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Abstract— Several real world applications of humanoids in
general will require continuous service over a long time period.
A humanoid robot operating in different environments over a
long period of time means that A) there will be a lot of variation
in the speech it has to ground semantically and B) it has to
know when a conversation is of interest in order to respond.

Detailed natural speech understanding is hard in real sce-
narios with arbitrary domains. To prepare the ground for in-
domain dialogs in real day-to-day life open domain scenarios we
focus on an intermediate attention level based on conversation
concept listening and learning.

With the aid of explicit semantic analysis new concepts from
open domain conversational speech are learned together with
how to react to them according to human needs. This can entail
how the robot performs actions such as positioning and privacy
filtering.

The corresponding attention model is investigated in terms of
concept error rate and word error rate using speech recordings
of household conversations.

Index Terms— humanoid robots, attention learning, concept
learning, classification, explicit semantic analysis, distant speech
recognition

I. INTRODUCTION

The development of human like machines has been a
dream and on the mind of mankind for a very long time.
While in the past decades robots, a term coined in literature
a long time before their technological development [1], have
been extensively deployed in factories in order to facilitate
the automation process of production, the development of
humanoid robots is an active research area with many
remaining problems, still needing to be solved.

The collaborative research center SFB588 Humanoid
Robots - Learning and Cooperating Multimodal Robots [2]
aims at the development of a household robot by the name
of Armar [3], [4]. Armar, currently in its third generation, is
intended to support humans at home, in the kitchen and the
general household.

In order for a robot in a household environment to be
accepted by the user and to maximise its usefulness, it is of
utmost importance that the people that encounter the robot
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can interact with it in a natural manner. Users should not
need to learn specific interfaces for controlling the robot or
to use special controls that disrupt their normal behaviour.
One of the most natural interfaces that can be used to achieve
this is communication via speech. In addition to directly
receiving instructions from the user, the robot should also
be able to passively assess the current situation and context,
and to predict the needs and demands of the occupants of the
household. Active communication and passive observation
of the situations require the implementation of perceptual
interfaces, including the techniques of automatic speech
recognition, concept detection, and dialog modeling.

When engaging in communication with humans, robots
have to follow certain rules, in order to be socially ac-
ceptable, for example, the ability to identify and respect
human behaviour and workflow by listening to human-human
conversations and learning from feedback.

A. Learning by Observing Inter-Human Communication
In order for the robot to provide knowledge and interac-

tions autonomously and to learn behaviour for new domains,
we address in this work the task of autonomous concept
learning from the routine observation of daily conversations.

For the perceptual speech recognition and the dialog
component to work properly, both components have to
show a high degree of flexibility. The tasks and concepts
encountered in the robot’s work environment can vary greatly
from household to household. Thus, the robot’s interaction
components have to autonomously and flexibly adapt to the
circumstances of its environment.

In our scenario, the robot will observe conversations
between humans and automatically detect the concept in
each, if it is already known to him, or will otherwise detect
that the conversation was about an as yet unknown concept.
In the case of an unknown concept the robot will initiate a
short dialog in order to learn the new concept and to receive
instructions for appropriate behaviour when the same concept
is encountered again in the future. The robot will also learn
which conversations are private and adapt its data-keeping
methodology accordingly.

Behaviour that can be associated with the detection of a
certain concept can be, for example, the repositioning of the
robot, such as coming closer or following the user in order
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to receive instructions or carry out a task, or to just continue
its current task, or in other cases to interrupt its current work
and to leave the conversing parties alone in order for them
to have a private discussion. In the latter case, instead of
leaving, the robot might also be allowed to continue its work
and to listen to the conversation but should actively forget the
perceptual data seen during the conversation, i.e. it should
keep no record of it.

In summary, our general aim is social integration of the
robot by semantic grounding at the concept level, which
enables the robot to detect known concepts from inter-human
dialogs and derive appropriate actions, and to detect and learn
new, previously unknown concepts and associated actions by
conducting a dialog with the user.

B. Related Work
Robot learning from humans by example or demonstration

is a very active research area [5]. A lot of work has
been devoted to learning specific, single tasks from human
examples. Such tasks can be individual movements [6] or
movement primitives [7].

In our work we focus on the observation of human
interaction and communication instead of visually observing
physical movements and imitating them. This kind of prob-
lem is strongly related to the problem of learning in dialog,
e.g. in order to maintain a database of known persons at a
workplace by a robot receptionist [8] or to build a model of
social networks [9].

