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Abstract: Many of the 7,000 living languages in the world are currently threatened
by extinction. In order to preserve these languages and the cultural heritage linked
with them, they need to be documented. This is a challenging and time consuming
task, even for trained specialists. Helping linguists in language documentation is
the goal of the French-German ANR-DFG project BULB. The first step in docu-
menting a language is the discovery of the phonetic inventory. We aim at assisting
linguists during this step by proposing a segmentation of audio data into phoneme-
like units and by clustering these units using articulatory features. In this work,
we refine our existing approach by the use of Deep Bidirectional LSTM networks
(DBLSTM), by which we could increase the recognition accuracy for articulatory
features.

1 Introduction

With more than 7,000 living languages [1] and many of them facing extinction [2, 3], preserving
all languages in the world is next to impossible. Languages being spoken by only a few speakers
are not of such a big social or economic interest that would be required for them to be preserved.
There has been active research on the process of automatic language documentation, but with
many language specific peculiarities, the process depends upon the knowledge and experience
of linguists. We aim at supporting those human experts with natural language processing (NLP)
technology. While NLP systems are readily available only for a few well-researched languages
with a large speaker base, they are not available for under-resourced languages. Thus, the
French-German ANR-DFG project Breaking the Unwritten Language Barrier (BULB) was ini-
tiated to develop technologies that would assist documentary linguists in documenting unknown
and unwritten languages. BULB will build tools based on these technologies and validate them
on three mostly unwritten African languages of the Bantu family: Basaa, Myene and Embosi
[4].

Looking at the typical work flow for documenting unwritten languages, the starting point is
the collection of audio data in the field. Based on these recordings, linguists derive the phonetic
inventory. This process starts with segmenting the recorded speech into phoneme-like units
and those segments need to be clustered based on phonetic similarity. As it is unknown which
acoustic events do carry information, e.g., tones, linguists first have to decide on the sound
inventory.

This paper is organized as follows: In the next Section, we provide an overview of relevant
work in the field. We describe our approach for articulatory feature extraction in Section 3,
followed by a description of our experimental setup in Section 4. The results are presented in
Section 5. In the final Section 6, we conclude this paper with an outlook to future work.

∗This work was realized in the framework of the ANR-DFG project BULB (STU 593/2-1 and ANR-14-CE35-
002) and also supported by the French Investissements d’Avenir - Labex EFL program (ANR-10-LABX-0083).
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2 Related Work

2.1 Articulatory Feature Extraction

Articulatory features (AFs) represent the state of the articulators in the human vocal tract.
Phones identify a certain configuration of articulatory features. Different approaches for us-
ing AFs in the field of speech recognition have been proposed. Metze and Waibel [5] proposed
to use AFs in addition to the regular ASR pipeline in order to make systems more robust in
terms of speaker or channel variability. It has also been shown that AFs are language indepen-
dent and that these features can be recognized across languages [6, 7]. In addition to systems
based on GMM/HMMs, AFs have also been used in ASR systems featuring neural networks
[8].

2.2 Phoneme Discovery

Discovering phonemes in an unknown language is a difficult problem and subject of ongoing
research. In the past, HMM based approaches were proposed[9]. Recent approaches published
as part of the Zero Resource Speech Challenge [10] do make use of neural networks [11, 12], but
there are GMM based methods [13, 14] as well. While detecting phones is difficult, clustering
them into phonemes is a challenging task, even for linguists. According to Kempton and Moore
[15], determining whether two phones are an allophone in a language is something which cannot
be handled automatically because with languages having specific peculiarities, it is difficult to
establish a language universal criteria.

2.3 Phoneme Segmentation

Prior to clustering phonemes, the recordings need to be segmented into single phoneme-like
units. Early work in the field includes an HMM-based approach towards automatic segmen-
tation and labeling of speech [16]. Current HMM-based models achieve boundary accuracies
up to 96.8% [17] on certain tasks. In recent publications, we addressed the problem of auto-
matically segmenting audio recordings into phoneme like units [18]. We demonstrated a first
approach to derive the phoneme inventory of an unknown language using DBLSTMs.

3 Articulatory Feature Extraction and Phoneme Set Discovery

AFs describe the state of the articulators in the human vocal tract, representing the position
of the tongue or opening of the mouth, for instance. In total, we used 7 different AF types, as
shown in Table 1. The AFs can be divided into two categories: Consonants (cplace, ctype, cvox)
and vowels (vfront, vheight, vlng, vrnd). As each type applies to only one category, we added
an additional class representing “does not apply”. A certain configuration of the articulators
represents a phone. With a limited phone inventory, only a limited set of AF configurations can
be recognized. But recognizing AFs instead of phones mitigates this restriction and is therefore
more universal. We extracted AFs using multilingually trained neural networks. Similar to
previous works [19, 20], we used fully connected feed-forward deep neural networks (DNNs) to
extract articulatory features. The networks used a context of 6 frames with 5 hidden layers and
1,000 neurons per layer. By the use of one network per feature, we could avoid co-adaptation
where the networks might be biased by being exposed to only certain AF configurations during
training.

In this work, we extended this approach by the use of Deep Bidirectional LSTM neural
networks (DBLSTMs), which have shown to improve performance in tasks like speech recog-



Table 1 – Overview of AF types used

Type # of Classes Description

cplace 8 Place of articulation
ctype 6 Type of articulation
cvox 2 Voiced

vfront 3 Tongue x position
vheight 3 Tongue y position
vlng 4 Type of vowel
vrnd 2 Lips rounded
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Figure 1 – DBLSTM network configuration: While using the output of the entire sequence throughout
the recurrent layers, we only retain the final output for the output layer.

nition. The setup is inspired by [21]. We use 3 bidirectional LSTM layers with 500 cells per
layer for each direction, without peephole connections. The network architecture is shown in
Figure 1. We input a sequence of frames and use the full sequence output of the layers through-
out the DBLSTM layers. After the last DBLSTM layer, we only use the final output of the
network. This output is then fed into the output layer, a fully connected feed-forward layer with
softmax activation.

