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Abstract
Latency is one of the main challenges in the task of simulta-

neous spoken language translation. While significant improve-
ments in recent years have led to high quality automatic transla-
tions, their usefulness in real-time settings is still severely lim-
ited due to the large delay between the input speech and the
delivered translation.

In this paper, we present a novel scheme which reduces the
latency of a large scale speech translation system drastically.
Within this scheme, the transcribed text and its translation can
be updated when more context is available, even after they are
presented to the user. Thereby, this scheme allows us to display
an initial transcript and its translation to the user with a very
low latency. If necessary, both transcript and translation can
later be updated to better, more accurate versions until even-
tually the final versions are displayed. Using this framework,
we are able to reduce the latency of the source language tran-
script into half. For the translation, an average delay of 3.3s was
achieved, which is more than twice as fast as our initial system.
Index Terms: speech translation, low-latency

1. Introduction
In our more and more globalized world we are witnessing both a
growing opportunity and an increasing demand for communica-
tion among people speaking different languages. While in some
cases this translation demand is met by human interpreters (e.g.
in the European Parliament), this is not possible in many every
day situations due to their costly nature and low availability.

Using modern machine translation (MT) and automatic
speech recognition (ASR) technology, we can now build speech
translation systems which can support people in these scenar-
ios. Starting with domain dependent systems for very formal-
ized dialogues in the 90s, recent systems are able to translate
open-domain spontaneous speech. Such systems are currently
employed to translate university lectures [1] or telephone con-
versations, for example the Skype translator [2]. Additionally
to being affordable, these systems have the advantage of flex-
ibly supporting multiple output modalities. For example, we
can convert the translations back to audio using a text to speech
component, display them as captions, or archive them for later
use.

One of the most important challenges in speech translation
is ensuring a low latency for both the transcription as well as the
translation. Although the translation quality is often sufficient
for communication, the user is required to wait until the trans-
lation is delivered. This greatly reduces the system’s usefulness
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in practice [3]. In an interactive discussion it is important to be
able to directly answer or comment on other participants, and in
a lecture the speech should be in sync with the slides and ges-
tures of the lecturer. Low latency systems can also be crucial
when users have incomplete knowledge of the source language,
since they can no longer combine their knowledge of the source
language and delayed translation.

In this paper, we focus on live captions as the output modal-
ity. Since written captions can be dynamically changed, we pro-
pose updating initial sub-optimal outputs while the transcription
and translation hypotheses stabilize over time during the search
process, e.g., due to more context becoming available. As we
apply updates from both the ASR and MT components, we can
afford to directly display the current best translation at an early
stage, with low latency. In general, later updates differ only
slightly from the initial output. Using traditional approaches re-
quired balancing a trade off between latency and quality. With
our new framework, however, we are able to display an initial
output at a very low latency and a high quality output after a
number of rewrites.

2. Related Work
Many previous works are dedicated to the relationship between
latency and performance of speech translation. In [4], the au-
thors investigated how utterance chunking influences the ma-
chine translation performance. In their work, they compared the
machine translation performance for a given segment length.
Therefore, they analyzed manual transcripts and on ASR out-
put. They show that while chunking at the sentence boundaries
is a reliable method, it is often not the best sentence boundary
for the MT due to the segments’ length.

An extensive study on the relationship between different
segmentation strategies and their latency is made in [5]. In this
work, the authors compared various segmentation schemes for
ASR output, aiming for real-time translation applications. In
their experiments, it was observed that a good performance can
be achieved when a conjunction-based segmentation strategy is
used in combination with a comma-based segmentation.

