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1 Introduction

1.1 Motivation

The invention of the automobile changed our daily life signi�cantly. After the
car became a�ordable for the general public, the number of used cars increased
dramatically. Today, the number of vehicles in the public tra�c is valued at about
780 millions and is estimated to be more than 1 billion at the end of the year 2020.
Thus, the car became a constant element in human life.
Of course, automobiles do not only bring along advantages. According to the world
health organisation (WHO), about 1.2 million people are killed in a car accident
per year. With the number of cars on the street, the number of deaths on the
road is increasing, too. Even walking on the road has become more dangerous
than never before.
Today, modern computer systems support people to handle the daily tra�c. For
drivers and walkers, it is necessary to detect and recognize other vehicles as early
as possible in order to react appropriately. This is generally quiet easy for human
beings. But the question is whether this can be done by computers, too?

1.2 Problem Formulation

The aim of this work is to recognize the type of a vehicle by using images or
video sequences. By using sequential images, the separation of the vehicle from
the background can be done by using di�erential images or Kalman �lters [1].
But what is about non-moving vehicles? All objects which resist in their position
become part of the background. In those cases, sequential images represent the
same information as one single image and we can concentrate on vehicle type
recognition based on a single image.
Yan Li and Takeo Kanade work on a car detection and registration system which
can be used to �nd out the position and shape of each vehicle in a given input
image. Further, the pre-processing system provides information about the vehicle
orientation so that we can use methods for feature extraction depending on the
current view of the vehicle. In this work, we extend the detection and registration
system of Yan Li and Takeo Kanade with an automated recognition of the vehicle
type. We deal with four di�erent vehicle categories shown in �gure 1.1. We
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CHAPTER 1. INTRODUCTION

Figure 1.1: Supported vehicle types: Car, Pickup, Van and Jeep

distinguish between cars, pickups, vans and jeeps. The recognition extension is
able to classify the vehicle type from �ve di�erent viewpoints: Head, left head,
side, left tail and tail. The right viewpoints are invariant against the left. Thus
we can ignore the right head, right side and right tail viewpoint.

1.3 System Overview

Vehicle
Detector

Shape
Alignment

Part
Detector

Type
Recognition

S={I 1, I 2, I 3 , ...} I k  x , y

J 1 x , y J 2 x , y 

J 4  x , y J 3 x , y

J k  x , y

Figure 1.2: System Overview: Detection, Alignment and Recognition

Figure 1.2 shows the system architecture. As we can see, we expect a single im-
age Ik(x, y) as input image. This image can be part of any sequential images
S = {I1, I2, . . .} and it can contain more than only one vehicle. The vehicle de-
tector tries to extract the vehicles by scanning the image with a 128 × 128 sized
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CHAPTER 1. INTRODUCTION

sub-window. In each scan, an histogram of orientation gradients (HoG) is formed
from the pixels within that sub-window. The detector uses multiclass logitboost
to select discriminative features and returns a set of landmark points which de-
scribe the vehicle position. We can use this information to extract the car and
create a new image Jk(x, y) [2].
The extracted vehicle image and the set of landmark points form the parameter
for the next system part. The alignment component uses one of the alignment
methods described in chapter 2.2 and converts the vehicle images so that every
vehicle has the same rotation and position as all other vehicles in the correspond-
ing viewpoint class.
The part detector scans the image a second time and returns the position of char-
acteristic vehicle parts like the windshield, the hood or the radiator grill. We will
see that we can use this information for speedup and to improve the recognition
accuracy.
The last part of the system uses the information of the previous components and
tries to classify the vehicle type. The following work will describe several ap-
proaches and evaluate them in regard to recognition accuracy and performance.

1.4 Applications

Video surveillance plays an increasing role in public life. More and more high-
ways, intersections or whole cities use video surveillance in order to regulate the
huge tra�c volume. In most cases, an ordinary tra�c census system is used which
counts passing vehicles by using infrared or simple computer vision approaches.
Apart from the number of vehicles, it would be interesting to know the type of
vehicle which passed the observation point. This information could greatly in�u-
ence decisions made for the tra�c system. Highways could be build according to
the type of vehicles that will use them. New intersections or tra�c lights can be
installed which react intelligently to the currently dominating vehicle types.
But a vehicle detection and recognition system is not only useful for video surveil-
lance. If we think about navigation systems, we could provide useful information
for car drivers. For example, the navigation system can automatically keep a se-
curity distance which depends on the type of the vehicle in front of us.
Vehicle recognition also plays an important role in cognitive automobiles. If we
want a computer to drive our car through city tra�c, it has to know the position,
size and behaviour of the cars around. Thus a motorcycle can be overtaken easily
while we need more space if the want to overtake a minivan or a pickup truck.
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CHAPTER 1. INTRODUCTION

1.5 Related Work

Peijin Ji, Lianwen Jin and Xutao Li used a partial Gabor �lter bank for vision
based vehicle type classi�cation [3]. They extracted features from both edge im-
ages and grey images from the side view of the car by using a partial Gabor �lter
bank and di�erent sampling methods. The dimension of the feature space was
reduced by using Principal Component Analysis. A minimum distance classi�er
derived from the Bayes' decision theory was used to classify the vehicle into �ve
di�erent categories: Sedan, van, hatchback sedan, bus and van truck. They ran
experiments with a testing database of total 1196 vehicle side views and achieved
a maximum recognition accuracy of 95.17%.

Peter Shin, Hector Jasso, Sameer Tilat, Neil Cotofana and Tony Fountain from
the Department of Structural Engineering at the University of California used
strain histories from installed bridge-deck panels and tried to classify the passing
vehicles using Naive Bayesian, a Neural Network and a Support Vector Machine
at a time [4]. They collected strain histories from 2100 vehicles, normalized them
and trained the di�erent analytical methods by using about 400 vehicles from
each of the �ve categories: Small vehicle, medium truck, bus, 3-axle truck and
combination truck. In their experiments, they achieved a recognition accuracy of
94.8% by using the Support Vector Machine technique.

Thiang, Resmana Lim and Andre Teguh Guntoro described car recognition of
various car types during daylight and at night based on Gabor wavelets [5]. They
extracted Gabor features and created a database of four template images for each
vehicle category (sedan, van, pickup). They matched an input image by computing
the similarity value to each template. The class of the template with the highest
similarity value was chosen. In their experiment, they used the side view of 44
unkown vehicles. Their system achieved an average recognition rate of 93.88%.

4



2 Preprocessing

Pre-processing the image data means translating the image into a more useful
format. Figure 2.1 shows an input image without any pre-processing steps.
The �rst important step is to determine the position of the vehicles given by the

Figure 2.1: Input image with vehicle shapes

landmark points ((x1, y1), . . . , (xk, yk)). As described in chapter 1.3, the determi-
nation of the object position is done by another pre-processing system and is not
part of this work. We assume that we have an input image as shown in �gure 2.1
and a given vector vi = ((x1, y1), . . . , (xk, yk) which describes the position of each
vehicle i.
The next step is to extract the detected vehicle i from the input image, so that
we can expect one vehicle per image. This is done by �nding a rectangle R which
contains all point vectors vi of the corresponding vehicle i.
In the following section, several pre-processing steps are introduced.

2.1 Normalizing

The normalization of an image is an important step to reduce errors caused by
image noise, image peaks and di�erences in contrast and illumination of images.

5



CHAPTER 2. PREPROCESSING

2.1.1 Binary Images

A simple approach is to use binary images where every pixel of a grayscale image
I(x, y) is mapped to a binary value by using a threshold τ :

f(I(x, y)) =

{
1, I(x, y) ≥ τ

0, I(x, y) < τ

This approach is simple, but vulnerable to images noise. Thus, this approach is
only useful in combination with other pre-processing methods. In our case, we
use this method to reduce the number of edges caused by image noise.

2.1.2 Histogram Equalization

Another more suitable approach is to normalize the image using an image his-
togram equalization. This approach increases the image contrast by increasing
the dynamic range of gray levels. The following brie�y introduces the histogram
equalization as described in "Digital Image Processing" [6].

Let us consider a greyscale image with discrete pixel values. The probability of
the occurrence of gray level k is de�ned as:

p(k) =
nk

n
k = 0, . . . , L− 1 0 ≤ xk ≤ 1

Where L is the total number of gray levels, n the total number of pixels and nk

the number of occurrences of the gray level k.
The so called cumulative distribution function (CDF) of a pixel with gray level

(a) Original greyscale image (b) Histogram equalized image

Figure 2.2: Di�erence between the histogram equalized image and the original
greyscale image
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CHAPTER 2. PREPROCESSING

k is de�ned as the sum of its related probabilities:

c(k) =
k∑

j=0

p(k) k = 0, . . . , L− 1 0 ≤ xk ≤ 1

In order to equalize a given histogram we apply a transformation which maps each
exiting level k to a new level k′ so that the CDF of k′ will be linearized across its
value range:

k′ = c(k)

The values are mapped into an interval [0, 1]. To get the original graylevels which
are in the interval [α, β], the following transformation needs to be applied:

k = k′(β − α) ∗ α

Finally we create a normalized image INormalized by mapping the pixel values to
the normalized gray level distribution using the CDF of IOriginal. The di�erence
between a histogram equalized image and the original greyscale image is shown in
�gure 2.2.