Also related to our task of observing inter-human conver-
sations, is the task of detecting whether the robot is addressed
by the user, or whether the user is interacting with somebody
else [10]. In our work here, we concentrate on observing
inter-human communication instead of situations in which
the robot is addressed directly.

In [11] a cascade of HMMs is used for associative learning
of language from visual and auditory streams sensed by a
mobile robot. While in [11] speech concepts anchored by
isolated words have been learned, our work deals with con-
cept learning from real world observations of conversational
and spontaneous inter-human speech as a whole. By using
state of the art text classification methods we also make use
of a large amount of human generated knowledge.

II. CONCEPT LEARNING AND DETECTION BY EXPLICIT
SEMANTIC ANALYSIS

This paper distinguishes between: concepts, abstract ideas
that we hope to find in a conversation; categories, predefined
sets of human generated data; word sequences, the output
of our speech recognition system and documents, a set of
words. In order to learn and detect new speech concepts we
transform the word sequence of a conversation observed by
the humanoid robot into features representing its concept in-
formation. Generally speaking, learning concepts is achieved
by partitioning the category feature space; classification is
done by finding the most probable partition.

In the following subsection we first describe technically
how an analysis of manually (explicitly) defined semantic

categories can be performed. Henceforth we refer to learned
semantic entities by the term concept while the manually
predefined semantic entities are referred to as categories.

The second subsection describes how concepts are repre-
sented using an explicitly predefined feature space and how
a new word observation is classified or learned within the
new representation.

In practice, our model allows two different learning strate-
gies:

• from word sequences observed in human-human con-
versations together with confirmation from a dialog

• in dialog with batch mode keyword enumeration
While learning from inter-human conversations uses whole

conversation word sequences as given by the speech rec-
ognizer, in batch mode new concepts can be learned very
fast with almost no training material. Thereby, people are
given the ability to tell the robot that, for example, knife and
fork are keywords for the concept table setting and let the
robot also automatically connect spoon with this concept.
The robot was equipped with some real world knowledge
in form of predefined semantic categories with the help of
Explicit Semantic Analysis.

A. Explicit Semantic Analysis

In the better known Latent Semantic Analysis [12] a
document or sequence of words (from a speech recognizer
for example) is represented as a vector in a latent category
space. The categories are generated algorithmically and are
not necessarily comprehensible to people. In contrast Ex-
plicit Semantic Analysis (ESA) developed by Gabrilovich
and Markovitch [13] represents the word sequence as a
vector in a category space where the categories have been
defined by humans. Most commonly the articles in the online
encyclopedia Wikipedia are used as the explicit categories.
The word sequence is compared to each of the categories
and with a tfidf measure (see section II-A.1) the importance
of the category to the word sequence is determined.

Because we required a large amount of text to be associ-
ated with each category, we chose the categories in the open
directory project (ODP)1 to be our explicit categories. The
ODP is a large hierarchically sorted directory of websites
which is edited and maintained by human volunteers. It
contains links to over 4 million websites sorted into over
500,000 categories. Its hierarchical tree-like structure allows
us to associate the text in the websites which are linked to
by a category, not only with their corresponding categories,
but also with all their ancestor categories. The k categories
C with the most associated2 text are chosen to be the
dimensions in our category space Ck giving us a mapping
function:

⌧ : D ! Ck ⇢ Rk (1)

⌧ (wi) = h� (wi, c1) , � (wi, c2) , . . . , � (wi, ck)i (2)

1http://www.dmoz.org/
2the most general categories were disregarded
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Because the categories cj can be considered documents
in the text classification sense we can use text classification
methods to find the similarity � between a word sequence
wi and a category cj (wi, cj 2 D, the set of all possible
documents). Documents (word sequences or categories) have
lots of properties that can be useful in deciding how similar
they are to one another. By far the most important property
is its body of text out of which term counts (in our case
word counts) are extracted and a feature vector is built.

1) Term-Frequency Inverse Document Frequency (TFIDF)
Metric: A standard method of generating a feature vector

�!
fj

from a document cj is to first extract a set of n terms from
the sum of the text of all the documents and then weight
them according to their occurrence in cj . For each cj we
have a

�!
fj = (f1,j , f2,j , ..., fn,j)

where fi,j denotes the weight of term i in document j.
Once a set of terms |T | = n has been decided upon a

TFIDF function can be used to generate a document feature
vector

�!
fj . In our case the number of terms is limited by the

vocabulary of our speech recognizer. The function calculates
each component of

�!
fj from its term frequency TFi,j in cj and

the inverse document frequency IDFi of ti 2 T . The term
frequency component measures how often a word occurs in
a document. Let #(ti, cj) be the number of times ti appears
in cj .