In [6], the authors developed and compared further algo-
rithms for segmentation strategies. The authors showed that the
greedy search and dynamic programming based methods, called
Greedy-DP in their work, could successfully split source sen-
tences into effective smaller units, while maintaining the trans-
lation performance. The authors in [7] extended this work fur-
ther through a detailed study on segmentation optimization. In
their work, the trade-off between latency and quality of spo-
ken language translation was investigated. The potential draw-
back of the previously suggested Greedy-DP algorithm was that
larger segments tend to be chosen, thereby increasing the la-
tency in a real-time scenario. In order to address this issue,



the authors of this work used an Pareto-optimal approach, in
which latency is considered as an optimization parameter. By
using this approach the authors achieved slightly better or simi-
lar translation quality while maintaining a relatively low latency.

Inspired by simultaneous interpretation, the authors in [8]
proposed a new method of rewriting the reference translation, in
order to reduce the latency caused by translation. The authors
introduced a new reference translation where the word order is
monotone to the order of source sentence. Using this reference
translation, they aim to support good translations while produc-
ing them promptly. In this work, linguistically-driven rules are
used to create a reference in which the word order is closer to
the source language. In their Japanese to English translation ex-
periments, where there is a substantially big difference in word
order, the authors achieved better and faster translation.

A different approach to reduce the latency was introduced
in [9]. Motivated by the run-on decoder for ASR systems, they
introduce a stream-based decoder that does not wait for the next
sentence boundary to translate the sentence. In contrast to our
method, they need to modify the decoding algorithm heavily.
Therefore, it is not straight forward to adapt this method to other
translation systems.

3. Speech Translation Framework
Our speech translation framework employs a flexible service
architecture with individual components like systems for ASR
or MT [1]. In our terminology, these components are called
“workers”. Each worker registers on a central server, called the
“mediator”. The mediator keeps track of the individual workers
and knows which type of service they offer (e.g., translating
from German to English or performing speech recognition on
an audio stream). Clients are able to connect to the mediator
and query for certain services. The mediator then computes an
appropriate path by connecting individual workers in the correct
order. This architecture is independent of the services offered.
It provides a generic communication framework where workers
offer services. The different types of services are announced
or queried by specifying certain “fingerprints” that identify the
kind of service offered.

If a client asks for an English transcription of a German au-
dio stream, the mediator then selects a German ASR worker and
routes its output through an MT system for the translation from
German to English and returns the English transcript. In addi-
tion to the workers for ASR and MT, our service architecture
features another kind of worker for punctuation prediction.

4. Output Updates
Latency in a speech translation system is not mainly caused by
long computation times, but is inevitably caused by models that
require a certain amount of context. For instance, the statisti-
cal ASR framework is designed for decoding whole utterances.
Only after all the data of one utterance has been processed the
most probable hypothesis is decided on. The fact that the search
algorithm uses a Viterbi beam-search as a heuristic allows it to
output stable partial hypotheses after processing only parts of
the data. The machine translation system is normally optimized
to work on whole sentences. This means that the translation sys-
tem can only generate a high-quality translation after the whole
sentence is spoken and transcribed.

One possibility would be to develop a translation system
that does not work on whole sentences. The disadvantage of this
approach is that the translation of some words might depend on

Figure 1: Update Protocol

any word in the source sentence. Furthermore, most researchers
work on the translation of whole sentences. New techniques in
machine translation could therefore not be easily integrated into
an MT system using an alternative scheme.

4.1. Idea

We propose a framework that directly outputs the best current
hypothesis at a current point. If a better translation is found
later, we can replace the current translation to it.

Our strategy is inspired by human interpreters, who often
produce the translation very quickly, but with the option of later
altering it.

In our framework, the different components send messages
m(ts, te, h) among each other. These contain the start time ts,
the end time te and the text hypothesis h. The only extension
to the model is that we can replace the message with the latest
start time ts, by a new message m′(ts, t

′
e, h
′). In this case the

text hypothesis h will be replaced by the new text h′. All other
segments before this segment are final and can no longer be
replaced.

