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ABSTRACT 

This paper reports the results of our experiments aimed at 
the automatic optimization of the number of parameters in 
the semi-continuous phonetically tied HMM based speech 
recognition system that is part of the speech-to-speech 
translation system JANUS-2. 
We propose different algorithms devised to determine the 
optimal number of model parameters. In recognition ex­
periments performed on a spontaneous human-to-human 
dialog database, we show that automatic optimization of 
the acoustic modeling parameter size with the proposed al­
gorithm improves the recognition performance without in­
creasing the required amount of computing power and mem­
ory. 

INTRODUCTION 

SCHMMs [1] share parameters on the level of centroids and 
variances of Gaussian densities in the feature space. The 
distinction of the phonetic events, like senones [2], triphones 
or phonemes is done with probability distributions which 
share the common code book. The parameter sharing leads 
to robust estimation of the codebook even if only relatively 
small amounts of training data are available. In addition, 
it reduces the number of parameters in the system, thus 
improving the generalization power of the models and re­
ducing both, time and memory reqnirements. 

As training data size has increased in the last few years, 
the advantages of the strong tying of parameters in the 
SCHMM are in many cases of lesser concern. More and 
more attention is focused on systems with less closely 
tied parameters, such as CDHMMs and phonetically tied 
SCHMMs. In the latter, code book parameters are shared 
on the level of phonemes. This combines the robustness of 
parameter tying with much finer modeling. 

Often, a fixed number of code book vectors is assigned to 
each of the phonemes. However, there is more training data 
available for the more frequent phonemes than for the rarer 
ones. In addition, the size of the feature space which is cov­
ered by each phoneme differs greatly between the phonemes, 
thus suggesting that some phonemes might better be mod­
eled with more codebook vectors, others with fewer. Tak­
ing the same number of code book vectors for each phoneme, 
leads on the one hand to overfitting of the training data and 
hence to a loss in generalization power, accompanied by a 
waste of computing and memory resources. On the other 
hand, some phonemes are insufficiently modeled. Some of 
their subclasses (a subclass might be e.g. a generalized allo-

phone, or a senone) will not be adequately modeled because 
they are relatively rare, even if they are easy to separate. 
This will result in a lower recognition rate. 
Similar to the results of [3] with a connectionist recognizer, 
we attempted to adapt the code book size of each phoneme 
according to the amount and the distribution of the training 
data. We designed an algorithm which scans the data and 
computes the adapted number of codebook vectors with­
out supervision. In the following section we introduce our 
implementation. 

1. BASIC ALGORITHM 

The basic algorithm can be summarized as follows: 

1. Generate a pool of training samples for each phoneme 
using forced alignment over the training data. 

2. For each phoneme: 

• set codebook size N to 1, train a system 

• While some quality criterion is not yet satisfied: 

(a) increase N 

(b) cluster the data into N clusters with the basic 
isodata (k-means) algorithm, use the clusters as 
codebook. 

3. Adapt the probability distributions over the new code­
books. 

The problem of adapting the codebook size to the train­
ing data can thus be reduced to the specification of a quality 
criterion that can be used to stop the process of increasing 
the codebook size. Two possible solutions to this problem 
will be evaluated and compared. 

1.1. Variance criterion 
The process of adding new reference vectors to the code­
book is stopped after the average squared distance of each 
data point to its nearest codebook vector falls below a given 
threshold. The algorithm may be viewed as equivalent to 
the construction of a vector quantizer with a given quanti­
zation error, using a squared-distance distortion measure. 
For this approach, a threshold must be defined manually. 
While this necessity is undesirable for an algorithm that 
should run without supervision, it enables us to control the 
average number of parameters in the resulting system: a 

low threshold will lead to more parameters than a higher 
one. If external constraints on computation time or memory 
must be met, this flexibility can be a great advantage. 
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1.2. Prediction criterion 

The prediction criterion tries to capture how well the model­
ing of the recognizer can predict previously unseen data. To 
compute it, we split our training database into a training set 
and a crossvalidation set. After computing the codebook on 
the training set portion of the data, we compute the proba­
bility p(dataxvazlcodebook). The (negative log) probability 
over the codebook size shows a learning curve: after a rapid 
decrease, it reaches a flat minimum and then begins to rise 
again. The minimum of the curve defines the optimal num­
ber of codebook vectors. Figure 1 shows a typical example. 
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Fig ure 1. Crossvalidation performance for phoneme 'N' 

The prediction criterion is theoretically appealing be­
cause it is near to the criterion which one really wants to 
improve on, namely recognition performance on previously 
unseen data. It does not need a threshold that has to be 
set manually. 

The number of resulting parameters only depends on the 
data and on the approximations, which are used in the given 
speech recognition system to compute the conditional prob­
ability p(data Iphoneme). Such approximations might be 
the restriction of covariance matrices to be diagonal, or to 
take only the top N scoring codebook vectors or the like. If 
these approximations are held constant, there is no way to 
control the resulting number of parameters when employing 
the prediction criterion. 
Additionally, the learning curve can have several local min­
ima (cf. figure 1), making the computation of the correct 
number of code book vectors an ambiguous task. 

2. BASELINE SYSTEM 

2.1. Databases 

For the described experiments we used the GSST (German 
Spontaneous Scheduling Task) database, which has been 
collected at the University of Karlsruhe. It consists of 
human-to-human spontaneous german dialogs in the ap­
pointment scheduling domain, i.e. two persons try to sched­
ule a meeting within the next month. The database con­
tains about 3 hours of speech and has an average bigram 
test set perplexity of 70. 

2.2. The JANUS-2 system 

The speech-to-speech translation system JANUS-2 [4] is a 
joint effort of the Carnegie Mellon University, Pittsburgh, 
and University of Karlsruhe, Germany. 

