
Using Neural Networks for Data-Driven
Backchannel Prediction: A Survey on Input

Features and Training Techniques

Markus Mueller, David Leuschner, Lars Briem, Maria Schmidt, Kevin Kilgour,
Sebastian Stueker, and Alex Waibel

Interactive Systems Lab
Institute for Anthropomatics and Robotics, Karlsruhe Institute of Technology,

Germany,
email: m.mueller@kit.edu

Abstract. In order to make human computer interaction more social,
the use of supporting backchannel cues can be beneficial. Such cues can
be delivered in different channels like vision, speech or gestures. In this
work, we focus on the prediction of acoustic backchannels in terms of
speech. Previously, this prediction has been accomplished by using rule-
based approaches. But like every rule-based implementation, it is de-
pendent on a fixed set of handwritten rules which have to be changed
every time the mechanism is adjusted or different data is used. In this
paper we want to overcome these limitations by making use of recent
advancements in the field of machine learning. We show that backchan-
nel predictions can be generated by means of a neural network based
approach. Such a method has the advantage of depending only on the
training data, without the need of handwritten rules.
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1 Introduction

During a conversation, listeners usually provide feedback to the speaker. They
indicate that they are still listening. These cues are often issued using different
modalities. Examples are shaking the head or uttering short phrases like ”OK.”.
The intention of this is to make the speaker feel more comfortable while talking
as they provide some form (positive or negative) of feedback. Those cues, so-
called backchannels (BCs) are usually provided and perceived unconsciously.
In contrast to this, a lack of BCs is very well noticed. It leads to the speaker
feeling uncomfortable or explicitly asking for some form of feedback. Providing
BCs during Human Computer Interaction (HCI) is one method of making the
interaction with a Spoken Dialog System (SDS) more natural. The speaker has
the feeling of being listened to. This might also help during the interaction via
an automated telephone system.

Our approach tackles this problem with neural networks, a machine learn-
ing technique inspired by biological neural networks. They are a versatile tool
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which can be used for different tasks like function approximation, prediction
of sequences, encoding or classification. The key feature of neural networks is
their ability to learn without the need of handwritten rules. We therefore se-
lected them in order to build a predictor for BCs with few handwritten rules as
possible.

This paper is structured as follows: In section 2, we look at other work in this
area. Following that, we explain our approach in section 3. We continue with the
description of the experiments we conducted (section 4) and an analysis of the
results (section 5). We finish with a conclusion in section 6.

2 Related Work

Concerning the prediction of BCs, there have been many publications in the
past years. On approach is to use a system that is rule based. Another approach
is to use a classifier to predict BCs from a set of input features. With recent
advancements in the field of neural networks, we trained a neural network to
predict BCs.

2.1 Backchannel Prediction

There exist several approaches towards the prediction of BCs. They utilize dif-
ferent modalities in order to predict the occurrence of a BC, such as visual and
auditory information. Examples are the tracking of head movement or prosodic
features like pitch and power. All these information sources are based directly on
signals originating from the speaker. Besides this information, derived sources
like language models or part of speech tagged word sequences are also available.
They rely on specially annotated data and provide information in addition to
directly observable signals.

After their acquisition the input features need to be processed in order to
determine the occurrence of a BC in a word sequence. Many approaches are rule
based like the one described in Truong et al. (2010). These rule based approaches
often make use of prosodic features to predict BCs and rely on handcrafted rules.
Truong et al. (2010) claim that the most important indicators for the placement
of a BC are phonetic phenomena occurring right before it. They emphasize
pause and pitch, where the latter can either be falling or rising. One of the most
important features in their approach is the duration of the pause as well as the
duration of the pitch slope at the end of an utterance.

Creating rules for such systems is a time consuming process and includes
manual work – which may be error-prone. With the availability of more com-
puting power in recent years, the consequent paradigm shift towards data-driven
methods also is reflected in the research of predicting BCs. In Morency et al. (2008),
sequential probabilistic models (e.g., Hidden Markov Models, Conditional Ran-
dom Fields) are trained on human-to-human conversations to predict multimodal
listener BCs (e.g., eye gaze and spoken words). Another recent approach towards
the generation of BCs is done by Kawahara et al. (2015) by means of a simple
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prediction model. They predict prosodic features of BCs based on the preceding
utterance in order to overcome the BC monotony of most other systems.

In many research areas neural networks have seen a renaissance. Therefore,
we used a neural network based approach to predict BCs in this work described
in the upcoming sections.

