list of splitting candidates.
And the best splitting candidates are chosen according to the selection criterion described
by equation 3.1.

The general procedure for calculating the compound splitting is presented in figure 4.1.

13



14 4. Algorithms for Compound Splitting

Input word

s p l i t a b l e [ 0 ] := true
s p l i t a b l e [ 1 . . word . l ength ] := fa l se
s p l i t s c h e m e s [ 1 . . word . l ength ] := empty list

For i :=1 To word . l ength Do
For j :=1 To i−1 Do

If s p l i t a b l e [ j −1] Then
Begin

s p l i t a b l e [ i ] := true
l i s t := vocab . lookup ( word [ j . . i ] )
I f Not l i s t . empty Then

s p l i t s c h e m e s [ i ] . save ( j , l i s t )
End

Figure 4.1.: Pseudocode for splitting compound words

The input is the word to split. The variable splitable is boolean array indicates if the
substring from the beginning to a specific position can be split into any word sequences.
The global variable split schemes is an array of lists, in which the splits are stored. Each
element of the list has two fields: j and list. The field list stores a list of words from
vocabulary, which are similar to the split of the word started at position j and ended
at position i. The global variable split schemes is used for backtracking the splitting
candidates.

The source code can be easily adapted to some specific requirements such as to limit the
minimal or maximal length for each sub-word, to control the way to look up a word in the
vocabulary or to add a filter to remove some unnecessary sub-words from the list.

The general procedure for backtracking the splitting candidates is presented in figure 4.2.

Procedure Backtrack ( pos : Integer ; s p l i t s : Array)
Begin

I f pos=0 Then
cand idates . add ( s p l i t s )

Else Begin
sp l i t s cheme [ pos ] . Foreach ( j , l i s t ) Do

l i s t . Foreach ( sub word ) Do
Backtrack ( j −1, s p l i t s + sub word )

End
End

Figure 4.2.: Pseudocode for selecting splitting candidates

The parameter pos is an integer which indicates that, the substring of the word from
the beginning to the position pos should be backtracked for splitting candidates in the
procedure. And the parameter splits is an array of strings, which stores the split segments
of the substring after position pos.

If the parameter pos equals zero, it means, the word is completely split and all the segments
are store in the parameter splits. Then it is added to the global variable candidates, which

14



4.2. Algorithm Based on Word Formation Rules 15

stores all the splitting candidates. If the parameter pos doesn’t equals zero, all the segments
from all the lists which are stored in split scheme[pos] together with the beginning position
j will be tested for the splitting through the recursive call of the procedure Backtrack.

Afterwards, the most similar splitting results in the global variable candidates will be
chosen. The criterion for similarity can vary and affects the final results. And this is
exactly the problem how we look up a word in the vocabulary. In the experiments, different
methods are adopted and evaluated. The methods are described in the next sections.

4.2. Algorithm Based on Word Formation Rules

When the basic words are used to compose compound words, sometimes the basic words
are directly used as part of the compound word, for example:

Hochhaus : hoch + Haus (skyscraper : high + house)

himmelblau : Himmel + blau (azure : sky + blue)

Kohlsuppe : Kohl + Suppe (cabbage soup : cabbage + soup)

Each sub-word above is also a word by itself that can be directly found in the vocabulary.
Corresponding English translation is on the right side.

But sometimes words are slightly modified before being used to compose other words, for
example:

Esszimmer : essen + Zimmer (dining room : eat + room)

Gänsehaut : Gans + Haut (goose bumps : goose + skin)

keinesfalls : kein + Fall (in no case : no + case)

Sitzungssaal : Sitzung + Saal (conference room : conference + room)

Schweigeminute : Schweigen + Minute (moment of silence : silence + minute)

Some common situations are: the previous word appears as word stem, like the first
example above; the previous word appears as plural form, like the second example above;
the previous word appears as the genitive form, like the third example above; interfix s is
put after the previous word, like the fourth example above; the word stem of verbs and
together with interfix e is used as previous word, lie the fifth example above. Some other
special cases are also described in [Lan98].

In Algorithm I, we use six most commonly used word formation rules to split compound
words, i.e. to put the interfix s, es, n, en, er or e between two successive words. If
a word segment can be formed as a word from the vocabulary followed by one of the
interfixes mentioned above, then it will be treated as a valid word segment. And for the
implementation, a hash table is used for word lookup to achieve efficient performance.

4.3. Algorithm Based on Word Similarity

Splitting compound words based on word formation rules has some inherent defects. The
rules are very hard to conclude completely and new rules need to be added with emergence
of new created words.

The other idea is to look for similar words of the word segment in the vocabulary. By
similar words, the Levenshtein distance is adopted in the experiment. If the Levenshtein
distance between a word from the vocabulary and a sub-word of the compound word is
small enough, the two sequences are then treated as similar. This method can cover a lot

15



16 4. Algorithms for Compound Splitting

of situations, how a compound word is formed, without knowing the word formation rules.
But this method may also be slower because finding similar words based on Levenshtein
distance can not be simply implemented by efficient data structure such as hash table.

In the following parts, algorithms about how to look for Levenshtein-similar words in the
vocabulary are described.

4.3.1. Primitive Idea

The most primitive idea is to enumerate every words in the vocabulary and calculate the
distance between this word and the given string. If the distance is smaller than some
threshold, then the word will be chosen. By implementing this idea we get Algorithm II.
The speed of this algorithm depends on how fast the distance can be calculated and how
large the vocabulary is. Because the vocabulary may contain up to several million words,
this algorithm will be very inefficient.

4.3.2. Using Efficient Data Structure: BK-Tree

BK-Tree is data structure suggested by Walter Austin Burkhard and Robert M. Keller for
searching file names according to some discrete metric spaces [BK73]. It can be used to
accelerate the lookup of Leveshtein-similar words enormously when the required distance
is not too large.

BK-Tree is a tree-like data structure. Figure 4.3 shows a BK-Tree with seven nodes.

Kopf

Kopie Korea Krieg

Kost Kraft Kräfte

2 3 4

3 4 4

Figure 4.3.: Demonstration of BK-Tree

BK-Tree has one root node and each node may or may not have sub-nodes. The number of
sub-nodes for each node can vary and all sub-nodes for each node are numbered. Each node
present a word in the vocabulary. The word presented by the node in the ith sub-node of
a specific node has a Levenshtein distance i with the word presented by this specific node.

