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Abstract— Acquiring new knowledge is a key functionality
for humanoid robots. By envisioning a robot that can provide
personalized services the system needs to detect, recognize and
memorize information about specific persons. Recent work al-
ready shows promising results in the area of speech recognition,
voice identification and face identification that enable a system
to reliably detect and recognize persons, as well as approaches
to interactively learn to know new persons in dialog acquiring
their names and ID information.

One problem in this area is verification, namely to detect
which person is known versus which person is unknown; a
second problem is the learning phase, namely to learn the
name of a person and store it in a database with associated
face and voice classifier information. This paper presents work
to interactively acquire ID information, combining both of the
above problems into one learning dialog. In dialog we combine
multimodal input including spoken name recognition, name
pronunciation (phoneme recognition), name spelling (grapheme
representation), face identification and voice identification and
seek to build dialogs optimized to verify or learn a person’s
name and ID. For designing and training of optimized dialogs
we use a reinforcement learning approach and propose a mul-
timodal simulation modeling the user’s actions and multimodal
ID recognition components including stochastic error models.

I. INTRODUCTION

In this paper we present work on learning names and
person ID information in a multimodal dialog system for
a humanoid robot. One part of the dialogs that can be con-
ducted with the robot are dialogs to identify and especially to
learn to know new persons. We have conducted experiments
with a receptionist scenario, where one task of the robot
receptionist was to identify the visiting person or learn the
name of the person if unknown. In the following we present
efforts on especially this task namely isolated identification
dialogs within the receptionist scenario. These dialogs fulfill
two purposes: In case the person is known, confirm the name
of the person. In case the person is unknown, classify the
person as unknown and conduct a learning dialog to obtain
the person’s name.

The presented experiments make use of standard per-
ceptual components available on a humanoid robot. These
components are visual perception with a stereo camera and
acoustic perception with distant and close-talk microphones.
Visual perception provides face detection and identification.
Acoustic perception provides voice identification and speech
recognition including name recognition, spelling and pho-
netic understanding. These components provide recognition

H. Holzapfel is with interACT, Faculty of Computer Science, University
of Karlsruhe, Germany hartwig@ira.uka.de

A. Waibel is director of the joint center interACT, Faculty of Computer
Science, University of Karlsruhe, Germany and Carnegie Mellon University
Pittsburgh, PA, USA waibel@ira.uka.de

hypotheses which are interpreted by the dialog manager.
The challenge of this task is to define a dialog strategy,

including when to confirm ID information, when to ask for
name pronunciation or spelling. With the goal of optimizing
dialogs regarding success, length, and subjective measures,
we have implemented a reinforcement learning approach
which combines both verification and learning into one dia-
log integrating the multiple input modalities presented above.
For achieving this goal, we implemented a first rule based
dialog strategy, and later a reinforcement learning strategy,
which was trained in a multimodal user simulation. In the
following we present the setup for multimodal integration
in dialog, definition of the handcrafted strategy and learning
of dialog strategies in the multimodal user simulation. Both
dialog strategies are evaluated within the simulation and are
compared against each other. First results from a real user
experiment are reported.

A. Related Work

The main goal of this work is to build a strategy to learn
names and associated multimodal ID information in dialog.
Related work can be found in the area of name recognition,
multimodal person identification, learning dialogs and opti-
mization of dialog strategies.

Name recognition requires large vocabulary handling
which is addressed with unknown word (OOV) detection
[1], [2], [3], [4] and dynamic vocabulary approaches. [5]
describes a system with dynamic vocabulary that can be
updated according to the given context. [6] presents learning
of new words in a multimodal setting. [7] uses multiple
recognition passes with a phone-based OOV word-model in
the first step, and a constrained vocabulary in the second step.
Attention is also required for obtaining a phonetic represen-
tation of a name which can be used to understand the user’s
name and to pronounce the name. [8] combines phoneme
recognition of spoken input with telephone keypad input to
obtain textual representation of names. [9] implements fusion
of spoken and spelled names on large vocabularies.

While the main aspect of learning in this work is to obtain
a name for a person and associated multimodal features, it
has similarities to learning dialogs like names of objects or
semantic properties, e.g. [10], [11], [12].

