
Gaze Tracking Based on Face-ColorBernt Schiele and Alex WaibelSchool of Computer ScienceCarnegie Mellon University5000 Forbes Ave.Pittsburgh, PA 15213-3890E-mail: Bernt.Schiele@imag.fr and waibel@cs.cmu.eduAbstractIn many practical situations, a desirable userinterface to a computer system should have amodel of where a person is looking at and whathe/she is paying attention to. This is particu-larly important if a system is providing multi-modal communication cues, speech, gesture, lip-reading, etc., [2, 3, 8] and the system mustidentify, whether the cues are aimed at it, or atsomeone else in the room. This paper describesa system that identi�es user focus of attentionby visually determining where a person is look-ing. While other attempts at gaze tracking usu-ally assume a �xed or limited location of a per-son's face, the approach presented here allows forcomplete freedom of movement in a room. Thegaze-tracking system, uses several connectionistmodules, that track a person's face using a soft-ware controlled pan-tilt camera with zoom andidenti�es the focus of attention from the orienta-tion and direction of the face.1 IntroductionOne major impediment to user acceptance ofspeech interfaces in many potential applicationsis the fact that people need to wear head-sets,gloves, etc. and operate push-buttons to controlthe system. A commonly proposed solution tothis problem in speech is for the recognizer al-ways to listen to all of the sounds within a room.Typically keywords or phrases, and loudness areused to identify the onset of speech for recogni-tion. This in turn leads to very fragile user in-terfaces, that "turn-on" at odd places and times:An always-listening recognizer, typically cannotidentify if an utterance or phrase is directed at itor at someone else in the room, or even worse, ifthe putative utterance was in fact a false recog-nition to begin with (a noise or similar soundingword for example). For robust and useful inter-faces, a computer system must identify user in-tent and focus of attention so that it can recognizewhen it is being addressed, and/or who a personin the room might be addressing or interactingwith.

In this paper, we propose a solution to thisproblem by visually identifying where a personis looking and the direction of their attention.Unlike systems that require considerable limita-tion of movement to identify location or to trackgaze, our system allows for freedom of movementaround a room by tracking a persons face andidentifying the orientation and gaze from the im-age of the whole face.1.1 Overview of the Gaze TrackingSystemThe gaze tracking system consists of three steps.In the �rst step a human face is located and thecamera zooms on this face. This �rst step isachieved with our Facetracker [5] which is intro-duced in section 2. The Facetracker works at ap-proximately 10Hz. The output of the Facetrackeris a normalized face or more precisely the regionof the image, which contains the face. The sub-sequent steps in the function of the Gazetrackeruse only this region of the image.The second step of the Gazetracker consists oftwo parallel procedures. The �rst procedure \in-tensi�es" all objects with face-color. Figure 1(b)shows such a color-intensi�ed image. In parallelthe second procedure adjusts the face-color to theface in the image. Even though the face-colors ofmany humans are relatively similar we have toadjust the face-color, if we want to distinguishthis face properly from the background. This im-portant part of the Gazetracker is described insection 3.In the third step the color-intensi�ed imageis projected into the input-units of our arti�cialneural network and a forward pass of the neuralnetwork is calculated. The output of the neuralnetwork gives directly the orientation of the head.This third step, the design of the network and thetraining of the network are described in section4. Section 5 summarizes some results from exper-iments with the Gazetracker.



2 FacetrackerThis section briey introduces the Facetracker,considerably more detail has been published in[6]. We also refer to [5] which describes the Fa-cetracker in detail and can be easily obtained viaWWW1.The camera used in the system (Sony CCD-TR101) is mounted on two stepper-motors, allow-ing horizontal and vertical turns. The stepper-motors are controlled in a serial port. The re-mote control of the zoom lens of the camera hasbeen engineered to allow control through a secondserial port. The camera images are obtained bya frame-grabber, which digitizes the video-signalinto RGB-values. The entire computation is per-formed on a single HP 9000/735 workstation.To �nd a face the Facetracker searches for thelargest moving object which is skin-colored. Assoon as a face is found the system tracks it (onlybased on skin-color) at approximately 10Hz. Thisprocessing is the average time needed by the sys-tem and includes camera zooming and movement.This is possible, since the Facetracker works ona very low resolution and we can de�ne a virtualcamera (e.g. half the size of the whole camera-image) which can be \moved" and \zoomed"much faster than the real camera. Neglecting thetime for zooming and moving the real camera, theFacetracker operates at to 25Hz.The output of the Facetracker is a normalizedface or more precisely the region of the image,which contains the face. The precision of theFacetracker varies strongly with the velocity ofthe head movements. It is usually in the rangebetween 10% and 20% (variation in position andsize). The subsequent steps of the Gazetrackerhave to cope with this imprecision, since they useonly the region provided by the Facetracker.It should be pointed out, that the Gazetrackeruses a second frame-grabber (connected withthe same camera) and works on a second HP9000/735 workstation. This enables the Gaz-etracker to work at a higher resolution and in-dependent of the Facetracker.3 Self-adjustable Face-colorIntensi�erThe intensi�cation of face-color (of a particu-lar person) in an image (as in �gure 1(b)) hasthree main advantages: First of all we can dis-tinguish the face and the background. Secondly1http://www.cs.cmu.edu:8001/afs/cs.cmu.edu/user/clamen/mosaic/reports/1994.html