This small extension to the protocol allows us to correct er-
rors made when directly outputting the current best hypothesis.
Let us assume that we recognize the sequence “A B C” in the
time span from t1 to t3. In this case we will generate the mes-
sage m(t1, t3, “ABC”). Upon continuing recognition, we will
be sure about A due to further contexts. Let us make another
assumption that now C should be replaced by D with the fol-
lowing utterance E. In this case, the following two messages
m(t1, t2, “A”) and m(t2, t4, “BDE”) will be generated. The
messages between all three components for various examples
are shown in Figure 1. The messages are shown according to
the time they are sent.

For the ASR component, we added the possibility to send
a non-stable, or unfixed, hypothesis. For the subsequent com-
ponents, we used a mechanism in order to handle this flexible
input as well as to output initial hypotheses.

4.2. Automatic Speech Recognition

In our framework, the ASR component was built to process an
audio stream and output a stream of transcripts which is the
input to the subsequent components. We use the Janus Recog-
nition Toolkit (JRTk)[10] which features the IBIS decoder[11].
By using a dynamic decoding framework for speech recogni-
tion, we can avoid the detection of audio segments, and di-
rectly perform the decoding as soon as a small part of speech



Figure 2: Algorithm to handle updates

s t a b l e = ” ” ; u n s t a b l e = ” ” ;
s t a r t =−1; end = −1
w h i l e (m = ge tMessage ( ) ) :

i f ( s t a r t t i m e (m) == s t a r t ) :
u n s t a b l e = t e x t (m)

e l s e :
s t a b l e . append ( u n s t a b l e )
u n s t a b l e = t e x t (m)
s t a r t = s t a r t t i m e (m)

i = l a s t S e n t e n c e B o u n d a r y ( s t a b l e )
t r a n s l a t e ( s t a b l e [ 0 : i ] )
s t a b l e . remove ( 0 , i )
i f ( end t ime (m) > end ) :

t = j o i n ( s t a b l e , u n s t a b l e )
t r a n s l a t e ( t )
end = end t ime (m)

is recorded. However, as new speech is being processed, earlier
parts of previously obtained results might change.

Since waiting until the end of the utterance for to output the
ASR result leads to high latency, we output as soon as a part
of the hypothesis becomes stable and will not change anymore,
because competing search paths were pruned away in the beam-
search.

With the update protocol in our framework, the ASR com-
ponent can send and resend a hypothesis to the subsequent com-
ponents if the hypothesis changes. When a stable part is found
the ASR component sends it out with the corresponding time
spans and then moves the start time span to the end of the stable
hypothesis.

4.3. Machine Translation

In most speech translation systems the MT component waits un-
til it receives the whole sentence and then translates the whole
sentence. While this enables an easy integration of a standard
statistical machine translation system, it adds a considerable la-
tency to the system. The final translation will be generated only
when the whole sentence is defined.

In order to reduce the latency of the MT component, a trans-
lation is generated directly if new words are received by the
ASR component, not waiting for the whole sentence. When
new words are added to the segment, the existing translation
is replaced by the translation of this updated segment. In ad-
dition, we need to handle updates of the ASR and punctuation
prediction module. A first step is to add a management com-
ponent to the MT system. This component organizes which
text will be translated and sends the complete sentences as well
as the current unfinished segment to the MT component. This
approach, however, significantly increases the number of sen-
tences required to be translated.

An overview on the algorithm to handle the translation with
later updates from the ASR component is shown in Figure 2.
The main idea is to store the input in two stacks: one that is al-
ready fixed (stable) and another one which can still be updated
(unstable). Depending on the incoming message, the unstable
stack is updated or marked as stable stack. In the latter case,
the incoming message is added into a new unstable stack. First,
all sentences for which no more updates are expected are trans-
lated. Finally, the unfinished segment of the fixed stack and
the temporary input are translated. The translation of all parts
is then sent out. The punctuation and segmentation is applied
before the MT component, in the similar method. It will be
described in Section 4.4.

In cases like the previously discussed example, we would
first delete the translation of B D E when receiving the message
“A”, and then we would regenerate this translation. Therefore,
a new translation is generated when receiving a message with a
newer end time te.