Besides name learning and person identification using
names, the presented system also integrates face and voice ID
such as used in smart home environment or surveillance tasks
[13], [14], [15]. Recent work which uses voice identification
in dialog with a dialog strategy trained by reinforcement
learning is presented in [16]. More work related to reinforce-
ment learning in dialog systems is described later.
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II. SCENARIO AND SYSTEM COMPONENTS

A. Name Learning in Dialog

The term learning dialog refers to the objective of a dialog
to acquire some specific information through interaction
with the user and update a background knowledge base.
The presented dialog task to learn the name of a person
is associated with face ID and voice ID information which
together is stored in a database. Concerning terminology, we
refer to this kind of dialog as a task of knowledge acquisition
or as a learning dialog. The outcome of the dialog in our
task is to have obtained a label for a person, which can be
stored in a database along with collected audio and video
data and the person’s name. If a known person interacts with
the system, the corresponding database entry can be updated
along with additional identification data. If the person is
unknown, a new entry is created with new ID information
for face ID and voice ID, the name is added to the database,
speech recognition and understanding grammars, and speech
recognition dictionary. For extending the dictionary, the text-
to-speech engine’s grapheme-to-phoneme conversion is used,
which is the same that was used to get the name confirmed in
dialog. Note that the presented dialog scheme doesn’t allow
to fully verify an ID of a person, but only the learned label.
That is, if two persons have the same name, they cannot be
directly distinguished by having their names confirmed.

The whole dialog system comprises speech recogni-
tion, spelling recognition, natural language understanding,
voice identification, face detection and face identification,
grapheme to phoneme conversion, and text to speech. These
components are introduced in this section, most of them only
with a brief overview where necessary to understand the
remainder of the paper. For more details on these components
please refer to the referenced publications.

B. Speech recognition

Speech recognition is performed with the Janus speech
recognition software with the Ibis decoder [17] on utterances
which have automatically segmented from close-speech or
distant speech input.

Standard speech recognition is performed using con-
text free grammars as language models. For phoneme and
spelling recognition statistical n-gram models are applied.
All recognition models share the same runtime engine and
acoustic models, including unsupervised user adaptation dur-
ing runtime. The speech recognizer is tightly coupled with
the dialog manager. This allows to weight grammar rules
based on the dialog context to improve speech recognition
in context. It is also used to switch between standard recog-
nition and spelling. In previous work, the grammar-based
speech recognizer has been extended to also cover unknown
word detection [1]. In the experiments presented here, speech
recognition and especially name recognition is performed
with a vocabulary created from the names of all persons
known to the system. We have measured correct detection
rates of over 70% for unknown names (OOV-detection) on
the given databases and around 95% correct recognition

of known names. The databases in these experiments have
been 15-30 persons. The Cepstral text-to-speech engine was
used for spoken output and also for grapheme-to-phoneme
conversion of spelled names, which is stored in combination
with phoneme recognition of the spoken name for speech
recognition.

C. ID recognition components

Person identification is made possible by the face ID and
voice ID components [15], [18] and spoken name recogni-
tion. Visual perception is done via a stereo camera mounted
on a pan-tilt unit. The robot can track and follow a person
with his visual field. We apply single image classification
using k-nearest-neighbor classifiers and fusion over image
sequences. The approach allows to easily extend the database
in an online system without retraining of the whole classifier.
Sequence classification only takes into account inherent
properties of sequences and doesn’t need to be changed when
new samples or new persons are added to the database.
The two-stage classifier is further used in the simulation,
where single images are precomputed and only the sequence
hypothesis is computed during runtime. For details about face
identifier setup, please refer to [18]. A similar approach is
adopted for voice ID. With the difference that in the current
setup, sequence classifications over multiple turns is done by
concatenating the audio files.

D. Dialog Setup

The scenario for the dialog manager is to control interac-
tion in a receptionist scenario. We conducted a first Wizard-
of-Oz experiment with users that were given the task to act
as a visitor and to deliver a parcel to a predefined person.
The task of the robot was to greet the visitor, ask for the
concern (which was to deliver a parcel), who to deliver this
parcel to, ask for the visitor’s name to be able to announce
him to the receiver, and finally to give direction where to go
to deliver the parcel.

The Wizard-of-Oz experiment served as a data collection
and analysis of the dialog task. From this analysis, the recep-
tionist task was decomposed into the dialog modules greet-
ing, parcel reception, name learning, directions and goodbye.
A second, standalone experiment was then conducted without
human intervention except starting and stopping recordings.
Changes were made only to the dialog implementation, the
perceptual components from the Wizard-of-Oz experiment
could be used with only slight modifications.