Concerning the evaluation of BC systems, De Kok and Heylen (2012b) give
an overview over many published papers. Most of the systems are only evaluated
with objective metrics, either with Precision/Recall or with F1. A smaller num-
ber of systems is either only evaluated by subjective means (usually a user study)
or by both, subjective and objective methods (e.g., De Kok and Heylen (2012a)).
We also chose to perform both in our system because we liked to not only know
the formal system performance, but also the usability for a potential SDS user.
Furthermore, the BC systems named in De Kok and Heylen (2012a) used dif-
ferent margins of error: -500/500ms, -200/200ms, -100/500ms, 0/1000ms. We
decided to use the error margin -200/200ms.

2.2 Neural Networks

Neural networks have been used for a variety of tasks like encoding, predic-
tion or classification. In the area of dialogue modelling, Ries (1999) used them
in a setup with HMMs to detect different speech acts. Something similar did
Stolcke et al. (1998) and Stolcke et al. (2000) where they used a neural network
to model dialogue acts. They did not focus on predicting BCs alone, instead
they tried to model the different acts of a dialogue. We wanted to use deep be-
lief neural networks (DNNs) Hinton (2006) to predict BCs. The hidden layers
are pre-trained using denoising auto-encoders, similar to training of networks
for extracting bottleneck features for speech recognition Gehring et al. (2013).
After that, we use stochastic gradient descent combined with mini-batches for
back-propagation training. We call this fine-tuning in this paper.

3 Backchannel Prediction with Neural Networks

We chose to use a neural network as part of our BC predictor because it is not
only able to learn by itself how to perform a given classification task, but that
it is also capable of generalizing to a great extend. By doing so, we can build a
predictor for BCs without the need for writing extensive rules by hand. Since we
have not built a BC predictor before, out goal is to build a system that archives a
reasonable baseline, ideally matching the baseline from other works in the field.

We start by selecting an appropriate set of features to be fed into the network.
The next step is the decide on a neural network design, as well as the training
technique. The output of the neural network is then post-processed in order to
produce the final set of predicted BCs.

Our experiments were conducted using the Janus Recognition Toolkit (JRTk)
Woszczyna et al. (1993). Although this toolkit is mainly developed for speech
recognition, it is versatile and can be used in many applications. We used it to
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extract the features from the audio files and to process the data using neural
networks.

3.1 Input Features

Looking at work that has been done in this field, many publications make use of
the pitch, the intonation and pause in terms of auditory features. We therefore
selected pitch and power for our experiments as well. We used a pitch tracker
Kjell (1999) and computed the signal power using methods provided by the
JRTk. We did not explicitly use pause information, but we let the neural net-
work extract this information implicitly from the provided energy envelope. To
compute features from the input signal, we applied a window of 32ms length and
shifted that window with a step size of 10ms over the data. Power and pitch are
computed for each window, representing a frame. For each frame, this resulted
in two coefficients, one for power and one for pitch. The entire setup of feature
extraction and prediction is shown in figure 1

audio signal

frames

features

neural net

frames marked as BC

Fig. 1. Setup for extracting BCs

3.2 Neural Network Design

The input features are fed into a neural network for further classification. As
the occurrence of a BC is not provoked by a single point in time, we fed a
certain context around the current central frame into our network. By doing so,
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we provide information about rising or falling pitch, as well as variances in the
signal power to the network.

The network itself consists of an input layer, one or more hidden layers and
an output layer. An example network featuring two hidden layers is shown in
figure 2. The input layer has as many neurons to match the dimensionality of
the input data. We did not present a single frame to the network, but instead
a context of several adjacent frames around a central frame. The output layer
consists of only two nodes: One for predicting BCs and one for predicting non
BCs.

For the training of the network, we use an approach similar to training a
network to extract bottleneck features for a speech recognition system. First,
we pre-train each hidden layer in an unsupervised fashion using denoising auto-
encoders to guide the network weights into an appropriate range. The hidden
layers feature a sigmoid as activation function. The network is then fine-tuned
via back-propagation using gradient descent. For the error function we use cross-
entropy and soft-max as activation function. The training samples are presented
to the network in a random order.

After each round of training (epoch), the validation error of the network
is computed using a validation data set that the network has not seen during
training. This serves as an indication whether the classification performance of
the network improves after one iteration of training. We also use this measure
as a first indicator of the performance of the final system.

input
frames

#1

#2

#n

power
pitch

BC
non BC

hidden layers

Fig. 2. Example of neural network featuring two hidden layers.