The baseline speech recognition component of JANUS-2 
uses a phonetically tied SCHMM with 50 reference vectors 
per phoneme. Generalized triphones are used to capture 
contextual information. In the preprocessing stage mel­
scale spectra with a frame rate of 10 ms and their first 
derivatives with respect to time; power, zero crossing rate 
and peak-to-peak value are computed. The 37-dimellsional 
input vector is transformed by linear discriminant analysis 
(LDA, [5]) and split into two 16-componenL data streams. 
Stream weights training [6J can be applied. Training can 
be done with Viterbi alignment or the sta ndard forward­
backward training algorithm. The emerging reference vec­
tors can further be trained discriminatively according to the 
LVQ learning rule. 
To speed up computations, usually only the N codebook 
vectors with the smallest Mahalanobis distances in a code­
book are taken into account for the score computation. For 
all experiments described throughout this paper, N was set 
to 1. 
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The decoder computes word lattices with a Viterbi forward 
pass and a word-dependent n-best [7J backward pass. 
Noise models [8] have been recently included to improve the 
performance of JANUS-2 on spontaneous speech. 
In the following table, we give a comparison of recognition 
results on the spontaneous GSST database with results on 
a standard read-speech task (ARPA resource management 
task). 

Database Word accuracy 
Resource Management 94.1 
GSST 66.9 

Table 1. Baseline system recognition results 

3, RESULTS OF CODEBOOK ADAPTATION 

3.1. Results with the variance criterion 

We employed the basic algorithm with the variance criterion 
using different values for the distance threshold. Out of the 
thresholds evaluated, we chose one that produced a similar 
number of codebook vectors (4201) as our baseline sy�tem 
(4600), and another one that produced a significantly lower 
number (1916). Table 2 shows the resulting codebook sizes 
of the system with 4201 codebook vectors for a subset of 
our phoneme set. Results are given for both of the two 16-
component data streams which result from the LDA. Note 
the large differences in the codebook size of the different 
phonemes. 

3.2. Results with the prediction criterion 

The results achieved with the prediction criterion were 
rather surprising. First, t.he size of the resulting codebooks 
for stream 1 did not show an obvious correlation to the 
codebook size that was computed with the v(tri(tl1ce crite­
rion (cf table 2). Second, the resulting codebook sizes for 
all codebooks defined over stream 2 were ol1e. The result­
ing system uses 46 codebook vectors for stream 2, and 1631 
vectors for stream 1. 
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Criterion: var. pred. var. II frames 
input stream: 1 1 2 II available 
A-O 80 37 64 41776 
AH-O 24 52 16 43164 
AI-O 32 62 32 36341 
AU-O 32 37 40 17602 
CIl-o 80 31 32 47453 
D-O 128 44 40 34179 
EH-O 32 62 48 23279 
F-O 8 6 4 32376 
G-O 192 52 64 15657 
H-O 48 26 24 8628 
L-O 128 44 96 24050 
M-O 32 26 48 41664 
N-O 64 16 80 50000 
R-O 128 74 64 50000 
S-O 20 8 16 50000 
SIL-O 1 1 1 50000 
T-O 96 31 24 50000 
Sum 2421 1631 1780 1145000 

Table 2. Codebook size for some phonemes as computed with 
different criteria 

I Model 

baseline 
prediction 
vanance 
vanance 

) codebook size W.A. error reduction 

4600 66.9� -
1677 67.8% 3.9% 
1916 65.5% -6% 
4201 69.9% 10% 

Table 3. Recognition results 

This result sUlggests that the data in stream 2 can be 
adequately modeled with a unimodal distribution. An ad­
ditional experiment in fact showed that the average within­
class scatter JEikJ for stream 1 was 70 times higher than for 
stream 2, when using a unimodal distribution (i.e. only one 
codebook vector per phoneme and stream). 

This difference in the behaviour of the two data streams 
might be explained by the properties of LDA. The informa­
tion content of the coefficients of an LDA output vector is 
decreasing with the coefficient index. This means, that the 
first data stream in our recognizer, containing coefficients 
1 to 16 of the LDA output vector, carries much more in­
formation than the second data stream, which contains the 
coefficients 17 to 31. 

3.3. Recognition results 
The recognition results shown in table 3 have been achieved 
with 2500 context dependent generalized triphones and a 
bigram language model of perplexity 70. Only first-best 
results are given. No cross-word triphones were applied, 
and no reordering of the resulting word lattices took place. 
All models were trained gender-independent. All covariance 
matrices were restricted to their main diagonal. For each 
experiment, the complete recognizer was bootstrapped on 
pre-segmented data and trained until no further improve­
ment on cross-validation data could be reached. 

Code book size adaptation was capable of decreasing the 
system error rate by 10 percent with the same number of 
parameters. The prediction criterion performs better than 
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the variance criterion for a comparable number of param­
eters (it even outperforms the baseline system with only 
roughly one third of its parameters), but the best system 
performance is reached with a large system optimized with 
the variance criterion. 

We performed an additional experiment, where we used 
only data stream 1 for the system that was adapted with 
the prediction criterion. This resulted in remarkable 65.6% 
word accuracy for only one-half of the input available to the 
system. 

4. DISCUSSION 

In this paper we have reported about experiments with our 
codebook adaptation algorithm applied to the task of rec­
ognizing a difficult spontaneous human-to-human database. 
We showed that code book adaptation leads to significant 
word error reduction if the same number of parameters is 
used. We also showed that an adapted system with only 
37% of the parameters of the baseline system still performs 
at least equally well. This allows faster speech recognition 
with lower requirements of computational resources. 
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