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Abstract

Iz this paper we present a Time Delay Neural Network (TDXN) approach o
phonems recognition which is characterized by two imporiant properties: 1.)
Using a 3 laver arrangement of simple computing urits, a Rierarchy can be
constructed that ailows for the formation of arbitrary nonlinear derision sur-
faces. The TDNN learns these decision surfaces automaticaliy using error back-
propagation{li. 2.} The time-delay arrangement enables the networi to discover
acoustic-phonetic features and the temporal relationskips between them inde-
p=ndent of position in time and hence no: biurred by temporal shifts in the
input.

As a recogmition task, the speaker-depeandent recognition of the phonemes
"B", ”D", and "G" in varying pbosetic contexis was chosen. For comparison,
several discrete Hidden Markov Models (HMM) were trained to periorm the
same task. Performance evaiuation over 1946 testing tokens from three speak-
ers showed that the TDNN achieves a recognition rate of 98.5 % correct while
the rate obtained by the best of our EMMs was only 93.7 %. Closer inspection
reveais that the network "invented” well-knowa acoustic-phonetic features (e.g.,
F2-rise, F2-fall, vowei-onse:) as useful abstractions. It also developec alternate
internal representations to lnk different acoustic reaiizations to the same con-
cept.
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Abstract

[n this paper ‘we present a Time Delay Neural Network (TDNN) approach to
phoneme recognition which is characterized by two important properties: 1.)
Using a J laver arrangement of simple computing units, a hierarchy can be
constructed that allows for the formation of ‘arbitrary nonlinear decision sur-
{aces. The TDN™N learns these decision surfaces automatically using error back-
propagation{l]. 2.) The time-delay arrangement enabies the network to discover
acoustic-pnonetic features and the temporal relationships between them inde-
pendent of position in time and hence not blurred by temporal shifts in the
iaput.

As a recognition task, the speaker-dependent recognition of the phonemes
"B”, "D", and "G" in varying phonetic contexts was chosen. For comparison,
several discrete Hidden Markov Models (HMM) were trained to perform the
same task. Performance evaiuation over 1946 testing tokens from three speak-
ers showed that the TDNN achieves a recognition rate of 98.5 % correct whiie
the zate obtained by the best of our HMMs was oniy 93.7 %. Closer inspection
treveals that the network "invented” well-known acoustic-phonetic features (e.g.,
F2-rise, F2-fall, vowel-onset) as useful abstractions. It also developed alternate
internal representations to link different acoustic reaiizations to the same con-
cept. - ’
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1 Introduction

In recent years, the advent of new learning procedures and the availability of
high speed parallel supescomputers have given tise to a renewed interest in con-
fectionist models of intelligence{l]. These models are particularly interesting
for cognitive tasks that require massive constraint sausfaction, i.e., the parallel
evaluation of many clues and facts and their interpretazion in the light of numer-
ous interrelated constraints. Cognitive tasks, such as vision, speech, language
processing and motor control are also characterized by a high degree of uncer-
tainty and variability and it has proved difficult to achieve good performance
for these tasks using standard serial programming methods. Complex networks
composed of simple computing units are attractive for these tasks not only be-
cause of their "brain-like” appeal. but because they offer ways for automatically
designing systems that can make use of muitiple interacting constraints. In gen-
eral, such constraints are too complex t& be easily programmed and require the
use of automatic Jearning strategies. Such learning algorithms now exist (For an
excellent review, see Lippman(2]) and have been demonstrated to discover inter-
esting internal abstractions, in their attempts to solve a given problem{1.3.4.5).
Learning is most effective when used in an architecture that is appropriate for
the task. Indeed, the experiments reported in this paper suggest that as much
prior knowiedge as possible should be built into the network.

Naturally, these techniques will have far-reaching implications for the design
of automatic speech recognition systems, if proven successful in comparisoa to
already existing techniques. Lippmann[6] has compared several kinds of neural
networks with other ¢lassifiers and evaluated their ability to create complex
decision surfaces. Other studies have investigated actual speech recognition
tasks and compared them to psychological evidence in speech perceprion(7} or
to enisting speech recognition techniques{8,9]. Speech recognition experiments
using neural nets have so far mostly been aimed ag isclated word recogaition
(mostly the digit recognition task) (10,11,12,13] or phonetic recognition with
predefined constant{14,15] or variable phonetic contexts{16,14.17].

