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Abstract

This poper deseribes experiments towaerds a multi-
language human-computer speech interface. Our in-
terface 45 designed for large vocabulary condinuous
speech input. For this purpose o multilingual dictation
database has been collected under GlobalPhone, which
is o project at the Interactive Systems Labs. This
project investigates LVOSE systems in 15 languages
of the world, namely Arebic. Chinese, Crootian, Eng-
lish, French, German, Italion, Jepanese, Korean, Por-
tuguese, Russian, Spanish, Swedish, Tamil, and Turk-
ish. Based on o globol phoneme set we build differ-
ent multilingual speech recognizer and present several
performance results in language independent und lan-
guage adoptive setups.

1 Introduction

With the distribution of speech technology prod-
ucts all over the world, multi-language human-
computer interfaces are of increasing importance. Be-
yond it, new methods for the fast adaptation to new
target languages with only limited training data be-
comes a practical concern. Monolingual phoncrme scts
are applied for cross-language adaptation [9] and alsa
multilingual phonemic inventories has been demon-
strated to give satisfactory resulis [7] within the same
language family [3], [6], and limited tasks [4]. The
focus of our work is the design of a multi-language in-
terface for large vocabulary continuous speech which
covers the most widespread and important languages
of the world. Since one major limitation in develop-
ing recognition systems is the need of large training
data, this work also explore the relative effectiveness
of multilingual context dependent acoustic model com-
bination for cross-language adaptation with limited
training data. Furthermore we compare different ap-
proaches to adapt pronunciation dictionarics for the
purpose of cross-language adaptation.

For all experiments we use our multilingual
database GlobalPhone which is briefly introduced in
the first section of this paper. In the second part,

| Language | Speakers Spoken units Hours |
Arabic 100 180,000 25
Ch-Mandarin 132 250,000 25.5
Ch-Shanghai 50 £0,000 8
Croatian 98 130,000 18
Japanese 128 430,000 28
Korean 100 370,000 20
Portuguese 120 180,000 22.7
Russian 140 250,000 27.3
Spanish 100 200,000 22
Swedish 100 200,000 20
Tarnil 50 - 10
Turkish 100 140,000 16.9

Table 1: The GlobalPhone database

we describe the monolingual baseline systems trained
and tested with this database. After that the global
phoneme set and the multilingual acoustic model com-
bination is introduced. In the last part of this paper,
we address the problem of cross-language adaptation.
Several recognition results will be presented in lan-
guage independent and language adaptive sctups.

2 The GlobalPhene project

The aim of the project GlobalPhone is the devel-
opment of a multi-language human-computer speech
interface for large vocabulary. For this purpose we
recently started the collection of a large multilingual
speech database which currently consists of the lan-
guages Arabic, Chinese (Mandarin and Shanghai di-
alect), Croatian, German, Japanese, Korean, Por-
tuguese, Russian, Spanish, Swedish, Tamil and Turk-
ish. Considering the fact that German, English, and
French are available in similar frameworks, we are able
to cover 9 of the 12 most widespread languages of
the world. In each language about 100 native speak-
ers were asked to read 20 minutes of political and
economic articles from a national newspaper. Their
speech was recorded in office quality, with a close-
talking microphone. The GlobalPhone corpus is fully
transcribed including spontaneous effects like false



| Language | Performance [ER] |

Chinese 18.1%
Croatian 20.0%
Japanese 10.0%
Korean 47 3%
Spanish 20.0%
Turkish 16.9%

Table 2: Error Rates [ER] of monolingual systems

starts and hesitations. Up to now we collected 233
hours of spoken speech from about 1300 speakers in
total. Further details of the GlobalPhane project are
given in [8].

Table 1 summarizes the mumber of speakers, spo-
ken units and the hours of recorded speech for the
GlobalPhone database. Based on these data we train
and test context-dependent models in gix languages
and context-independent in eight languages. The test
sets consist of 100 utterances por language, the lan-
puage adaptive experiments are evaluated on 200 Ger-
man utterances. Because of the limited corpus size,
we dare nol able Lo estimale reliable LVCSR. n-gram
models and voecabularies, which results in high our-
of-vocabulary rates. Sinee we focus hore on the mul-
tilingual acoustic modeling and compare error rates
across langnages, we reduced the OOV-rate to 0.0%
by including all test words into the language model
ag monograms with small probabilities. We defined a
10K 1est diclionary by supplementing the test words
with the most frequently seen training units.

