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Sebastian Stüker1, Kevin Kilgour1, and Jan Niehues2

1 Research Group 3-01 ‘Multilingual Speech Recognition’, Karlsruhe Institute of
Technology, Karlsruhe, Germany, sebastian.stueker@kit.edu,
kevin.kilgour@kit.edu

2 Interactive Systems Laboratories, Karlsruhe Institute of Technology, Karlsruhe,
Germany, jan.niehues@kit.edu

1 Introduction

Our laboratory has used the HP XC4000, the high performance computer
of the federal state Baden-Württemberg, in order to participate in the sec-
ond Quaero evaluation for automatic speech recognition (ASR) and Machine
Translation (MT).

State-of-the-art ASR research systems usually employ techniques which
require the parallel execution of several recognition systems for the purpose
of system combination. The use of unsupervised adaptation techniques further
requires the execution of several stages or passes of ASR systems. This leads
to the fact that modern research systems process speech only with a run-time
of many times realtime, under certain circumstances up to 100 times real-
time. The process of speech recognition in this form can be easily parallelized
at a speaker level in independent processes without the need for inter-process
communication. Therefore the scheduling system of the XC4000 in combina-
tion with its global, high performing file space, is an ideal environment for
executing such an evaluation.

The training of machine translation systems also requires the processing
of large amounts of data in order to train statistical models.

2 Quaero

Quaero (http://www.quaero.org) is a French research and development pro-
gram with German participation. It targets to develop multimedia and mul-
tilingual indexing and management tools for professional and general public
applications such as the automatic analysis, classification, extraction, and
exploitation of information. The projects within Quaero address five main
application areas:
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530 S. Stüker, K. Kilgour, J. Niehues

• Multimedia Internet search
• Enhanced access services to audiovisual content on portals
• Personalized video selection and distribution
• Professional audiovisual asset management
• Digitalization and enrichment of library content, audiovisual cultural her-

itage, and scientific information.

Also included in Quaero is basic research in the technologies underlying these
application areas, including automatic speech recognition, machine transla-
tion, and speech-to-speech translation. The vision of Quaero is to give the
general public as well as professional user the technical means to access various
information types and sources in digital form, that are available to everyone
via personal computers, television, and handheld terminals, across languages.

Quaero is organized as a program consisting of seven projects. Five projects
are concerned with applications. In addition, one project, the Core Technology
Cluster (CTC), conducts basic research in the technologies underlying the
application projects, and one project is concerned with providing the data
resources necessary for the research within CTC.

Our laboratory is mainly involved in the CTC project. Two of the tech-
nologies under investigation are Automatic Speech Recognition (ASR), i.e. the
automatic transcription of human speech into written records and Machine
Translation (MT). Within Quaero research is driven by competitive evalua-
tion and sharing of results and technologies employed. This process is called
coopetition. Evaluations are conducted once a year on a predefined domain
and a set of languages. As the project continues the number of languages to
address will grow. Also the performance of the recognition systems developed
within the project is expected to improve.

The second evaluation conducted in August 2009 was intended as a first,
real evaluation after the baseline evaluation in 2008. Five languages were
addressed: English, French, German, Russian, and Spanish. We participated
in the languages English, German, Russian, and Spanish. The test data for
the evaluation consisted of various audio files collected from the World Wide
Web, including broadcast news, lectures, and video blogs.