A dumber of these studies report very encouraging recognition performance(16},
but only few comparisons to existing recognition methods exist. Some of these
comparisons found petformance similar to existing methods(9,11], but others
found that networks perform worse than other techniques(8]. One might azgue
that this state of affairs is encouraging considering the amount of fine-tuning
that has gone into optirnizing the more popular, established techniques. Nev-
ertheless, better comparative performance figures are needed before neura! net-
works can be considered as a viable alternative for speech recognition systems.

One possible explanation for the mixed performance resuits obtained so far
may be limitations in computing resources leading to short-cuts that limit per-
formance. Another more serious limitation, however, is the inability of most
neural network architectures to deal properly with the dynamic nature of speech.
Two important aspects of this are for a network to represent temporal relation-



ships between acoustic events, while at the same time providing for invariance
under translation in time. The specific movement of a formant in time, for
example, is an important cue to determining the identity of a voiced stop, but
it is irrelevant whether. the same set of events occurs a little sooner or later in
the course of time. Without transiation invariance a neural net requires precise
segmentation, to align the input pdttern properiy. Since this is not always pos-
sible in practice, learned features tend to get blurred (in order to accommodate
slight misalignments) and their performance deteriorates.

In the present paper, we describe a Timne Delay Neural Network (TDNN),
which addresses both of these aspects and demonstrate through extensive per-
formance evaluation that superior recognition results can be achieved using this
approach. In the following section, we begin by introducing the architecture
and learning strategy of a TDNN aimed a: phoneme recognition. Next, we
compare the performance of our TDNNs with one of the more popular cur-
rent recognition techniques. In section 3, we therefore deseribe several Hidden
Markov Models (EMM), under development at ATR([18].. Both techniques are
then evaluated over a testing database. We report the results in section 4 of this
paper and show that substantially higher recognition performance is achieved
by the TDNN than by the best of our HMMs. We also take a close look at
the internal representation that the TDNN learns for this task. It discovers a
number of interesting linguistic abstractions which we show by way of examples.
The implications of these results are then discussed and summarized in the final
section of this paper.

2 Time Delay Neural Networks (TDNN)

To be useful for speech recognition, a layered feed forward neural network must
bave a number of properties. First, it should have multiple layers and sufficient
interconnections between units in each of these layers. This is to ensure that the
network will have.the ability to learn complex non-iinear decision surfaces{2.6].
Second, the network should have the ability to represent relationships between
events in time. These events could be spectral coefficients, but might also be the
output of higher level feature detectors. Third, the actual features or abstrac-
tions learned by the network should be invariant under translation in time®.
Fourth, the learning procedure should not require precise temporal alignment
of the labels that are to be learned. Fifth, the aumber of weights in the aetwork
should be small compared to the amount of training data so that the network is
forced to encode the training data by extracting regularity. In the following, we
describe a TDNN architecture that satisfies all of these criteria and is designed
explicitly for the recognition of phonemes, in particular, the voiced stops "B”,
"D"” and "G".

1In visioa. solutions to the similar problem of shift-invariance have been propamed by use
of a "Neocognitron”[19].




2.1 A TDNN Architecture for Phoneme Recognition

The basic unit used in many neural networks computes the weighted sum of its
inputs and then passes this sum through a non-linear function, most commonly
a threshold or sigmoid function{2.1]. In our TDNN, this basic unit is modified
by introducing delays D; through Dy as shown in Fig.1. The J inputs of such a
. unit now will be multiplied by several weights, one for each delay and one for the

undeiaved input. For N = 2. and ] = 16, for example, 48 weights will be needed
10 compute the weighted sum of the 16 inputs, with each input now measured
at three different points in time. In this'way a TDNN unit has the ability to
relate and compare current input with the past history of events. The sigmoid
function was chosen as the non-linear output function F due to its convenient’
mathematical properties{20,5].

For the recognition of phonemes, a three layer net i3 constructed?. Its overall
architecture and a typical set of activities in the units are shown in Fig.2.