2.2 Alignment

Figure 2.3: Non-aligned images at the top versus aligned images at the bottom

After we have estimated the position of the vehicle we extract every vehicle into
a separate image. In order to compare those images or at least to �nd similar
image properties, we have to ensure that the vehicle position, rotation and size
is equal on every image. Figure 2.3 illustrates the di�erence between non-aligned
images at the top and aligned images at the bottom. The following sections will
introduce two approaches which can be used to align objects in images.
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CHAPTER 2. PREPROCESSING

2.2.1 Procrustean Analysis

The �rst approach is a statistical shape analysis where a given object is described
using 2-dimensional coordinates (x1, y1), . . . , (xk, yk) which are called landmark
points. As described in chapter 1.3, the vehicle detector determines those land-
marks points and thus we assume that the parameters (x1, y1), . . . , (xk, yk) are
given. The next step is to remove translational, rotational and scaling compo-
nents from the landmark points.
The translational component can be removed by shifting each coordinate so that
the mean of all coordinates lie at the origin. The mean of coordinates is given as
follows:

x̄ = (
k∑

i=1

xi)
1
k ȳ = (

k∑
i=1

yi)
1
k

Finally we map each coordinate onto its normalized value:

φtranslation(x, y) = (x− x̄, y − ȳ)

In order to remove the scale component, we have to determine the size s of the
object shape:

s =

√√√√ k∑
i=1

(xi − x̄)2 + (yi − ȳ)2

Now we can normalize the coordinates by using this scale:

φscale(x, y) = (
x1 − x̄

s
,
y1 − ȳ

s
)

To remove the rotational component is a bit more complex. Let us consider two
objects with the coordinates ((x1, y1), . . . , (xk, yk)) and ((u1, v1), . . . , (uk, vk)). The
rotational di�erence is at a minimum if the Procrustes distance d is at a minimum,
too. The Procrustes distance d of the given objects is de�ned as:

d =

√√√√ k∑
i=1

(ui − xi)2 + (vi − yi)2

So we take the coordinates of the �rst image and look for an angle θ which min-
imizes the Procrustes distance d, where the coordinates of the second image are
changed according to: (u1, v1) = (cos θu1 − sin θv1, sin θu1 + cos θv1). This search
can be done for example by using a least squares technique. The �nal mapping to
remove the rotational component is then given as:

φrotation(x, y) = (cos θx− sin θy, sin θx+ cos θy)

8



CHAPTER 2. PREPROCESSING

2.2.2 Similarity Transform

In "Image Alignment and Stiching", R. Szeliski introduces several motion models
to describe the relationship between images and he shows how to parameterize
the motion models in order to align an image [7].
Related to this work, the similarity transform is a so called parametric motion
model where we try to align one image to another by using a rotation matrix
R ∈ R3x3, a translation vector t ∈ R3 and a scaling factor s ∈ R. Those parameters
can be used to establish a mathematical relationship that maps pixels from one
image to another.
The similarity transformation can easily be seen as a transformation matrix H:

H = sR + t = [sR|t]

The corresponding image will be aligned by multiplying it with the parameterized
transformation matrix. The challenge of this approach is to determine the param-
eters for H.
As mentioned in chapter 1.3, the pre-processing system already provides key-
points which can be used for a feature based parameter registration. Accord-
ding R. Szeliski, SIFT features perform the best for getting interesting landmark
points [7].
After we extracted the landmarks, they have to be matched by �nding the corre-
sponding points on the other image. The simplest way is to compare all feature
points from one image against the points of the other one. This approach is
quadratic in the expected number of features. But the mentioned pre-processing
system returns a minimum number of keypoints and thus, the number of compares
is low and the system still performs well.
After we got the correspondences, we can estimate the motion parameters R, t
and s. The usual way to do this, is to use the least squares technique and look
for parameters which minimize the following equation:

E =
∑

i

||Hxi − x′i||2 (2.1)

Where xi and x′i are correspondences between the found feature points of the
di�erent images. The similarity transform between two images has linear rela-
tionships between motion and parameters [7]. Thus we can use a simple linear
regression to �nd the best parameters.
In chapter 2.1, we assume that all feature points are matched with the same accu-
racy. This is not always possible, because some points might be located in more
textured regions than other. To handle this, we introduce a variance estimation
σ2

i for correspondence i and minimize the weighted least squares instead:

E =
∑

i

σ2
i ||Hxi − x′i||2

9



CHAPTER 2. PREPROCESSING

2.3 Masking

Figure 2.4: Vehicle image extracted from the position which was determined by
the pre-processing system

Next to the normalizing and alignment of the image, the masking is also an impor-
tant part to increase the recognition accuracy. As we see in �gure 2.4, the shape
returned by the pre-processing system is not accurate and there is still some back-
ground left on the extracted vehicle. Thus we need a method to e�ciently remove
this background noise from the input image. This can be done by applying a
grayscale maskM(x, y) to the input image I(x, y) by simply multiplying the pixel
values:

I(x, y) =
M(x, y)I(x, y)

α

Where [0, α] de�nes the pixel value range of the mask. Pixel that fall in dark
regions of the mask will get less weight corresponding to the pixel values of the
mask.
In �gure 2.5 we see di�erent masks which are used in our experiments.
The linear mask shown in �gure 2.5(a) gives pixels which are close to the center
more weight and let the other pixels disappear:

I(x, y) = I(x, y)
−xmax

2α
∗ d+ α

α

Where d is the distance of the corresponding pixel p = (x, y) to the center c =
(xmax

2
, ymax

2
):

d = ||p− c||2
This mask can be applied to any view of the vehicle but a perfect elimination
of the background noise is not given and this mask eliminates some parts of the
vehicle, too.
In �gure 2.5(b), we see a mask for each speci�c view of the vehicle beginning from
the front view, left front, side view, left side and back view. We use the view index
given by the pre-processing system and apply the mask Mk(x, y) correspondingly
to the current view k:

I(x, y) = I(x, y)
Mk(x, y)I(x, y)

α

10



CHAPTER 2. PREPROCESSING

To further improve performance, we can reduce the input data by eliminating un-
interesting parts of the vehicle itself. We con�ne the feature extraction to the most
characteristic parts on the vehicle de�ned by rectangles of interest like shown in
�gure 2.5(c) for a single view and in �gure 2.5(d) for multiple views. In the evalu-
ation, we will see that the last method performs best of all masks. The challenge
is to �nd the optimal rectangle positions. The pre-processing system provides us
keypoints which de�ne the vehicle position so that we can determine the rectangle
positions relative to this. We will discuss some approaches to optimize the mask
parameters in chapter 6.3. The rectangle positions and sizes which are used in
our experiments can be found in appendix A.3.

(a) Lin-
ear, view-
independent
mask

(b) Non-linear, view-dependent masks

(c) View-
independent,
partial mask

(d) View-dependent, partial masks

Figure 2.5: Di�erent masks applied to input images
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3 Methods

3.1 Feature Extraction

Before we are able to classify an object, we have to extract the object parameters.
To stay performant, our intention is to keep the size of parameters as small as
possible. The transformation of input data into a reduced, representative set of
features is called feature extraction. The data structure containing the features is
called feature vector or descriptor.
In regard of the problem formulation, we need a feature vector which describes
the outline of the vehicle and attributes which are typical for the corresponding
car type, respectively. As described in chapter 1.3, the detection system returns
the view index and the position of the vehicle. This information is used to apply
pre-processing steps like described in the next chapter 2. Due to those processing
steps, we can assume that our input image I(x, y) has only a negligible amount of
background noise. The following sections introduce several approaches for feature
extraction.

3.1.1 Laplace of Gaussian

The �rst approach tries to transform the outline of the vehicle into a feature vector
by using the Laplace of Gaussian operator:

LoG(x, y) = ∇2(G(x, y) ∗ I(x, y))

Where ∇2f = ∂2f
∂x2 + ∂2f

∂y2 is the Laplace �lter for a 2D function f . We implement
this second-order derivate as a �ler matrix with a kernel aperture size of 1. As a
approximation of the �lter, we might use the following �lter mask:

∇2 ≈

 0 −1 0
−1 4 −1
0 −1 0


The Laplace �lter is known to be very sensitive to noise [6]. So we're using
the Gaussian �lter G(x, y) as a low-pass �lter in order to smooth the image and
remove noise before we start to detect edges. The feature vector of an 128× 128
dimensional image I(x, y) is formed by LoG(x, y) and has the dimension n =
128 ∗ 128.