16



4.3. Algorithm Based on Word Similarity 17

For example, in the BK-Tree depicted above:

DistLev(Kopf,Kopie) = 2

DistLev(Kopf,Kost) = 2

DistLev(Kopf,Korea) = 3

DistLev(Kopf,Kraft) = 3

DistLev(Kopf,Krieg) = 4

DistLev(Kopf,Kräfte) = 4

DistLev(Kopie,Kost) = 3

DistLev(Korea,Kraft) = 4

DistLev(Krieg,Kräfte) = 4

The figure 4.4 demonstrates the searching process for the string “Krafte” in BK-Tree. The
intervals beside the nodes indicate the branches that are searched.

Kopf [3, 5]

Kopie Korea

[4, 6]

Krieg

[3, 5]

Kost Kraft Kräfte

2 3 4

3 4 4

DistLev(Krafte,Kopf) = 4

DistLev(Krafte,Korea) = 5

DistLev(Krafte,Kraft) = 1

DistLev(Krafte,Krieg) = 4

DistLev(Krafte,Kräfte) = 1

Figure 4.4.: Demonstration of searching process in BK-Tree

The searching process begins at the root of the tree. We calculate the Levenshtein distance
between the search string “Krafte” and the word in the root “Kopf” and get the result
4. And in the next step, we keep searching the sub-trees of the root in the interval
[4− 1, 4 + 1] = [3, 5] recursively.

A BK-Tree corresponding to a given vocabulary is build in the preprocessing phase. To
look for similar words to a specific word in the vocabulary, the tree will be scanned, and
certain information about the Levenshtein distance stored in the tree can be used to limit
the number of nodes to be checked. In this way, a lot of time for checking the words is
saved and the algorithm can achieve better efficiency.

17



18 4. Algorithms for Compound Splitting

The Levenshtein distance is a non-negative integer function defined on two strings. It
forms a metric space, because it satisfies the following three axioms:

DistLev(s1, s2) = 0 ⇔ s1 = s2 (4.1)

DistLev(s1, s2) = DistLev(s2, s1) (4.2)

DistLev(s1, s3) ≤ DistLev(s1, s2) +DistLev(s2, s3) (4.3)

where s1, s2 and s3 are any possible strings. The third axiom is often referred as triangular
inequality.

We specify a variable K, which means we want to find all the words that have a maximal
Levenshtein distance K to a specific string s. The variable K is given as a threshold. We
start the searching process at the root node. If the word stored at the root node is wr and
it have a Levenshtein distance DistLev(s, wr), then we only need to check all the branches
numbered with i that satisfies

DistLev(s, wr)−K ≤ i ≤ DistLev(s, wr) +K

Because all the words w′ stored in the branches numbered from 0 to DistLev(s, wr)−K−1
has a Levenshtein distance

DistLev(s, w
′) ≥ DistLev(s, wr)−DistLev(w′, wr) (∗)
≥ DistLev(s, wr)− (DistLev(s, wr)−K − 1)

≥ K + 1

to the query string s. And all the words w′ stored in the branches numbered with
DistLev(s, wr) +K + 1 and above have a Levenshtein distance

DistLev(s, w
′) ≥ DistLev(w′, wr)−DistLev(s, wr) (∗)
≥ (DistLev(s, wr) +K + 1)−DistLev(s, wr)
≥ K + 1

to the query string s. The deductions marked with ∗ are followed from the formula 4.3.

For the rest of the searching process, we use the same method described above: every time
when we reach a sub-tree, we compare the query string with the string stored in the root,
so and forth, until there is no branches to search any more. In this way, the number of
branches of the BK-Tree to be searched is limited and all the possible similar words are
checked. Time will be reached without sacrificing the correctness.

We build the BK-Tree for a given vocabulary in the pre-processing period. We first choose
a random word from the vocabulary and make it the root of the BK-Tree. And then
we choose another random word, calculate its Levenshtein distance to the word in the
root node and insert it into the right branch. Every time we choose a random word from
the vocabulary, which hasn’t be added to the BK-Tree, calculate its Levenshtein distance
to the related words along the path until we find the right position for this word in the
BK-Tree.

By using BK-Tree for similar word lookup, we get a more efficient implementation of
Algorithm II. Here we number it Algorithm III and all the three algorithms will be
evaluated in next chapter 5.

18



4.4. Implementation and Computational Complexity 19

4.4. Implementation and Computational Complexity

4.4.1. Similarity Threshold

For the purpose of algorithm analysis, we use two kinds of thresholds to restrict the allowed
Levenshtein distance between each sub-word of the compound word and its replacement
from the vocabulary.

We use the variables K and R to indicates the two thresholds. The variable K means the
allowed number of letter changes, which include insert, remove and substitution of one
letter. When we use a word from the vocabulary to replace part of the compound word,
the Levenshtein distance between the two strings should not exceeds K. And the variable
R means the allowed ratio of letter changes. When we use a word from the vocabulary
to replace part of the compound word, the Levenshtein distance between the two strings
divide the length of the replaced part should not exceeds R. We use the two thresholds to
ensure the replacement doesn’t deviate too far away from the replaced string.

For example, regarding the following splitting:

Blätterwälder⇒ Blätter + Wälder (split)

⇒ Blatt + Wald (replace)

with the presumption that the vocabulary doesn’t contain the plural form of word Blatt
and Wald. The word Blätterwälder is split into two parts: Blätter and wälder. The
correct replacements for each part are the word Blatt and Wald from the vocabulary.
For the sub-word Blätter, three modifications are made to change it into Blatt, including
one substitution(letter ä to letter a) and two deletions(letter e and letter r respectively).
And the ratio of letters changed for the part Blätter is then 3/7 ≈ 0.429. For the part
Wälder the number and ratio of letter changed are respectively 3 and 3/6 = 0.5. So if the
thresholds K and R are set at least 3 and 0.5 respectively, then the word can be correctly
split.