At the Jowest level. 16 melscale spectral coefficients serve as input to the
network. Input speech, sampled at 12 kHz, was hamming windowed and a 256-
point FFT computed every 5 msec. Melscale coefficients were computed from

* the power spectrum as in{21} dhd Sdjacent coeflieients i time collapsed resulting
in an overall 10 misec frame rate. The coefficients of an inpiis token (in this case
15 frames of spesch centerad around the hand:labeled vowel onset) were then
normalized to lie betwéeti -1.0 and +1.0 with the average at 0.0. Fig.2 shows
the tesulting coeficients for the speech token "BA® as input 6 the network,
where positive values are shown as black and negative values as grey squares.

This input layer is then fully interconnected to a layer of 8 time delay hidden
units, where J = 16 and N = 2 {i.e., 16 coefficients over three frames with time
delay 0, ! and 2). An alternative way of seeing this is depicted in Fig.2. It
shows the inputs to these time delay units expanded out spatially into a 3
frame window, which is passed over-the input spectrogram. Each unit in the
first hidden layer now receives input (via 48 weighted connections) from the
coefficients in the 3 frame window. The particular choice of 3 frames (30 msec)
was motivated by earlier studies{22], that suggested that a 30 msec window
might be sufficient to represent low level acoustic-phonetic events for phoneme
recognition. It was also the optimal choice among a number of alternative
designs evaluated by Lang(23] on a similar task.

In the second hidden layer, each of 3 TDNN units jooks at a 5 frame window
of activity leveils in hidden layer 1 (i.e., J = 8, N = 4). The choice of a larger
5 frame window in this layer was motivated by the intuition that higher level
units should learn to make decisions over a wider range in time based on more
local abstractions at lower levels,

Finally, the output is obtained by integrating (summing) the evidence from
each of the 3 units in hidden layer 2 over time and connecting it to its pertinent

Lippminn{2,6] deinohstrated recently that three layers casi encode arbitrsry pastern recog-
nition decision susfaces
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output unit (shown in Fig.2 over 9 frames for the "B"” output unit). In practice,
this summation is implemented simply as another TDNN unit which has fixed
equal weights to a row of unit firings over time in hidden layer 22.

When the TDNN has learned its internal representation, it performs recog-
nition by passing input speech over the TDNN units. In terms of the illustration
of Fig.2 this is equivalent to passing the time delay windows over the lower level
units’ firing patterns. At the lowest level. these firing patterns simply consist of
the sensory input, i.e., the spectral coefficients.

Each TDNN unit outlined in this section has the ability to encode temporal
relationships within the range of the N delays. Higher layers can attend to largar
time spans, so local short duration features will be formed at the lower layer
and more compiex longer duration features at the higher layer. The learning
procedure ensures that each of the units in each layer has its weights adjusted
in a way that improves the network’s overal] performance.

2.2 Learning in a TDNN

Several learning techniques exist for optimization of neural networks{1,2,24). For
the present network we adopt the Back-ptopagation Learning Procedure{20.5).
This procedure performs two passes through the network. During the forward
pass, an input pattern.is applied to the network with its current connection
strengths (initially small random weights). The outputs of -all the udits at
each level are computed starting at the input layer and working forward to the
output layer. The output is then compared with the desired output and its
error calculated. During the backward pass, the derivative of this error is thea
propagated back through the network, and all the weights are adjusted so as to
decrease the error{20.5). This is repeated many times for all the training tokens
unti} the network converges to producing the desired output.

In the previous section we described a method of expressing temporal struc-
ture in a TDNN and contrasted this method to training a network on a static
input pattern (spectrogram), which results in shift sensitive networks (i.e., poor
performance for slightly misaligned input patterns) as well as less crisp deci-
sion making in the units of the network (caused by misaligned tokens during
training).

To achieve the desired learning behavior, we need to ensure that the net-
work is exposed to seguences of patterns and that it is allowed (or encouraged)
to learn about the most powerful cues and sequences of cues among them. Con-
ceptually, the back-propagation procedure is applied to speech patterns that are
stepped through in time. An equivalent way of achieving this result is to use a
spatially expanded input pattern, i.e., a spectrogram plus some constraints on

INote, however, that as for all units in this network (except the input umits), the output
units are alsc connected w a permanently active threshold unit. In this way, the dc-bias of
each output unit can still be adjusted for optimal dassification.

