
Real-time Face and Facial Feature Tracking and ApplicationsJie Yang, Rainer Stiefelhagen, Uwe Meier, Alex WaibelInteractive Systems LaboratoryCarnegie Mellon UniversityPittsburgh, PA 15213 USAfyang+, stiefel, uwem, waibelg@cs.cmu.eduAbstractA human face provides a variety of di�erent com-municative functions. In this paper, we present ap-proaches for real-time face/facial feature tracking andtheir applications. First, we present techniques oftracking human faces. It is revealed that human skin-color can be used as a major feature for tracking hu-man faces. An adaptive stochastic model has beendeveloped to characterize the skin-color distributions.Based on the maximum likelihood method, the modelparameters can be adapted for di�erent people and dif-ferent lighting conditions. The feasibility of the modelhas been demonstrated by the development of a real-time face tracker. We then present a top-down ap-proach for tracking facial features such as eyes, nos-trils, and lip corners. These real-time tracking tech-niques have been successfully applied to many applica-tions such as eye-gaze monitoring, head pose tracking,and lip-reading.1. IntroductionMany applications in human computer interaction re-quire tracking a human face and facial features. Lo-cating and tracking human faces is a prerequisite forface recognition and/or facial expressions analysis, al-though it is often assumed that a normalized face im-age is available. In order to locate a human face,the system needs to capture an image using a cameraand a framegrabber, to process the image, to searchthe image for important features, and then to usethese features to determine the location of the face.In order to track a human face, the system not onlyneeds to locate a face, but also needs to �nd the sameface in a sequence of images. For example, in a tele-conference, it is desirable to allow the participants tomove freely while a face tracker tracks the currentspeaker. Locating and tracking features are essentialfor eye/gaze tracking. Human gaze indicates wherea person is looking, and what he/she is paying at-tention to. Such information can be obtained fromtracking the orientation of the person's head and theorientation of the person's eye. Many current speechrecognition systems perform well on clean speech sig-

nals but perform poorly on noisy signals. Integrationof acoustic and visual information (automatic lipread-ing) can improve overall recognition rate especially innoisy environments. A reliable face and lip trackermake lipreading possible.We present approaches for real-time face/facial fea-ture tracking and their applications in this paper.First, we present techniques of tracking human faces.It is revealed that human skin-colors can be used asa major feature for tracking human faces. An adap-tive stochastic model has been developed to charac-terize the skin-color distributions. Based on the maxi-mum likelihood method, the model parameters can beadapted for di�erent people and di�erent lighting con-ditions. The feasibility of the model has been demon-strated by the development of a real-time face tracker.The system has achieved a rate of 30+ frames/secondusing a low-end work station (e.g., HP9000) witha framegrabber and a camera. Once a face is lo-cated, it is much easier to locate the facial featuressuch as eyes, nostrils, and lips. This top-down ap-proach works very well for many applications suchas gaze tracking, and lip-reading. The facial featuresare tracked in real-time and the head pose is esti-mated based on a full perspective 3D model. The eyegaze is monitored by a neural network based system.We describe some applications of the visual trackingtechniques to multimodal human computer interac-tion. The gaze tracker has been combined with aspeech recognizer in a multimodal interface to con-trol a panorama image viewer.2. Real-time Face TrackingHuman face perception is currently an active researcharea in the computer vision community. Facial fea-tures, such as eyes, nose and mouth, are natural can-didates for locating human faces. These features,however, may change from time to time. Occlusionand non-rigidity are basic problems.2.1. Skin Color ModelingColor is another feature on human faces. A lot of re-search has been directed to understanding and mak-ing use of color information. Color has long beenused for recognition and segmentation and recently1