TFi,j = log #(ti, cj)

The inverse document frequency measures how discrimina-
tive a word is. Words that appear in few documents have
a high inverse document frequency and words in a lot of
documents have a low inverse document frequency [14].

IDFi,j = log

✓
|C|

#(C, ti)

◆

#(C, ti) is the number of documents containing ti. The
logarithm of the quotient is used to blunt the effect of
extremely rare words, which might only appear in one or
two documents. Putting these together gives us.

fi,j = TFIDF(ti, cj) = log #(ti, cj) · log

✓
|C|

#(C, ti)

◆
(3)

As is, the TFIDF function does not take into account the
length of a document. A term appearing once in a short
document is more relevant than if it were to appear in a
longer one.

One way to solve this is to normalise the vector generated
by the TFIDF function.

fi,j =

TFIDF(ti, cj)s
|T |P
h=1

TFIDF(th, cj)
2

(4)

The same feature extraction method is applied to the new
document or word sequence w that is to be mapped to the

Fig. 1. Explicit Semantic Analysis performed on a short sequence of words.
A sequence of words is first of all converted to a sparse term feature vector
using tfidfs and then mapped to a vector in the category feature space by
comparing it to the term feature vectors of each category.

category space.

fi,w = log #(ti, w) · log

✓
|C|

#(C, ti)

◆
(5)

�T (w) =

�!
fw = (f1,w, f2,w, ..., fn,w) (6)

Because the selection of our terms T will remain constant
we will henceforth refer to �T simply as �.

2) Cosine Similarity Metric: TFIDF vectors are built to be
able to compare documents with each other. This requires a
similarity metric. The cosine similarity metric is an easy and
fast metric to compute. It is defined by the angle ⌧ between
the two vectors f1 and f2 that are to be compared.

cossim(f1, f2) = cos(') =

f1 · f2

|f1||f2|
(7)

Since the TFIDF vectors are often already normalised (|f1| =

1 and |f2| = 1) the denominator part of this definition can be
ignored. Also most TFIDF vectors are sparse, leading to very
few nonzero terms in the numerator of the definition. This
allows the cosine similarity metric to be calculated very fast
making it an ideal function for � which we can now define
as.

� (wi, cj) = �(wi) · �(cj) (8)

B. Learning and Remembering Methodology

When the robot is told to learn a new concept or receives
confirmation that the words that it picked up from a particular
conversation belong to a new concept, it maps these words
w to a concept vector vq in category space and stores them
(see Figure 1).

vq = ⌧(w) (9)

Future word sequences vm = ⌧(wm) are compared to each
of the previously stored concept vectors using the cosine
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similarity metric thereby identifying the most similar learned
concept.

vs = argmaxvr

vr · vm

|vr||vm| (10)

Because word sequences will often not correspond to any
of the previously learned concepts we introduce a pseudo
concept off-concept which is returned when the similarity
between the word sequence and the most similar concept is
less than a threshold. Experimentation on a small text-only
development set showed |vs|l2

2 to be a reliable concept de-
pendent threshold. The component that performs this concept
classification is hereafter referred to as the Explicit Semantic
Topic Analyser (ESTA).

III. TOPIC BASED ATTENTION MODELING

Learning a concept representation using explicit semantic
analysis given a word sequence was technically described
above.

In the following we describe the whole attention and be-
haviour cycle. All attention model components are illustrated
by figure 2.

Fig. 2. Attention model schematic
A. Listen mode

The cycle starts in the listen mode. In this state word
sequences are generated by our speech recognition system
from acoustic observation of the humanoid’s environment.
Speech segments are kept in an utterance list, as well as
permanently written to a database with connection to the
corresponding audio data. As soon as a new speech segment
is added we check whether a speaker is directly addressing
the robot by speaking certain keywords. If the robot is
addressed we enter the dialog mode. In all other cases the

whole utterance list is forwarded to the Explicit Semantic
Topic Analyzer.

B. Explicit Semantic Topic Analyzer
The Explicit Semantic Topic Analyzer interface provides

the dialog and speech recognition system with learning and
concept classification functionality.

Topic classification is performed for the whole utterance
list in the classification case while the learning case updates
or saves a category distance vector. The classification outputs
previously learned concept names or off-concept within a
couple of seconds.