13



CHAPTER 3. METHODS

3.1.2 Gabor Wavelets Transform

The Gabor wavelets transform Ok(x, y) of a grayscale image I(x, y) is the convo-
lution with a set of wavelets ψk(x, y):

Ok(x, y) = I(x, y) ∗ ψk(x, y)

The wavelets are formed by a set of plane waves with di�erent translations, rota-
tions and sizes restricted by a Gaussian envelope function:

ψk(z) =
‖k‖2

σ2
e
−‖k‖2‖z‖2

2σ2 [eikz − e
−σ2

2 ]

With σ = 2π, k(µ, υ) = kmax
fυ

eiπ ψ
8 (with the maximum frequency kmax), spacing

factor f =
√

2, scale υ and orientation µ. Good test result using Gabor wavelets
can be obtained by a wavelet family with �ve di�erent scales υ ∈ {0, . . . , 4} and
eight orientations µ ∈ {0, . . . , 7} as shown in �gure 3.1 [3] [8].
The resulting feature vector g is formed by Ok(x, y). So if we use 128 × 128
dimensional images and a down-sample factor of 64, we get a �nal feature vector
with a length of n = 128∗128∗5∗8

64
= 10240 elements.

In order to increase the performance, the Gabor wavelets can be computed in a
pre-processing step. Since the image size does not di�er, we can use the same
wavelet database to extract feature from several images.

Figure 3.1: Gabor wavelets with di�erent scales and orientations

3.1.3 Histogram of Oriented Gradients

The basic idea of the histogram of orientated gradients (HoG) is to characterize
appearance and shape of an object by using the distribution of local edge direc-

14



CHAPTER 3. METHODS

tions. Navneet Dalal and Bill Triggs �rst used the HoG extraction method in their
paper "Histograms of Oriented Gradients for Human Detection" [9].
To build an so called HoG image, we split the image into connected regions called
cells and compute the gradient directions or edge orientations for each pixel. For
each cell, we create an orientation based histogram where the pixel gradients of
the current cell are accumulated corresponding to their orientation. Hence, each
cell ci ∈ Rn is a vector which contains the magnitudes for n di�erent orientations.
To boost this accumulation, we need an e�cient method to calculate rectangular
sums of the gradient values. By using integral images we can compute any rect-
angular sum in four array references [10]. The integral image II(x, y) of an input
image I(x, y) at position x, y contains the sum of pixels above and left to x, y:

II(x, y) =
∑

x1≤x,y1≤y

I(x1, y1)

In our case, we can compute an integral image containing the corresponding gra-
dient for each pixel. We can use this image to e�ciently sum up those values for
each cell like shown in �gure 3.2.
To further improve the performance and to achieve greater invariance in illumi-

A B

C D

x1

x3

x2

x4

Figure 3.2: Using integral images, the rectangle sum of D can be computed in
four array references: D = x4 − x3 − x2 + x1

nation and shadowing, we use block normalization where we further group each
cell into larger regions called blocks. The blocks are placed in a way, so that each
cell is shared by four overlapping blocks. For each block B, we normalize the cells
ci ∈ B by using the l2- norm:

ci =
ci√∑
Cell c c

2

In our implementation, the normalized gradient values are subjected to a thresh-
old. In this case, another normalization is necessary after thresholding.
For an image with the size of w×h pixels, the normalized image gradients for each
orientation form the �nal descriptor with size

(
w
cw
− 1

) (
h
ch
− 1

)
∗ 4 ∗n, where cw

and ch stand for the cell size and n for the number of di�erent orientations.
Figure 3.1.3 shows an HoG descriptor where the orientation for each cell is visu-
alized and the gradient magnitude is de�ned by the corresponding grey level.
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CHAPTER 3. METHODS

Figure 3.3: HoG image of a Jeep

3.1.4 Scale Invariant Feature Transform

The Scale Invariant Feature Transform (SIFT) transforms an image into vec-
tors which are invariant against translation, rotation and scaling. This approach
was �rst introduced by David G. Lowe in "Object Recognition from Local Scale-
Invariant Features" [11] and "Distinctive Image Features from Scale-Invariant
Keypoints" [12].

The �rst step of SIFT is to identify key locations and scales that can be repeatably
assigned under di�ering views of the same object. That means, we are looking for
stable features across all possible scales σ in image I(x, y) by using a continuous
function of scale. Such a function is called scale space:

L(x, y, σ) =
1

2πσ2
e
−(x2+y2)

2σ2 ∗ I(x, y)

The key locations we are looking for are the extremes of a di�erent-of-Gaussian
function D(x, y, σ) = L(x, y, kσ)− L(x, y, σ).
An e�cient approach to compute D(x, y, σ) is to create a set of Gaussian images
with 3 di�erent scales by using L(x, y, kσ) with k =

√
2 and σ = 1.6. This set

of Gaussian images is called octave G0. Further, we compute the di�erence-of-
Gaussian between the images of the �rst octave G0 and downsample the resulting
images by a factor of 2. Those down-sampled Gaussian images form the next
octave G1. We repeat the whole process with a doubled scale σ = 2σ and the
constant k =

√
2 until we got at least 3 resulting Gaussian images.

To �nd the maximum and minimum of a pixel, we compare its eight neighbours
at the current octave and the nine neighbours at the octave above and below. The
pixel is selected only if its value is larger (smaller) than all neighbour values.
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CHAPTER 3. METHODS

This approach gives us a considerable number of keypoint candidates. A lot of
those locations are sensitive to noise or poorly located along an edge. To remove
those unstable keypoint candidates, we apply a threshold on minimum contrast
and on ratio of principal curvatures to eliminate edge responses. The remaining
locations form the set of keypoints.
To assign an orientation to a keypoint, we compute the gradient magnitudem(x, y)
and orientation θ(x, y) for each sample L(x, y, σ) = L(x, y) where σ is the scale of
the keypoint:

m(x, y) =
√

(L(x+ 1, y)− L(x− 1, y))2 + (L(x, y + q)− L(x, y − 1))2

θ(x, y) = arctan
(L(x, y + 1)− L(x, y − 1)

L(x+ 1, y)− L(x− 1, y)

We compute those values for a set of pixels within a region around the keypoint
and create an orientation histogram which covers 360 degree by using the orien-
tation θ(x, y) and weight m(x, y) of each sample point. The orientation of the
highest peak and of other local peaks close to that one is assigned to the point.
Thus multiple orientations with di�erent magnitudes are possible. In order to
achieve invariance in orientation, the gradient orientations are given relative to
the keypoint orientation. Finally, the gradients of the sample points are weighted
by a circular Gaussian window. The center of this window is the keypoint location
itself. Gradients that are far away from the center achieve less emphasis.
In the �nal step, we divide the region around the keypoint location into further
sub-windows and create another orientation histogram for each new sub-window.
This time, the histogram has only eight bins and accumulates the gradient weights
for the corresponding orientation. The accumulated gradient weights of each ori-
entation and sub-window form the �nal descriptor.
Figure 3.4 shows a visualization of keypoints from a side view of the vehicle. The
arrows indicate the keypoint orientation and magnitude with the highest peak.

3.2 Classi�er Design

In order to classify input data, we have to group similar feature vectors together.
The classi�er assigns one of the existing classes to an unseen feature vector based
on an underlying classi�cation model. We can di�er between several classi�cation
models.
The generative model �rst determines the conditional density functions p(v|Ck)
and the prior class probability p(Ck) for each class k and feature vector v. By
using the Bayesian rule, we can now determine the post probability p(Ck|v) =
p(v|Ck)∗p(Ck)

p(v)
. The vector v is assigned to the class Ck for which p(Ck|v) is the

maximum. This model is used for example in the k-nearest neighbour algorithm
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Figure 3.4: Masked side view with visualized keypoints

which is brie�y introduced in chapter 3.2.1.
In the discriminative model, the dependence of the input feature vector v is mod-
eled on observed training data. The conditional probability destribution of the
input vector v is directly computed from the training set. Other than the genera-
tive models, the discriminative models do not allow the use of the joint probability
distribution. We will introduce a discriminative model called Support Vector Ma-
chines in chapter 3.2.2.

3.2.1 k-nearest Neighbour

The k-nearest neighbour algorithm (k-NN) is a quiet simple approach in machine
learning. Given an input vector, this approach gets the classes of the k-nearest
neighbors. The most common class within those neighbors is assigned to the input
vector.
To get the nearest neighbor of an image, we just calculate the di�erence of all
pixel values from the input image I(x, y) and the labeled image Tk(x, y) of class
k:

Dk =
∑
x,y

(I(x, y)− Tk(x, y))

To classify an image, we assign the most common class of the k-nearest neighbors,
which are the template images for which Dk is a minimum. We'll see in chapter
4 that the practical applicability is limited and the computation of the k-nearest
neighbours is time consuming and leds to poor performance.
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3.2.2 Support Vector Machines

A more e�cient approach is to use a Support Vector Machine trained on a given
training set of label pairs (xi, yi), where xi ∈ Rn and yi ∈ {−1,+1} for i = 1, . . . , l.
The following section gives an introduction to Support Vector Machines. The
following de�nitions are based on "A Tutorial on Support Vector Machines for
Pattern Recognition" by Christopher J.C. Burges [13].