3 English Evaluation Recognition Systems

For the English evaluation within Quaero we participated with a recogni-
tion system that is a further development of the ISL 2007 English Speech
Transcription System for European Parliament Speeches from the European
Integrated Project Technology and Corpora for Speech-to-Speech Translation
(TC-STAR) [21]. The system has been trained and tested with the help of
the Janus Recognition Toolkit that features the IBIS single pass decoder [22].
In general all recognition systems employ left-to-right Hidden Markov Models
(HMMs), modeling phoneme sequences with 3 HMM states per phoneme.
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3.1 Front-End

We trained systems for two different kinds of acoustic front-ends. One is based
on the traditional Mel-frequency Cepstral Coefficients (MFCC) obtained from
a fast Fourier Transform and the other on the warped minimum variance
distortionless response (MVDR). The second front-end replaces the Fourier
transformation by a warped MVDR spectral envelope [25], which is a time
domain technique to estimate an all-pole model using a warped short time
frequency axis such as the Mel scale. The use of the MVDR eliminates the
overemphasis of harmonic peaks typically seen in medium and high pitched
voiced speech when spectral estimation is based on linear prediction.

For training, both front-ends have provided features every 10 ms. During
decoding this was changed to 8ms after the first stage. In training and decod-
ing, the features were obtained either by the Fourier transformation followed
by a Mel-filterbank or the warped MVDR spectral envelope.

For the MVDR front-end we used a model order of 22 without any filter-
bank since the warped MVDR already provides the properties of the Mel-
filterbank, namely warping to the Mel-frequency and smoothing. The advan-
tage of this approach over the use of a higher model order and a linear-
filterbank for dimensionality reduction is an increase in resolution in low
frequency regions which cannot be attained with traditionally used Mel-
filterbanks. Furthermore, with the MVDR we apply an unequal modeling of
spectral peaks and valleys that improves noise robustness, due to the fact that
noise is mainly present in low energy regions.

Both frond ends apply vocal tract length normalization (VTLN) [26]. For
MFCC this is done in the linear domain, for MVDR in the warped frequency
domain. The MFCC front-end uses 13 cepstral coefficients, the MVDR front-
end uses 15. The mean and variance of the cepstral coefficients were normal-
ized on a per-utterance basis. For both front-ends seven adjacent frames were
combined into one single feature vector. The resulting feature vectors were
then reduced to 42 dimensions using linear discriminant analysis (LDA).

3.2 Acoustic Model Training

We trained acoustic models for two different kinds of phoneme sets P1 and
P2. P1 is a version of the Pronlex phoneme set which consists of 44 phonemes
and allophones while P2 is a version of the phoneme set used by the CMU
dictionary that consists of 45 phonemes and allophones. We trained models for
all four combinations of the two phoneme sets and the two acoustic front-ends
described above.

We used two different kinds of set of training data two train different
acoustic models.

The first training set (train1 ) contains approximately 80h of English EPPS
data provided by RWTH Aachen within the TC-STAR project [7], 9.8h of
TED data [13], and 167h of unsupervised EPPS training material that had
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been collected within TC-STAR by RWTH Aachen but had not been man-
ually transcribed. Transcriptions for the unsupervised training material were
obtained by adapting an acoustic model of last year’s system on automatic
transcriptions provided by RWTH Aachen on that data. We then decoded the
data, using the segmentation provided by RWTH Aachen.

The second set of training data (train2 ) contains in addition to the data
from the first training data set 140h of BroadCast News data from the HUB-4
corpus. Exploratory experiments showed that the use of broadcast news data
leads to improvements on the web data in the Quaero development data, while
the use of meeting data from the CHIL project did not lead to improvements.

All models are semi-continuous quinphone systems that use 16000 distri-
butions over 4000 codebooks. They were trained using incremental splitting of
Gaussians training, followed by 2 iterations of Viterbi training. For all mod-
els we used one global semi-tied covariance (STC) matrix after LDA [6] as
well as Vocal Tract Length Normalization. In addition to that feature space
constraint MLLR (cMLLR) speaker adaptive training [5] was applied on top.

We improved the acoustic models further with the help of Maximum Mu-
tual Information Estimation (MMIE) training [19]. We applied MMIE training
firstly to the models after the 2 viterbi iterations, and secondly to the models
after the FSA-SAT training, taking the adaptation matrices from the last iter-
ation of the maximum likelihood FSA-training and keeping them unchanged
during the MMIE training.