3.3 Post Processing

Our network features two output neurons, for predicting BCs and non-BCs. The
output of the network is post-processed in order to obtain the label the current
frame. We take the label from that neuron which has the highest output value.
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As final step, we apply a filter to suppress any BCs that are predicted within a
window of 1s after the last BC was output.

4 Experimental Setup

We first looked into the design and training of the neural network for the clas-
sification task. Afterwards, we then applied post processing to the output of
the network to determine the final set of BCs. As pointed out in the related
work section, the objective evaluation of the results is problematic. We therefore
conducted a small user study to assess the subjective performance by humans.

As data we used dialogues from the Switchboard corpus, as the handling of
the data is easier compared to data from meetings with a multitude of persons
speaking and producing BCs at the same time.

4.1 Switchboard Corpus

The Switchboard Corpus (LDC97S62) consists of English telephone conversa-
tions that were collected within the United States. Each conversation features
two channels, one for each speaker. The audio is sampled with 8kHz and quan-
tized using the µ-law codec. We used in total 517 hours of speech, originat-
ing from 2400 dialogues. As BC, we marked the occurrence of the following
utterances: ”Um-hum”, ”Uh-huh”, ”Yeah right”, ”Oh”, ”Um”, ”Yes”, ”Huh”,
”Okay”, ”Hm”, ”Hum” and ”Uh”. Table 1 shows an overview of the used data
sets. We assigned single conversations randomly to different data sets. We did
not partition the data by individual speakers. Backchanneling is a mutual phe-
nomenon between speaker and listener. Dividing speakers into different groups
would therefore have required putting both participants of one conversation into
one group. This was not feasible because two speakers had no more than one
conversation.

Data set Length # Dialogs # BCs

Total 517 hours 2,438 53,270

Train 424 hours 2,000 43,900
Dev 42 hours 200 4,200
Eval 51 hours 238 5,170

Table 1. Overview of datasets

4.2 Neural Network Design

As input for the network, we tested contexts of different sizes, covering 40,60
and 80 frames of context to the left and right. This results in a feature vector
covering 0.81s up to 1.61s. We also varied the amount of nodes per hidden layer
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evaluating sizes of 64, 128, 256, 512 and 1024. In addition to that, we changed
the amount of hidden layers and tested the performance on a network featuring
just a single layer as well as up to 10 layers.

4.3 Training Data Selection

Initially, we estimated the appropriate mix of data for the training of the net-
work. When training with data, the ratio between the different classes is impor-
tant, as the network will implicitly learn an a-priori probability according to the
distribution of the data. Hence, finding the right mixture is key.

When extracting the data for training the network, we extracted those parts
of the audio, that caused the other speaker of the dialogue to utter a BC. Since
other works use temporal features like the movement of the pitch over time, we
extracted audio from the area around the occurrence of a BC. Our intention is
to capture the data that lead to the utterance of that BC.

After having an initial network design, we also experimented with different
history sizes before the appearance of a BC. We extracted data ranging from
1.5s up to 3.5s before a BC in order to train our network upon them.

4.4 User Study

We set up a user study as subjective evaluation means in order to be able to
tell how well our BC production system works for users of a potential SDS. We
designed an on-line questionnaire and embedded two audio files. We randomly
chose two different conversations, extracted a middle piece with a length of ca.
60 seconds, and inserted BCs at the places which were predicted by the NN. The
predictions of the first audio file were made by an NN trained on the audio data
preceding the BCs by 2s, whereas the second audio file BC were predicted by an
NN trained on 3s of audio before the BCs.

Similar to Huang et al. (2010), we asked the participants to rate the amount
and the placement of BCs, i.e. whether there were too few or too many and
whether they were placed well or whether even possible placement opportunities
were missed. Furthermore, we posed the question how naturally or artificially the
system sounded to the user. The just named questions have been rated either on a
5-point Likert scale or as yes/no questions. Finally, the upcoming follow-up ques-
tions were presented to the participants: Which of the two backchannel audio files
did you like the most? (possible answers: 1st, 2nd), Which type of backchanneler
are you: Do you produce few, medium or many spoken backchannels? (possible
answers: few, medium, many). To account for potential demographic effects, we
asked for the gender and age of the participants.