Separable Case

Let us assert, that the given feature space Rn is separable. Thus we can �nd an
hyperplane which separates the training samples based on their labels. To �nd
the best solution, we want to look for the hyperplane which maximizes the margin
d+ + d− between the closest points of each class. In �gure 3.5 we see a linear
separable case, where all training samples follow the constrains:

xiw + b ≥ +1 for yi = +1 (3.1)

xiw + b ≤ −1 for yi = −1 (3.2)

If we combine 3.1 and 3.2 we got the following:

yi(xiw + b)− 1 ≥ 0 ∀i (3.3)

All training samples for which this equation is 0 are called Support Vectors and
lie on one of the hyperplanes H1, H2

yi(xiw + b)− 1 = 0

⇒ H1 : xiw + b = +1

⇒ H2 : xiw + b = −1

The margin d+ +d−, which has to be maximized changes to d+ +d− = 1
‖w‖ + 1

‖w‖ =
2

‖w‖ . Where w is normal to the hyperplane and ‖w‖ is the Euclid distance of the
norm.
We see that the hyperplanes H1 and H2 are in parallel and there are no training
samples between. Thus there exists an hyperplane H for which the margin is
maximal. The maximal margin can be achieved by minimizing ‖w‖. In order to
handle this optimization problem, we convert it into the Lagrangian formulation,
which is easier to handle and which allows the generalization to the non-linear
case in chapter 3.2.2.

19



CHAPTER 3. METHODS
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Figure 3.5: Example of a linear separable feature space

Lagrange Formulation

After we introduced the Lagrange multipliers αi for i = 1, . . . , l, we can convert
the problem formulation to the following:

Lp =
1

2
‖w‖2 −

l∑
i=1

αiyi(xiw + b) +
l∑

i=1

αi (3.4)

Where Lp is to minimize in respect to w and b while the derivates of Lp vanish
and αi ≥ 0. This is a convex, quadratic problem so that we can equivalently solve
the dual problem where Lp has to be maximized in respect to w and b and αi ≥ 0.
Again, derivates of Lpvanish. Thus we can form the following equations:

w =
∑

i

αiyi ∗ xi (3.5)∑
i

αiyi = 0 (3.6)

Using 3.5 and 3.6, we can form the dual problem as the following:

LD =
∑

i

αi −
1

2

∑
i,j

αiαjyiyjxi ∗ xj (3.7)

As we see, there's a Lagrange multiplier αi for every training sample (xi, yi).
Support vectors are the points which lie on one of the hyperplanes H1 and H2 and
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for which αi > 0. Those support vectors are the critical elements of a training
set. If the feature space is di�cult to separate, a lot samples are located along
the hyperplanes H1 and H2 which results in an high number of support vectors.
Once we've trained a SVM, we can us it by simply determining on which side of
the hyperplane a given sample lies.

Non-Separable Case

In the non-separable case, we would like to relax the conditions 3.1 and 3.2 by
introducing slack variables ξi for i = 1, . . . , l:

xiw + b ≥ +1− ξi for yi = +1 (3.8)

xiw + b ≤ −1− ξi for yi = −1 (3.9)

ξi ≥ 0 ∀i∑
i ξi becomes an upper bound of the number of training errors. By replacing 3.8

and 3.9 in the dual problem formulation 3.7, we got the following:

LD =
∑

i

αi −
1

2

∑
i,j

αiαjyiyjxi ∗ xj (3.10)

With 0 ≤ αi ≤ C,
∑

i αiyi = 0 and w =
∑Ns

i=1 αiyixi where Ns is the number of
support vectors. This equation is the same like 3.7 except that C is now an upper
bound for αi. Thus a larger C means an higher error penalty for the separation
problem. So the user can de�ne the error penalty by de�ning parameter C.
The primal Lagrange formulation for the non-separable case is now:

Lp =
1

2
‖w‖2 + C

∑
i

ξi −
∑

i

αi(yi(xiw + b)− 1 + ξi)−
∑

i

µiξi (3.11)

Where µi are the Lagrange multipliers which enforce the positivity of ξi.

Non-Linear Case

B. Schohlkopf and A. Smola have shown, that the number of possibilities to sepa-
rate a non-linear problem can be increased by mapping the feature space onto an
high dimensional space H [14]. Thus we introduce a mapping φ : Rn → H and
kernel functions K(xi, xj) = φ(xi)φ(xj). In order to support non-linear separable
problem, we replace in the training algorithm the dot products xi ∗ xj with the
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kernel functions φ(xi)φ(xj). Now, the corresponding Lagrange formulation looks
like:

LD =
∑

i

αi −
1

2

∑
i,j

αiαjyiyjφ(xi)φ(xj) (3.12)

=
∑

i

αi −
1

2

∑
i,j

αiαjyiyjK(xi, xj) (3.13)

If we choose suitable kernel functions K(xi, xj) we don't need to work with φ
explicitly. Also for testing a sample x, we can avoid the explicit computing of
φ:

Ns∑
i=1

αiyiφ(si)φ(x) + b =
Ns∑
i=1

αiyiK(si, x) + b

where si are the support vectors.
As we see, we can still do a linear separation but in a di�erent space. By using
suitable kernel functions, we can map a non-linear separable problem onto an
higher dimensional space where it might be easier to separate. To validate kernels
for which there is an high dimensional space H and a mapping φ so that the
training will converge, the Mercer's Condition is su�cient [15].
The following SVM kernels are supported by the LIBSVM software which is used
in our experiments in chapter 4.

(linear) K(x, y) = x ∗ y (3.14)

(polynomial) K(x, y) = (γx ∗ y + r)d (3.15)

(radial) K(x, y) = e−γ‖x−y‖2

, γ > 0 (3.16)

(sigmoid) K(x, y) = tanh(γx ∗ y + r) (3.17)

The parameters γ, r and d are kernel parameters and have to be de�ned by the
user. These parameters can be optimized in order to achieve a greater accuracy.
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4 Experiments

4.1 Training and Testing Sets

In order to compare the di�erent methods, we are using an image database of
5461 aligned images where the view index and the vehicle type is given as label.
Table 4.1 shows the distribution of the images.
All images were taken in a public domain without regard to any obstacles like
trees, people or other vehicles covering the direct view to the vehicle.
To classify the data, we use both, the k-nearest neighbour algorithm described

View Number of Images
Head 916
Left Head 1393
Left Side 798
Left Tail 1219
Tail 1135

Table 4.1: Distribution of images

in chapter 3.2.1, as well a SVM as described in chapter 3.2.2.

In case of k-nearest neighbour, we evaluate the methods by using a v-fold cross
validation with v = 5. Thus we split the data into �ve subsets and test each
subset against the other v − 1 subsets. For each test sample, we simply look for
the k-nearest neighbour and get the most common label within those neighbours.
The accuracy is the average percentage of correct classi�ed samples of all testing
sets.

When using a SVM for recognition, we train classi�cation models and use cross
validation, too. The following notes are based on "A Practical Guide to Support
Vector Classi�cation" by Chih-Wei Hsu, Chih-Chung Chang and Chih-Jen Lin
and describe the SVM setup for our experiments [16].
Before we train the data by a SVM, it is recommended to scale the data in order
to avoid feature values in greater numeric range dominate those in smaller ones.
In our approaches, we scale both training and testing data to the range [−1, 1].
Further we must handle feature vectors in a non-linear separable feature space,
so we need to follow the non-linear separable case described in chapter 3.2.2. It
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is recommended to use the radial basis function 3.16 as kernel function. This
kernel ful�lls the requirements to map the non-linear feature space onto an higher
dimensional space while having less numerical di�culties and less hyperparameters
as for example the polynomial kernel 3.15.
To determine the kernel parameter γ and the error penality C, we use a simple grid
search algorithm. This algorithm trains and tests the data while using di�erent
values for γ and C. Finally the parameter which achieve the best accuracy is
chosen. For further improvement of the accuracy, we run this grid search twice.
In the �rst run, the parameter log2(γ) changes its value between [−5, 15] with step
size of 2 and log2(C) changes its value between [3,−15] with a step size of −2.
After this run is �nished, we get the optimal parameters for γ and C within this
grid and start another grid search with same error penality C but with a smaller
step size and a smaller interval around γ. A table with all SVM parameters which
were used in our experiments can be found in appendix A.2.
To prevent the over�tting problem, we use v−fold cross-validation where we split
the training data into v subsets of equal sizes. A classi�cation model is trained
by using the v − 1 subsets. Finally, the classi�cation model is tested with the
remaining subset. The accuracy is the average percentage of the correct classi�ed
data. In the following we use a folding value of v = 5.
In order to evaluate the test results, we use the recognition accuracy we got from
v-fold cross validation and the number of support vectors of the classi�cation
model. A table with classi�cation rates and number of support vectors can be
found in appendix A.1.

4.2 Accuracy

4.2.1 Introduction

We can split the evaluation of the experiments into several parts.
The �rst part is the feature extraction which returns the feature vector v. This
vector can be seen as a numbered list of values:

v = [(1, vi), (2, v2), . . .]

