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ABSTRACT
This paper describes the exploration of text-independent
speaker identification using novel approaches based on
speakers’ phonetic features instead of traditional acoustic
features. Different phonetic speaker identification approaches
are discussed in this paper and evaluated using two speaker
identification systems: one multilingual system and one single
language multiple-engine system. Furthermore, text-
independent speaker identification experiments are carried out
on a distant-microphone database as well as gender
identification experiments are investigated on the NIST 1999
Speaker Recognition Evaluation dataset. The results show that
phonetic features are powerful for speaker identification and
gender identification.

1. INTRODUCTION
Speaker identification is the process of automatically
recognizing a speaker by machine using the speaker’s voice
[1]. It has developed into an increasing more important speech
processing technique by providing useful information for
speech analysis. The state of the art in speaker identification is
based almost exclusively on traditional short-term acoustic
features. But there are other levels of rich information
capturing speaker characteristics that have not been sufficiently
explored, such as pronunciation idiosyncrasy, idiolectal word
usage and speaking style, etc. Recently, Kohler, Andrews and
Doddington have tried novel approaches for speaker
recognition using phonetic and word idiolect features [2][3][4].
In this paper, we discuss our exploration of speaker
identification based on phonetic features.

The basic idea of phonetic speaker identification is to
identify a speaker using phonetic sequences derived from that
speaker’s utterance. Although the phonetic sequences are
produced using acoustic features, the identification decision is
made based solely on the phonetic sequences. The assumption
behind the phonetic approach is that phonetic sequences can
cover a speaker’s idiosyncratic pronunciation. Two novel
phonetic speaker identification approaches are described in this
paper.

2. PHONETIC SPEAKER IDENTIFICATION
We first developed a speaker identification system using
phonetic sequences from phone recognizers trained on multiple
languages. We call this our multilingual system. This system
uses phonetic sequences produced by context-independent
phone recognizers from multiple languages instead of
traditional short-term acoustic vectors [5][6]. Since this

information comes from complementary phone recognizers, we
anticipate greater robustness. Furthermore, this approach is
somewhat language independent since the recognizers are
trained on data from different languages. We also developed a
speaker identification system using phonetic sequences
produced by single language multiple phone recognizers,
which we call our multi-engine system. This system uses
phonetics sequences produced by three different context-
independent English phone recognizers.

Figure 1: Error rate vs number of phones

2.1. Phone Recognition

In this paper, the multilingual system uses phone recognizers
built in eight languages: Mandarin Chinese (CH), German
(DE), French (FR), Japanese (JA), Croatian (KR), Portuguese
(PO), Spanish (SP) and Turkish (TU). All the phone
recognizers are trained and evaluated in the framework of the
GlobalPhone project. Figure 1 shows phone error rates per
language in relation to the number of modeled phones. See [7]
for further details.

2.2. Phonetic Language Model (PLM) Training

In identifying an unknown speaker as one of the N target
speakers, we need a speaker-dependent Phonetic Language
Model (PLM) for each target speaker in each language. In this
paper, we use PLMi,j to represent the phonetic language model
for speaker j in language i. Figure 2 shows the procedure of
training PLMs for speaker j. M phone recognizers {PR1, …,
PRM} decode the training data of speaker j to produce M
phonetic sequences. From these M phonetic sequences, M
PLMs are created for speaker j, one for each language. During
the decoding of training data, each PRi uses an equiprobable
phone language model. Thus the produced phonetic sequence is



based solely on a phone recognizer’s acoustic model. This
procedure does not require transcription at any level.

We present two phonetic speaker identification approaches
which we call PLM-pp and PLM-score. These two approaches
have the above described phonetic language model training
step in common. The difference between PLM-pp and PLM-
score is how the PLM of each speaker is applied during the
identification.

