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Abstract. Estimating cepstral mean and variance normalization (CMVN)
in run-on and real-time settings poses several challenges. Using a moving
average for variance and mean estimation requires a comparatively long
history of data from a speaker which is not appropriate for short utter-
ances or conversations. Using a pre-estimated global CMVN for speakers
instead reduces the recognition performance due to potential mismatch
between training and testing data. This paper investigates how to build a
real-time run-on speech recognition system using acoustic features with-
out applying CMVN. We propose a feature extraction architecture which
can transform unnormalized log mel features to normalized bottleneck
features without using historical data. We empirically show that mean
and variance normalization is not critical for training neural networks
on speech data. Using the proposed feature extraction, we achieved 4.1%
word error rate reduction compared to global CMVN on the Skype con-
versations test set. We also reveal many cases when features without
zero-mean can be learnt well by neural networks which stands in con-
trast to prior work.

Keywords: real-time speech recognition · feature normalization · neural
network.

1 Introduction

Ceptral mean and variance normalization (CMVN) [22] and other normalization
techniques (e.g., Cepstral mean normalization (CMN) [7]) are widely adopted
in many neural network speech recognition systems due to several advantages.
First, these techniques as shown in [22] make the recognizer more robust by can-
celing out environmental changes. Second, they help reducing the environment
mismatch (e.g. background noises or microphones) between training and testing
conditions. Last, the acoustic features after normalization have zero mean which
is found critical for neural network training [13].

In offline situations, CMVN is usually applied at the utterance level or more
ideally at the speaker level when many utterances of the same speaker are avail-
able. However, these approaches are not appropriate for real-time situations,
because they require a certain amount of history to be available for the current
speaker, and cannot handle unexpected speaker changes. Instead, mean and
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variance can be continuously computed over a moving window of some hundred
frames (e.g., 3 seconds [17, 1]). However, moving windows require the availability
of historical data of at least a window-size, so that a delay must be introduced
to handle the beginning of a new utterance. A third approach, computing mean
and variance globally (e.g., [26, 19]) for all training and test data, avoids the
delay but reduces the recognition performance due to potential data mismatch.
CMVN can also be recursively updated in real-time as in [17], but this ap-
proach does not handle multiple speakers. Peddinti et al. [14] proposed to use
mel-frequency cepstral coefficients (MFCC) without normalization for real-time
speech recognition, as currently implemented in the Kaldi toolkit [15]. In their
approach, i-vectors [3] which supply the information about the mean offset of
the speaker’s data are provided to every input so that the network itself can do
feature normalization. However, i-vectors still require a certain amount of data
of about 6 seconds per speaker.

In this paper, we investigate and employ feature extraction approaches which
exhibit comparable performance to CMVN but do not require speaker historical
data and are therefore better suited for real-time situations. Our contributions
are summarized as follows:

– We contrast different CMVN methods and point out their respective advan-
tages and limitations in a real-time feature extraction setting. We conclude
that global CMVN is most desirable regarding real-time properties, although
utterance- or speaker-based CMVN yield best recognition accuracy.

– We propose to use a two-step transformation method that is empirically
shown to transform unnormalized log mel-filterbank (FBANK) features into
suitable acoustic model inputs, without requiring historical data of the cur-
rent speaker. Using this transformation, we show that the acoustic models
trained on the new feature domain significantly outperform global CMVN.

– We identify a potential mismatch between training and testing data when
acoustic models are trained on unnormalized data and propose to use data
augmentation as a solution. We empirically show that retraining the feature
extraction and the systems on a volume perturbation dataset can avoid the
mismatch of audio volume and increase the recognition performance by up
to 3.1%.

– We also observe and discuss cases when features without zero-mean can be
learnt well by neural networks, which stands in contrast to prior work.

Without waiting for acoustic features being normalized correctly, a run-on
speech recognition using our proposed feature extraction can process utterances
of arbitrary length (or shortness). It can also handle situations where multiple
speakers are sharing a single microphone.

2 Improving real-time feature extraction

We propose performing two steps to learn robust feature extraction for real-
time speech recognition systems. First, the traditional mel-filter features are
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Fig. 1. Real-time feature extraction.

transformed into LDA domain and then fed into a bottleneck network to have
final features which are value-normalized and easier to exploit by neural network
models. Second, in order to increase the system’s robustness, data augmentation
is used for retraining both the feature extraction and the network model.

2.1 Using LDA transformed features

The most popular acoustic features such as MFCC or FBANK without nor-
malization are problematic input for neural networks to learn. MFCC features
usually span a wide range in every dimnension, e.g., [-93, 363] on typical data,
while FBANK features only have positive values, e.g. in the range [0, 11.66]. We
attempt to find a transformed domain such that the transformation can be per-
formed in real-time. Linear Discriminant Analysis (LDA) [4] is usually used for
dimensionality reduction, but here we propose to use it only for feature trans-
formation. Using LDA, we compute a d× d linear transformation matrix which
projects d -dimensional FBANK into a new domain with the same dimension-
ality. In this LDA domain, the features maintain the class-discriminatory infor-
mation and can be mapped with their class-separability magnitudes according
to the associated eigenvectors and eigenvalues. When used for dimensionality
reduction, LDA is applied by keeping only k (much smaller than d) features
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with largest magnitudes. We, however, use all d -dimensional features in our in
models because we observed better system performance.