4.4.2. Time and Space Complexity

Algorithm I based on word formation rules is basically a searching process in the vocab-
ulary. We use the variable N to indicate the number of words in the vocabulary and the
variable L to indicate average word length. We presume the number of word formation
rules we use is basically a constant. If we use a balance search tree to implement the
word lookup, then the time complex for one lookup is O(log(N) ·L), where L comes from
the string comparison. If we use a hash table to implement the word lookup, then the
time complexity is O(L). The whole dynamic programming based algorithm for compound
splitting contains two loops of length L, therefore the total time complexity for splitting
one compound word can reach O(L3), if hash table is used. And the space complexity is
O(N · L), which is the space needed for storing the vocabulary.

Algorithm II is based on examining the Levenshtein distance of all the words to the string
to be looked up. The time complexity is O(N · L4), where N comes from enumerating all
the words and L4 comes from the two loops in the dynamic programming and calculating
the Levenshtein distance between two strings, which is actually also based on dynamic
programming. The Space complexity is also O(N · L), since the vocabulary is basically
the only thing that consumes space.

We use a trick to make Algorithm II more faster: we store the words in different buckets
according the their length. If we want to query all the words within distance K to a
string s, then we only need to examine all the words in the buckets with length from

19



20 4. Algorithms for Compound Splitting

s.length−K to s.length+K. In this way the number of words to check is restricted. But
the time complexity is hard to estimate, since the words are not distributed homogeneously
according to their length. The space complexity stays the same.

Algorithm III uses the BK-Tree to store the words to accelerate the searching process.
The time complexity is a function of the required distance K. If the K equals 1, the
time complexity is about O(N0.639 · L4). If the K equals 2, the time complexity is about
O(N0.822 · L4). And if the K equals 3, the time complexity is about O(Nα · L4), where α
equals 1.0 approximately. The L4 of the time complexity comes from the two loops in the
dynamic programming and calculating the Levenshtein distance between two strings.

In Algorithm III we can also use the trick introduced before to accelerate the algorithm,
i.e. store words according to length and build different BK-Tree for words with length
within certain range. But the space complexity will increase, since each word is stored
several times in different BK-Tree. And the time complexity is also hard to estimate for
the same reason here.

A comprehensive list of time and space complexity for different algorithms is presented in
table 4.1.

Time Complexity Space Complexity

Algo I O(L3) O(N · L)

Algo II
no buckets O(N · L4)

O(N · L)
use buckets O(N · L4)

Algo III

no buckets
K = 1 O(N0.639 · L4)

O(N · L)K = 2 O(N0.822 · L4)
K = 3 O(N≈1 · L4)

use buckets
K = 1 O(N0.639 · L4)

O(K ·N · L)K = 2 O(N0.822 · L4)
K = 3 O(N≈1 · L4)

Table 4.1.: Time and space complexity of different algorithms

where “use buckets” means we store the words respectively according to their length and
we only check words with certain lengths while searching. “no buckets” means we store all
the words together, a search process examines all the words. Part of the result, i.e. the
number of comparisons in BK-Tree comes from [ByN98].

4.5. Summary

In this chapter, three algorithms were designed and described in detail: Algorithm I uses
the word formation rules to split the compound words, Algorithm II searches for similar
words in the vocabulary and Algorithm III uses BK-Tree to accelerate the word search.
All the three algorithms are evaluated in chapter 5.

20



5. Experimental Results and Evaluation

In this chapter, the experimental results and evaluation are presented. Two separate
groups of experiments were conducted. One group is designed for evaluating the per-
formance of STD system on German data, which is described in section 5.1. The other
group is designed for evaluating the performance of different compound splitting algo-
rithms, which is described in section 5.2. In each section, the basic experimental setup is
introduced first and then followed by the experimental results and evaluation.

5.1. Spoken Term Detection Task

Aim of the experiments presented in the section is to evaluate the performance of different
STD systems on German data. Different results are achieved by using different methods
including: compound splitting, query expansion, changing threshold and recognizing the
German audio data with OOVs added into the STT system.

5.1.1. Experimental Setup

5.1.1.1. Experimental Data

The audio data consist of 22 German lecture recordings. The lectures cover various topics
such as history, language, copyright, computer science, etc. The total length of all the
recordings amount to approximately 55167 seconds.

In order to evaluate the system performance with OOVs added to the STT system, two
different confusion networks were used. One is generated by the STT system with normal
dictionary and vocabulary and the WER is 27.55%. The other is generated by the STT
system with modified dictionary and vocabulary, in which all the OOVs in the search terms
are added, and the WER is 27.60%. Taking the randomness of the recognition results into
consideration, the difference between the two WERs is not significant.

The vocabulary and dictionary used in the spoken term detection task contain approxi-
mately 300k entries.

The term list for the STD systems contains 250 search terms. A search term may be a
single word query or a multi-word query composed of up to 4 words. Search terms are
primarily short queries and they are randomly selected from the audio transcripts.

21



22 5. Experimental Results and Evaluation

The words of search terms can be classified into three different categories: in-vocabulary
words (IVs), compound out-of-vocabulary words (compound OOVs) and other out-of-
vocabulary words (other OOVs). The category of other OOV contains foreign loanwords,
proper names, acronyms, etc.

Some statistics about the search terms are listed in table 5.1.

Number Ratio

Number of 1-word search terms 135 54%

Number of 2-word search terms 90 36%

Number of 3-word search terms 20 8%

Number of 4-word search terms 5 2%

Number of search terms containing no OOVs 177 70.8%

Number of search terms containing compound OOVs 63 25.2%

Number of search terms containing other OOVs 10 4.0%

Average word numbers per search terms 1.58

Total number of search terms 250

Table 5.1.: Details of search terms

5.1.1.2. Spoken Term Detection System

In order to test the effect of different compound splitting methods, several spoken term
detection systems with different compound splitting methods were used during the exper-
iments. In all systems no query expansion features were used and the best 25 splitting
results were used for searching the compound words. The systems are listed below:

Baseline No compound splitting features are adopted. This is the baseline of the experi-
ments.

Primitive It uses a primitive method to split the compound words. The program scans
a word from the end to the beginning and splits the part it has scanned every time
when this part forms a word that can be found in the vocabulary.

Kevin It is the origin method used by the STT system in the institute and implemented
by Kevin Kilgour. In the experiments it was used for comparison with other systems.