2.3. PLM-pp Speaker Identification

The PLM of each speaker, which was trained as explained in
Figure 2, is now used to determine the identity of an unknown
speaker. In PLM-pp, each of the M phone recognizers PRi , as
used for PLM training, decodes the test speech and produces a
phonetic sequence which is scored against each of N speaker-
dependent phonetic language models PLMi,j. This results in a
perplexity matrix PP, whose PPi,j element is the perplexity
produced by phonetic language model PLMi,j on the phonetic
sequence output from phone recognizer PRi. Our decision rule
is to identify an unknown speaker as speaker j* given by
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2.4. PLM-score Speaker Identification

In the PLM-pp approach, both training and test data are
decoded by M phone recognizers PRi using equiprobable phone
language models. When decoding a test utterance in PLM-
score, however, we replace the equiprobable phone language
model used during PLMs training with each of the N speaker-
dependent PLMi,j in turn. The test utterance is therefore
decoded by each of the M phone recognizers N times, resulting
in a decoding score matrix SC, whose SCi,j element is the
decoding score produced jointly by phone recognizer PRi and
phonetic language model PLMi,j during decoding. The same
decision rule is applied as in PLM-pp. The key idea for the
PLM-score approach is to use the speaker-dependent PLMi,j
directly to decode the test speech. The underlying assumption
is that a speaker achieves a lower decoding distance score on a
matched PLM than for a mismatched PLM. The disadvantage
of the PLM-score approach is that the test utterance will be
decoded M*N times as opposed to M times for PLM-pp.
Furthermore, the success of this approach relies on the ability
to produce reliable phonetic models from the training data.

3. MULTILINGUAL VS. MULTI-ENGINE

3.1. Distant –Microphone Database

In order to explore methods for robust speaker identification
under various distances, a distant-microphone database
containing speech recorded from various microphone distances
has been collected at the Interactive Systems Laboratory. The
database contains 30 native English speakers in total. For each
speaker, five sessions have been recorded with the speaker
sitting at a table in an office environment reading an article,
which is different for each session. Each session is recorded
using eight microphones in parallel: one close-speaking
microphone (Sennheizer headset, Dis 0), one lapel microphone
(Dis L) worn by the speaker, and six other lapel microphones
which are attached to microphone stands sitting on the table at
distances of 1, 2, 4, 5, 6 and 8 feet from the speaker. The data
of the first four sessions, together 7 minutes of spoken speech
(about 5000 phones), are used for training the PLMs and the
remaining fifth session adding up to one minute of spoken
speech (about 1000 phones) is used for testing. The PLM-pp
approach was also tested on longer and shorter chunks.

3.2. Multilingual PLM-pp Speaker Identification

Table 1: PLM-pp SID rate on varying test lengths at
matched training and testing distances

Table 2: PLM-pp SID rate on varying test lengths at
mismatched training and testing distances

Table 1 and 2 compare the multilingual PLM-pp identification
results for all distances on different test utterance lengths under
matched and mismatched conditions, respectively. Under
matched conditions, training and testing data are from the same
distance. Under mismatched conditions, we do not know the
test speech distance; we make use of all D sets of phonetic
language models (PLMi,j), where D is the number of distances
(D = 8 in this paper), and modify our decision rule to make
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is the index over phone recognizers, j is the index over speaker,
and { }Dk ,,2,1 �∈ . These two tables indicate that the

Test Length 60s 40s 10s 5s
Dis 0 96.7 96.7 96.7 93.3
Dis L 96.7 96.7 86.7 70
Dis 1 90 90 76.7 70
Dis 2 96.7 96.7 93.3 83.3
Dis 4 96.7 93.3 80 76.7
Dis 5 93.3 93.3 90 76.7
Dis 6 83.3 86.7 83.3 80
Dis 8 93.3 93.3 86.7 66.7

Test Length 60s 40s 10s 5s
Dis 0 96.7 96.7 96.7 90
Dis L 96.7 100 90 66.7
Dis 1 93.3 93.3 80 70
Dis 2 96.7 96.7 86.7 80
Dis 4 96.7 96.7 93.3 80
Dis 5 93.3 93.3 86.7 70
Dis 6 93.3 86.7 83.3 60
Dis 8 93.3 93.3 86.7 70
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Figure 2: Training Phonetic Language Model for
One Speaker



performance of PLM-pp is comparable under matched and
mismatched conditions.