has been successfully used face locating and track-ing [1, 2, 3, 4, 5]. However, color is not a physicalphenomenon. It is a perceptual phenomenon thatis related to the spectral characteristics of electro-magnetic radiation in the visible wavelengths strikingthe retina [6]. There are several problems for usingcolor as a feature to track human faces. First, thecolor representation of a face obtained by a camerais inuenced by many factors such as ambient light,object movement, etc. Second, di�erent cameras pro-duce signi�cantly di�erent color values even for thesame person under the same lighting condition. Fi-nally, human skin colors di�er from person to person.In order to use color as a feature for face tracking, wehave to solve these problems.A color histogram is a distribution of colors in thecolor space. It has long been used by the computervision community in image understanding. For ex-ample, analysis of color histograms has been a keytool in applying physics-based models to computervision. It has been shown that color histograms arestable object representations una�ected by occlusionand changes in view, and that they can be used todi�erentiate among a large number of objects. Inthe mid-1980s, it was recognized that the color his-togram for a single inhomogeneous surface with high-lights will have a planar distribution in color space[7]. It has since been shown that the colors do notfall randomly in a plane, but form clusters at spe-ci�c points [8]. The Figure 1 shows a face image,the skin-color occurrences in the RGB color space(256x256x256), and the skin color distribution in thenormalized color space. It has been observed that (1)human skin colors cluster in a small region in a colorspace; (2) human skin colors di�er more in intensitythan in colors, and (3) under a certain lighting condi-tion, a skin-color distribution can be characterized bya multivariate normal distribution in the normalizedcolor space [3]. These observations have been fur-ther justi�ed by quantitative analysis goodness-of-�ttechniques [9].
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B (b) Skin-coloroccurrencesFigure 1. An example of a human face andthe skin-color cluster2.2 Skin Color AdaptationAlthough under a certain lighting condition, the skin-color distribution of each individual is a multivariate

normal distribution, the parameters of the distribu-tion for di�erent people and di�erent lighting con-ditions are di�erent. There are two schools of phi-losophy to handle environment changes: toleratingand adapting. Color constancy refers to the abilityto identify a surface as having the same color underconsiderably di�erent viewing conditions. Althoughhuman beings have such ability, the underlying mech-anism is still unclear. The adaptive approach, onthe other hand, is to transform the previous devel-oped color model into the new environment. Sincethe Gaussian model has only a few parameters, it ispossible to update them in real-time. Due to the factthat the linear combination of Gaussian distributionsis still a Gaussian distribution, we can consider thecurrent Gaussian distribution is a combination of theprevious distributions. One way of adaptation is touse the linear combination of known parameters topredict, or, approximate the new parameters, i.e.,�̂ = rXk=1�kmk; �̂ = rXk=1 �kSk; (1)where �̂ is the estimated mean vector; �̂ is the es-timated covariance matrix; �i � 1 and �k � 1k = 1; : : : ; r, are weighting factors; mk and Sk,k = 1; : : : ; r, are the previous mean vectors and co-variance matrices.We can use the maximum likelihood criterion to �ndthe best set of coe�cients for the prediction [9]. Wediscuss two cases: adapting mean vector only andadapting both mean vector and covariance matrix.2.2.1 Mean AdaptationIn this case, the covariance matrix is assumed to bea constant and the mean vector � is assumed to be alinear combination of the previous mean vectors. Bysetting the derivatives of the likelihood function withrespect to �k; k = 1; : : : ; r, to 0, the equations for themaximum likelihood estimates arerXk=1mj0��1mk�̂k =mj0��1�x; j = 1; : : : ; r (2)We can obtain �k by solving the equation (2).2.2.2 Mean and Covariance AdaptationIn this case, both mean vector and covariance matrixare assumed to be a linear combination of the pre-vious parameters. In general, explicit solutions forthis problem do not exist and estimates must be per-formed by iterative numerical techniques.In fact, because the two sets of estimates are asymp-totically independent, each set of parameters can beestimated as if the other set of parameters is known.In the following we present an EM algorithm basedon the estimate procedure proposed by Anderson [10].