Rules The system uses the word formation rules to split compound words, as described
in section 4.2.

Threshold 1 The system uses compound splitting algorithm based on word similarity with
thresholds K = 1 and R = 0.1, as described in section 4.3.

Threshold 2 The system uses compound splitting algorithm based on word similarity with
thresholds K = 2 and R = 0.2, as described in section 4.3.

Threshold 3 The system uses compound splitting algorithm based on word similarity with
thresholds K = 3 and R = 0.3, as described in section 4.3.

5.1.2. Results and Evaluation

This section presents the effect of different methods introduced before. The ATWV is used
as primary evaluation criterion. The DET curves are also presented in the last part of this
section.

22



5.1. Spoken Term Detection Task 23

5.1.2.1. Effect of Compound Splitting Methods

The results are presented in table 5.2 and also in figure 5.1 in form of column chart. The
systems was not only tested on all search terms, but also on two other datasets. Compound
is the list of search terms containing compound words and OOV is the list of search terms
containing other OOVs. Besides ATWV and MTWV, the number of correct detections
(Corr), false alerts (FA) and missed detections (Miss) is also listed.

System Dataset ATWV MTWV Corr FA Miss

Baseline All 0.5366 0.5269 1425 230 528

Primitive All 0.6608 0.6511 1521 235 432

Kevin All 0.6608 0.6511 1521 235 432

Rules All 0.6739 0.6642 1535 235 418

Threshold 1 All 0.6655 0.6559 1506 238 447

Threshold 2 All 0.6914 0.6816 1546 280 407

Threshold 3 All 0.6401 0.6313 1526 302 427

Baseline Compound 0.0000 0.0000 0 0 139

Primitive Compound 0.4513 0.4510 76 5 63

Kevin Compound 0.4513 0.4510 76 5 63

Rules Compound 0.5004 0.5001 90 5 49

Threshold 1 Compound 0.4689 0.4689 61 8 78

Threshold 2 Compound 0.5489 0.5473 101 50 38

Threshold 3 Compound 0.3478 0.3497 79 72 60

Baseline OOV 0.0000 0.0000 0 0 41

Primitive OOV 0.1000 0.1050 20 0 21

Kevin OOV 0.1000 0.1050 20 0 21

Rules OOV 0.1000 0.1050 20 0 21

Threshold 1 OOV 0.1000 0.1050 20 0 21

Threshold 2 OOV 0.2200 0.2300 20 0 21

Threshold 3 OOV 0.2825 0.2925 22 0 19

Table 5.2.: Performance of different compound splitting Methods

Figure 5.1.: Result overview

Overall, the highest ATWV achieved was 0.6914 by using compound splitting algorithm
based on word similarity with thresholds K = 2 and R = 0.2.

In the baseline system, no compound splitting methods were used and thus no compound

23



24 5. Experimental Results and Evaluation

words or OOVs were detected. Comparing with the baseline, the adoption of different
compound splitting methods improved the ATWV by 0.12 to 0.16 on all the terms.

The compound splitting methods had no obvious effect on OOVs other than compound
words. System Threshold 2 and Threshold 3 performed better than other systems, which
performed exactly the same on dataset OOV. And system Threshold 3 surpassed system
Threshold 2 in particular.

Through all the system using thresholds, system Threshold 2 performed the best on com-
pound words. Due to the loose thresholds, this system could generate more splitting
possibilities for searching, which lowered the number of missed detections and improved
the ATWV.

Compared with system Threshold 2, Threshold 3 uses even looser thresholds, but this
may lead to bad splitting results, which deviate from the original word too much and kick
out some better splitting results and consequently the number of missed detection will be
higher. This is exactly the reason why system Threshold 3 performed worse than system
Threshold 2 on compound words. On the other hand, effect of compound splitting on
non-compound words is very similar to query expansion. The system splits or changes the
words in an arbitrary way and provides more detection possibilities. In the experiment,
system Threshold 3 had less missed detections, which surpassed the effect of more false
alerts, and achieved higher ATWV than system Threshold 2 on non-compound OOVs.

The system Primitive and Kevin performed exactly the same on all the dataset. This
indicates that, the compound splitting algorithm originally used in the TTS system is
basically the same as the algorithm used in system Primitive.

5.1.2.2. Effect of Word Expansion Methods

In order to test the effect of different query expansion methods, each query expansion
method was added to the Threshold 2 system to test how much the ATWV was improved.
The systems used the same compound splitting methods as in system Threshold 2 and
also different query expansion methods. Query expansion methods based on Levenshtein
distance, Dice coefficient and pronunciation with different expansion counts varying from 1
to 50 were tested. And all the systems used term-specific threshold during the experiments.
Figure 5.2 shows the results.

Figure 5.2.: Effect of different query expansion methods

24



5.1. Spoken Term Detection Task 25

The query expansion method based on pronunciation achieved apparently the best result.
Except for the query expansion method based on Levenshtein distance, higher expansion
count generally led to higher ATWV. For the query expansion methods based on Leven-
shtein distance, the ATWV was better than the result achieved by Dice coefficient based
method at the beginning. But the ATWV it achieved began to decrease after about ex-
pansion count 20. After about expansion count 40 its ATWV was worse than the result
achieved by Dice coefficient. Overall, the highest ATWV achieved here is 0.7342 by using
pronunciation based method with expansion count 50.

5.1.2.3. Effect of Thresholds

In order to test the effect of different thresholds for binary decisions, the detection sys-
tem using pronunciation based query expansion method was used here. The system was
modified by changing the type and value of the threshold it used. The resulted ATWVs
by using global threshold and term-specific threshold with different values are presented
in figure 5.3 and 5.4 respectively.

Figure 5.3.: Effect of different thresholds on all search terms

Figure 5.4.: Effect of different thresholds on OOVs

25



26 5. Experimental Results and Evaluation

The adoption of term-specific threshold achieved generally better result than the adoption
of global threshold.

For the experiment on the whole term list, the increase of global threshold led to higher
ATWV at the beginning due to the reduction of false alerts. But soon the ATWV began
to decrease for higher global threshold, because high global threshold reduced the missed
detections effectively and didn’t impact the false alert so much.