C. Topic Dependent Behaviour
If an already learned concept was found the robot trig-

gers connected behaviour. Currently we implement position
changes to enable the robot to approach humans, or to leave
the scene. Arbitrary actions could potentially be connected
here. We further support a privacy mode which can also be
attached to a concept in the dialog feedback. The robot can
also have no action attached to a concept which leads to a
continuation of the current task.

D. Conversation end detection
Conversation end detection leads to the deletion of an

utterance list kept in listen mode, while if not explicitly
deleted the database keeps record of what was said. A
conversation end can be detected by various methods. A
trivial realisation just uses the time stamp of the last utterance
to detect a long speech pause. If the conversation continues
we continue with speech recognition in the listen mode.
Otherwise we change the state to privacy filter.

E. Privacy filter
Privacy mode means that after the conversation end we

discard conversation data such as recognition hypotheses
and raw audio recordings if the privacy flag attached to the
classified concept is true. All off-concept cases lead to a
learning dialog, whereas other cases lead to a start over in
listen mode.

F. Dialog mode
As a result of a dialog request in the off-concept case our

robot tags the observed conversation (word sequence) with
a concept name and anchors the new concept by saving the
association vector. During this off-concept learning dialog
the robot repeats dominant words recognized in the previous
conversation as a sanity check for mis-recognition. It requests
settings for action triggers and the privacy mode to be used
when the newly learned concept is encountered again.

The dialog conversation can also learn further concepts in
batch mode rather than by observing human-human conver-
sations. Thus the user can predefine a number of relevant
behaviour dependent concepts in a quick way. This feature
also allows us to set the robot into a controlled “testing-
scenario’ in which we can, together with a set of prerecorded
user conversations, perform experiments with by varying
environmental parameters.
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IV. EXPERIMENTS
We first describe the evaluation data, followed by the

description of our speech recognition system used in the
listen and dialog mode, evaluation metrics and finally present
the results on remembering learned concepts.

A. Data collection
For evaluation of classification performance within the

end-to-end system learning cycle we recorded 28 conver-
sations of 10 speakers next to our robot’s head within the
household domain. The recorded conversations with a total
duration of 80 minutes contained concepts about

1) setting a table
2) arranging a private meeting
3) cleaning and tidying up
4) asking where a specific person is currently located
5) further concepts (i.e. weekend experiences, holidays

etc.).
The recorded conversations were carried out by non-native
English speakers and contain a significant amount of disflu-
encies. Each observed conversation participant was recorded
with a lavalier microphone while the robot head’s micro-
phones were listening in parallel from a short distance.
To compare the effect of different distances on the same
conversations and the channel difference between the lavalier
and robot head microphones, we later played back the close
talk recordings through a loudspeaker and let the robot head
and the close talk microphones listen again from further
distances.
The ESTA was trained on text extracted from all the websites
linked to in the ODP. When cleaned this data set consists of
just over 16 GBytes of text, roughly 9 GBytes of which came
from the 5,000 categories that were selected for use. For
terms the 130,000 word vocabulary from the ASR language
model was used.

B. Automatic Speech Recognition System
All experiments in this work were performed with the

help of the Janus Recognition Toolkit (JRTk) featuring the
IBIS single pass decoder [15]. The acoustic model used in
our experiments utilises 3-state sub-phonetically tied semi-
continuous Hidden Markov Models composed of 16,000
quinphone models over 4,000 codebooks with a maximum of
64 Gaussians per model. The preprocessing stacks 15 frames
of 15 mel scaled warped Minimum Variance Distortionless
Response (wMVDR) cepstral coefficients[16]. The resulting
feature vector is reduced to 42 dimensions using linear
discriminant analysis. The model was trained on 140 hours of
transcribed speech data composed of European Parliamentary
Plenary Sessions [17], conference talks given by non-native
speakers from the Translanguage English Database (TED)
[18], and broadcast news recordings. The training procedure
consisted of merge-and-split training on samples extracted
with the help of existing forced alignments using one global
semi-tied covariance (STC) transformation [19], followed by
two iterations of viterbi training to compensate for wrong
alignments. The models were then further improved by

several iterations of minimum mutual information estimation
(MMIE) training.

To jointly compensate for additive noise as well as re-
verberation we used a feature enhancement technique, based
on particle filtering and multi-step linear prediction, which
has previously demonstrated significant reductions in word
error rate on real data. Even though the acoustic environment
is quite different from the experiments performed in [20]
we have decided to use the same enhancement setup, as
the free parameters have been demonstrated to be similar
for very different acoustic environments. As the acoustic
training material differs to [20], a retraining of the clean
speech model within the PF was necessary for For optimal
performance.