The basic idea of the algorithm is to iteratively esti-mate two sets of parameters independently. In orderto iteratively estimate �̂(i)k and �̂(i)k , where the super-script (i) denotes the ith iteration.Algorithm1. InitializationrXk=1mj0mk�̂k(0) =mj0�x; j = 1; : : : ; r;�̂(0) = rXk=1 �̂(0)k mk; j = 1; : : : ; r;C(0) = 1N NXk=1 (xk � �x)(xk � �x)0 + (xk � �̂(0))(xk � �̂(0))0rXk=1 tr SjSk�̂k(0) = tr SjC(0); j = 1; : : : ; r;�̂(0) = rXk=1 �̂k(0)Sk;2. IterationrXk=1mj0��1mk�̂k(i) =mj0��1�x; j = 1; : : : ; r;�̂(i) = rXk=1 �̂(i)k mk; j = 1; : : : ; r;C(i) = 1N NXk=1 (xk � �x)(xk � �x)0 + (xk � �̂(i))(xk � �̂(i))0rXk=1 tr (�̂(i�1))�1Sj(�̂(i�1))�1Sk�̂k(i)= tr (�̂(i�1))�1Sj(�̂(i�1))�1C(i); j = 1; : : : ; r;�̂(i) = rXk=1 �̂k(i)Sk;3. If max(j�(i)j ��(i�1)j j; j = 1; : : : ; r) � � for a smallnumber � > 0, stop; otherwise goto step 2.It has been shown that the solution of these esti-mation equations is asymptotically e�cient providedthat the estimate of � is consistent [10].2.3 A Real-time Face TrackerWe have developed a real-time face tracker [3]. Thesystem has achieved a rate of 30+ frames/secondusing a low-end workstation (e.g., HP9000) with aframegrabber and a camera. Three types of modelshave been employed to track human faces. In addi-tion to the skin-color model used to register the face,a motion model is used to estimate image motion andto predict the location of the search window. Finallya camera model predicts and compensates for cameramotion (panning, tilting, and zooming). The systemcan track a person's face while the person moves freely(e.g., walks, jumps, sits down and stands up). TheQuickTime movies of demo sequences in di�erent sit-uations and on di�erent subjects can be found on ourweb site http://www.is.cs.cmu.edu/.

k0 = 30 k1 = 32 k2 = 34Figure 2. Iterative thresholding of the searchwindow3. Real-time Tracking Facial FeaturesInside the found facial area, the facial features aresearched and tracked inside the found facial area. Inthis section we describe our approaches to search andtrack eyes, lip-corners and nostrils.3.1 Searching PupilsAssuming a frontal view of the face initially, we cansearch the pupils by looking for two dark regionsthat satisfy certain anthropometric constraints andlie within a certain area of the face. For a given situ-ation, these dark regions can be located by applying a�xed threshold to the gray-scale image. However, thethreshold value may change for di�erent people andlighting conditions. To use the thresholding methodunder changing lighting conditions, we developed aniterative thresholding algorithm. The algorithm it-eratively thresholds the image until a pair of regionsthat satis�es the geometric constraints can be found.Figure 2 shows the search window for the eyes fordi�erent thresholds ki. After three iterations, bothpupils are found.3.2 Searching Lip CornersFirst, the approximate positions of the lip cornersare predicted, using the positions of the eyes, theface-model and the assumption, that we have a near-frontal view. A generously big area around thosepoints is extracted and used for further search.Finding the vertical position of the line between thelips is done by using a horizontal integral projectionPh of the grey-scale-image in the search-region. Sincethe lip line is the darkest horizontally extended struc-ture in the search area, its vertical position can belocated where Ph has its global minimum.
Figure 3. Integral projection of the search-windowThe horizontal boundaries of the lips can be foundby applying a horizontal edge detector to the re�ned



search area and regarding the vertical integral projec-tion of this horizontal edge image. The positions ofthe lip corners can be found by looking for the dark-est pixel along the two columns in the search arealocated at the horizontal boundaries.
horizontaledge-image vertical projectionFigure 4. Finding horizontal borders of thelips, using a vertical projection of the hori-zontal edge-image of the lips3.3 Searching NostrilsSimilar to searching the eyes, the nostrils can befound by searching for two dark regions, that satisfycertain geometric constraints. Here the search-regionis restricted to an area below the eyes and above thelips. Again, iterative thresholding is used to �nd apair of legal dark regions, that are considered as thenostrils.3.4 Tracking the EyesFor tracking the eyes, simple darkest pixel �nding inthe predicted search-windows around the last posi-tions is used.3.5 Tracking Lip CornersOur approach to track the lip-corners consists of thefollowing steps:1. Search the darkest pixel in a search-region rightof the predicted position of the left corner andleft of the predicted position of the right corner.The found points will lie on the line between thelips2. Search the darkest path along the lip-line fora certain distance d to the left and right re-spectively, and choose positions with maximumcontrast along the search-path as lip-cornersBecause the shadow between upper and lower lip isthe darkest region in the lip-area, the search for thedarkest pixel in the search windows near the predictedlip corners ensures that even with a bad prediction ofthe lip corners, a point on the line between the lipsis found. Then the true positions of the lip cornerscan be found in the next step. Figure 5 shows the twosearch windows for the points on the line between thelips. The two white lines mark the search paths alongthe darkest paths, starting from where the darkestpixel in the search windows have been found. Thefound corners are marked with small boxes.