This all resulted in fourteen different acoustic models: for each combi-
nation of front-end, MVDR and MFCC, and phoneme set, P1 and P2, one
set of models trained with VTLN plus MMIE, and one with FSA-SAT plus
MMIE. From now on we refer to these models as P1-train1-MFCC-VTLN,
P2-train1-MFCC-VTLN, P1-train1-MVDR-VTLN, P2-train1-MVDR-VTLN,
P2-train2-MFCC-VTLN, P2-train2-MVDR-VTLN, P1-train1-MFCC-SAT,
P2-train-MFCC-SAT, P1-train1-MVDR-SAT, P2-train1-MVDR-SAT,
P1-train2-MFCC-SAT, P2-train2-MFCC-SAT, P1-train2-MVDR-SAT, and
P2-train2-MVDR-SAT.

Segmentation and Clustering

Segmenting the input data into smaller, sentence-like chunks used for recogni-
tion was performed with the help of a fast decoding pass on the unsegmented
input data in order to determine speech and non-speech regions. Segmentation
was then done by consecutively splitting segments at the longest non-speech
region that was at least 0.3 seconds long. The resulting segments had to con-
tain at least eight speech words and had to have a minimum duration of six
seconds.

In order to group the resulting segments into several clusters, with each
cluster, in the ideal case, corresponding to one individual speaker we used
the same hierarchical, agglomerative clustering technique as last year which



Quaero Speech-to-Text and Text Translation Evaluation Systems 533

Table 1. English text sources

Corpus Wordcount
UK parliament debares (Hansard) 49,681,456
EPPS acoustic training data 749,668
EPPS text data 33043959
UN Parallel Text (English) 40,991,279
Gigaword 4rth Edition without 2008 texts 3,618,495,574
Hub4 Broadcast News data 832,068
Web dump (pre 2008) 144,062,839
total 3,887,856,843

is based on TGMM-GLR distance measurement and the Bayesian Informa-
tion Criterion (BIC) stopping criterion [11]. The resulting speaker labels were
used to perform acoustic model adaptation in the multipass decoding strategy
described below.

Language Model and Test Dictionary

To select the vocabulary the development data text was split into a tuning
set and a test set with each containing approximately half the text of every
show. For each of our English text sources (see Table 1) we built a Witten-
Bell smoothed unigram language model using the union of the text sources’
vocabulary as the language models’ vocabulary (global vocabulary). With the
help of the maximum likelihood count estimation method described in [24] we
found the best mixture weights for representing the tuning set’s vocabulary as
a weighted mixture of the sources’ word counts thereby giving us a ranking of
all the words in global vocabulary by their relevance to the tuning set. While
the baseline 64k vocabulary had an OOV rate of 3.9% when measured on the
validation set, the OOV rate of the vocabulary containing only the top ranked
64k words was 2.9%. This vocabulary was slowly increased until the OOV rate
was under 1%. The final 130k vocabulary had a case sensitive OOV rate of
0.73%.

Pronunciations missing from the initial dictionary were created either man-
ually or automatically with the help of Bill Fisher’s tool [3] for P1 and Festival
[2] for P2 respectively.

For each of the text sources in Table 1 we built, using the SRI Language
Modeling Toolkit [23], a modified Kneser-Ney smoothed 4 gram language
model. These were then interpolated using interpolation weights estimated on
the aforementioned tuning set which was extendend with some general data
to avoid overfitting problems. Because the resulting language model contained
over 3×108 3 grams and 4 grams we decided to prune it to reduce its memory
footprint and speed up decoding time. The final language model contained
only slightly more than 6 × 107 3 grams and 4 grams.
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Decoding Strategy and Results

Decoding within our recognition system was performed in two stages. The
acoustic models of the second stage were adapted on the output(s) from the
previous stage using Maximum Likelihood Linear Regression (MLLR) [14], Vo-
cal Tract Length Normalization (VTLN) [26], and feature-space constrained
MLLR (cMLLR) [5]. For the second and third stage the frame shift during
recognition was changed to 8ms.