we can �nd features within the face in the color-intensi�ed image. Such features are for examplethe eyes and the mouth, these features are di�er-entiated because they don't have face-color. Thethird advantage is that we obtain the shape ofthe face in the image. These three advantagestogether make it possible to use the face-color-intensi�ed image as input to neural network. Wehave that the network generalises very well withrespect to di�erent backgrounds and di�erent in-dividual faces (namely for white faces, faces ofAsian people and also for most Indian people).The �rst procedure of the Face-Color-Intensi�er calculates and adjusts a color-map toa particular person. This procedure is describedin the �rst part of the section and is similar tothe Face-Color-Classi�er which is used for the Fa-cetracker. Based on color-maps we obtain a bin-ary image (see �gure 2(c)) where we can distin-guish regions with face/skin-color from the restof the image. The second part of the section ex-plains in more detail how to use such a color-mapin order to intensify face-color in an image. Theresult of the Intensi�er is an image with di�er-ent grey-levels, where higher values correspondto frequent colors in the face and low values toinfrequent colors. Such an image is shown in �g-ure 1(b).3.1 Color-mapsThe red (R), green (G) and blue (B) values ofa pixel of the video-camera signal can be trans-formed into di�erent representations. Since theintensity or brightness of a given pixel valuedoesn't contain information about the color ofthe pixel, we want explicitly to ignore intensity.Chromatic colors provide such a representationby normalizing the RGB-value by its intensity.The chromatic colors are de�ned as [1]:r = RR+G+ Bg = GR+G+ Bb = BR+G+ BAll subsequent steps of the Gazetracker arebased on these two-dimensional representations(r; g) of chromatic colors (The third value b canbe neglected, since the values always sum to one:r + g + b = 1). Using this (r; g)-representationwe calculate a probability density function of thechromatic color of an image (or only part of an



(a)(b)(c)Figure 1: Face-Color-Intensi�er: (a) grey-scaleimage, (b) face-color-intensi�ed image, (c) ANN-input
(a)
(b)
(c)Figure 2: Applying the general color-map



image): p(r; g) = h(r; g)Pr;g h(r; g)where h(r; g) represents the histogram of thenumber of pixels in the image with the chromaticcolor (r; g). In the following we will call p(r; g)the color-map.By analyzing the color-maps of many humanfaces all possible face-colors (or better skin-colorsof all available faces: faces of Asian people, In-dian people and white people) are located in arelatively small bandwidth of the (r; g)-values [5].Therefore we can construct a general color-mapwhich contains most of the possible face-colors.This is done basically by averaging the face-colorsof the available people. Figure 2(b) shows the ap-plication of the general color-map to an image. Inthis image a certain pixel with the chromatic color(r; g) has the value p(r; g) of the general color-map. Brighter regions therefore correspond tochromatic colors with a high value p(r; g) in thegeneral color-map. Darker regions correspond tolow value p(r; g) in the general color-map. Thisapplication of a color-map to an image is the basicprocedure of the Face-Color-Intensi�er.By smoothing and thresholding we obtain abinary image (see �gure 2(c)). This binary imageis used (at the beginning together with a motiondetector) to �nd the largest object in the imagewith face-color. This object is then used to ad-just the general color-map to a particular humanface. The adjustment can be formulated as:adjn+1(r; g) =� 13 (objn(r; g) + 2adjn(r; g)) if gen(r; g) � min0 otherwisewhere gen is the general color-map, adjn isthe adjusted color-map at time n and objn is thecolor-map of the largest object in the image withface-color (initialization: adj0 = gen).3.2 Face-Color-Intensi�erThe described Color-maps are also used to in-tensify the face-color in an image. Since the colorin a human face varies considerably between dif-ferent regions of the face, we increase the val-ues of the color-map relatively to their histo-gram. This is a change in the shape of the face-color-histogram rather than in the region of theface-color. This mainly increases the color-valueswhich occur with higher frequency in the faceand strengthen the distinction from the back-ground colors. An image with this enhanced