This part is one of the most time-consuming parts. Thus we provide a C/C++
application for each kind of feature, which uses the Open Computer Vision Library
(OpenCV) [17].
The next part scales the feature values and optimizes the kernel parameters by
using a grid search. Finally the average accuracy is determined by using v-fold
cross validation. Those parts are done by libsvm which is provided by Chih-Wei
Hsu, Chih-Chung Chang and Chih-Jen Lin [16].
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4.2.2 Laplacian of Gaussian

In order to give the same weight to all parts of the vehicle, we �rst equalize the
greyscale image by using histogram equalization.
Textured images lead to an high edge detection rate. Therefore, this approach is
very sensible to background noise and we have to extract the vehicle as accurate
as possible. Due to this sensibility, we use the partial view-dependent mask in
�gure 2.5(d).
Finally, we �lter the masked image parts by Laplace with an aperture kernel size
of 1. The pixel values of the resulting LoG image form the feature vector.
After we created a feature database with all images, we can start the classi�cation.
We divide the set of feature vectors into v subsets and run a v-fold cross validation
by using k-nearest neighbour as classi�er.
Table 4.2.2 shows the recognition accuracy of this approach for each view and

k View 0 View 1 View 2 View 3 View 4
1 68,45 70,2 68,8 16,57 76,65
2 72,71 72,93 68,8 48,56 76,39

3 72,71 71,86 69,55 37,24 76,38
4 72,6 71,86 64,16 51,35 76,39

5 72,6 71,79 68,55 50,04 76,39

6 72,6 71,93 65,91 46,1 76,39

7 72,6 71,86 69,17 39,62 76,39

8 72,6 71,86 68,8 38,56 76,38
9 72,6 71,86 69,17 49,14 76,39

10 72,6 71,93 69,54 45,78 76,39

Table 4.2: k-nearest neighbour classi�cation accuracy of LoG features in %

di�erent k-nearest neighbours. We see that the tail view is the best classi�ed view
and the recognition of the left tail view is the worst. We will see in the other
experiments that the side view is best classi�ed. This e�ect might arise from
irregular textures caused by image interference and re�ections. In spite of the
Gaussian blur, the Laplace �lter detects more edges than only those of the vehicle
shape.
An visualized feature vector is given in image 4.1. We can see, that re�ections
lead to a very imprecise vehicle shape. Thus we need to �nd an extraction method
which is more resistant against image interference like re�ections or coarse textures
and which returns a more accurate vehicle shape description.
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Figure 4.1: Partial laplace �ltered image

4.2.3 Image Texture

A quiet di�erent approach is to use only texture information and classify the ve-
hicle based on its characteristic textures.
The naive method is to mask the histogram equalized image dependent on the
view and extract the pixel values which form the feature vector. We resize the
image to 64× 64 pixels which results in a feature vector size of 4096. We can see
in table 4.2.3 that we still get a poor accuracy. The reason might be background
noise which still exists around the vehicle. Another reason might be that parts
of the vehicles have di�erent colors. Although we use grayscale and histogram
equalized images, the pixel values of di�erent colored parts still di�er.
In the next experiment, we use the partial view-dependent mask and try to clas-

View Support Vectors Accuracy in %
0 444 87.01

1 851 79.33
2 490 73.93
3 669 78.01
4 576 83.88

Table 4.3: SVM classi�cation result of texture using a view-dependent mask

sify the pixel values of the ROIs. The results are shown in table 4.2.3. Again, we
achieve a weak classi�cation accuracy. Finding characteristic, color independent
parts turns out to be di�cult due to a large number of varying vehicle types. This
results in a feature space that is di�cult to separate.
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View Support Vectors Accuracy in %
0 596 72.60
1 931 71.93
2 589 68.42
3 830 72.60
4 636 76.30

Table 4.4: SVM classi�cation result of texture from view-dependent ROIs

4.2.4 Histogram of Orientated Gradients

Following the last evaluations, we need a feature extraction method which is robust
against local noise. Thus, we combine several pixels to a cell and we compute the
average orientation degree of that cell.
Again, we �rst run an histogram equalization of the image in order to improve
the contrast. Further, we want to create features which describe the whole vehicle
shape. Due to the block normalization of the HoG method, we do not have to
worry about local noise and we can use the view-dependent mask from �gure
2.5(b).
By using HoG, the 256 × 256 grayscale, histogram normalized image I(x, y) is
split into blocks with a size of 16 × 16 pixels. Every block contains ncell = 4
cells with a size of 8× 8 pixels. Further the block normalization is applied where
each cell is shared by 4 overlapping blocks. For each cell, the gradient values
for nbin = 9 di�erent orientations are computed. Those values form the �nal
feature vector, which has a total size of (max(i)

cx
− 1) ∗ (max(j)

cy
− 1) ∗ ncell ∗ nbin =

(256
8
− 1) ∗ (256

8
− 1) ∗ 4 ∗ 9 = 34596 features.

In this experiment, we use the SVM which transforms the feature space into an
high dimensional space to increase the separation possibilities.
Table 4.2.4 shows the result of a 5-fold cross validation returned by the SVM

View Support Vectors Accuracy in %
0 569 78.71
1 938 76.88
2 483 82.58
3 701 82.03
4 580 85.20

Table 4.5: SVM classi�cation result of HoG features using a view-dependent mask

with a radial basis kernel and parameters optimized by grid search. As we see,
this approach performs better than the previous one. Again, the tail view can
be classi�ed the best with 85.02% and 572 support vectors. But if we compare
the number of support vectors n4 = 572 against the total number of samples
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s4 = 1135, we see that more than the half of all samples are a support vectors.
Thus, the HoG features form a feature space which is di�cult to separate.
We repeat the experiment, but this time, we use a partial view-dependent mask

View Support Vectors Accuracy in %
0 604 79.69
1 624 85.79
2 291 94.11

3 699 87.12
4 468 88.81

Table 4.6: SVM classi�cation result of HoG features from view-dependent ROIs

which returns only ROI's so that there's no further background texture. Table
4.2.4 shows the result of this experiment. As we see, the partial mask further
increases the accuracy while the number of support vectors is less than with the
view-dependent mask. This shows, that the partial mask makes the problem
easier to separate. Next to that, we reduce the size of the feature vector by
using ROI. For example if we use the partial side mask, we extract patches with
sizes 64 × 48, 64 × 48, 32 × 64 and 48 × 16 thus we get a feature vector size of(
2(64

8
− 1)(48

8
− 1) + (32

8
− 1)(64

8
− 1) + (48

8
− 1)(16

8
− 1)

)
∗ 4 ∗ 9 = 3456 instead of

34596 like the previous one. This makes the classi�cation process more performant
due to a smaller SVM model.
In this experiment, we can see that the side view gets classi�ed best compared to
other views. But in the other experiments, the tail view was the best one. That
can be caused by the partial feature extraction from the ROIs. Thus, the quality
of the extracted features strongly depends on the used ROIs. In order to keep
the comparability of the experiments, we will use the same ROI parameters in all
experiments. We will discuss some approaches to optimize those parameters in
chapter 6.3.

View Support Vectors Accuracy in %
0 546 83.30
1 716 87.58
2 293 95.49

3 557 89.83
4 520 91.19

Table 4.7: SVM classi�cation result of HoG features with appended texture from
view-dependent ROIs

If we think about the head or tail view of a car, we notice, that some parts of the
vehicle have a characteristic texture like e.g. the radiator grill. This is why we start
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another experiment where we append the texture description to the feature vector.
This is done by getting the pixel values from ROIs like described in chapter 4.2.3.
The size of the feature vector increases to 3456+68∗48∗2+32∗64+48∗16 = 12800.
This vector is slightly bigger then the last one, but still smaller than the �rst one.
We still have a relative small SVM model and therefore a performant classi�er.
Table 4.2.4 shows the result of this experiment. We can see, that the accuracy of
every view is better than the accuracy without the texture information while the
number of support vectors is only slightly more.

4.2.5 Gabor Wavelets Transform

Next to HoG, we describe in chapter 3.1.2 another method to extract orientation
gradients. This method uses Gabor wavelets with di�erent orientation and dif-
ferent scales in order to get a vehicle shape which is more invariant against scale
than HoG.
Again, we start with a view dependent mask and a grayscale, histogram equalized

View Support Vectors Accuracy in %
0 499 89.41
1 778 85.14
2 403 90.98
3 695 84.00
4 525 91.80

Table 4.8: SVM classi�cation result of Gabor features using a view-dependent
mask

image with size 128 × 128. It is generally recommended to use Gabor wavelets
with �ve di�erent scales and eight orientations [3] [8]. Together with a down
sample factor of 64, this results in a feature vector length of 128∗128∗5∗8

64
= 10240.