In the first stage we used the acoustic models P2-train1-MFCC-VTLN, P2-
train-1-MVDR-VTLN, P2-train2-MFCC-VTLN, P2-train-2-MVDR-VTLN.
The models trained on train1 were run on the EPPS portion of the test data
only, the other models on the rest of the test data. The resulting word lattices
were then combined via confusion network combination to the output o1. In
this first stage we adapted the acoustic models using incremental VTLN and
incremental fMLLR on a per speaker basis.

For the second stage all SAT systems were adapted on o1. The result of
the different models were combined via confusion network combination to the
final output.

On the official 2009 development set the system achieved a word error rate
of 31.7%.

4 Translation System

In the Quaero text translation evaluation 2009 we participated in the follow-
ing tasks: German-English, English-German, French-English, English-French,
German-French, French-German. The submitted translations were generated
by the following systems.

4.1 Data

Our translation systems were trained on the parallel corpora from the follow-
ing sources: Europarl, Project Syndicate, Voltaire, and Who corpora. Table 2
shows few numbers about the training data.

The development sets for our systems were created by joining the nc-dev
and nc-devtest sets from the WMT. The News Commentary 2007 test sets
form the WMT were utilized as test sets for our systems.

Multiple monolingual corpora were used to train the language models. For
every language at least two language models were trained: the target part of
the parallel data and the News corpus. In addition to that, for English and
French a language model was also trained on the Gigaword corpus.

For Discriminative Word Alignment training, hand-aligned data was used.
For instance, DE-EN and EN-DE systems used a set of around 500 sen-
tences from the Europarl domain annotated with “sure” and “possible” links.
Whereas EN-FR and FR-EN used the data from the 2003 NAACL shared
task and which consists of 443 sentences.
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Table 2. Brief parallel corpora statistics

Sydicate Voltaire
Sentences Words Sentences Words

EN-DE,
DE-EN

DE 41.2K 966.8K 189 4.4K
EN 41.2K 919.9K 189 4.4K

FR-DE,
DE-FR

FR 24.8K 659.4K 94 2.0K
DE 24.8K 607.5K 94 1.6K

EN-FR,
FR-EN

FR 28.5K 753.3K 17.9K 335.4k
EN 28.5K 666.7K 17.9K 340.1k

Who Europarl
Sentences Words Sentences Words

EN-DE,
DE-EN

DE – – 1.42M 33.10M
EN – – 1.42M 35.69M

FR-DE,
DE-FR

FR – – 1.28M 33.73M
DE – – 1.28M 30.01M

EN-FR,
FR-EN

FR 122.3K 2.5M 1.43M 37.65M
EN 122.3K 2.1M 1.43M 36.20M

4.2 Preprocessing

The training data was preprocessed before used for training. In this step
different normalizations like mapping different types of quotes were done. In
the end the first word of every sentence was smartcased.

For the German text additional preprocessing steps were applied. First,
the old German data uses the “Alte Deutsche Rechtschreibung” whereas the
newer parts of the corpus use the “Neue Deutsche Rechtschreibung”. We tried
to normalize the text by converting the whole text to the “Neue Deutsche
Rechtschreibung”. In a first step, we search for words that are only correct
according to the old writing rules. Therefore, we selected all words in the
corpus, that are correct according to the hunspell lexicon using the old rules,
but not correct according to the hunspell lexicon using the new rules. In a
second step we tried to find the correct spelling according to the new rules.
Therefore, we first applied some rules describing how words changed from one
spelling system to the other like replacing ‘ß’ by ‘ss’. If the new word is a
correct word according to the hunspell lexicon using the new spelling rules,
we map the words.

If translating from German to French or English, we apply compound
splitting as described in [12] to the German corpus.

As a last preprocessing step we remove sentences that are too long and
empty lines to get the final corpus.