This technique has an advantage that it is possible to gen-
erate a translation instantly when new words are recognized by
the ASR component. The re-translation of the last sentence,
however, also dramatically increases the number of words that
need to be re-translated. Since this leads to an issue in real-time
scenarios, we devise a scheme to save intermediate results of
translation to speed up the general translation process.

For the translation of the unfinished segment, we store the
last translation. Also, some of the last words are removed,
which are less reliably estimated due to missing future context.
The last two source words and their translation are considered
for this task. If the beginning of the input segment is the same
for the updated translation, the existing translation of this part
is reused. A new translation is performed only on the remaining
parts. This scheme is implemented by adding dynamic phrase
pair entries to the MT system.

4.4. Punctuation

The punctuation prediction component needs to handle unstable
input, generating the output hypotheses consisting of stable and
unstable stacks correctly. Since the computation for this part
is not as demanding as for MT, it was not required to modify
the actual component. In our experiments we inserted punctu-
ation marks based on language model probabilities and pause
information [1].

5. Evaluation
The proposed framework does not change the final hypothesis,
but the time in which it is delivered to the user. Therefore, we
evaluated the latency by measuring the elapsed time between
the spoken words and when they are displayed. In our evalua-
tion we have for every message the time stamps ts, te, tr , where
ts and te are the start and end times of the message and tr is the
time the message is received by the display client. Their order is
therefore always ts < te < tr . First, we calculated the average
delay d(tis, t

i
e, t

i
r) before the first output of mi.

d(tis, t
i
e, t

i
r) = tir −

tis + tie
2

(1)

If the mi+1 overwrites the text of message mi, this only adds
a delay for the new transcript between time tie and ti+1

e . This
delay is then calculated as

d(tis, t
i
e, t

i
r) = (tir −

max(tis, t
i−1
e ) + tie
2

)

s.t. max(tis, t
i−1
e ) < tie

(2)

Since the messages have different length, we calculate the aver-
age delay as the weighted sum over all delays

D =

m∑
i=1

d(tis, t
i
e, t

i
r) ∗ (max(tis, t

i−1
e )− tie)

m∑
i=1

s.t. max(tis,t
i−1
e )<tie

(max(tis, t
i−1
e )− tie)

(3)

While the first output is a very important clue to the sys-
tem’s performance, it should not be the only measure. Other-
wise, a system that always directly generates mediocre output



can be considered as a perfect system. Therefore, we measure
the delay of the final hypothesis as well. A word is defined as
final if the word and all its preceding words are not changed by
any of the following messages. We calculated for every message
m the words wj , . . . , wj′ that are finalized by this message.
This does not mean that the system has marked them already
as stable. Afterwards, we calculated the start and end times tis∗
and tie∗ of the word sequence wj , . . . , wj′ . Since we only have
the start and end times of the whole message, we approximated
those times assuming a linear correlation between the elapsed
time and the number of characters. Then we can calculate the
average delay for the final hypothesis similar to the first output
as follows:

D =

∑m
i=1 d(t

i
s∗, t

i
e∗, t

i
r) ∗ (tis∗ − tie∗)∑m

i=1 t
i
s∗ − tie∗

(4)

6. Experiments
We evaluated the delay of the proposed framework for the lan-
guage directions English→French and German→English.

6.1. System Description

We tested the framework using a lecture translation system con-
sisting of an ASR, punctuation prediction and MT component.
Speech recognition is performed in an online setup as described
above. The MT components are trained on 1.8 million sentences
of parallel data, including EPPS, NC and in-domain data. Be-
fore the training, preprocessing is applied to the parallel data.
A phrase-based decoder [12] using several advanced models in-
cluding domain adaptation, bilingual and cluster language mod-
els as well as Discriminative Word Lexica is used to generate
the translation. The different word order between the languages
is modeled using POS-based reordering [13, 14]. A detailed de-
scription can be found in [1]. The overall system is similar to
the best performing system in the IWSLT SLT evalutation [15].