3.3. Multi-Engine PLM-pp Speaker Identification

In order to investigate whether the reason for the success of the
multilingual PLM-pp approach is related to the fact that
different languages contribute useful information or that it
simply lies in the fact that different recognizers provide
complementary information, we conducted the following set of
experiments. We replaced the eight multilingual phone
recognizers with three English phone recognizers which were
trained on very different conditions, namely: Switchboard
(telephone, highly conversational), Broadcast News (various
channel conditions, planed speech), and Verbmobil English
(high quality, spontaneous). For a fair comparison between the
three English engines and the eight multilingual engines, we
generated all possible language triples out of the set of eight
languages (56 triples) and calculated the average, minimum
and maximum performance for each. Table 3 compares the
results of the multilingual system to the multi-engine system.
The results show that the best performance of the multilingual
triples always outperforms the performance of the multi-engine
triple. From these results we draw the conclusion that multiple
English phone recognizers provide less useful information for
the classification task than do multiple language phone
recognizers. This is at least true for our given choice of
multiple English engines in the context of speaker
identification. The multiple languages have the additional
benefit of being language independent. This results from the
fact that the actual spoken language is not covered by the used
multiple language phone recognizers.

Table 3: Comparison of SID rate using PLM-pp by
Multilingual triples and Multi-Engine

3.4. Combination of Multilingual and Multi-Engine System

In order to investigate whether combining the multilingual
system and the multi-engine system can provide more
improvement for the speaker identification task, we conducted
a second set of experiments. Table 4 compares the speaker
identification performance of using the multilingual system
alone with that of combining the multilingual system with all
the three multiple English phone recognizers as well as with
each of the three English phone recognizers. The combination
is made as adding more languages to the multiple languages
and the same lowest perplexity decision rule is applied. In
Table 4, we use ML to represent the multilingual system and
ME to represent the multi-engine system. SWB, BN and VE
are used to represent single English phone recognizer trained
on Switchboard, Broadcast News and Verbmobil English

respectively. The results indicate that the interpolation of
multilingual and multi-engine doesn’t give any further
improvement. But we cannot conclude from these results that
adding English language won’t provide more complimentary
information for speaker identification, since the three English
phone recognizers are trained differently from those 8 language
phone recognizers. To clarify this question, further
investigation needs to done.

Table 4: Comparison of SID rate of Multilingual system
and combination of Multilingual with Multi-Engine

Figure 3: Speaker Identification rate vs number of
phone recognizers

3.5. Number of Languages vs. Identification Performance

In a third set of experiments, we investigated the influence of
the number of phone recognizers on speaker identification
performance. These experiments were performed on an
improved version of our phone recognizers in 12 languages
trained on the above described GlobalPhone data (Arabic(AR),
Korean(KO), Russian(RU) and Swedish(SW) are available in
this version in addition to the 8 languages named in section
2.1). Figure 3 plots the speaker identification rate over the
number k of languages used in the identification process on
matched 60-second data for all distances. The performance is
given in average and range over the k out of 12 language k-
tuples. Figure 3 indicates that the average speaker identification
rate increases with the number of involved phone recognizers.
It also shows that the maximum performance of 96.7% can
already be achieved using only two languages; in fact two (2
out of 12 = 66) language pairs gave optimal results: CH-KO,
and CH-SP. However, the lack of a strategy for finding the best

Approach Multilingual Multi-Engine
Dis 0 87.92 (66.7 – 100) 93.3
Dis L 88.21 (63.3 – 96.7) 86.7
Dis 1 83.57 (66.7 – 93.3) 86.7
Dis 2 93.63 (86.7 – 96.7) 76.7
Dis 4 81.43 (56.7 – 96.7) 86.7
Dis 5 86.07 (66.7 – 96.7) 83.3
Dis 6 81.96 (66.7 – 93.3) 63.3
Dis 8 87.14 (63.3 – 93.3) 63.3