4.3 Language Model

For all tasks and languages we use 4-gram language models generated using
the SRILM Toolkit [23]. Different types and amounts of monolingual data
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were used to train the language models. We experimented with the EPPS
data, the News corpus, the News-Commentary corpus as in-domain data and
the Gigaword corpus for those languages for which it is available (i.e. English
and French).

Three different language model setups were applied: (1) Using a language
model trained on one of the above mentioned data types. The factor for the
language model is optimized during Minimum Error Rate Training. (2) Access-
ing two different language models at the same time from within the decoder.
Here, two factors are optimized, one for each language model. (3) Combining
two language models into one through linear interpolation. We choose the in-
terpolation weights such that the perplexity of the resulting language model
on the development set is minimized. In this case one language model factor
was optimized with MERT.

4.4 Translation Model

In order to generate the translation model, i.e. the SMT phrase table, we first
used the GIZA++ Toolkit [17] to calculate a word alignment for the training
corpus. This was done in both directions and then the alignments were com-
bined using the “grow-diag-final-and” heuristic. Afterwards the Moses Toolkit
was used to build the phrase table.

The relative frequencies of the phrase pairs are a very important feature of
the translation model, but they often overestimate rare phrase pairs. There-
fore, the raw relative frequency estimates found in the phrase translation ta-
bles are smoothed by applying modified Kneser-Ney discounting as described
in [4].

In addition to this baseline approach, some of the systems used a discrimi-
native word alignment approach as described in [16] instead of using the word
alignment generated by the “grow-diag-final-and” heuristic. For German-
English and English-German we trained the discriminative word alignment
on hand-aligned data and used the lexical probabilities as well as the fertili-
ties generated by the GIZA++ Toolkit and POS information generated by the
TreeTagger. We used all local features, the GIZA and indicator fertility fea-
tures as well as the first order features for 6 directions. The model was trained
in three steps first using the maximum likelihood optimization and afterwards
it was optimized towards the alignment error rate. For more details see [10].

For French-German and German-French no hand-aligned data was avail-
able. To be able to use the discriminative word alignment for those language
pairs as well, we reused a model trained on the English-German or German-
English data. In this case we used only the lexical probabilities as well as
the fertilities generated by the GIZA++ Toolkit as knowledge sources. To
generate the alignment for French-German we then used the model trained
on the English-German hand-aligned data and replace the English-German
knowledge sources by the French-German ones. We did the same for German-
French using the German-English model.
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Since the test data was from the same source as part of the training data,
we adapted the translation model towards this domain. Therefore, we trained
a second phrase table only on the data from the project syndicate. Afterwards
we combined both phrase tables in a log-linear way.

In addition we tried to trigger the relative frequencies in the phrase table
by other words in the source sentence. Therefore, we calculated for every
source word that cooccurs with a phrase pair, the relative probabilities for
that phrase pair given that this source word occurs. In a next step, we then
selected the trigger words, that led to a significant change in the relative
frequencies. We then sorted the triggers by the information gain from this
trigger and used the top N triggers in the phrase table. This was defined as

log(
cooc(Trigger, PP )

#Trigger
) ∗ cooc(Trigger, PP )

#Trigger
(1)

where cooc(Trigger, PP ) is the number of cooccurrences of the trigger word
and the phrase pair and #Trigger is the number of times the trigger occurs
in the corpus. In the experiments the parameter N was set to 100.

During decoding we then checked if a trigger word of the phrase pair
occurs in the source sentence. If this is the case, we used the triggered relative
frequencies instead of the original ones.

4.5 Reordering Model

In addition to the built-in reordering in the decoder with a reordering window
of two words, we also applied the POS-based reordering model presented in
[20] to account for the different word orders in the languages. This model
learns rules from a parallel text on how to reorder the source side such that it
matches the word order of the target side. The aim is to generate a reordered
source side that can be translated in a more monotone way.