Figure 5. Search along the line between thelips3.6 Tracking NostrilsTracking the nostrils is also done by iterativelythresholding the search-region and looking for 'legal'blobs. But whereas we have to search a relatively bigarea in the initial search, during tracking, the search-window can be positioned around the previous posi-tions of the nostrils, and can be chosen much smaller.Furthermore, the initial threshold can be initializedwith a value that is a little lower than the intensityof the nostrils in the previous frame. This limits thenumber of necessary iterations noticeably.However, not always both nostrils are visible in theimage. For example, when the head is rotatedstrongly to the right, the right nostril will disappear,and only the left one will remain visible. To deal withthis problem, the search for two nostrils is done onlyfor a certain number of iterations. If no nostril-pairis found, then only one nostril is searched by lookingfor the darkest pixel in the search window for the nos-trils. To decide which of the two nostrils was found,we choose the nostril, that leads to the pose which im-plies smoother motion of the head compared to thepose obtained choosing the other nostril.4. ApplicationsThese real-time tracking techniques can be used tobuild non-intrusive vision-based user interfaces. Wehave used the described tracking techniques to builda system that estimates a user's head pose, and to ob-tain the visual evidence for an eye-gaze tracker anda lip-reading system. These applications will be de-scribed below.4.1 Head Pose TrackingA person's gaze direction is determined by two fac-tors: the orientation of the head and the orientationof the eyes. But whereas the the eye orientationsdetermine the exact direction of the user's gaze, thehead orientation determines the overall gaze direc-tion.Since we know the geometry of a face, determiningthe orientation of the head is a pose estimation prob-lem. In fact, the head pose can be estimated by�nding correspondences between a number of headmodel points and their locations in the camera im-age. We have developed a system to estimate thehead pose using a full perspective model [11]. The



method Rx error Ry error Rz errorTC 5.5 7.6 2.2SC 7.4 11.8 2.3no pred 5.6 10.7 2.1Table 1. Average rotation error in degrees forsequence 1.method Tx error Ty error Tz errorTC 7 4 63SC 6 5 100no pred 5 4 59Table 2. Sequence 1: Average translation er-ror in mm.system tracks six non-coplanar facial features (eyes,lip-corners and nostrils) in real-time and estimatesthe head pose using an algorithm proposed by De-Menthon & Davis [13]. Table 1 and 2 show the accu-racy of the head pose estimation on a test sequencethat we recorded in our lab (see [11] for details. Wehave applied the system to a multimodal interface tocontrol a panorama image viewer [12]. The interfaceallows a user to scroll through a 360 degree panoramaimage by his/her head pose and zoom in or zoom outby voice commands.4.2 Eye-Gaze MonitoringA user's eye gaze on a computer screen can be accu-rately estimated by a neural network using images ofthe eye of the user as input. Baluja and Pomerleaudemonstrated such an approach by a system whichused a ash light to acquire stable eye images [14].The ash light, however, causes the problem of useracceptance. Using our real-time tracking techniques,we can obtain stable images of the eyes without theneed of special lighting. In our system as described in[15] the user's eyes are automatically tracked, imagesof the eyes are extracted, preprocessed and are usedas input to a neural net, which estimates the x- andy-coordinates of the user's focus on the screen.The system consists of a three layer network with 400input units (for the two eye images), 40 to 50 hiddenunits and 2 x 50 output units for Gaussian outputrepresentation of the x- and the y-coordinates of thefocused point on the screen.Figure 6 shows two sample pairs of extracted and his-togram normalized eye images that are used as inputto the neural nets.We have trained and tested neural nets for each offour di�erent user's and also for all four users. Inthe user dependent case we achieved mean error on