Color-Intensi�er is shown in �gure 1(b). One cansee the quality of this color-intensi�ed image.Figure 1(c) shows the �nal color-intensi�ed im-age. It is obtained by normalizing the image of�gure 1(b). This normalization procedure pro-jects the highest 5% of values onto the highestgrey-value and projects the lowest 5% of valuesin the image onto the lowest grey-value. The restof the values are then linearly distributed betweenthese two extremes. This normalization ensuresthat the Color-Intensi�er is independent of di�er-ent humans and di�erent lightening conditions.It also distributes the values of the image moreuniformly onto the input of the neural network.4 Network architectureBefore we can use an arti�cial neural networkwe have to decide which architecture and whichtraining-algorithm to use. In this case we havefound that our problem could be solved with aMulti-Layer-Perceptron (MLP) trained by stand-ard back-propagation [4]. The architecture, theinput and output representation and the inter-pretation of the output are described in the fol-lowing sections.
. . .
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Figure 3: Network architectureThe MLP-architecture is summarized in �g-ure 3. The input consists of 32 � 32 neur-ons. The color-intensi�ed image is projectedonto these input-neurons. We are using one hid-den layer with 50 hidden units (the number ofhidden units was determined empirically). Foroutput we used on the one hand side 3 output-units (namely for the directions left,straight andright) and on the other hand 15 output-unitswhich correspond to the possible head directions�70;�60; : : : ;+60;+70 degree.



4.1 Input representationThe input to the MLP is a 32 x 32 { color-intensi�ed image (Fig. 1(c)). The relatively lowresolution of the input-image makes it possibleto apply the Gaze-tracker in real-time. It also re-duces the training-time and the amount of train-ing data needed (since the size of the training-data should be at least in the range of the freeparameters of the neural network [7]). Unfor-tunately the low resolution has the disadvantagethat features such as the eyes and the mouth aredi�cult to �nd in the image. But the training-results show that the neural network is still ableto determine the direction of the head with su�-cient accuracy (see section 5).4.2 Output representation andinterpretationWe used two di�erent con�gurations for theoutput-units. The �rst con�guration consisted of3 output-units corresponding to the three discretedirections of the head: left for the angles of theinterval [�70;�30], straight for the angles of theinterval [�20;+20] and right for the angles of theinterval [+30;+70]. The second representationused 15 output-units where each unit correspondsto one of the angles �70;�60; : : : ;+60;+70.An important question concerning the output-representation was how to project a desiredoutput (here the direction of the head) ontothe output-units. The 3 output-units indicatewhether the person is looking straight, left orright. The projection therefore is a choice of onefrom three possibilities. Only one unit is sup-posed to be \on" and the other two are supposedto be \o�".The second solution has 15 output-units. Herewe tried two di�erent representations. The �rstis, as for 3 outputs, an 1 from 15 decision. But thebetter results were obtained with a gaussian rep-resentation (see �gure 4). Here not only the unit,which corresponded to the desired output is \on",the units close to this desired unit are to a certaindegree \on". The main advantage of the gaussianrepresentation is that the output-unit learning isnot only based on the input-images which cor-respond exactly to the angle of the output. In-stead a output-unit learns also from images whichare similar and which correspond to nearby units.Nevertheless a necessary condition for this repres-entation is that similar input-images correspondto similar outputs.
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-60 -30 0 +30 +60Figure 4: the gaussian output representation5 ResultsThis section gives an overview of the performanceof our Gazetracker. In order to give the train-ing and test results we �rst describe our image-database and the production of the sample-sets.The following sections gives the o�-line results onthe training and test-set.5.1 Training and Test dataAs training data we use four sets of 15 imagesof 7 di�erent people. The 15 images correspondto the directions �70;�60; : : :+ 60;+70 degreesof a person's head. The people were asked tosit in front of the camera and to look in thespeci�ed directions �70;�60; : : : + 60;+70 de-grees. The images were taken with a blue-screen{background. The blue-screen enabled us to pro-ject an arbitrary background behind the heads ofthe people. During the production of the trainingand test sets we replaced the blue-screen with arandomly chosen background from our lab. Thisforces the neural network to learn independent ofthe background.In order to learn the neural network shift-invariant we shift each of the images arti�ciallyby �15% in x and y{direction with a step-sizeof 3%. The training-set contains therefore 4 �15� 7� 112 = 50820 images. The test data con-tains four sets of 15 images of 2 people. The testdata is independent of the training data. Thatmeans that neither of the two people are includedin the training data. The test data contained then4� 15� 2� 112 = 14520 images.5.2 ResultsTraining the network was time-consuming activ-ity due to the size of the training set. But thenumber of iterations was been always within therange 100{150. Table 1 and �gure 5 show thetraining- and test-results of the neural networksdescribed in the previous section.Table 1 corresponds to the neural network with3 output-units and the 1 from 3 representation(see section 4). This table shows the capabilityof the network architecture to distinguish betweenthe three head-directions right, straight and left.