In this framework, first, POS information is added to the source side and
reordering rules are extracted from an aligned parallel corpus. These rules are
of the form VVIMP VMFIN PPER → PPER VMFIN VVIMP and describe
how the source side has to be reordered to match the target side. Then the
rules are assigned scores according to their relative frequencies.

In a preprocessing step to the actual decoding different reorderings of the
source sentences are encoded in a word lattice. Therefore, for all reordering
rules that can be applied to a sentence the resulting reorderings are added to
the lattice if the score is better than a given threshold. The decoding is then
performed on the resulting word lattice.

This approach does model the reordering well if only short-range reorder-
ings occur. But especially when translating from and to German, there are
also long-range reorderings that require the verb to be shifted nearly across
the whole sentence. During this shift of the verb, the rest of the sentence re-
mains mainly unchanged. It does not matter which words are in between, since
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they are moved as a whole. Furthermore, rules including an explicit sequence
of POS-tags spanning the whole sentence would be too specific. A lot more
rules would be needed to cover long-range reorderings with each rule being
applicable only very sparsely. Therefore, we model long-range reordering by
generalizing over the unaffected sequences and introduce rules with gaps. (For
more details see [15]). These are learned in a way similar to the other type
of reordering rules described above, but contain a gap representing one or
several arbitrary words. It is, for example, possible to have the following rule
VAFIN * VVPP → VAFIN VVPP *, which puts both parts of the German
verb next to each other.

4.6 Decoder

All our systems are currently based on the STTK toolkit for statistical ma-
chine translation, which is being developed at our institute (Interactive Sys-
tems Laboratories). The current UKA translation system is a phrase-based
statistical MT system that combines several models in the log-linear domain.
The standard models combine multiple lexical scores, word and phrase transla-
tion probabilities, relative phrase frequencies, word and phrase count features,
and one or several n-gram language models.

The scaling factors for all system configurations are determined automat-
ically and optimized with respect to BLEU score via Minimum Error Rate
Training [1].

In some configurations, a lattice is used as input for the decoder. This
lattice encodes different possible reorderings of the source sentence according
to the POS-based reordering model described above.

4.7 Re-Ranking

For n-best list re-ranking we combined two unique 500-best lists, which may
have less than 500 entries for some sentences. The two lists were generated by
the same system using two different word re-ordering strategies.

We used several features computed from different information sources such
as additional language models trained on the full word form, lemmatized text
and POS tags, IBM-4 word lexica and the n-best list itself.

• Language models
• POS and Lemma LMs
• Statistical Word Lexica
• Position Dependent Word Agreement
• N-best List N-gram Agreement
• N-best List N-gram Probability
• Sentence Length Features
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In each case we trained two language models, one from the target side
of the bilingual data and on from all available target language data. For the
translation into German we also used a language model from POS tags and
one from lemmatized text. We calculated 4 features from the word lexica:
the word probability sum as well as the maximum word probability in both
language directions. The A position-dependent word agreement, the position-
independent n-gram agreement, the n-best list n-gram probability and the
sentence length features are calculated solely from information in the n-best
list itself. The features are described in more detail in [9].

We used MER training [18] to optimize the feature weights on a n-best
list for a tuning set.

In the evaluation we only used the n-best list re-ranking for the trans-
lation into German, because preliminary experiments had not shown stable
improvements for other language directions. This might be due to the addi-
tional information from the POS and lemma LMs for German.

5 Parallelization Utilized

For the two different tasks described above, Automatic Speech Recognition
and Machine Translation, the XC4000 was utilized at different stages in the
development and application of the system. For ASR the XC4000 was used
during decoding, while for MT the XC4000 was used during the training stage
of the systems.

5.1 Automatic Speech Recognition

During the period described in this paper, only the actual decoding and adap-
tation algorithms for the ASR systems have been run on the cluster, but not
the training algorithms. Decoding can run in parallel on a per-speaker basis
without any need for inter-process communication with other parallel jobs.