2.2 Using normalized bottleneck features

As will be experimentally shown, optimizing single network models on unnor-
malized data can be hard. Dealing with this situation, our idea is to train a
first network model for extracting length-normalized features. Later we can use
a second network to perform the real classification task. Figure 1 illustrates our
proposed feature extraction architecture. The input of the network can be un-
normalized FBANK or LDA-transformed features. We employ some rectifier [25]
layers on top of the input layer, followed by a narrow (bottleneck) layer of 42
sigmoidal units. Two last layers which will be discarded after the training include
one rectifier and the final softmax. Since the training of this feature extraction
optimizes phonemes classification, the extracted features at the bottleneck layer
are supposed to be significant for class-discrimination. When using a sigmoidal
activiation function, we can obtain bottleneck features that are normalized to
be in a small range which can be easier handled by the second network. We
experimented with sigmoidal functions, the logistic function which has range if
[0,1] and the hyperbolic tangent which produces features in range [-1,1].

Different from [8, 24], the proposed feature extraction is able to handle both
normalized and unnormalized inputs. It does not suffer from vanishing gradients
and does not need pre-training which significantly reduces the training time.
Applying this feature extraction in real-time can be considered as adding more
hidden units to the classification network, which linearly increases the compu-
tation time (i.e. 25% in our experiments).

2.3 Increasing robustness by data augmentation

As will be explored in this paper, the neural network systems trained on unnor-
malized features potentially need to deal with environment mismatch between
training and testing. In speech recognition, mismatches such as different speech
variations, background noises or microphones, can lead to a significant drop of
recognition performance. In this paper, we analyze the robustness of our pro-
posed feature extraction against the mismatch of audio volume conditions and
improve it with the help of data augmentation.

Data augmentation applied to speech recognition has been explored in many
studies. In [10, 16], corrupting clean training speech with noise improved the
speech recognizer against noisy speech. Using vocal tract length perturbation
[11] has shown gains on TIMIT. In [12, 14], training with speed and volume per-
turbations datasets increased the system performance on several LVCSR tasks.
In this paper, we only consider data augmentation by performing volume per-
turbation.
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3 Experimental setup

3.1 Training and test data

In our experiments we used a large training set of 460 hours. This dataset is
the result of combining TED-LIUM [18], Quaero [21] and Broadcast News [9]
corpora. Our three evaluation sets include TED-LIUM test, tst2013 from the
IWSLT evaluation campaign [2] and the English set from the MSLT corpus [5]
which contains conversations over Skype.

The volume perturbations were done as suggested by [14] where each record-
ing was scaled with a random variable using sox. We set the random variable
within the range [0.2,2] for all recordings in the training data set. Then they were
added to the original training set to form the augmented dataset. To investigate
the robustness against volume mismatch, we used the ranges [0.2, 0.6] and [1.6,
2.0] for the all recordings of the tst2013 set to create a perturbed test set.

3.2 System description

All the network models used roughly same number of input features (i.e, 440
FBANK and 462 LDA or bottleneck features) and were trained using the cross-
entropy loss function to predict 8,000 context-dependent phonemes. Rectifier
networks were constructed of 6 hidden layers with 1,600 units per layer. For
sigmoidal networks, we used 5 hidden layers of 2,000 units and performed pre-
training with denoising auto-encoders [23]. For our convolution neural network
(CNN), we used the best architecture from [20] which includes two convolutional
layers of 256 hidden units with filter size 9 and a max pool size of 3, followed
by 4 fully connected layers with 1,024 units. However, we did not use delta and
delta-delta features for consistent comparisons between models.

The tests were performed with the Janus Recognition Toolkit (JRTK) [6]
with a 4-gram language model and a vocabulary of more than 150,000 words.

4 Results

4.1 Using normalized and unnormalized features

In Table 1, we compare the systems using different CMVN methods against vari-
ous systems trained on unnormalized FBANK features. Using our training data,
CMVN systems performance depends on the amount of available speaker histor-
ical data. Normalization at speaker level yielded the best performance, followed
by utterance level normalization and normalizations with windows 300 frames
in length. The results on the perturbed test set show an interesting fact that
these normalizations produce robust features to the changes of audio volume.
Global CMVN is less optimal than other normalizations (7.1% rel. increase in
WER compared to speaker level). However, real-time system may have to adopt
this method, in order to achieve acceptable latency.
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For the normalized features, the gap between sigmoidal and rectifier [25] net-
works appears small. However, when using the features without normalization
which have only positive values in a large range [0, 11.66], optimizing sigmoidal
networks for good convergence becomes difficult. We had to reduce the initial
learning rate by a factor of ten compared to normalized features. The train-
ing then converged at a poor local minimum and caused worse classification
performance. The situation changed with the rectifier network. We were able
to keep the same learning rate and the training converged with the same pat-
tern. However, it suffers from a 7.3% rel. increase in WER compared to global
CMVN. Switching to a CNN network gave a further improvements, however its
result is still not good as that of the CMVN systems. These results demonstrate
the difficulties when training single network models on unnormalized FBANK
features.