5.1.2.4. Effect of Adding OOVs to STT System

The OOVs were added to the STT system to generate a new confusion network for the
STD task. In this way we it becomes possible to test how this improved the ATWV. In the
table 5.3, “Ref CN” means the original confusion network generated by the STT system
without OOVs and“OOV CN”means the confusion network generated by the STT system
with OOVs. By using compound splitting and query expansion features in the spoken term
detection systems respectively or together, different results were achieved. The compound
splitting method used was based on word similarity with threshold K = 2 and R = 0.2
and the query expansion method used was based on pronunciation with expansion count
50. The results are presented in table 5.3 and also in figure 5.5 in form of column chart.

CN System ATWV MTWV Corr FA Miss

Ref CN Neither 0.5366 0.5269 1425 230 528

OOV CN Neither 0.6293 0.6207 1483 243 470

Ref CN Splitt 0.6914 0.6816 1546 280 407

OOV CN Splitt 0.7056 0.6966 1549 291 404

Ref CN Expansion 0.6739 0.5736 1487 639 466

OOV CN Expansion 0.7125 0.6431 1513 512 440

Ref CN Splitt + Expansion 0.7342 0.6824 1561 449 392

OOV CN Splitt + Expansion 0.7365 0.7013 1560 442 393

Table 5.3.: Effect of adding OOVs to STT system

Figure 5.5.: Result overview

In all cases, the systems achieved higher ATWV on confusion network OOV CN than
Ref CN due to the fact that the STT system used vocabulary and dictionary including
OOVs from search terms to generate the confusion network OOV CN. The difference of
ATWVs was about 0.0927 without using compound splitting and query expansion features.
But with the adoption of these features the difference began to shrink. With both features

26



5.2. Compound Splitting 27

used, the difference was only as small as 0.0013. Reason for that is, at the beginning,
the detection systems were not able to detect those OOVs from the confusion network
Ref CN, but the adoption of compound splitting and query expansion methods remedied
this shortage and made the detection systems possible to find OOVs by searching divided
word sequences or similar words in the confusion network.

The ATWV 0.7365 in the last row of the table is the best result achieved so far on this
term list.

5.1.2.5. Detection-Error-Tradeoff Curves

The DET curve for the best result achieved so far is shown in figure 5.6.

Figure 5.6.: DET curve for confusion network with OOVs

The compound splitting method based on word similarity with threshold K = 2 and
R = 0.2 and the query expansion method based on pronunciation with expansion count
50 were used here.

Overall, the false alert probability didn’t change too much, especially at the beginning
(from 0.0001% to approximately 0.02%). With the increase of false alert probability, the
miss probability decrease however significantly. The best result was achieved at about
false alert probability 0.004% and miss probability 25.7% with ATWV 0.7365 and MTWV
0.7013.

5.2. Compound Splitting

This chapter describes the experiments on the different compound splitting algorithms
which are introduced in chapter 4. The processing time and correctly split word count are
the primary criterion used to evaluate the performance of different algorithms.

27



28 5. Experimental Results and Evaluation

5.2.1. Experimental Setup

A list of compounds word was used to test the algorithm performance. The programs first
loaded the dictionary into the memory, and then performed the splitting process word
by word. In the case of Algorithm III, there was an additional BK-Tree building process
after loading the dictionary and before the splitting. When the program split a compound
word, a list of splitting candidates was generated, but only the most Levenshtein-similar
splitting results were selected as the output. Furthermost, the output list was checked if
it contained the correct splitting results which were pre-calculated as a standard results,
and the number of correctly split words were also calculated in this way. The programs for
this evaluation were written in C++. Generally the program output could also be used as
a list of alternative search terms for the STD task.

The word list for the compound splitting task contained 65 compound words. These words
were primarily randomly selected from the audio transcripts, a small part was some typical
compound word from other sources.

The vocabulary used in the compound splitting task contained relative few entries, ap-
proximately 25k. Some conjugation or declension forms of the words were not included in
the vocabulary, so the possible splitting results were restricted in this way and the ability
of different compound splitting algorithms was also evaluated better.

5.2.2. Results and Evaluation

For both Algorithm II and Algorithm III six different groups of thresholds were used. The
value of these thresholds, the processing time and the correctly split word counts are listed
in table 5.4.

Memory 4GB
Processor 2.66GHz
System Ubuntu 12.04

K R TLoad TBuild TSplitt tSplitt split

Algo I NA NA

0.74s

NA 0.49s 7.54ms 46

Algo II

1 0.1

NA

124.19s 1.91s 35
1 0.2 171.45s 2.64s 49
2 0.2 231.97s 3.57s 53
2 0.4 276.28s 4.25s 61
3 0.3 313.91s 4.83s 58
3 0.6 374.07s 5.75s 62

Algo III

1 0.1
2.01s

7.88s 0.12s 35
1 0.2 16.84s 0.26s 49
2 0.2

4.77s
60.02s 0.92s 53

2 0.4 104.65s 1.61s 61
3 0.3

7.99s
141.91s 2.18s 58

3 0.6 220.86s 3.40s 62

Total 65
K Threshold for the number of letter changes
R Threshold for the ratio of letter changes
TLoad Time for loading vocabulary
TBuild Time for building BK-Tree
TSplit Time for splitting all words
tSplit Average time for splitting one word
split Number of correctly split words
NA Not applicable

Table 5.4.: Processing time and splitting results of compound splitting algorithms

28



5.2. Compound Splitting 29

The complete list of compound words and splitting results of different algorithms can be
found in appendix B.

5.2.2.1. Splitting Ability

Algorithm I performed generally not as good as Algorithm II or Algorithm III. It only
split 46 out of 65 compound words correctly.

The numbers of split words from Algorithm II and Algorithm III corresponded, since they
were basically the same idea, only Algorithm III adopted the BK-Tree for more efficient
word lookup. For these two algorithms, it’s obvious that, the higher the thresholds were
set, the better the result was. Besides, using BK-Tree for the word lookup saved some
amount of time. The speedup was even more obvious when the thresholds were set low,
like K = 1 and R = 0.1.

When thresholds were only set as low as K = 1 and R = 0.1, the result of Algorithm II or
Algorithm III was even worse than Algorithm I.