6.2. Results

The results of applying the suggested scheme on translating En-
glish to French and German to English IWSLT 2013 test sets are
shown in Table 1. Each system setting is compared in two con-
ditions: the first transcript (left column) and the final transcript
(right column). Table 1 show the latency for the transcript in

Table 1: Latency for speech translation in seconds
System EN-FR DE-EN

ASR static 4.9 4.9 5.7 5.7
+ dynamic Seg 3.3 3.5 3.8 3.9
+ dynamic ASR 1.7 2.3 1.6 2.2

SMT static 7.5 7.5 8.6 8.6
+ dynamic MT 5.0 5.4 5.9 5.7
+ dynamic Seg 3.4 3.3 4.0 5.3

the source language. The baseline system (static) without any
modifications has a delay of 4.9 s and 5.7 s (the latency for the
initial and the final hypothesis of course being the same). Out-
putting preliminary sentence segmentations reduces the delay
to 3.3 s for the initial and 3.5 s for the final output in English to
French and 3.8 s and 3.9 s for the other language pair, reducing
the latency by up to 1.8 s. By using an ASR system that sends
frequent partial hypotheses we are able to reduce the latency by
a further 1 s and 1.7 s respectively.

In summary, the new method is able to reduce the latency
of the initial output by 4 s and of the final output by 3.5 s. This

means that we are able to reduce the waiting time for the tran-
script by more than a factor two. The improvements in German
are higher than the ones in English.

Looking at the latency for the translation, the unmodified
baseline system delivers the translation with an average delay
of 7.5 s and 8.6 s. An MT system that directly outputs the cur-
rent best translation and later corrects wrongly translated words
improves the latency by 2 s. Integrating our modified segmen-
tation and ASR systems each improve the latency further by
roughly one second for English to French. For German to En-
glish the latency could be improved by 1.4 s.

In total, the latency of the first system could be reduced
from 7.5 s to 1.8 s for the initial output and to 3.3 s for the final
output. This means that the initial translation is delivered more
than 4 times faster than in the baseline system and the final one
is presented more than twice as fast. As can be seen in the table,
these improvements are consistent over all talks.

Compared to the English to French system, a similar latency
for the initial output is achieved, while the latency for the final
output is 2 s larger than that of the English to French system. We
believe that this bigger latency is caused by longer reorderings
in this language pair. Since the German verb is often at the
end of the sentence, we can only generate the correct beginning
of the English sentence, when we have recognized the whole
German sentence.

6.3. Analysis

In order to compare our approach to traditional ideas of reduc-
ing the latency, we performed an additional experiment on a
subset of five German to English TEDx talks. In this experi-
ment, we measure the latency and the performance of the MT
component. While not allowing updates, partial sentences are
translated if they exceed n words. Some segments might still
be longer, since we do not receive the output of the ASR system
word by word. The results for n ∈ {1, 2, 5, 10} are shown in
Table 2. Same as before, the latency is reported in seconds.

Table 2: Latency and performance comparison to a sentence
length based model

n 1 2 5 10 ∞ Dynamic
Latency 5.3 5.4 6.0 7.3 7.9 6.0
BLEU 8.5 9.3 10.2 11.2 11.4 11.4

From this result we can see that we can achieve the same la-
tency as the system that translates every hypothesis that extends
five words, while obtaining the same translation performance
as the system translating always whole sentences. Our system
using the proposed update scheme outperforms the system with
the same latency by 1.2 BLEU points.

7. Conclusion
In this paper we presented a framework that substantially re-
duces the latency of a speech translation system maintaining
the performance. By delivering unstable hypothesis and allow-
ing for later updates, we reduce its latency of the final output by
half. At the same time, it is possible to present an initial trans-
lation to the user with a latency of less than two seconds, while
only minimal changes are required to both the ASR and MT
components. While the current system mainly focuses on re-
ducing the latency, we plan to analyze the trade off between the
number of updates and the latency of the system in the future.
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