The accuracy of this experiment is shown in table 4.2.5. We can see, that the
the classi�cation rate for every view is greater than by using HoG features with a
view-dependent mask. This implies, that the Gabor feature could be more suit-
able to describe the vehicle shape.
In order to reduce the feature length, we start another experiment where we ex-
tract the Gabor features only for ROIs. We use the same partial view-dependent
mask as we used in the HoG experiment. Table 4.2.5 shows the result of this
experiment. If we compare the results against the HoG experiment, we see that
we get a slightly better accuracy in all views. The improvement might arise from
the scale and rotation invariance of the Gabor features.
Like in the other experiments, we append the image texture of the ROIs to the
corresponding feature vector and restart the experiment. The result is shown in
table 4.2.5. We see, that the number of support vectors slightly increased, but the
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View Support Vectors Accuracy in %
0 523 85.69
1 809 87.01
2 350 96.49

3 613 90.24
4 505 91.10

Table 4.9: SVM classi�cation result of Gabor features from view-dependent ROIs

recognition accuarcy for the head and tail view has been improved, too. Again,
the appended texture information provides suitable characteristic details for the
vehicle head and tail, but it decreases the recognition accuracy of the side views.
As soon as there are parts which contain re�ections or shadows, the texture in-
formation leads to less accuracy.

View Support Vectors Accuracy in %
0 506 90.72
1 809 86.29
2 417 93.86

3 656 88.43
4 545 91,72

Table 4.10: SVM classi�cation result of Gabor features with appended texture
from view-dependent ROIs

4.2.6 Scale Invariant Features

Previous experiment in this document shows, that we can achieve a better recog-
nition accuracy if we use a shape description which is more invariant against scale.
Thus we try SIFT features which are also known to be invariant to scale and ro-
tation [12]. The region around the keypoint location described in chapter 3.1.4
has the size of 16 × 16 pixels and is divided into 4 × 4 sub-windows with size of
4× 4 pixels. As described, we achieve the magnitude for eight orientation of each
sub-window. This results in a feature vector length of 4 ∗ 4 ∗ 8 = 128.
The position of the keypoints is not always the same and due to image properties,
the number of found keypoints can di�er, too. In order to make the images com-
parable, we align the keypoints to a grid whose cells have the size of 16×16 pixels.
The �nal feature vector is created by concatenating the keypoint descriptors be-
ginning from the left upper grid cell. If a grid cell has no assigned descriptor, a
dummy descriptor wich zero values is used instead.
Table 4.11 shows the result of this experiment. If we compare the recognition
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View Support Vectors Accuracy in %
0 622 81.33
1 837 77.17
2 498 83.21
3 775 80.48
4 631 85.46

Table 4.11: SVM classi�cation result of SIFT features using a view-dependent
mask

accuracy, we see that the SIFT features extracted from an image with applied
view dependent mask achieve slightly weaker results than the HoG features. This
e�ect becomes clear if we compare the features of both methods. While the HoG
feature vector represents the orientation gradient for each cell, the SIFT feature
vector also contains orientation gradients which are aligned to a 16 × 16 pixels
grid. Corresponding to the found keypoints, there might be grid cells without
an keypoint descriptor but with a dummy descriptor containing zero values. In
contrast, the HoG feature descriptor contains orientations gradients for each cell
of the image. From this one can infer, that the SIFT feature vector still contains
enough information to achieve a good accuracy, but ignores unnecessary features
which might come from image interference.
We try to increase the recognition accuracy by limiting the keypoint search to
the ROIs. Thus we apply a partial view-dependent mask and restart the feature
extraction. The result of this experiment is shown in table 4.12.
We see, that the recognition accuracy is signitifcantly worse than in the previous

View Support Vectors Accuracy in %
0 569 75.11
1 778 72.29
2 356 79.07
3 670 74.49
4 713 80.18

Table 4.12: SVM classi�cation result of SIFT features from view-dependent ROIs

experiment. By limiting the keypoint search to the ROIs, the number of found
keypoint is very low and thus the feature vector becomes weak and represents less
vehicle characteristics. According to that, the SIFT approach needs the whole
image of the vehicle in order to achieve good results. But in most cases, this data
contains information like re�ections, blanketing objects or shadows which falsi�es
the vehicle description.
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4.3 Performance

As we mentioned in chapter 1.2, we only use a single image as input data. This
complicates the elimination of the background around the vehicle and makes the
recognition problem more di�cult. Further, in regard to support sequential im-
ages, the vehicle type classi�cation should be fast and should be �nished within
milliseconds.
The k-nearest neighbour classi�er takes the feature vector of the input image and
computes the k nearest neighbours to the training samples. Since our recognition
problem is quiet di�cult, we need a great number of training samples to be able to
separate the classes. Further, the k-nearest neighbour classi�er performs in O(n)
where n is the number of training samples. In order to perform a classi�cation
by using a LoG feature space, the computation of the k-nearest neighbours needs
about 9210 ms. Thus, this classi�er is not quali�ed to support seqential images if
we have to handle a great number n of training samples.
Using a SVM model is more e�cient for our needs. The SVM takes the training set
and maps the feature space into an higher dimensional space where the problem
might become easier to separate. Further, the SVM trains a classi�cation model
where only the support vectors are stored. Those vectors are used to describe the
hyperplanes which were optimized by a training. To classify an input image, the
SVM only needs to compute on which site of the hyperplanes the input vector is
located. Finally, the class of the corresponding area is assigned. Thus, this clas-
si�er performs in O(m) where m is the number of support vectors. The previous
experiments show, that the number of support vectors is vastly smaller than the
number of total training samples. Therefor, the SVM is more suitable in order to
support a fast classi�cation.
Table 4.3 shows the timing statistics for feature extraction, scaling and recognition
by using the corresponding classi�er. The performance evaluation was executed
on a Intel(R) Core(TM)2 with 2.00 GHz and 2 GBytes DDR2 RAM. We see, that
the duration of the recognition strongly depends on the size of the classi�cation
model. But before we can perform the recognition, we have to extract and scale
the features from the input image. If we look at the Gabor and HoG features ex-
tracted from a whole view-masked image, we see that an high dimensional feature
vector leads to a great overhead in this process. Thus, in order to support a fast
recognition, small feature vectors are recommended. In regard to the recognition
accuracy, the Gabor and HoG features extracted from ROI perform the best.

4.4 Conclusion

The recognition accuracy for all introduced methods is shown in �gure 4.2(a). The
number of support vectors for the SVM classi�er is shown in �gure 4.2(b).
In every experiment except for the Laplacian of Gaussian features (LoG), we used
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Feature Dimension Model Size Extraction Scaling Recognition
Gabor 10240 101.2 MB 488 ms 1224 ms 9593 ms
Gabor, ROI 2400 5.3 MB 160 ms 2 ms 1750 ms
Gabor, Texture, ROI 4800 9.6 MB 311 ms 10 ms 2310 ms
HoG 34596 159 MB 410 ms 1063 ms 9251 ms
HoG, ROI 3456 59 MB 188 ms 2 ms 1957 ms
HoG, Texture, ROI 12800 90.2 MB 388 ms 1100 ms 8957 ms
Texture 4096 23,2 MB 438 ms 114 ms 2204 ms
Texture, ROI 7 21,6 MB 22 ms 2 ms 3 ms
SIFT 32768 119.8 MB 1285 ms 6436 ms 11971 ms
SIFT, ROI 5862 13 MB 588 ms 2 ms 1502 ms

Table 4.13: This table shows the dimension of the feature vector, the size of the
classi�cation model and the consumed time for feature extraction, scaling and
classi�cation of a test image

a SVM classi�er with the described training method and v-fold cross validation
with v = 5.
We can see, that the LoG approach performs very poorly although we use a partial
mask to extract only ROIs. This result might be caused by the LoG features which
are very sensible to image noise like re�ections or shadows. Further, we used the
k-nearest neighbour classi�er which does not scale the feature values and which
assigns the most common label within the k nearest templates. Up to know, we
use a SVM to classify data. This classi�er �rst scales the data and transforms it
to an high dimensional space in order to achieve a feature space which might be
easier to separate. The technique is obvisouly more suitable for our needs. So we
change the classi�er and we concentrate the extraction on some more auspicious
kind of features.
Slightly better results than with LoG features are possible with the texture infor-
mation extracted from vehicle parts (Texture + ROI). But, the SVM needs the
highest number of support vectors to separate the feature space within all meth-
ods. This indicates that the classiciation of the texture information is di�cult
and using only texture information is unsuitable for a proper recognition result.
On the other hand, we achieve an increased accuracy in some experiments if we
append the texture information to the existing feature vector. Thus we can say,
that the texture information slightly improves the recognition if there are char-
acteristic textures available. Those textures can be found at the head and tail
view for example on the radiator grill or the vehicle lights. But as soon as there
are parts for which the shape is more relevant than the texture, this leads to less
recognition accuracy.
The features which achieve the best classi�cation rate are Gabor features ex-
tracted from ROI (Gabor + ROI). Hence we conclude that the Gabor features
are the most suitable features to describe object shapes in our experiments. The
head and tail of a vehicle can be classi�ed best by additionaly appending texture
information.
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We see, that high dimensional feature vectors makes the classi�cation model un-
suitable for fast recognition. Thus we introduced the SIFT descriptor which forms
a low dimensional feature vector by using only scale invariant keypoints. The idea
is to use orientation gradients as well, but to restrict those which are poorly lo-
cated along edges and other image interferences. If we compare the results against
the others, we see that the number of support vectors is less, but the recognition
accuracy is worse, too. Hence it seems that the features are unsuitable because
they don't describe the vehicle characteristics with a su�cient accuracy.
In almost every case, the view-dependent mask performs the worst and we get the
best result if we extract only features from ROIs and if we append the texture
information. Next to a better recognition rate, the number of support vectors is
smaller and the classi�cation model is suitable for a fast recognition, too.
To sum up, the vehicle types can be classi�ed best by using Gabor features from
the interesting parts of the vehicles. SIFT features are no choice, because the
recognition accuracy is poor. Finally, the HoG features also form a good classi-
�cation model which achieves nearby the same accuracy as Gabor features and
which is also stuitable to support a fast recognition necessary for real time appli-
cations (video sequences).
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5 NVidia GPU Programming