The increase in WER of the systems using unnormalized features and global
normalized features on the perturbed test set indicates that they may be sensitive
to volume mismatch between training and test data.

Table 1. Word error rates of various systems using 40 log mel-filter bank features with
and without CMVN

CMVN Network Type tst2013 tst2013-vp

Speaker sigmoid 15.5 15.5
Utterance sigmoid 15.8 15.8
Window sigmoid 16.2 16.4
Global sigmoid 16.6 17.3
Global rectifier 16.5 17.1

none sigmoid 22.3 23.2
none rectifier 17.7 18.0
none rectifier (CNN) 17.1 17.6

4.2 Using LDA transformed features

Table 2 compares the efficiency of different LDA transformations applied to un-
normalized features. Such a conventional approach which reduces dimensionality
of 440 features of 11 consecutive frames down to 42 and then stacks again for
11 frames, does not show clear improvements. When transforming 40 FBANK
features without reduction and stacking 11 adjacent frames of LDA features as
the network input, the systems improved. Further improvement was achieved
when transforming 440 features of 11 consecutive frames via LDA and using
them as network input. Interestingly, the transformed features which are in the
range [-14.95, 14.50] without zero-mean are better than FBANK with global
CMVN. When applying global mean and variance normalization again on these
LDA features, the performance even got worse showing that the normalization
is unnecessary for this training data.
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The large degradation (5.4% rel. in WER) of the performance on the per-
turbed test set presents the need of a method for improving LDA features against
possible environment mismatch.

Table 2. The systems with LDA features.

LDA Feature CMVN DNN tst2013 tst2013-vp

Reduction none rectifier 17.5 17.8
Full-40 none rectifier 16.8 17.4
Full-440 none rectifier 16.2 17.0
Full-440 Global rectifier 16.5 17.2
Full-440 none sigmoid 16.8 17.7

4.3 Using normalized bottleneck features

The proposed bottleneck feature extraction shows its advantages when applied to
both unnormalized FBANK and LDA features and produces improved features.
The same networks trained on the bottleneck features showed relative reduction
of 7.4% and 4.9% as shown in Table 3. The extracted bottleneck features are
in a normalized range [0, 1] or [-1, 1], so a sigmoid network can be trained well
showing again that we do not need to apply mean normalization.

When evaluating against the mismatch test set, we found that the extracted
features are more stable to speech variations indicating the normalized bottle-
neck network may be automatically forced to learn robust features.

Table 3. The system with normalized bottleneck (BN).

Feature BN Type DNN tst2013 tst2013-vp

FBANK sigmoid rectifier 16.4 16.6
FBANK sigmoid sigmoid 16.5 16.8

LDA sigmoid rectifier 15.5 15.8
LDA tanh rectifier 15.5 15.8

4.4 Using data augmentation

When retraining the feature extraction and the systems on the augmented
dataset, we obtained improvements on both test sets as presented in Table 4.
Now, there are only small gaps between the two test sets indicating robustness of
the models and the effectiveness of the proposed data augmentation. Retraining
improves the recognition performance in general (i.e. 3.1% rel. for the bottle-
neck system using FBANK). We could only achieve small gains for the systems
using LDA features. This can be the case when we only retrained the feature
extractions and the systems without re-estimating the LDA transformation.
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Table 4. The systems trained with data augmentation

Feature tst2013 tst2013-vp

FBANK 17.3 (2.3%) 17.4 (3.3%)
LDA 16.1 (0.6% ) 16.3 (4.7%)

BN-FBANK 15.9 (3.1%) 15.9 (4.2%)
BN-LDA 15.4 (0.7% ) 15.6 (1.3% )

4.5 Comparison on different test sets

Table 5 compares the results of our systems on two different test sets. TED-
LIUM set contains 11 TED talks while the MSLT set is a collection of 3,000
utterances of recorded Skype conversations. There is no speaker information for
the MSLT set and more than a half of the utterances are less than 3 seconds.

In different online domains, our proposed feature extraction can reduce the
WER by 12.1% relative compared to the global CMVN. Comparing to another
system of the same complexity which uses the bottleneck architecture from [8],
we also achieve a significant improvement.

Table 5. Results on the TED-LIUM and MSLT test sets

Feature CMVN TED-LIUM MSLT2016

FBANK Global 9.8 33.9
BN [8] Global 9.2 30.9

FBANK none 10.3 35.0
BN-LDA none 8.7 29.8

5 Conclusions

We have presented a novel and effective feature extraction for real-time and
run-on speech recognition. Our proposed two-step transformation is able to
transform unnormalized log mel-filterbank features into useful value-normalized
features. These features can be used directly for neural networks or Gaussian
mixture models without further normalization. Applying this feature extraction
approach hides the involvement of explicit normalization such as CMVN. Other
real-time speech applications (such as speaker recognition) can also benefit from
our method.
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