11
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the weights. Each collection of TDNN-units described above is duplicated for
each one frame shift in time. [n this way the whole history of activities is avail-
able at once. Since the shifted copies of the TDNN-units are mere duplicates
and are to look for the same acoustic event, the weights of the corresponding
connections in the time shifted copies must be constrained to be the same. To
realize this. we first apply the regular back-propagation forward and backward
pass to all time shifted copies as if they were separate events. This vields dif-
ferent error derivatives for corresponding (time shifted) connections. Rather
than changing the weights on time-shifted connectioas separately, however, we
actually update each weight on corresponding connections by the same value.
namely by the average of all corresponding time-delayed weight changes*. Fig.2
illustrates this by showing in each layer only two connections that are linked to
(constrained to have the same value as) their time shifted neighbors. Of course,
this applies to all connections and all time shifts. In this way, the network is
forced to discover useful acoustic-phonetic features in the input, regardless of
when in time they actually occurred. This is an important property, as it makes
the network independent of errorprone preprocessing algorithms, that otherwise
would be needed for time alignment and/or segmentation. In section 4.3, we
will show examples of grossly misaligned patterns that are properly recognized,
due to this property. X

The procedure described here is computationally rather expensive, due to the
many iterations necessary: for learning a complex multidimensioral weight space
and the numher of learning samples. In our case, about 800 learning samples
were used and between 20,000 and 50,000 iterations of the back-propagation loop
were run over all training samples. Two steps were taken, to perform learning
within reasonable time. First, we have implemented our learning procedure in C
and FORTRAN on a 4 processor Alliant supercomputer. The speed of learning
can be improved considerably by computing the forward and backward sweeps
for several different training samples in parallel on different processors. Further
improvements can be gained by vectorizing operations and possibly assembly
coding the innermost loop. Our present implementation achieves aboust a factor
of 9 speedup over a VAX 8600, but still leaves room for further improvements
(Lang{23] for example reports a speedup of a factor of 120 over a VAX11/780
for an implementation running on a Convex supercomputer). The second step
taken towards improving learning time is given by a staged learning strategy.
In this approach we start optimising the network based on 3 prototypical train-
ing tokens only®. In this case convergence is achieved rapidly, but the network
will have learned -2 representation that generalizes poorly to new and different
patteras. Once convergence is achieved, the network is presented with approx-
imately twice the number of tokens and learning continues until convergence.

‘Note that in the experiments reported below these weight changes were actually carried
out each time the efror derivatives from all training samples had beea computed(S].

SNote that for optimal learning, the training data is presented by always alternating tokens
for each class. Hence we start the network off by presenting 3 tokens, one for each class.

13



Fig.3 shows the progress during a typical learning run. The measured error is
1/2 the squared ertor of all the output units, normalized for the number of train-
ing tokens. In this run the number of training tokens used were 3.6.9.24.99.249
and 780. As can be seen fzrom Fig.J. the error briefly jumps up every time more
variability is introduced by way of more training data. The network is then
forced te improve its representation to discover clues that generalize better and
to deernphasize those that. turn out to be merely irrelevant ideosyncracies of a
limited sample set. Using the f{uil training set of 780 tokens this particulaz run
was continued until iteration 33.000 (Fig.3 shows the learning curve only up to
15,000 iterations). With this full training set small learning steps have to be
taken and learning progresses slowly. In this case a step size of 0.002 and a
momentum{3} of 0.1 was used. The staged learning approach was found to be
useful to move the weights of the network rapidly into the neighborhood of a
reasonable solution, before the rather siow fine tuning over all training tokens
begins.

Despite these speedups. learning runs still take in the order of several days.
A number of programming tricks(23] as well as modifications to the learning
procedure(25] are not implemented yet and could yield another factor of 10
or more in learning time reduction. It is important to note, however, that the
amount of computation considered here is necessary only for learning of a TDNN
and not for recogaition. Recognition can easily be performed in better than
real time on a workstation or personal computer. The simple structure makes
TDNNs also well suited far standardized VLSI-implementation. The detailed
knowledge could be learned "off-line® using substantiai computing power and
then downloaded in the form of weights onto a real-time production network.