5 Results

We first present the results from various objective evaluations and conclude this
section by presenting the results from a small user study that we conducted.
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For the objective evaluation, we used two different kinds of measures. First,
we used the validation error of the neural network training as an indicator of
the performance of a predictor based on a certain neural network. In a second
step, we applied the post-processing to the output of the neural network in
order to obtain the final BC positions. Based on those occurrences, we computed
precision, recall and F-score to assess the performance of our system. We counted
a BC as correctly predicted if our system predicted it in a window of 200ms
before and after the actual BC. This is one of the measures that has been used
in previous publications.

5.1 Neural Network Design

With this set of experiments, we assessed the performance of different architec-
tures of neural networks. We extracted data using a window size of 1s before and
after the BC itself for training. Table 2 shows the validation error from different
network configurations. The validation error decreases with adding additional
layers. Configurations with 128 and 256 nodes show best results. The F-score
of the systems using these different networks is shown in table 3. A similar im-
provement can be observed: Additional layers lead to a higher score. The best
result is obtained with a configuration of 128 nodes per layer.

# Layers 1 3 5 7

128 Nodes 0.202 0.196 0.195 0.196
256 Nodes 0.201 0.196 0.195 0.195
512 Nodes 0.202 0.196 0.196 n/a

1024 Nodes 0.203 0.196 0.196 n/a

Table 2. Validation error of different net-
work architectures.

# Layers 1 3 5 7

128 Nodes 0.045 0.053 0.051 0.060
256 Nodes 0.044 0.053 0.056 0.058
512 Nodes 0.049 0.054 0.058 n/a

1024 Nodes 0.050 0.043 0.057 n/a

Table 3. F-score of system based on mul-
tiple network architectures.

5.2 Context Size

We also considered different context sizes to be fed into the network. Using a con-
text of 40 and 60 frames, we tested different configurations: In one experiment,
we fixed the amount of nodes per layer to 256 and evaluated the performance
of networks with a different amount of hidden layers. The validation error is
shown in table 4, F-score in table 5. Both validation error and F-score again
show better results when adding more layers. While the validation error benefits
from a larger context, the best F-score result is archived by using a context of
60. In another experiment, we kept the amount of hidden layers fixed to 5 and
varied the amount of nodes per layer. Table 6 shows the validation error of the
network and table 7 the F-score. Here, the results differ. The best configuration
in terms of validation error has a context of 60 and 128 nodes layer. Whereas
the best F-score value originates from a system featuring 512 nodes per layer
and a context of 40.
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# Layers 1 5 7

Context 40 0.201 0.195 0.195
Context 60 0.190 0.174 0.173

Table 4. Validation error of two context
sizes, tested against several layer configu-
rations.

# Layers 1 5 7

Context 40 0.044 0.056 0.058
Context 60 0.022 0.022 0.023

Table 5. F-score of two context sizes,
tested against multiple layer configura-
tions.

# Nodes 128 256 512

Context 40 0.195 0.195 0.196
Context 60 0.173 0.174 0.175

Table 6. Validation error of various con-
text sizes, amount of nodes per layer is
changed.

# Nodes 128 256 512

Context 40 0.051 0.056 0.058
Context 60 0.023 0.022 0.023

Table 7. F-score of different context
sizes, amount of nodes per layer is varied.

5.3 Training Data Selection

We also evaluated the use of different window sizes for the extraction of training
data. We thereby varied the amount of non-BCs speech that is being extracted
around the instance of one BC. For these experiments, we chose a network featur-
ing 256 nodes, 5 hidden layers and a context of 40. Table 8 shows the validation
error and the F-score of these experiments. The numbers indicate that a larger
window size leads to both a better validation score and F-score. Although the
validation error constantly decreases, the F-score peaks at a window size of 3s.

Metric 1.5s 2s 2.5s 3s 3.5s 4s

Validation error 0.206 0.195 0.162 0.136 0.117 0.102
F-score 0.020 0.056 0.082 0.093 0.078 n/a

Table 8. Validation error of extraction lengths.

5.4 Training Data Selection and Context Sizes

Since we saw improvements by increasing the amount of audio that is being
extracted around one BC, we investigated the joint effect of increased context
sizes with extraction lengths. The results are shown in table 9. Increasing both
sizes has a positive effect on the validation error of the network as well as on the
F-score of the entire system. By extracting data with a window size of 4s and
feeding a context of 60 into the network, we could archive the best F-score with
0.109.
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Context Windowsize Val. Error F-score

40 3.5s 0.117 0.078
60 4.0s 0.101 0.109
80 5.0s 0.081 0.100

Table 9. Combination of Context and Windowsize.