The SLURM scheduler was thus used to simply start several processes
in parallel that in theory can run independently of each other. The English
test set contains 303 speakers, so that up to 303 parallel processes can be
started for the decoding of the test set. In reality usually an amount of ca.
100 jobs was run in parallel. The runtime of the different jobs per speaker can
vary greatly, depending on how much speech is associated with one speaker.
Due to the accounting system of the queue on the cluster—one process still
running on one CPU on one node, while all the other processes belonging to
one scheduled job have already finished, will lead to being charged the same
amount of CPU time as if all processes were still running—as little processes
per scheduled job as possible were sought. However, due to the fact that only
10 jobs in the production environment per user are allowed—no matter how
many nodes or CPUs are actually employed—this would mean that only 40
parallel jobs could be started, if 4 CPUs per node in the cluster are assumed.
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In order to make use of more parallelization, therefore up to 8 or 16 processes
per scheduled job were committed to the queue, even though that potentially
means that one is being charged for runtime of nodes on which all processes
have already finished.

5.2 Machine Translation

For the Machine Translation systems we used the XC4000 during the training
phase of the systems. As described above, one of the main components of
our training is the use of the GIZA++ training toolkit. The original training
toolkit is not programmed to be executed in parallel but needs to run in a
single process on all the training data.

For our experiments we used an adaptation of the GIZA++ training toolkit
that has added the possibility of parallelization to the toolkit [8] and that
can run a computing cluster such as the XC4000. Using the slurm scheduler
deployed on the XC4000 we were then able to execute the training in parallel.
Data sharing and result combination is done at file level using the shared file
space of the XC4000 so that no inter-process combination is necessary.

Acknowledgements. This work was realized as part of the Quaero Programme,
funded by OSEO, French State agency for innovation. The Research group ‘3-01
Multilingual Automatic Speech Recognition’ received financial support by the ‘Con-
cept of the Future’ of Karlsruhe Institute of Technology within the framework of
the German Excellence Initiative.

References

1. Andreas Zollman, Ashish Venugopal, and Alex Waibel. Training and Evaluation
Error Minimization Rules for Statistical Machine Translation. In Proc. of ACL
2005, Workshop on Data-drive Machine Translation and Beyond (WPT-05),
Ann Arbor, MI, 2005.

2. A.W. Black and P.A. Taylor. The festival speech synthesis system: System doc-
umentation. Technical report, Human Communication Research Centre, Uni-
versity of Edinburgh, Edinburgh, Scotland, United Kingdom, 1997.

3. W.M. Fisher. A statistical text-to-phone function using ngrams and rules. In
Proceedings the 1999 IEEE International Conference on Acoustics, Speech, and
Signal Processing, Phoenix, AZ, USA, December 1999. IEEE.

4. George Foster, Roland Kuhn, and Howard Johnson. Phrasetable Smoothing
for Statistical Machine Translation. In Proc. of Empirical Methods in Natural
Language Processing, Sydney, Australia, 2006.

5. M.J.F. Gales. Maximum likelihood linear transformations for hmm-based speech
recognition. Technical report, Cambridge University, Engineering Department,
May 1997.

6. M.J.F. Gales. Semi-tied covariance matrices for hidden Markov models. Tech-
nical report, Cambridge University, Engineering Department, February 1998.



Quaero Speech-to-Text and Text Translation Evaluation Systems 541

7. Christian Gollan, Maximilian Bisani, Stephan Kanthak, Ralf Schlüter, and Her-
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21. Sebastian Stüker, Christian Fügen, Florian Kraft, and Matthias Wölfel. The
isl 2007 English speech transcription system for European parliament speeches.
In Proceedings of the 10th European Conference on Speech Communication and
Technology (INTERSPEECH 2007), pages 2609–2612, Antwerp, Belgium, Au-
gust 2007.

http://www.fjoch.com/
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