3 Hidden Markov Models (HMM)

As an alternative recognition approach we have implemented several Hidden
Markov Models (HMM) aimed at phoneme recognition. HMMs are currently the
most successful and promising approach (26,2728} in speech recognition as they
have been successfully applied to the whole spectrum of recognition tasks. Excel-
lent performance was achieved at all levels from the phonemic level{29,30,31.32)
to word recognition(33,28] and to continuous speech recognition(34}. HEMMs'
success is partially due to their ability to cope with:the variability in speech
by means of stochastic modeling. In the following sections, we describe the
HMMs developed in our laboratory. They were aimed at phoneme recognition,
more specifically the voiced stops "B”, "D” and "G”. Several experiments with
variations on these models are described eisewhere{18).

14
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3.1 .An HMM for Phoneme Recognition

The acoustic front end for Hidden Markov Modeling is typically a vector quan-
tizer that classifies sequences of short-time spectra. Such a representation was
chosen as it is highly effective for BMM-based recaognizers(34].

Itiput speech was sampled at I2kHz, presmphasized. by (1 - 0.97 2z} and
windowed using a 256-point Hamming window every 3 msec.. Then a 12-order
LPC analysis was carried out. A codebosk of 256 LPC spectrum envelopes
was generated from 216 phonetically balanced words. The Weighted Likelihood
Ratio[35.36) augmented with power values (PWLR)[37,36] was used as LPC
distance measure for vector quantization. .

A typical HMM was adopted in this paper as shown in Fig.4. It has four

3.2 Learning in an HMM

The EMM probability values were trained using vector sequences of phonemes
according to the forward-backward algoritbm[26}. The vector sequences for *B”,
"D" and "G” include a consonant part and five frames of the following vowel.
This is to model important transient informations, such as formant movement
and has lead to improvements over context insensitive models [18].

The HMM was trained using about 250 phoneme tokens of vector sequences
per speaker and phoneme (see details of the training database below). Fig.5
shows for a typical training run the average log probability normalized by the

15
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Figure 5: Learning in a Hidden Markov Model

number of frames. Training was continued until the increase of the average log
probability between iterations became less than 2 * 10=3. : )
Typically, about 10 to 20 learning iterations are required for 256 tokens. A
training run takes about one hour on a VAX 8700. Floor values were set on
the output probabilities to avoid errors caused by zero-probabilities, We have
experimented with composite models, which were trained using a combination of
context-independent and context-dependent probability values as suggested by
Schwartz et al.{29,30}. In our case, no significant improvements were atzained.

4 Recognition Experiments

We now turn to an experimental evaluation of the two techniques described
in the ptevious sections. To provide a good framework for comparison, the
same experimental conditions were given to both methods. For both, the same
training data was used and ooth were tested on the same testing database as
described below.

4.1 Experimental Conditions

For performance evaluation, we have used a large vocahulary database of 3240
common Japanese words{38]. These words were uttered in isolation by three
male native Japanese speakers (MAU, MHT and MNM, all professional an-
nouncers). All utterances were recorded in a sound proof booth and digitized

16



at a 12 kHz sampling rate, The database was then split into a training set
(the even numbered files) and a testing set {the odd numbered files). Both the
training and the testing data, therefore, consisted of 2620 utterances each, {from
which the actual phonetic tokens were extracted.

The phoneme recognition task chosen for this experiment was the recognition
of the voiced stops. i.e., the phonemes "B”, "D” and "G”, The actual tokens
were extracted from the utterances using manually selected acoustic-phonetic
labeis provided with the database[38]. For speaker MAU. for example, a totai
of 219 "B"s, 203 "D"s and 260 "G"s were extracted from the training and 227
"B"s. 179 "D”s and 252 "G"s from the testing data. Both recognition schemes,
the TDNNs and the HMMs, were trained and tested speaker-dependently: Thus
in both cases, separate networks were trained for each speaker.

In our database. no preselection of tokens was petformed. All tokens labeled
as one of the three voiced stops were included. It is important to note, that
since the consonant tokens were extracted from entire utterances and not read
in isolation, a significant amount of phonetic variability exists. Foremost, there
is the wvariability introduced by the phonetic context out of which a token is
extracted. The actual signal of a "BA” will therefore look significantly different
from a "BI” and so on. Second, the position of a phonemic token within the
utterance introduces additional variability. In Japanese, for example, a "G” is
nasalized, when it occurs embedded in an utterance, but not in utterance ini-
“tial position. Both of our recognition algorithms are only given the phonemiz
identity of a token and must find their own ways of representing the fine vari-
ations of speech. Since recognition results based on the training data are not
meaningful®, we report in the following only the results from open testing, i.e.,
from performance evaluation over the separate testing data set.