5.5 Subjective Evaluation

In total, 7 people participated in our user study. Most of them are doctoral
students at the same institute, but do not work on the topic of backchanneling
themselves. Concerning the demographic characteristics, the participants’ age
ranges from 24 to 39 with an average of 29.3 years, 5 participants were male, 2
female.

As listed in Table 10, in total the first audio file is rated far better than the
second one. Five of seven participants say judge the first audio file to contain an
appropriate amount of BCs, while the all seven subjects say the second audio file
does not contain an appropriate amount of BCs. The same tendency becomes
visible in the second question whether there were too few or too many BCs in
the audio: the average rating of 3.25 points on the 5-point Likert scale for the
first audio also tells us that the participants are just fine with the amount of
BCs inserted. On the contrary, audio file no. 2 gets the worst rating with 5.00
as all participants say the amount of BCs in the file is far too high.

Question #3 asked the participants about the placement of the BCs. They
rate the placement in the first audio file with 3.00, so the placement is generally
speaking ”okay”, but there is still space for improvement. At the same time, the
second audio file is rated with only 1.29 meaning the placement is done badly.
Question #4 mirrors whether many potential BCs were missed. Concerning this
question, subjects reject this statement for the first (2.86) and the second audio
file (1.29). Of course, the second file has missed fewer potential BCs as there
are far too many in the audio right from the start, as the subjects state in the
second question. This rating of the first audio file (2.86) is coherent with the
rating of question no. 2 (3.25): on average there are slightly too many BCs in
the audio, and the participants slightly disagree with the statement that many
potential BCs would be missed. Question #5 about the perceived naturalness of
the conversation with artificially inserted BCs was rated similarly to the general
placement of the BCs: the naturalness of audio file no. 1 has an average rating
of 3.00 and audio file no. 2 one of 1.43. This can be interpreted so that audio file
no. 1 is quite natural, but there is still much potential for improvement, while
audio file no. 2 is rated as far too artificial – as its placement of BCs is also
rated badly. Concerning the follow-up questions, Table 10 clearly displays that
all seven participants like the first audio file better as the analysis of all previous
questions indicated. The results of the question, which type of backchanneler
the subjects are themselves, whether they produce few, medium, or many BCs,
are shown in table 11: 5 participants say they are using few BCs, while 2 say
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Table 10. Results of the user study with a backchannel system with an NN trained
on a 2s and 3s span

Questions 1 (3s) 2 (2s)

Amount of BCs appropriate (yes/no)? 5/2 0/7
Too few (1) / many (5) BCs? 3.25 5.00
Generally BCs placed well. (1=disagree,5=agree) 3.00 1.29
Many potential BCs missed. (1=disagree,5=agree) 2.86 1.29
Dialog with BCs sounds artificial (1) / natural (5) 3.00 1.43

Which audio file did you like the most? 7 0

they are using a medium amount of BCs. This question is of course quite vage,
but the results have the same tendency as the what we saw in the questions
beforehand: our participants rather like fewer BCs.

We can conclude that the first audio file is clearly rated better, which is based
on the BC prediction of a 3s-trained NN. This fact is in accord with the results
of our objective evaluation: Table 8 shows that the validation error of the 3s NN
is smaller as the one of the 2s NN. At the same time, the harmonic mean F1 is
higher for the 3s NN than for the 2s NN.

Backchannels few (A1) medium (A2) many (A3)

# of people 5 2 0

Table 11. Which type of backchanneler are you: Do you produce few, medium or many
spoken backchannels?.

6 Conclusion

We have presented a novel approach towards the prediction of backchannels using
a neural network based system. We have performed experiments to evaluate
different neural network architectures and training methods. Our approach is
data-driven as it does not require a complex rule set. We only use one rule to
prevent a new BC appearing within a 1s window after another.

We examined various NN architectures as well as methods for training them.
Our experiments show that using a network with more layers increases the per-
formance of our system. Using a larger window size for data extraction increases
the performance as well. Combining a larger window size during data extraction
with a larger context size of the network improves the performance even more.

We confirmed the objective choice of system features by means of a final
user study. It proves that we created an acceptable baseline system which can
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be improved by further development. Generally speaking, we plan to increase
the perceived naturalness of the system by adding more features. This will be
achieved by integrating different BCs opposed to the current approach, in which
we only use ”mhm”/”uh-huh”. These could either be randomly inserted or de-
termined by a more intelligent language model in a next step. Another aim of
our future work is go beyond dialogs and apply BC prediction to multi-party
conversations.
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