The dialog strategy is implemented in a hierarchy with one
top level strategy to control a situation model and selection
of different dialog modules. Each dialog module provides its
own strategy implementation, which for the experiment was
implemented by a separate rule-based strategy. Separating
the dialog modules’ strategies makes it easy to also develop
each strategy separately and later combine the modules into
the dialog model for the whole task. The experiments with
the system have shown that the modular design was feasible
[19] and that the name learning task could be approached in
an isolated manner.
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The handcrafted rule-based strategy for the name learning
module shall serve as a baseline for the experiments pre-
sented in this paper with reinforcement learning. The actions
which are available for the dialog strategy are the same for
both the handcrafted as well as the learned strategies. The
following actions are available:

get information ask name, ask name-spelling
confirm conf name-asr, conf name-spelling

conf faceID, conf voiceID
finish dialog accept-name, abort

The implementation of the handcrafted strategy follows a
simple pattern: Alternatively ask the visitor for his name or
for the spelling of his name. If either of both are given, try
to confirm the name. When speech recognition reports an
unknown name ask for spelling. In the beginning, if face ID
produces a hypothesis, try to confirm the associated name.
If neither is set but voice ID is given try to confirm the
associated name. Do not ask for the same name twice. As
soon as the name is confirmed quit the dialog and store
the name. If a predefined threshold of turns is reached e.g.
15 (in the simulation), or after 3 unsuccessful confirmation
questions (in the online experiment), the dialog is aborted
without storing the name.

III. OPTIMIZED LEARNING DIALOGS

This section describes a reinforcement learning approach
to automatically acquire a dialog strategy which is optimal
with regard to a predefined metric, the reward function. The
design of single modules separates concerns and allows train-
ing of the name learning module, which can be conducted
in reasonable training time and in isolation of other dialog
concerns.

One promising approach for optimization of dialog strate-
gies in general is with reinforcement learning. The idea of
reinforcement learning is that one cannot define correct and
incorrect actions for each state as in supervised learning, but
rather to expose the system (usually referred to as the agent)
to an environment in which it can take a series of actions,
where each action is associated with some reward. The agent
is supposed to learn from these observations and optimize its
expected reward. Reinforcement learning in this definition is
a class of learning problems. Various systems exist that apply
reinforcement learning, and several algorithms exist to solve
the reinforcement learning problem [20].

For dialog systems, reinforcement learning has success-
fully been employed to learn dialog strategies. A problem
with this approach has been that reinforcement learning
requires large amounts of data, so that training strategies
on real data has usually been conducted with a limited
state space and/or action space. Recent work has targeted
reinforcement learning in dialog systems using a simulated
user and statistical models trained from a data corpus.

A. MDP State Model

One important aspect of defining a model for reinforce-
ment learning is the state model. In theory it has been shown

Information Slot MDP state MDP state values
ASR name input Name-ASR empty, filled, oov
Spelling input Name-Spelling empty, filled
Voice ID VoiceID empty, filled

VoiceIDConf low, medium, high
Face ID FaceID empty, filled

FaceIDConf low, medium, high

TABLE I
DIALOG INFORMATION SLOTS AND MAPPING TO MDP STATES

MDP state values description
number of failed attempts

nNameFailed 0,1,2+ to confirm a name
number of successful attempts

nNameConf 0,1+ to confirm a name
number of failed attempts

nASRNameFailed 0,1,2+ to confirm a name from
speech recognition

lastAction action name of the previous action

TABLE II
DIALOG STATE VARIABLES IN THE MDP STATE

that if the state model fulfills the Markovian Property, Q-
Learning converges to the optimal policy. The Markovian
Property requires that the state transition probability only
depends on the current state:

P (st+1|st, at) = P (st+1|st, st�1, ..., s0, at, at�1, ..., a0)

In practicable applications however, and especially in dialog,
this property usually doesn’t hold, but still good policies can
be found. A tradeoff needs to be found between encoding
fine grained information and history versus simple models,
to find a model which can be computed with the given data
and in a reasonable amount of training runs.

The MDP state model used in our experiments encodes
information about the information state of semantic slots
plus information about the progress of the dialog. The dialog
manager uses the information slots with associated MDP
state values as shown in table I. States representing the
progress of the dialog are shown in table II.