ML ML+ME ML+SWB ML+BN ML+VE
Dis 0 96.7 93.3 93.3 93.3 93.3
Dis L 96.7 96.7 96.7 93.3 96.7
Dis 1 93.3 90.0 90.0 90.0 90.0
Dis 2 96.7 96.7 96.7 96.7 96.7
Dis 4 96.7 93.3 93.3 93.3 93.3
Dis 5 93.3 93.3 93.3 93.3 93.3
Dis 6 93.3 80.0 80.0 83.3 83.3
Dis 8 93.3 90.0 90.0 93.3 93.3



suitable language pair does not make this very helpful. On the
other hand, the increasing average indicates that the probability
of finding a suitable language-tuple that optimizes performance
increases with the number of available languages. While only
4.5% of all 2-tuples achieved best performance, as many as
35% of all 4-tuples, 60% of all 6-tuples, 76% of all 8-tuples
and 88% of all 10 tuples were likewise found to perform
optimally in this sense.

4. PLM-PP VS. PLM-SCORE

Table 5: Comparison of SID rate using PLM-pp and
PLM-score on distance data

Table 5 compares the performance of the PLM-score approach
at Dis0 under matched conditions with that of PLM-pp on 60-
second test data. Even though PLM-score is far more expensive
than PLM-pp, its performance (60%) is much worse than PLM-
pp (96.7%). The poor performance of PLM-score seems to
support the assumption made earlier that the phonetic language
models we produced, which perform well within the PLM-pp
framework, are not sufficiently reliable to be used during
decoding as required by PLM-score.

Table 6: Comparison of SID rate using PLM-pp and
PLM-score for gender identification on SWB data

In order to test the performance of the PLM-score approach
when enough data for training a reliable PLM is given, we
conducted the following experiments. We used NIST 1999
speaker recognition evaluation dataset. There are a total of 309
female and 230 male target speakers. For each target speaker
there are two minutes of training speech with each minute from
one telephone channel type and one-minute test speech of
unknown channel type. Although two minutes of speech are far
from enough to train a reliable PLM for each target speaker, we
have enough data to train the PLM for each gender. We
conducted gender identification using both the PLM-pp and

PLM-score approaches. We randomly choose 200 test trials
containing 100 females and 100 males. The results in Table 6
indicate that given enough training data from which we can get
a reliable phonetic language model, the PLM-pp and PLM-
score produce comparable results. The conditions for which
PLM-score is likely to perform well are under investigation.

5. CONCLUSIONS
We have investigated speaker identification based on phonetic
information extracted from the speakers’ utterances. We
described two different phonetic speaker identification
approaches. Our results are very encouraging and indicate that
phonetic features as captured by a phonetic language model are
very powerful for discriminating between speakers. Our
evaluation on the distant microphone database proved the
robustness of this novel approach.

Both of the described approaches achieved a good
identification performance under the condition that enough
training data are available. However, it needs to be clarified in
further experiments what amount of data is necessary for
training reliable speaker-dependent phonetic models.

Furthermore, the question about what information other
than acoustic features are appropriate to extract from speech
data to solve the task of speaker identification are not
sufficiently studied yet. Features such as speaking style,
pronunciation idiosyncrasy, word idiolect etc. are natural
features that are used by human to discriminate speakers but
have not been efficiently explored in speaker recognition
community so far. Phonetic speaker identification is one initial
investigation in this direction. More investigation about this
higher-level rich speaker information is under exploration.
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Approach PLM-pp (%) PLM-score(%)
CH 100 53.3
DE 80 40
FR 70 23.3
JA 30 26.7
KR 40 26.7
PO 76.7 30
SP 70 26.7
TU 53.3 26.7

Int. of all Language 96.7 60

Approach PLM-pp (%) PLM-score(%)
CH 88.5 89.5
DE 89.5 88.5
FR 89 91
JA 86.5 89
KR 87.5 88
PO 89 91.5
SP 92 92
TU 90 89

Int. of all Language 94 94
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