5.1 Introduction

In regard to the system performance, it would be advantageous to run several
computations in parallel. For example, the HoG scans of the vehicle detector which
we describe in chapter 1.3 are independent from each other and more than one
histograms could be computed at the same time. Likewise, the feature extraction
of di�erent vehicle parts is independent and can be done in parallel, too.
We will introduce NVidia's Compute Uni�ed Device Architecture (CUDA) to
control the Graphics Process Unit (GPU) which comes with the current NVidia
graphics cards. We will see an example of application where we boost the HoG
scans done by the vehicle detector.

5.2 Compute Uni�ed Device Architecture

The GPU is a graphics processor where more transistors are devoted to data
processing rather than data caching and �ow control. Data-parallel processing
maps data elements to parallel processing threads. This makes the GPU chipset
suitable for compute-intensive, highly parallel computations.
Recently, NVidia released the Compute Uni�ed Device Architecture (CUDA) for
computing on the GPU. This architecture contains a compiler that provides a
variation of the C programming language which gives developers access to the
instruction set and memory of the GPU.
CUDA is available for the GeForce 8 Series including the Quadro and Tesla line.
The following sections describe the programming model of CUDA.

5.2.1 Programming Model

The GPU is seen as a compute device which is capable of executing an high
number of threads in parallel. Data-parallel and compute-intensive application
parts can be isolated from the CPU (Host) and can be o�-loaded onto the GPU
(device). Such an isolated function is compiled to the device instruction set and
the resulting program is called kernel.
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Thread Batching

The threads of each kernel are organized in blocks. Threads within a block can
cooperate e�ciently by using a fast shared memory. To coordinate the memory
access, the threads within a block can be suspended until all of them reached a
speci�c synchronization point.
Each thread is identi�ed by its thread id, which is based on the thread number
(x, y) within the current block. Thus the thread id of a two dimensional block
with size (Dx, Dy) is de�ned as (x+ y ∗Dy).
The number of threads per block is limited, but blocks of the same device with the
same size can be batched together in so called grids. Thus the number of threads
within a kernel invocation can be much larger. Further, the thread coorporation
between grids is reduced to a minimum. Threads of di�erent grids cannot com-
municate and cannot be synchronized with each other. Due to this restriction,
the kernel can run the grids sequentially if there are only few parallel capabilities.
In the other case, the grids can be executed in parallel.
Each block is identi�ed by its block id, which is based on the block number (x, y)
within the current grid. Similar to the thread identi�cation, the block id of a two
dimensional grid with size (Dx, Dy) is given as x+ y ∗Dx.

Memory Model

Grid

Block 

Shared Memory

Thread Thread

Local 
Memory

Local 
Memory

Registers Registers

Global Memory

Constant Memory
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Block 
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Local 
Memory

Local 
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Figure 5.1: Memory spaces of various scopes for the CUDA architecture

In the CUDA architecture, the host and the device both maintain their own
DRAM memory. A thread can access the device memory through a set of memory
spaces of various scopes shown in �gure 5.2.1. We can see, that threads within a
block can communicate by using a block-wide shared memory. Additional to that,
every thread has fast-accessible local memory.
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Thread communication between di�erent blocks can be done by using global, con-
stant or texture memory. The global memory is read and writeable for every
thread while the constant memory and the texture memory is read-only for the
thread. By using the CUDA API, one can copy data from the host memory to
the corresponding device memory.
In order to support thread batching, the communication between threads of dif-
ferent grids is restricted so that each grid can be executed either sequentially or
in parallel.

5.3 Example of Application

As mentioned, the vehicle detector scans the input image by using a sub-window.
This window is moved over the input image and for each scan, an histogram of
orientated gradients is computed for the inner pixels. To achieve a proper de-
tection rate, we need a considerable number of scans. Fortunately, the scans are
independent from each other and we can run them in parallel.
The following example brie�y describes the application of the CUDA extension in
the HoG algorithm which was originally written by Dr. Yan Li (yanli@andrew.cmu.edu).
We will see how we can change the algorithm so that we can run the compute-
intensive parts in parallel.

5.3.1 Histogram of Orientated Gradients

Initialize(const IplImage* Image)

BuildGradientGray()

BuildIntegralHog()

SetParameter() ComputeHogFeature(int x, int y)

BuildCell()

BuildBlock()

Destroy()

Figure 5.2: Design of the original HoG algorithm

First of all, we should have a look at the original C++ application which extracts
an HoG feature vector, the so called descriptor. Figure 5.3.1 shows an activity
diagram for the classical HoG extraction.
At the very beginning, SetParameter() is called to determine all necessary pa-
rameters like number of cells, number of blocks or descriptor length. The block
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size, cell size and the number of orientations for which we want to compute the
magnitudes should be given in order to determine those parameter. By default,
we use a block size of 16 × 16 pixels, a cell size of 8 × 8 pixels and in total nine
di�erent orientations. The user can specify the size of a patch window for which
the histogram is computed. In our experiments, the patch size corresponds to the
image size and to the size of the partial mask respectively. In order to run a HoG
scan, a patch size of 128× 128 pixels is used.
In the next step, the Initialize() method is called with a pointer to the input
image. In the initialization step, we compute the orientation gradients for each
pixel in BuildGradientGray() and create an integral image in BuildIntegralHog()
by using the magnitudes and angles of that gradients.
Finally, ComputeHogFeature() is called with the position of the patch window. In
this method, the gradients of all pixels within one cell are summed up. We can
boost this process by using the integral image which allows a very fast compu-
tation of rectangle sums as described in chapter 3.1.3. After the cell values are
computed, BuildBlock() is called for block normalization. ComputeHogFeature()
�nally returns the descriptor as a �oat array which contains the magnitude for
each orientation and cell.

As described in the previous sections, we can isolate data-parallel and compute-
intensive program parts in order to o�-load them onto the device. If we look at
�gure 5.3.1, we see the design of the optimized scanning algorithm. To run several
scans on the same input image, we can create the integral image once and copy it
to the device memory where the kernel can use the integrals to form the cell and
block sums. Thus the initialization is independent from the number of scans and
can be done sequentially in a pre-processing step.
The idea is to isolate ComputeHogFeature() and to o�-load the feature computa-
tion to the device. To convert this method into a kernel, we have to change the
following parts in the code:
First of all, we have to allocate device memory so that all threads of di�erent
blocks can access the integral image. After the pre-processing step, the integral
image is not changed anymore and every thread needs only read-access to the
allocated memory. Thus, one of the global, constant or texture memory can be
used.
Further, we have to de�ne a descriptor matrix in the global memory where each
thread can store the resulting descriptors. Each line of the descriptor matrix con-
tains the descriptor �oat array for the corresponding scan index.
Finally, we start the corresponding number of threads and give the scan index
and pointers to the integral image and to the descriptor matrix. Each thread
performs the assigned number of scans, computes the hog features by using the
integral image and stores the resulting descriptor in the corresponding line of the
descriptor matrix.
Another synchronization point ensures, that each thread has �nished all scans
before we copy the �nal descriptor matrix back to the host memory by using cu-
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Initialize(const IplImage* Image)

BuildGradientGray()

BuildIntegralHog()

SetParameter() ComputeHogFeature(int x, int y, int i)

BuildCell()

BuildBlock()

i < NumberOfScans
truefalse

i++

cudaThreadSynchronize()

cudaMallocPitch()

cudaThreadSynchronize()

cudaMemcpy()

Destroy()

Figure 5.3: Design of the HoG scan algorithm

daMemcpy(). We can now access the descriptor matrix and can perform further
algorithm to determine the vehicle position.