Important for the learned strategy is the chosen reward
function. It defines which dialogs are ’good’. In our scenario,
learning correct names is rewarded (+10), learning wrong
names is punished (-10). From experiments we found that
some persons accept names which are almost correct. We try
to quantify this effect with the Levenshtein distance between
learned and correct name (distance = 1 is rewarded +3;
distance = 2 is rewarded 0). Each additional turn is punished
with -1, so dialog length is kept moderate; repeating the same
system action is punished with -0.5. Other functions can be
chosen to increase the importance of different factors.

IV. USER SIMULATION

To build a user simulation a common approach is to model
user actions with statistics estimated on collected data. In
addition to that, (error-) models are created that describe
the behavior of the system’s recognition components, i.e. a
statistical model of errors. The idea behind this approach is
that statistically describing user actions and error models is
simpler than directly learning the system’s strategy.
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A. Multimodal User Models

Existing approaches for training a user model range from
simple models, such as the bi-gram model, to more complex
models [21], [22], [23]. In previous work [24] we have
achieved good results using a simple bi-gram model for
statistics on a semantic level. In the addressed restricted task
bi-gram statistics provided good estimations already on a
small amount of training data, which would not suffice to
train more complex models.

The quality of the bi-gram model p = P (actuser|actsystem)
highly depends on the defined abstraction granularity of
simulated user and system actions and the task restriction.
In our work we have adopted the general bi-gram model to
a more fine-grained model of bi-grams over semantics of
user actions (input speech act + semantic attributes) given
the system’s speech act. Statistics for user actions have been
trained on a single dialog goal, i.e. name learning, in isolation
of other dialog goals. To show the feasibility of this approach
and collect necessary training data, a Wizard-of-Oz study
and a standalone experiment were conducted as described in
section II-D.

In addition to speech-only interaction our multimodal
system models non-verbal information from voice ID and
face ID. Voice ID, like speech input, is computed turn-wise
for each spoken utterance. Inspired by recent work [16]
which concatenates data from speech snippets to simulate
data that is provided for voice ID during runtime, we adopt
this approach and simulated recognition input by taking
samples of real recorded data.

Face ID at first glance is not turn based. However, since
face ID only updates the dialog state during a new turn,
this is imitated in the simulation by grouping ten to twenty
images for face recognition per turn. To produce a variety
of hypothesis values, we use real images from one person
taken during data collection at 2 fps, which are cut into
sub-sequences of ten to twenty images. From these, the
simulation environment randomly picks single sequences.

Problematic with this setting are the high computing
requirements. Just considering face ID, given a database of
roughly twenty persons, the face ID recognizer can process
two to four images per second on a standard 3GHz Pentium
processor. A minimum training requirement of 1 million
dialogs then poses an impracticable computational burden.
The biggest part in time consumption is to detect a face
within an image and to produce a per-image ID classification
using the nearest-neighbor classifier. Both problems can be
pre-computed given a fixed database of known persons,
when the state space of the classifier remains constant. The
combination of pre-computed single-image hypotheses to a
sequence hypothesis is much faster and can adequately be
conducted during simulation. A similar approach using audio
snippets has been applied to voice ID recognition. With these
settings, the system runs a full dialog in simulation (including
dialog state update, policy update and action selection) in
1.2 ms at 3.5 turns per dialog on average, which is roughly
0.3 ms per turn. Note that the chosen setup doesn’t allow

to directly simulate the effects of storing more and more
persons in the database, but rather allows to train a strategy
for a fixed database setting of known persons.

B. Error Models

Simulation of user actions is not sufficient to model the
input for the dialog system. The missing link between user
actions and dialog input is described by error models, which
statistically simulate typical errors made by the recognition
components. For example, the difference between experi-
ments using close speech and distant speech is simply a
different error model. Face ID as well as voice ID don’t re-
quire additional error models since their errors are implicitly
modeled by applying real classifiers (partly pre-computed) to
simulated data. Speech, in contrast, is modeled statistically
and requires additional error models for speech, phoneme,
and spelling recognition. Spoken name input is modeled as a
speech act with semantic parameters. For spoken name input,
the speech act is informName with a semantic parameter
’NAME’. The error model first statistically models concept
confusion and deletion, i.e. probability for recognizing a
wrong concept (confusion) and the probability for not un-
derstanding any concept at all (deletion). Secondly, statistics
are applied to model confusion and deletion of the semantic
parameter(s).