When thresholds were set as high as K = 3 and R = 0.6, only 3 out of 65 words were not
correctly split. The three words are“Adjazenzliste”, “Kantendisjunkt”and“Raytracingver-
fahren”, which all contains English words as sub-word, that can not be found in German
vocabulary. But these thresholds are already very high for the compound splitting task,
since they indicate that, each part of the compound word can have at most 3 and 60%
letter changes. Words that can still not be split by using these thresholds are really rare.

When thresholds K = 2 and R = 0.4 were used, only one less word was not successfully
split. This word is “Blätterwälder”, which is composed of the basic words ‘Blatt’ and
“Wald”. In both parts, there are three letter changes, which are higher than the threshold
K = 2. Notice that the plural form of the two words doesn’t exist in the vocabulary used
in the experiment.

5.2.2.2. Algorithm Efficiency

The tricks for accelerating the algorithms described in section 4.4.2 were used in the
experiments: for Algorithm II the words were respectively stored according to their lengths,
for Algorithm III different BK-Tree with words within different length ranges were built. It
can be told from the statistics that more time were invested for building BK-Trees when K
was bigger, since the size of the BK-Trees were larger and also more trees were built. But
basically loading vocabulary and building BK-Trees consumed very little time compared
with the time used for splitting words.

Algorithm I ran much faster than other two algorithms, because it only did several word
lookups in general, which was efficiently implemented by using hashing table. The speed
of Algorithm II and algorithms III depended on the thresholds used. When thresholds
were set higher, the algorithms consumed more time. And Algorithm III was generally
faster than Algorithm II, because BK-Trees accelerated the word lookup, when the overall
thresholds were set less than or equal to 3.

5.2.2.3. Overall Evaluation

According to the statistics, it can be generally summarized that, the longer time the
algorithm takes, the more splitting results it provides, the stronger is its ability to split a
compound word.

As a good compromise between algorithm speed and result quality, thresholds K = 2
and R = 0.4 are a good choice. It split only one less word than the highest threshold

29



30 5. Experimental Results and Evaluation

setup K = 3 and R = 0.6 in the experiments, but consumed less time (1.61s per word in
compare with 3.40s per word). The splitting effect is even better, when larger vocabulary
that contains many conjugation for declension forms is used.

When more speedup is needed, we can use smaller thresholds such as K = 2 and R = 0.2,
which has worse performance but is still better than the idea of splitting words by using
word formation rules.

Noteworthy is that, bigger thresholds indicate stronger capability to split compound words,
but not necessarily higher performance in the STD task. Because the algorithm provides
more splitting results with bigger thresholds, which could also increase the false alert
possibility.

Another discovery in the experiments is that, BK-Tree actually accelerate the process
of searching similar words based on Levenshtein distance, when the maximal required
Levenshtein distance is less than or equals 3. The Bk-tree can also be adopted in other
tasks which requires fast similar word lookup. And the criterion of similarity is also
adjustable, it is not necessarily Levenshtein distance, it can also be other metric space. In
generally, BK-Tree is a widely usable data structure for this kind of function.

5.3. Summary

In this chapter different spoken term detection systems and compound splitting algorithms
are evaluated and compared.

In the first section different spoken term detection systems with different configurations
were evaluated and compared. The highest ATWV achieved in our experiments on German
lecture data is 0.7365 by using the compound splitting method based on word similarity
with thresholds K = 2 and R = 0.2 and the query expansion method based on pronunci-
ation with expansion count 50.

In the second section we compared the speed and splitting capability of different compound
splitting methods which were adopted in the spoken term detection systems, and got an
overall impression about how these algorithms perform.

30



6. Conclusion and Future Work

In this work, a system for the German Spoken Term Detection task was designed and
evaluated with the design norms and evaluation metrics from the NIST 2006 Spoken Term
Detection evaluation. Especially the different approaches to splitting compound words
were analyzed and compared with each other.

Different compound splitting methods based on word formation rules or word similarity
were tested for improving the detection result of compound words. Generally, if the de-
tection system try more possibilities to split a compound word at different positions, it
takes more time to split it. The missed detection rate will decrease because more splitting
results will be used for detection, but the false alert rate will also increase because of the
same reason. The best approach found to detecting compound words is the method based
on word similarity with thresholds K = 2 and R = 0.2.

Different query expansion methods based on Levenshtein distance, Dice coefficient or pro-
nunciation were also tested for detecting OOVs. The best approach found to achieve this
is the query expansion method based on pronunciation.

We also tried the method of adding the OOVs to the ASR system and found the detection
results were also improve. When all these methods were adopted, we got a fairly good
detection result, the ATWV reached 0.7365 on German lecture data.

The ASR system is presumed as a prerequisite component for the STD system and thus
doesn’t fall within the scope of this work. However, the STD result depends highly on
the output of the ASR system, therefore improving the ASR system is generally a good
method to improve the STD result [Kol11]. Besides it would also be helpful to find more
capable or efficient algorithms to split compound words or expand the OOVs.

Compounding of words is not only a common linguistic phenomenon in German language,
it also exists in some other languages like Dutch, Finish, etc [PSN06]. So the result in this
work may also be used to, or at least give some insight into, developing STD system for
these languages.

The design and evaluation of the detection system comply with the standard specified by
the NIST 2006 STD evaluation. The system is dedicated on detecting the exact matchings
of the search terms, but other occurrences of the search terms in different word forms will
be ignored. Since German is a typical fusional language, there is a lot of conjugation or
declension usage of words in German, it would be much better if there was a system which

31



32 6. Conclusion and Future Work

could also detect the different forms of search terms or even related information to search
terms. This is exactly the motivation of Information Retrieval to a large extend.

32



Bibliography

[BK73] W. A. Burkhard and R. M. Keller, “Some approaches to best-match file
searching,” Commun. ACM, vol. 16, no. 4, pp. 230–236, Apr. 1973. [Online].
Available: http://doi.acm.org/10.1145/362003.362025

[ByN98] R. Baeza-yates and G. Navarro, “Fast approximate string matching in a dic-
tionary,” in In Proc. SPIRE’98. IEEE Computer Press, 1998, pp. 14–22.

[KK03] P. Koehn and K. Knight, “Empirical methods for compound splitting,” in In
Proceedings of EACL, 2003, pp. 187–193.