99:72% of the training data and 99:65% of theindependent test set were classi�ed correctly.Error [1/units] 0 1 2 av.% training 99.72 0.27 0.01 0.0028% test 95.65 4.35 0.0 0.044Table 1: Training results with 3 output-unitsThe �gure 5 correspond to the neural networkwith 15 output-units and the gaussian output-representation (see section 4). The performanceof this neural network is encouraging especially ifyou consider that the average error less than 10degrees on the training data and 12 on the testdata. There is some inaccuracy in the trainingdata, since the gaze in a certain direction is onlypartially correlated with orientation of the head.Considering this we can conclude that the Gaz-etracker is able to determine the head-directionwith a high accuracy.
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Figure 5: Training results with 15 output-units5.3 Runtime resultsAt the moment we have two setups for the Gaz-etracker. The �rst setup works without the Fa-cetracker. This system can be used, when a per-son is sitting in a certain place, as e.g. in front ofa computer. This setup has a typical cycle timeof 93ms (on a workstation HP 9000/735) so thatit works at approximately 10Hz.The second setup, as initially described, usesthe Face-tracker as pre-processing step. Thissetup is used when a person is walking or mov-ing around in the room. The Facetracker then�nds and tracks the person and provides the Gaz-etracker with a \normalized face" (see section 2).Both processes run independently on two work-stations. This setup has a typical cycle time of

134ms, due to the communication needed withthe Facetracker.To measure the precision of the �rst setup weanalysed the results of image sequences, whereone person looked every �ve seconds at di�erentprede�ned positions in the room. The precisionfor this setup is the same as for the test-set, i.e.about 12 degrees. To measure the performance ofthe second setup we de�ned 5 di�erent positionsin the room with 4 di�erent points to look at(with arbitrary angles). One person was askedto move to this locations and to look at one ofthe prede�ned points. As long as the person wasstanding at this location, we recorded the outputof the Gazetracker. In this setup the Gazetrackerworks with a slightly lower precision (about 15degrees), due to the delay of about 200ms whichis needed for the Facetracker and the Gazetrackerfor calculation (after the movement to a new loc-ation).6 ConclusionWe described one further step towards a multi-modal human-to-computer interface. We intro-duced a component of our vision system, namelythe real-time connectionist Gazetracker which de-termines the angle of a human head relatively tothe camera. Training and runtime results showthe capability of the Gazetracker.7 AcknowledgementsThe authors wish to thank the members of theINTERACT project for help in this research.Thanks to Martin Hunke and Ravi Desai for helpwith the implementation of components of theFace-tracker and Gaze-tracker.This research was sponsored by the Depart-ment of the Navy, O�ce of Naval Research underGrant No. N00014-93-1-0806.The views and conclusions contained in thisdocument are those of the authors and should notbe interpreted as representing the o�cial policies,either expressed or implied, of the U.S. Govern-ment.References[1] D.H. Ballard and C.M. Brown. ComputerVision. Englewood Cli�s, N.Y., 1982.[2] U. Bub, M. Hunke, and A. Waibel. Knowingwho to listen to in speech recognition: Visu-ally guided beamfroming. In InternationalConference on Acoustics, Speech, and Sig-
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