4.2 Results

Tablel shows the results from the recognition experiments described above. As
can be seen, for all three speakers, the TDNN yields considerable performance
improvements over our HMM. Averaged over all three speakers, the error rate
is reduced from 6.3% to 1.5%, a more than four fold reduction in error.

Fig.6 through Fig.11 show scatter plots of the recognition outcome for the
test data for speaker MAU, using the HMM and the TDNN. For the HMM (see
Fig.6 through Fig.8), the log probability of the next best matching incorrect
token is plotted against the log probability” of the correct tokem, e.g., "B",
"D” and "G”. In Fig.9 through Fig.1l, the activation levels from the TDNN's
output units are plotted in the same fashion. We should caution the reader
that these plots ate not easily comparable, as the two recognition methods have

$Particularly, for neural networks such results would be gromly misleading since good
pefarmance could in. principle be ( achievedby memorization of the training patterns. rather
" normalized by number of frames

17



| number | number |recognition number | recognition . ‘
_speaker | sfigkens | of errors rate TDNN | oferrors rate \ EMM !
b(227) 4 | 982 18 | 921 | |
MAU 3(179) 3 | 98.3 98.8 & .1 861 | 229 |
2{252) 1 ] 996 23 | ap.2
= b(208) g T e g | 982
MET af170) Q ! 100 | 8.1 3 i 982 §7.2
g(254) a | 984 | - 7. o] St |
b216) | 11 | 9438 27 | 8715 |
MNM [ d178) 1| °94 97.5° 13 | 927 90.9
1 236) | 984 | 19 | 926 |

Table 1: Recognition zesults for three speakers over fest data using TDNN and -

been trained in quite different ways. We present this result here to show some
interesting properties of the two techniques. The most striking observation that
can be made from these plots is that the output units of a TDNN have a tendency
to fire with high confidence as can be seen from the ¢luster of dots in the jower
tight hand corner of the scatter plots. Most output units tend to fire strongly
for the correct phonemic class and not at all for any other, a property that is
encouraged by the learning procedure. One possible consequence of this is that
tejection thresholds could be introduced to improve recognition performance.
If one were to eliminate among speaker MAU’s tokens all those whose highest
activation level is less than 0.5 and those which result in two or more ciosely
competing activations (i.e., are near the diagonal in the scatter plots), 2.6% of
all tokens would be rejected, while the remaining substitution error rate would
be less than 0.46%. '

4.3 The Learned Internal Representations of a TDNN

Given the encouraging performance of our TDNNs, a closer look at the learned
internal representation of the network is warranted. What are the properties or
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abstractions that the network has learned that appear to vield a very powerful
description of voiced stops ? Fig.13 and Fig.12 show two typical instances of
a "D" out of two different phonetic contexts ("DA” and "DO", respectively).
In both cases. only the correct unit; the "D-output unit” fires strongly, despite
the fact that the two input spectrograms differ considerably from each other. If
we study the internal firings in these two cases we can see that the network has
learned to use alternate internal representations to link variations in the sensory
input to the same higher level concepts. A good example is given by the firings
of the third and fourth hidden unit in the first layer above the input layer: As
can be seen from Fig.13. the fourth hidden unit fires particularly strongly after
vowel onset in the case of "DQ", while the third unit shows stronger activation
after vowel onset in the case of "DA”.

Fig.14 shows the significance of these different firing patterns. Here the con-
nection strengths for the eight moving TDNN units are shown, where white and
black blobs represent positive and negative weights, respectively, and the mag-
nitude of a weight is indicated by the size of the blob. In this figure. the time
delays are displayed spatially as a 3 frame window of 16 spectral coefficients.
Conceptually, the weights in this window form a moving acoustic-phonetic fea-
ture detector, that fires when the pattern for which it is specialized is encoun-
tered in the input speech. in our example, we can see that hidden urit number
4 (which was activated for "DO”) has learned to fire when-a falling (or rising)
second formant starting at arcund 1600 Hz is found in the'input (see filled arrow
in Fig.14). As can be seen in Fig.13, this is the case for "DO” and hence the
firing of hidden unit 4 after voicing onset (see row pointed to by the filled arrow
in Fig.13). In the case of "DA” (see Fig.12) in turn, the second formant does
aot fall significantly, and hidden unit 3 (pointed to by the filled arrow) fires
imstead. From Fig.14 we can verify that TDNN-unit 3 has learned to look for a
steady (or only slightly falling) second formant starting at about 1800 Hz. The
connections in.the second-and third layer then link the different firing patterns
observed in the first hidden layer into one and the same decision.