The language model used is an interpolation of 4-gram
language models trained on transcripts of news texts from
the Gigaword Corpus and data collected from the World
Wide Web, for a general English transcription task. The
models were built and interpolated using the SRI Language
Modelling Toolkit [21]. The resulting language model was
pruned to slightly more than 6x10

7 3-grams and 4-grams.

C. Evaluation Metrics
We evaluated our system using word error rate (WER) and

task error rate (TER). TER measures how often the robot
incorrectly identifies a concept.

D. System Evaluation
To evaluate how well the system performs in a real world

setting we initially taught the robot 4 concepts that it might
encounter in a household setting. This was done having a
person who was not present at the data collection tell it that
for example table, spoon, coffee, plate and set are important
words for the concept table setting. The other concepts
arrange meeting, cleaning and locate person for which data
was recorded were taught in an analogous manner.

After this learning phase the original recorded audio from
both tested microphones (see near column in table I) was
passed directly to the speech recognition component of our
system.

Its performance was also evaluated on distant speech. To
do this the audio from the lavalier microphone was played
through a speaker system at distances of 60cm and 120cm
and recorded from the robot’s microphones.

As can be seen in table I the performance of our speech
recogniser deteriorated from 37.0% WER to 69.6% WER
when we increased the distance of the robot to the speaker
from nearby to 120cm. The use of a special distance mi-
crophone decreased our WER at 120cm to 58.4%. Although
the task error rate also steadily got worse with increasing
distance the error rate varied a lot more between the tasks.
While ”arrange meeting” was almost never correctly de-
tected in the hypotheses from the speech recogniser, ”table
setting” was, even at 120cm, correctly identified 80% of
the time. When tested on the references only one instance
of arrange meeting was incorrectly identified. This may be
because the speech recogniser incorrectly recognised the
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Source near 60cm 120cm
TER WER TER WER TER WER

References 7.1 - - - - -
Lavalier mic 28.6 37.0 39.3 52.0 57.1 69.6
Distant mic 39.3 42.9 50.0 50.4 57.1 58.4
Meeting 20 / 80 38.9 100.0 55.5 100.0 64.2
Locate Person 0 / 0 36.9 60.0 57.9 80.0 73.6
Cleaning 20 / 80 34.5 80.0 45.0 80.0 51.1
Table Setting 0 / 0 34.4 20.0 51.0 20.0 56.3
Off-concept 0 / 0 41.0 12.5 52.4 25.0 61.8

TABLE I
TASK AND WORD ERROR RATES (IN %) MEASURRED ON THE LAVALIER

AND DISTANT MICROPHONES AT VARIOUS DISTANCES. THE TER OF

INDIVIDUAL CONCEPTS WAS MEASURED ON THE HYPOTHESES FROM

THE DISTANT MIC IN THE 60CM AND 120CM COLUMNS. IN THE NEAR

COLUMN THE LEFT VALUE IS THE TER MEASURED ON THE

REFERENCES; THE RIGHT VALUE IS MEASURED ON THE HYPOTHESES

FROM THE LAVALIER MIC

semantically important vocabulary in these conversations.
Another interesting observation is that most errors were
not incorrect classification (i.e. ”arrange meeting” miss
classified as ”table setting”) but rather Off-concept errors
(”arrange meeting” miss classified as ”Off-concept”). This
explains why the Off-concept error rate is consistently low.
An interesting conclusion is that at word error rates below
40% concepts can be correctly identified when they are well
defined by their keywords.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we presented our work towards giving
humanoid robots adaptive behaviour which learns from and
reacts to our needs.

A concept learning and remembering cycle was proposed
and implemented, by which humanoid robots are able to
learn unseen concepts from conversations and attach be-
haviour to that new concept according to a human suggestion.
The term learning implies here that an anchored concept will
be recognised again, even if a completely different vocabu-
lary is used. The technical realisation of intelligent concept
learning and matching was discussed using explicit semantic
analysis. By applying this learning cycle in the day-to-day
life of humanoid robots, we will enable them to ground the
meaning of concepts by letting them autonomously reactivate
behaviour. In the proposed model, behaviour is attached by
human suggestion. As a result we can think of an incremen-
tally improved autonomous adaptation to human needs over
long time periods, leading to integration of humanoid robots
into our functional as well as social awareness.

The concept detection could be improved by analysing
the lattice output of the speech recognition system and
taking the word’s acoustic confidences into consideration.
Continuous research on feature enhancement in our distant
speech frontend will incrementally extend the distance at
which concepts can be reliably detected.
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