Figure 6. Sample input images for the neuralnet (20x10 pixel)test sets of between 1.3 and 1.8 degrees with the bestneural nets. For the multi-user neural net the meanerror was 1.9 degrees using the best net. Table 3shows these results.user mean errorA 1.5B 1.3C 1.6D 1.8A,B,C,D 1.9Table 3. Average error of eye gaze estimation(in degrees)4.3 LipreadingIt has been demonstrated that visual information canenhance accuracy of speech recognition for both a hu-man and a computer. However, many other lipread-ing systems require a user keep still or put specialmarks on his/her face. Using the face and lip track-ing techniques discussed above, we have developeda lipreading system that gives a speaker reasonablefreedom of movement within a room [16, 17]. The sys-tem is based on a modular MS-TDNN structure. Thevisual and acoustic TDNNs are trained separately,and visual and acoustic information are combined atthe phonetic level. We use gray-scale images of thelip-region as visual input. Adaptive gray-value modi-�cation is used to eliminate di�erent lightning condi-tions [17]. The speech signal is preprocessed and 16melscale coe�cients are fed into the neural network.The current system is for German spelling task,mainly in the speaker-dependent mode. Letter se-quences of arbitrary length and content are spelledwithout pauses. Words in our database are 8 letterslong on average. The task is therefore equivalent tocontinuous recognition with a small but highly con-fusable vocabulary.We have trained a speaker depen-dent recognizer on 170 sequences of acoustic/visualdata, and tested on 30 sequences. For testing we alsoadded white noise to the test-set. The results areshown in Table 4 as performance measure word ac-curacy is used where a spelled letter is considered aword. The current system has achieved an error re-duction of up to 55% compared to the system whichonly uses acoustic recognition.



TestSet clean 16dB SNR 8 dB SNRvisual only 55% 55% 55%acoustic only 98.4% 56.9% 36.2%combined 99.5% 73.4% 66.5%Table 4. Speaker-dependent results5. ConclusionWe have presented techniques for real-time trackingof human faces and facial features. We have demon-strated that human skin color distributions can becharacterized by an adaptive statistic model and asystem can track a face in real-time using such amodel. We have presented a top-down approach totrack facial features. It has been shown that facialfeatures such as eyes, lips and nostrils can be locatedand tracked with this approach. We have describedapplications of the real-time tracking techniques. Weare currently working on applying these visual track-ing techniques to multimodal human computer inter-faces to improve human computer interaction.References[1] M. Hunke and A. Waibel. Face locating andtracking for human-computer interaction. InProc. Twenty-Eight Asilomar Conference on Sig-nals, Systems & Computers, Monterey, CA,USA, 1994.[2] T.C. Chang, T.S. Huang, and C. Novak. Facialfeature extraction from color images. InProc. the12th IAPR International Conference on PatternRecognition, Vol. 2, pages 39-43, 1994.[3] J. Yang and A. Waibel A real-time face tracker.In Proceedings of the Third IEEE Workshop onApplications of Computer Vision, pages 142-147, 1996 (\Tracking human faces in real-time,"Technical Report CMU-CS-95-210, CS depart-ment, CMU, 1995).[4] N. Oliver, A. Pentland, and F. Berard.LAFTER: lips and face realtime tracker. In Pro-ceedings of CVPR'97, pages 123-129, 1997.[5] J.L. Crowley and F. Berard. Multimodal track-ing of faces for video communications In Pro-ceedings of CVPR'97, pages 640-645, 1997.[6] G. Wyszecki and W.S. Styles. Color Science:Concepts and Methods, Quantitative Data andFormulae (Second Edition). John Wiley & Sons,New York, 1982.[7] S.A. Shafer. Optical phenomena in computervision. In Proc. Canadian Soc. ComputationalStudies of Intelligence, pages 572-577, 1984.
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