Another interesting feature can be seen in the bottom hidden unit in hidden
layer number 1 (see Fig.12, Fig.13 and compare with the weights of hidden unit
1 displayed in Fig.14). This unit has learned to take on the role of finding
the segment boundary of the voiced stop. It does so in reverse polarity, i.e.,
it is always on ezcept when the vowel onset of the voiced stop is encountered
{see unfilled arrow in Fig.13 and Fig.12). Indeed, the higher layer TDNN-units
subsequently use this "segmenter” to base the final decision on the occurrence
of the right lower features at the right point in time.

In the previous example, we have seen that the TDONN can account for varia-
tions in phonetic context. Fig.15 and Fig.16 show examples of variability caused
by the relativé position of a phoneme within a word. In Japanese, a "G” em-
bedded in a word tends to be nasalized as seen in the spectrum of a "GA™
in Fig.15. Fig.16 shows a word initial "GA”. Despite the striking differences
between these two input spectrograms, the network’s internal alternate repre-
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sentations manage to produce in both cases crisp output firings for the right
category.

Fig.£7 and Fig.18, finally, dethonsteate the shift-invariance of the network.
They show the same roken "DO" of Fig.13, misiligned by +30 msec and -
30 msee, respectively. Despite the gross musalignment, {note that significant
transisiogdl wforthation is lost by the misalignrdent in Fig,l8) the correst rasuft’
was obitained teliably. A close look at the interital activation patterns reveals
that the hidden units’ fedture detectors do indeed fire according to the events
i the inpit speech, and ate not megatively affected by the relative shife wich
respect to the input unics.

Three important properties of the TDNNs have therefore been observed,
First, our TDNN was able to learn without human interference meaningful
linguistic abstractions such as formant tracking and segmentation. Second. we
have demonstrated that it has learned to form alternate representations iinking
different acoustic events with the same higher level concept. In this fashion
it can implement trading relations between lower level acoustic events leading
to robust recognition performance. Third, we lave seen that the network is
shift-invariant and does not rely on precise alignment or segmentation of the
input.

5 Conclusion and Summary

In this paper we have presented a Time Delay Neural Network (TDNN) ap-
proach to phoneme recognition. We have shown that this TDONN has two desiz-
able properties related to the dynamic structure of speech. First, it can learn the
temporal structure of acoustic events and the temporal relationships betwean
such events. Second. it is translation invariant, that is, the features learned by
the network are insensitive to shifts in time. Examples demonstrate that the
network was indeed able to learn acoustic phonetic features, such as formant
movements and segmentation, and use them effectively as internal abstractions
of speech. »
complex non-linear decision surfaces. This could be seen from the network’s
ability to use alternate internal representations and trading relations among
lower level acoustic-phonetic features, in order to arsive robustly at the correct
final decision. Such alternate representations have been particularly useful for
representing tokens that vary considerabiy from each other due to their different
phonetic environment or their position within the original speech usterance.
Finally, we have evaluated the TDNN on the recognition of three acousticaily
similar phonemes, the voiced stops " B”,"D” and ”G”. In extensive performance
evalyation over testing data from three speakers, the TDNN achieved an average

recoguition scot# of 98,3 %. For comparison, we have applied various Hidden
Markov. Models to the same task and only been able to reach zecognize 93.7 %
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of the tokens correctly. We would like to note, that many variations of HMMs
have been attempted and many more variations of‘both HMMs and TD: Ns
are conceivable. Some of these variations could potentially lead to significant
improvements over the results reported in this study. Our goal here is to present
TDNNs as a new and successful approach for speech recognition. Their power
lies in their abiiity to develop shift-invartant internal abstractions of speech
and use them in trading relations for making optimal decisions. This holds
significant prormise for speech recognition in general, as it couid overcome the
representational weaknesses of existing techniques when faced with uncertainty
and variability in real life signais.
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