[Kol11] H. Kolhorst, “Strategies for out-of-vocabulary words in spoken term detection,”
2011.

[Lan98] S. Langer, “Zur morphologie und semantik von nominalkomposita,” 1998.

[LMT+96] B. Logan, P. Moreno, J.-M. V. Thong, E. Whittaker, J. manuel Van, and
T. Whittaker, “An experimental study of an audio indexing system for the
web,” in in Proc. ICSLP, 1996, pp. 676–679.

[MBS00] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech recognition:
Word error minimization and other applications of confusion networks,” 2000.

[MKK+07] D. R. H. Miller, M. Kleber, C.-L. Kao, O. Kimball, T. Colthurst, S. A. Lowe,
R. M. Schwartz, and H. Gish, “Rapid and accurate spoken term detection.” in
INTERSPEECH. ISCA, 2007.

[MS09] T. Mertens and D. Schneider, “Efficient subword lattice retrieval for german
spoken term detection,” in Acoustics, Speech and Signal Processing, 2009.
ICASSP 2009. IEEE International Conference on, april 2009, pp. 4885 –4888.

[Nat06] National Institute of Standards and Technology (NIST), “The 2006 spoken
term detection evaluation plan,” september 2006.

[PSN06] M. Popović, D. Stein, and H. Ney, “2006. statistical machine translation of ger-
man compound words,” in FinTAL - 5th International Conference on Natural
Language Processing, Springer Verlag, LNCS, 2006, pp. 616–624.

[Wan10] D. Wang, Out-of-Vocabulary Spoken Term Detection. The University of Ed-
inburgh, 2010.

[WKFB10] D. Wang, S. King, J. Frankel, and P. Bell, “Stochastic pronunciation
modelling and soft match for out-of-vocabulary spoken term detection.”
in ICASSP. IEEE, 2010, pp. 5294–5297. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/icassp/icassp2010.html#WangKFB10

33

http://doi.acm.org/10.1145/362003.362025
http://dblp.uni-trier.de/db/conf/icassp/icassp2010.html#WangKFB10
http://dblp.uni-trier.de/db/conf/icassp/icassp2010.html#WangKFB10




Nomenclature

ASR Automatic Speech Recognition

ATWV Actual Term Weighted Valuetem

BN Broadcast News

CONFMTG Conference Meetings

CTS Conversational Telephone Speech

DET Detetion-Error-Tradeoff

ECF Experiment Control File

IR Information Retrieval

IV In-Vocabulary [Word]

MTWV Maximum Term Weighted Value

NIST National Institute for Standards and Technology

OOV Out-of-Vocabulary [Word]

RTTM Rich Transcription Timer Mark

SDM Spoken Data Mining

SDR Spoken Document Retrieval

STD Spoken Term Detection

STT Speech-to-Text [System]

WER Word Error Rate

XML Extensible Markup Language

35





Appendices

Appendix A contains source code of the BK-tree implementation. It demonstrates how
this data structure works. The most important parts are the two interfaces insert and
query, which shows how to insert a word in the data structure and how to look up similar
words. The query process uses depth-first search to check nodes in the tree recursively.
The code presented is written in C++ programming language.

Appendix B contains the list of compound words, which are used to evaluate the perfor-
mance of compound splitting algorithms. The detailed splitting result is also presented in
tabular form.

37



38 Appendices

A. Source Code of BK-Tree Implementation

#include <string>

#include <vector>

using namespace std;

const static int MAXL = 100; //presumptive maximal word length

const static int MAXD = 50; //presumptive maximal Lev. distance

int f[MAXL][MAXL]; //array for calculating Lev. distance

int min(int x, int y) {

return x < y ? x : y;

}

int min(int x, int y, int z) {

return min(x, min(y, z));

}

int levenshtein_dist(wstring w1, wstring w2) {

f[0][0] = 0;

for (unsigned i = 1; i <= w1.size(); ++i)

f[i][0] = i;

for (unsigned i = 1; i <= w2.size(); ++i)

f[0][i] = i;

for (unsigned i = 1; i <= w1.size(); ++i)

for (unsigned j = 1; j <= w2.size(); ++j)

if (w1[i-1] == w2[j-1])

f[i][j] = min(f[i-1][j-1], f[i-1][j]+1, f[i][j-1]+1);

else

f[i][j] = min(f[i-1][j-1]+1, f[i-1][j]+1, f[i][j-1]+1);

return f[w1.size()][w2.size()];

}

class BK_tree {

struct BK_node { //tree node

wstring word; //word in the node

int child[MAXD]; //children of the node

};

vector<BK_node> nlist; //node list of BK-tree

vector<wstring> result; //temporarily store result

wstring qword; //temporarily store query word

int qdist; //temporarily store distance threshold

void DFS(int root) { //search similar words recursively

int dist = levenshtein_dist(qword, nlist[root].word);

if (dist <= qdist)

result.push_back(nlist[root].word);

for (int p = dist-qdist; p <= dist+qdist; ++p)

if (p>=0 && nlist[root].child[p] != 0)

DFS(nlist[root].child[p]);

}

38



A. Source Code of BK-Tree Implementation 39

public:

BK_tree() {

nlist.clear();

}

void insert(const wstring &word) {

BK_node x;

x.word = word;

for (unsigned i = 0; i < MAXD; ++i)

x.child[i] = 0;

nlist.push_back(x);

if (nlist.size() > 1) {

int root = 0;

int dist = levenshtein_dist(word, nlist[root].word);

while (nlist[root].child[dist] != 0 ) {

root = nlist[root].child[dist];

dist = levenshtein_dist(word, nlist[root].word);

}

nlist[root].child[dist] = nlist.size()-1;

}

}

vector<wstring> query(const wstring &word, int threshold) {

result.clear();

qword = word;

qdist = threshold;

DFS(0);

return result;

}

};

39



40 Appendices

B. Word List of Compound Splitting Task

Compound Word Correctly Splitted?