V. EXPERIMENTS AND RESULTS

A. Training and Evaluation in Simulation

Training of the strategy was conducted with the MDP
state model and action model described in section III and
in section II-D. Training was conducted with the Watkins-
Q-lambda algorithm with exponential cooling of epsilon,
and the learning rate alpha. All models were computed
with all combinations of a list of 11 equally distributed
lambda values: 0.0, 0.1, 0.2.. 1.0 and a list of 11 equally
distributed discounting factors: 0.0, 0.1, 0.2 ... 1.0. To test
the effect of the number of training runs we experimented
with different dialog numbers per training, using 1 million
to 100 million dialogs per model. Reasonable training runs
are 10 million (10M) dialogs and more, since training with 1
million (1M) runs still contains a couple of state-action pairs
that have never been visited, especially in states that occur
only seldom. There is still a significant difference between
training sizes of 10M and 100M dialogs, so high numbers
of training dialogs still means improvement of the dialog
strategy. On the other hand, first training runs with 100M
dialogs took 32 hours on a Pentium4 3 GHz processor. After
a few code optimizations we could lower the training time to
roughly 5 hours. Considering training time, all models which
have been trained with different configurations, i.e. 121
configurations for all combinations of discount and lambda
values per MDP state space, have been trained with 10M
dialogs, single configurations have been trained with 100M
dialogs for comparison of the best models. All evaluation
numbers presented here have been obtained from running
100k dialogs in simulation, which have shown stable results,
from which the average reward is computed.
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Training and evaluation requires to split data into three
parts. The first part is used to train user ID models for
voice ID and face ID, and bi-gram statistics. A second data
set is used as simulation data, for training of the dialogue
strategy, and a third set is used for evaluation of the dialogue
strategy. Depending on how the set is split, the dialogue
strategy training and evaluation sessions include more or
less unknown persons. On a set with a large number of
unknown persons, the resulting reward is lower than with
a set restricted to known persons, since unknown persons
are harder to recognize and to register.

Figure 1 shows evaluation results for the close speech
condition of the baseline strategy in comparison to strategies
trained with reinforcement learning (RL). The categories
shown are ’sim’ for the simulation set which was used for
reinforcement learning, and ’eval’ for the third held out data
set. The model abbreviations are ’H’ for the handcrafted
model, ’F’ for RL with face ID only, ’V’ for RL with voice
ID only and ’M’ for RL with multimodal input (face ID +
voice ID). Figure 2 shows the name-assignment errors made
by the different strategies under close speech condition. An
error is an incorrect assignment of a name at the end of a
dialog. Almost correct names were counted separately, where
the learned name differs by only one letter from the correct
name. Both simulation sets included 25% unknown persons.
For roughly six percent of all turns no voice ID information
was available. On the remaining set, the recognition rates for
voice ID are 59% and recognition rates for faceID are 68%.

Fig. 1. Evaluation scores for different strategies in the user simulation,
showing reward (first column) plus turn numbers (second column).

B. Experiments with Users and Discussion

The results of the simulation show better performance of
the reinforcement strategy than the handcrafted strategy. An
interpretation is that the reinforcement learning approach
learns more complex rules, when to confirm multimodal
input, in combination with recognition confidence, dialog
length, and failed name recognition. The charts show slight
differences between the sets. The ’M’ model (multimodal
input) performs generally best, which matches our expecta-
tions, because it can choose among different modalities. All
learned models have a higher number of correct dialogs, at
a minimal cost of 0.1 turns more per dialog on average.

Fig. 2. Incorrect assignments made by the different strategies in the
simulation in % (out of 100k dialogs). The bars indicate: total errors,
almost correct names for known persons, almost correct names for unknown
persons, incorrect names for known persons, incorrect names for unknown
persons.

To evaluate the system with real users we have deployed
the strategy to a small user study experiment. Since there
are high variations in results depending on the user, the
experiment can only be interpreted as a tendency but not
be treated as a reliable comparison of strategies. Further and
larger evaluations are necessary for this.