4 Experimental Setup

We trained and evaluated neural networks on a combination of multiple languages, taken from
the Euronews corpus [22]. This corpus consists of recordings from TV broadcast news with a
total of 10 languages with matching acoustic conditions. Per language, 70h of data is available.
We used the Janus Recognition Toolkit (JRTk) [23] which features the IBIS single-pass decoder
[24].

Our setup for training the neural networks is based on Theano [25] and Lasagne [26]. By
performing multiple experiments, we determined the optimal parameters for network training.
Prior to training, we splitted the data into a training (90%) and validation set (10%). To extract
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Figure 2 – Comparison of FER using Adam
and Adadelta for updating the weights.
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Figure 3 – DBLSTM Output Configurations:
Using the entire or only the final output.
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Figure 4 – Comparison of FER using mini-
batches of size 256, 1024 and 2048.
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Figure 5 – FER of multiple context sizes,
comparing DNNs and DBLSTMs

features from the audio for network training, we used a pre-processing based on a 32ms win-
dow with a frame-shift of 10ms. As input features, a combination of lMel and tonal features was
used. Starting from a baseline configuration, we varied the mini-batch size as well as the size
of the context. We also evaluated both Adam and Adadelta for computing the weight updates.
Starting with the default learning rate, we updated the learning rate using an approach similar
to new bob, where we decreased the learning rate by 0.5 once the error on the validation set in-
creased. During these initial experiments, we limited the training to 4 epochs per configuration.
After determining the optimal set of hyper parameters, we trained networks up to 8 epochs. For
this set of experiments, we report on the frame error rate (FER) on the validation set.

5 Results

We evaluated several hyper parameter configurations. For this first series of experiments, we
use only English monolingual data and only one articulatory feature cplace. This AF has 8+1
classes to distinguish. Based on the optimal configuration, we trained DBLSTM networks for
each AF multi-lingually and compared the results to the DNN based baseline.



5.1 Parameter Updates

As baseline configuration, we chose to use a context of 6, batch size of 256, 3 layers and
500 neurons per layer. In this first experiment, we evaluated two methods for updating the
parameters. After 4 epochs, the FER on the validation set using Adam is lower (7.7%) compared
to Adadelta (7.8%), see Figure 2. But as the difference is only marginal, we continued to use
Adam as the default update method.

5.2 LSTM Output Configuration

The outputs of DBLSTM networks can be used in different ways. One possibility is to feed the
data into the network and retrieve the output for each frame in the entire sequence. Another
possibility would be to retrieve only the output of the last sample. As shown in Figure 3, using
the entire output of the LSTM layer (7.8% FER) or only the last one (7.7% FER) does not
lead to large differences. Hence we decided to use only the outputs from the last sample in
each sequence, as this would allow Theano to apply some additional optimizations that reduce
training time.

5.3 Mini-batch Size

As next experiment, we varied the size of the mini-batches. Starting with 256, we increased
the size to 1024 and 2048. Using larger mini-batches results in fewer updates of the network
parameters. Increasing the size of the mini-batch updates leads to minimal changes in error
rates with all three tested sizes resulting in 7.7% FER after 4 epochs. As shown in Figure 4,
increasing the size does not affect the FER. We therefore decided to use 256 as the default
mini-batch size.

5.4 Context

In the next experiment, we varied the size of the context, respectively the sequence length.
Using different configurations, we started with the default context width of 6 frames from our
DNN based approach. In addition, we increased the context to 10 and 15 frames. As contrastive
experiment, we also trained a DNN using a context width of 15 and the same number of param-
eters as the DBLSTM. The results in Figure 5 show that DBLSTM based setups benefit from an
increased context size, while DNNs do not. In total, we see an improvement from 7.2% FER to
5.4% FER by using DBLSTMs. Increasing the context did not lead to improvements for DNN
based setups. As the accuracy kept improving with an increased context width, the next step
would have been to evaluate context sizes beyond 15. But due to technical limitations, we had
to postpone those experiments.

After determining the optimal hyper parameters for both DNN and DBLSTM based setups,
we trained both types of networks over more epochs. Figure 6 shows a comparison of both
networks. The DBLSTM achieves a FER as low as 5.6%, while the DNN achieves 8.4%.

5.5 Multilingual Results

Based on the optimal configuration determined by the previous experiments, we trained net-
works for all 7 types of AFs. Instead of using only data from one language, we used a com-
bination of three languages (German, French, Turkish) for this experiment. Using DBLSTMs,
the FER improved cross the different AF types, with cplace showing the biggest improvements
from 8.4% (DNN) to 5.7% (DBLSTM). The results for all AFs can be seen in Table 2.
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Figure 6 – FER of the best DNN (context = 6) and DBLSTM (context = 15) setup.

Table 2 – Classification error of AFs trained on German, French and Turkish using 70h per language.
The results show the FER on the validation set.

Network Type cplace ctype cvox vfront vheight vlng vrnd

DNN 8.4 8.2 7.8 7.2 7.9 7.3 6.1
DBLSTM 5.7 6.4 7.1 6.1 6.0 6.9 5.7

Relative Gain 33% 22% 9% 16% 25% 6% 7%

6 Conclusion

We have shown, that the AF recognition accuracy can be improved using DBLSTMs instead
of DNNs. Future work includes the introduction of language adaptation techniques in order
to further increase the performance of AF extraction cross lingually, as well a to estimate the
amount of phoneme-like units.
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