Algorithm I II/III

Threshold K 1 1 2 2 3 3

Threshold R 0.1 0.2 0.2 0.4 0.3 0.6

Antragsteller Yes Yes Yes Yes Yes Yes Yes

Aufeinanderprallen Yes Yes Yes Yes Yes Yes Yes

Berichterstattungsschranke Yes Yes Yes Yes Yes Yes Yes

Bibliothekssystem Yes Yes Yes Yes Yes Yes Yes

Bombenangriff Yes Yes Yes Yes Yes Yes Yes

Drehimpulserhaltungssatz Yes Yes Yes Yes Yes Yes Yes

Einkommensgap Yes Yes Yes Yes Yes Yes Yes

Eisenkern Yes Yes Yes Yes Yes Yes Yes

Frauenerwerbstätigkeit Yes Yes Yes Yes Yes Yes Yes

Freiraumrepräsentation Yes Yes Yes Yes Yes Yes Yes

Frontkonsole Yes Yes Yes Yes Yes Yes Yes

Gabelform Yes Yes Yes Yes Yes Yes Yes

Hintereinanderschaltung Yes Yes Yes Yes Yes Yes Yes

Hitzewelle Yes Yes Yes Yes Yes Yes Yes

Hobbyclub Yes Yes Yes Yes Yes Yes Yes

Koartikulationsphänomen Yes Yes Yes Yes Yes Yes Yes

Kohlsuppe Yes Yes Yes Yes Yes Yes Yes

Kulturlandschaftsbegriff Yes Yes Yes Yes Yes Yes Yes

Linksrechtsmodelle Yes Yes Yes Yes Yes Yes Yes

Magenschleimhautentzündung Yes Yes Yes Yes Yes Yes Yes

Militärpsychologie Yes Yes Yes Yes Yes Yes Yes

Ndimensional Yes Yes Yes Yes Yes Yes Yes

Perplexitätsmaß Yes Yes Yes Yes Yes Yes Yes

Polarkoordinatenraum Yes Yes Yes Yes Yes Yes Yes

Retraktionsverfahren Yes Yes Yes Yes Yes Yes Yes

Schaltsekunde Yes Yes Yes Yes Yes Yes Yes

Schifffahrt Yes Yes Yes Yes Yes Yes Yes

Soziologenkongress Yes Yes Yes Yes Yes Yes Yes

Startmenge Yes Yes Yes Yes Yes Yes Yes

Südspanien Yes Yes Yes Yes Yes Yes Yes

Treibhauseffektgase Yes Yes Yes Yes Yes Yes Yes

Zweitvoraussetzung Yes Yes Yes Yes Yes Yes Yes

Abfahrtszeit Yes No Yes Yes Yes Yes Yes

Dualitätsresultat Yes No Yes Yes Yes Yes Yes

Geisterstunde Yes No Yes Yes Yes Yes Yes

Großforschungsprojekte Yes No Yes Yes Yes Yes Yes

Hundehalter Yes No Yes Yes Yes Yes Yes

Kindersterblichkeitsraten Yes No Yes Yes Yes Yes Yes

Sitzungssaal Yes No Yes Yes Yes Yes Yes

Staatsfeind Yes No Yes Yes Yes Yes Yes

Stereosichtsysteme Yes No Yes Yes Yes Yes Yes

Windsbraut Yes No Yes Yes Yes Yes Yes

Mehrpersonenhaushalte Yes No No Yes Yes Yes Yes

Nichtlinearitäten Yes No No Yes Yes Yes Yes

40



B. Word List of Compound Splitting Task 41

Compound Word Correctly Splitted?

Algorithm I II/III

Threshold K 1 1 2 2 3 3

Threshold R 0.1 0.2 0.2 0.4 0.3 0.6

Oberflächeneigenschaften Yes No No Yes Yes Yes Yes

Straußenei Yes No No No Yes Yes Yes

Experimentalwissenschaftler No Yes Yes Yes Yes Yes Yes

Prediktionswahrscheinlichkeit No Yes Yes Yes Yes Yes Yes

Technikregulierend No Yes Yes Yes Yes Yes Yes

Aphorismenschatz No No Yes Yes Yes Yes Yes

Erneuerungspotenzial No No Yes Yes Yes Yes Yes

Schweigeminute No No Yes Yes Yes Yes Yes

Stadienverbot No No Yes Yes Yes Yes Yes

Wöchnerinnenheim No No No Yes Yes Yes Yes

Gravitationskrafteinfluss No No No No Yes Yes Yes

Gänseklein No No No No Yes Yes Yes

Pharmakaanalyse No No No No Yes Yes Yes

Prinzipienreiter No No No No Yes Yes Yes

Knackmechanismen No No No No Yes No Yes

Museenverwaltung No No No No Yes No Yes

Perzeptronlernalgorithmus No No No No Yes No Yes

Blätterwälder No No No No No No Yes

Adjazenzliste No No No No No No No

Kantendisjunkt No No No No No No No

Raytracingverfahren No No No No No No No

Splitted (from 65 in Total) 46 35 49 53 61 58 62

41


	Abstract
	Contents
	1 Introduction
	1.1 Challenges in German Spoken Term Detection
	1.2 Objectives of This Work
	1.3 Scope of This Work
	1.4 Structure of This Thesis

	2 Background and Related Work
	2.1 The NIST 2006 Spoken Term Detection Task
	2.2 System from English STD Evaluation

	3 System Setup and Experimental Design
	3.1 System Structure
	3.2 Compound Splitting Component
	3.3 Query Expansion Component
	3.4 Decision Component
	3.5 Adding OOVs to ASR System
	3.6 Summary

	4 Algorithms for Compound Splitting
	4.1 Basic Processes
	4.2 Algorithm Based on Word Formation Rules
	4.3 Algorithm Based on Word Similarity
	4.3.1 Primitive Idea
	4.3.2 Using Efficient Data Structure: BK-Tree

	4.4 Implementation and Computational Complexity
	4.4.1 Similarity Threshold
	4.4.2 Time and Space Complexity

	4.5 Summary

	5 Experimental Results and Evaluation
	5.1 Spoken Term Detection Task
	5.1.1 Experimental Setup
	5.1.2 Results and Evaluation

	5.2 Compound Splitting
	5.2.1 Experimental Setup
	5.2.2 Results and Evaluation

	5.3 Summary

	6 Conclusion and Future Work
	Bibliography
	Nomenclature
	Appendices
	A Source Code of BK-Tree Implementation
	B Word List of Compound Splitting Task