The experimental setup was the same as for the Wizard-
of-Oz experiment with the same microphones and cameras.
This time the users were told that the only purpose of the
interaction was the name learning dialog. We conducted
dialogs with 11 persons, 7 persons using distant-speech,
some of them haven’t used speech recognition before, and 4
persons using close-speech. The experiments were conducted
with two conditions: known and unknown. A person at first
was unknown, and after completing the learning dialog,
name and ID information was stored in the database to
conduct further dialogs with the known condition. To obtain
more dialogs with the unknown condition the ID and name
information was removed from the database, to iteratively
conduct dialogs in the unknown and known conditions.

The following shows two sample dialogs. The first dialog
shows a sample dialog trained with reinforcement learning:
User: Hello [act hello] ; FaceID: Peter
Sys : Am I right that your name is Peter?
User: No, my name is John. [inform name [NAME ”OOV”]]
Sys : Please spell your name!
User: J O H N. [inform spelling [SPELLING ”JOHN”]]
Sys : Have I understood correctly that your name is John?
User: Yes. [yes]
The next dialog shows a simple confirmation dialog with
only one user turn to confirm the correct recognition.
User: Hello [act hello] ; FaceID: John
Sys : Am I right that your name is John?
User: Yes that’s right. [yes]

The close-speech experiment produced similar results as
evaluation in simulation. Average dialog length was 4.7 in
the unknown condition and 2.6 in the known condition, ex-
cluding greeting and goodbye. The distant speech experiment
produced worse results than predicted by the simulation.
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While first interactions with speech experts went very well,
naive users had more problems to complete the dialogs. For
example, users spelled their names too slowly, which was not
handled correctly by automatic speech segmentation. After
an introduction users could complete the task more easily.
Additional errors were caused by spelling recognition per-
formance which mostly was not 100% correct. All numbers
from the experiment are shown in table III. The problems are
rather to be assigned to system conditions than to the dialog
strategy. The numbers also show that the task to register an
unknown person is much harder than identifying a known
person. Unknown persons can neither be recognized by face
ID or voice ID, or, if they could be recognized, but during
previous interactions no name was stored, this cannot be
communicated by the system. So currently the only way to
get known by the system was by spelling one’s name, which
was easier to complete when used to the system.

1 2 3 3 4 5 6 7
unknown 5,3,4 3,7,5 15,15,15 14,4,5 15,15,12 5,4 15,11 15,15,6
known 3,8,1 1,4,2 1,3 1,6 1,3 3

TABLE III
NUMBER OF TURNS DURING DISTANT SPEECH DIALOGS. THE COLUMNS

MARK SUBJECTS 1 TO 7. 15 TURNS MARKS UNSUCCESSFUL DIALOGS.

VI. CONCLUSIONS AND OUTLOOK

Reinforcement learning in multimodal user simulation pro-
duces results comparable to a handcrafted strategy. It further-
more has the advantage that it can be obtained automatically
and be retrained for new environments. ID hypotheses from
different recognition components are integrated in dialog,
and depending on the trained conditions (error models, dis-
tant speech vs. close speech) selects which hypothesis to trust
and thus implicitly implements a confirmation strategy over
multiple modalities. Confidence measures evaluated for face
ID provide additional improvements. The system combines
identification and learning tasks within one dialog. Directions
for future work could consider different reward functions for
identifying known persons and learning unknown persons, or
training of the dialog strategy on top of multimodal fusion
of ID hypotheses.

In a distant speech experiment, a small user study has
shown that some kind of learning barrier exists for some
users. Bad acoustic conditions during the studies with a
speaker distance of one to two meters harm interaction
quality measurably and increase the requirements to spell
in a certain way that can be understood by the system.

Comparison of the different strategies has been conducted
in simulation, where a large number of dialogs can be
evaluated with relatively low efforts. To reduce over-fitting
on the training set, held out data was used for training
of a simulation for evaluation. The presented experiments
with real users show that the strategy produces realistic
results. For comparison of different strategy types additional
experiments are planned, which can also be used to analyze
if user simulations can be realistic replacements for real user
experiments. Recognizing an arbitrary name is a challenge

for speech recognition, since a list of all possible names is
too large too keep all names in the vocabulary at the same
time. In the current setup the name vocabulary is restricted
to known persons, unknown names are detected as OOV and
can be spelled for learning. In the future we plan to integrate
larger name vocabularies and weighting of common names
to enable understanding names of unknown persons as well.
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