5.3.2 Evaluation & Conclusion

Figure 5.3.2 shows the computation time for the corresponding number of scans.
If we run the HoG scans sequentially on the CPU, the overhead increases linear
to the number of scans. By using the CPU, we need about 5114 ms to perform
about 70000 image scans. But if we use the GPU, the scans are �nished in about
599 ms. Thus by using the GPU, we can perform the scans about 8.5 times faster.
The complete time statistics of our experiments can be found in appendix A.4
We run serveral experiments with a di�erent number of scans performed by each
thread. We see that one scan per thread is the best ratio. This is because CUDA
is using light-weight threads and the creation of a thread needs signi�cantly less
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Figure 5.4: CPU and GPU times for HoG scans

overhead than computing the HoG descriptor.
To sum up, we can say that we achieve a speedup of 8.5. In comparison to
the original vehicle detector, we can strongly increase the number of scans and
thanks to the data parallel processing, the vehicle detector running on the GPU
still performs faster than the one running on the CPU. The disadvantage is, that
the GPU is only supported by modern NVidia graphics cards and thus we need
special hardware in order to run the vehicle registration, detection and recognition
software.
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6 Future Work

6.1 Feature Extraction

The feature extraction is a fundamental part of the vehicle recognition. In our
work, we used several di�erent feature extraction methods. Some of them re-
turned high dimensional feature vectors which formed a prohibitive huge training
database, so that the training of the SVM model takes several days. If we think
about application, we should keep the feature vector length as short as possible.
To recognize a vehicle, we �rst have to extract the feature vectors and then we can
classify the vectors by using the trained SVM model. If the feature vectors are
too large, the feature extraction and the classi�cation are very time consuming
and the method is unsuitable for recognition in real time.
There are several approaches to reduce the feature vector dimension. The �rst
naive method is to �nd a method which creates a vector with a small dimension.
We saw in our experiments, that such features often lead to a weak recognition
accuracy like the partial texture information or the SIFT features.
Another possibility is to use Principal Component Analysis (PCA) to reduce the
dimension of the feature space. This approach tries to transform the data to a
new lower dimensional coordinate system while minimizing the mean square error.
Thus the data is transformed into a new structure which best explains the vari-
ance in the data. In doing so, we could achieve a lower dimensional feature space
which results in smaller feature vectors and SVM models. On the other hand, we
need more time for doing the transformation on the input data.

6.2 Classi�er Design

Next to the feature extraction, the classi�cation is also a fundamental part for
vehicle recognition. Given a data set and a classi�cation model, the classi�er
returns the most likely category for that sample. In our experiments, we use two
di�erent classi�ers.
First, we tried a k-nearest neighbour classi�er. The disadvantage of k-nearest
neighbour was the overhead to compute the distance to all neighbours. Given an
input feature vector, we have to compare this vector to all other vectors of the
training database.
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Other than k-nearest neighbour, the SVM creates a classi�cation model which
size depends on the number of support vectors which are necessary to separate the
training data. Thus the overhead depends on the separability of the feature space.
We introduced several kernels to map the feature space into an high dimensional
space in order to make it more suitable to separate. In our experiments we used the
recommended radial basis function as kernel 3.15. This kernel has less numerical
di�culties and less hyperparameters as for example the polynomial kernel, but it
would be interesting to compare the accuracy for other kernels as well.

6.3 Preprocessing

The results of our experiments show, that the recognition accuracy strongly de-
pends on the pre-processing steps which separate the background and the fore-
ground. In almost every approach, the view-dependent mask leads to weaker
accuracy in comparison to the partial view-dependent mask which removes non-
interesting parts from the background as well from the vehicle itself. Due to the
detection system, we can de�ne the position and size of the ROIs relative to the
vehicle position dependent on the current view. In our experiments, we de�ned the
rectangles shown in table 2.5(d) by hand and thus the position and size might not
be optimal. Adverse chosen rectangles could signi�cantly sophisticate the results
of our experiments. This problem could be solved by determining the optimal
mask parameters by using a set of images as training set.
Further, there might be other approaches which are more e�ective to separate the
background from the foreground. In "Robust Background Subtraction with Fore-
ground Validation for Urban Tra�c Video", Sen-Ching S. Cheung and Chandrika
Kamath introduce a technique to subtract the background from complex scenes
where vehicles are moving at di�erent and varying speeds. By using a Kalman
�lter and validating foreground pixels, the technique signi�cantly improves the
results but raises another problem with non moving vehicles which will be merged
with the background.
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A Appendix

A.1 Classi�cation Rates

Head Left Head Left Side Left Tail Tail
Feature nSV Rate nSV Rate nSV Rate nSV Rate nSV Rate
LoG, ROI 72,60 71,79 68,55 50,04 76,39
HoG 569 78.71 938 76.88 483 82.58 701 82.03 580 85.20
HoG, ROI 604 79.69 624 85.79 291 94.11 699 87.12 468 88.81
HoG, Texture, ROI 546 83.30 716 87.58 293 95.49 557 89.83 520 91.19
Texture 444 87.01 851 79.33 490 73.93 669 78.01 576 83.88
Texture, ROI 596 72.60 931 71.93 589 68.42 830 72.60 636 76.39
Gabor 499 89.41 778 85.14 403 90.98 695 84.00 525 91.80

Gabor, ROI 523 85.69 809 87.01 350 96.49 613 90.24 505 91.10
Gabor, Texture, ROI 506 90.72 809 86.29 417 93.86 656 88.43 545 91,72
SIFT 622 81.33 837 77.17 498 83.21 775 80.48 631 85.46
SIFT, ROI 569 75.11 778 72.29 356 79.07 670 74.49 713 80.18

Table A.1: Recognition accuracy (Rate) in percent �gured out by v-fold cross
validation and number of support vectors (nSV) which are necessary to separate
the feature space.
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A.2 SVM Parameter

Head Left Head

Feature C γ C γ

Hog 8 8.63167457503e-05 8 0.000410593952761

Hog, ROI 8 0.0009765625 8 0.00116133507324

Hog, Texture, ROI 8 0.0009765625 8 0.00116133507324

Texture 32 0.0001220703125 32 0.000345266983001

Texture, ROI 0.03125 0.0131390064883 0.03125 0.5

Gabor 128 1.52587890625e-05 128 0.0001220703125

Gabor, ROI 128 1.81458605195e-05 32 0.0001220703125

Gabor, Texture, ROI 32 2.15791864376e-05 8 2.56621220475e-05

SIFT 8 0.0001220703125 128 3.0517578125e-05

SIFT, ROI 8 0.001953125 32 0.00048828125

Left Side Left Tail

Feature C γ C γ

Hog 32 7.25834420778e-05 128.0 0.0001220703125

Hog, ROI 32 0.00020529697638 8 0.000580667536622

Hog, Texture, ROI 32 0.00020529697638 8 0.000580667536622

Texture 512 8.63167457503e-05 128.0 3.62917210389e-05

Texture, ROI 0.03125 0.0078125 0.03125 0.0078125

Gabor 32 6.103515625e-05 32 0.00020529697638

Gabor, ROI 32 2.56621220475e-05 32 2.56621220475e-05

Gabor, Texture, ROI 8 2.15791864376e-05 8 2.56621220475e-05

SIFT 32 7.25834420778e-05 128 0.00020529697638

SIFT, ROI 128 0.00010264848819 32 0.000410593952761

Tail

Feature C γ

Hog 128.0 1.52587890625e-05

Hog, ROI 8 0.000345266983001

Hog, Texture, ROI 8 0.000345266983001

Texture 128.0 0.000172633491501

Texture, ROI 0.03125 0.5

Gabor 128.0 1.81458605195e-05

Gabor, ROI 128.0 2.15791864376e-05

Gabor, Texture, ROI 32 3.0517578125e-05

SIFT 32 3.0517578125e-05

SIFT, ROI 32 0.001953125

Table A.2: Error penality C and kernel parameter γ for the radial basis function
which is used by the SVM within our experiments.
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A.3 Rectangles of Interest

View Part X Y Height Width
0 Front Lights 64 192 224 32
0 Windshield 160 96 32 96
1 Front Lights 64 176 128 32
1 Windshield 128 128 32 64
1 Side Pro�le 208 128 16 96
2 Windshield 112 144 48 64
2 Rear Window 224 144 48 64
2 Engine Cover 64 160 64 32
2 Back Pro�le 256 160 16 48
3 Back Lights 160 160 128 48
3 Back Pro�le 208 128 32 96
3 Side Pro�le 112 144 80 32
4 Back Lights 80 176 192 48
4 Back Pro�le 160 112 32 144
4 Side Pro�le 224 112 48 128

Table A.3: Pixel coordinates (X,Y) and pixelsizes for rectangles (ROI) containing
the most characteristical vehicle parts. Those ROI are used in our experiments
for images of 356× 356 pixels.

A.4 CUDA Run Time Statistics

Total Scans
Chipset Scans/Thread 10000 20000 30000 40000 50000 60000 70000
CPU 0 728,67 1462,57 2196,24 2924,74 3658,09 4384,07 5114,06
GPU 1 794,98 1610,54 580,7 548,55 570,03 562,77 599,21
GPU 2 519,25 1183,41 533,72 728,29 817,41 1025,32 803,72
GPU 4 651,42 1483,92 872,47 1213,6 1293 1827,13 1940,36
GPU 8 639,29 1673,24 767,93 899,13 1151,23 1304,77 1954,21
GPU 16 891,56 1509,06 736,88 899,54 1093,57 1533,2 1594,98

Table A.4: Total times in ms consumed by running the corresponding number of
HoG scans on CPU and GPU, respectively.
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