3 Monolingual Baseline Systems

In the first step towards a multi-language inter-
face we developed monolingnal bascline systems in
eight languages applying our fast crosslingual boot-
strap technique [7]. For six languages Chinese, Croa-
Lian, Japanese, Korean, Spanish, and Turkish the re-
sulting LVCSR. recognizers congist of fully continuons
Jstate HMMs with 1500 polyphone models. Each
HMM-state is modeled by one codebook with a mix-
ture of 16 Gaussian distributions. The preprocessing
is based on 13 Mel cepstral coefficients with first and
sccond order derivatives, power and zero crossing rate.
Alter cepslral mean subliraclion, a linear discriminani,
analysis is used to reduce the input to 24 dimensions.
Table 2 shows the error rates for all languages. The
systems performance ranges from 10% kana error rate
[or Japanese 1o 16.9% word error rale lor Turkish,
18.4% pinyin error vate for Chinese, and 20% word er-
ror rate for Spanish and Croatian. The Korcan perfor-
mance is given in hanpgul syllables and achieves 47%
error rate. For Dortuguese and Russian so far only

prcliminary context independent systems have been
developed. Their recoghizers consist, ol 3-stale HMMs
with 53 and 34 monophone models. Each HMM-state
is modeled by 32 Gaussian. The preprocessing is the
same as in the context dependent counterparts.

4 Multi-language Systems

For the development of mulli-language systems if. is
of great concern to combine the phonetic inventory of
all languages to be recognized into one global acous-
tic model pool. Such a multilingual acoustic model
cornbination leads to the following benefits:

1. Data sharing across languages reduces the total
number of parameters in the system

2. One language independeni acousiic model re-
duces the complexity of the multi-language inter-
[ace compared Lo several language specilic acous-
tie models

3. Data sharing results in a more reliable model es-
timation, egpecially for less frequent phonemes

4. Global phoneme pools allow a more accurate pro-
nunciation modeling of -out of language- words,
Le. foreign proper names or brand names

e |

Robust acoustie models enables a [ast and elli-
cient cross-language hootstrapping of systems in
new languages even if only limited or no training
data is available

035
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Figure 1: Relative frequencies of consonants

Figure 1 illustrates the relative frequencies of con-
sonants for the five languages Croatian, Japanese, Ko-
rean, Spanish, and Turkish in our GlobalPhone (rain-
ing database (phoneme names are given in Worldbet
notation). As can be seen the occurrences of sounds
are highly dependent on the language. Some sounds
are comparable frequent in all five languages like the



Phonemes [Worldbet] [ KO [ 8P [CR [TU JJA [ > |
X

n,m.s,Lt3,p,b.t.d,g.k X X X X

i,c,0 X | X | X | x| x| 1
f,j,z X X X X

I,u X X X X

d7 X X X X 6
a X X X

5 X X X

h X X X

4 X X X 4
n,x,L X X

A X X

N X X

V. % X %

.7 X X

18 X X 10
Pt kd 2 80 0l8,0a,41, X

EuE,A A 0A, X

iu,ie,io,ia X 17
D.G,T,V.r(,al,au,ei, X

en,0l,a+,e—+,i+,04+,1u+ X 15
palatal ¢, palatal d X 2
ix, solt X 2
7. Ng, V[ Anein0n4: X 8
Monolingual 3 170 40 [ 40 [ 30 [ 20 [ 31
Multilingual 78

Table 3: Global Phoneme Set [Worldbet notation]

sounds [n], [d], [m], and [b], whereas others are not,as
for example the phoneme [g], which is frequent in Ko-
rean but extremel rare in Spanigh. In the first cage
sharing the data results in language independent ro-
bust models of [n], [d], [m], and [b] and reduces the
number of parameter of the final s stem. In the latter
case the less frequent phonemes like the Spanish [g]
would benefit from sharing the training data across
the languages, since more reliable estimation for this
model can be achieved. Sounds belonging to onl one
language like [Ng] for Japanese or the flapped [r(] for
Spanish help solving the language identification prob-
lem because these sounds are reliable predictors for
one language.

4.1 Global Phoneme Set

Combining the phonetic inventor across languages
into one global phoneme set requires the definition of
similarities between sounds. Those similarities are
documented in international phonernic inventories like
Sampa, Worldbet, or IPA [5], which classif sounds
based on phonetic knowledge. On the other hand
data-driven methods are proposed for example in [1]
and [3]. Previouss stems have been limited to context
independent modeling. For the monolingual case con-
text dependent modeling is proven to increase recog-
nition performance significantl . Such improvements
from context dependence extend naturall to the mul-
tilingual setting, but the use of context dependent

models raises the question of how to construct a ro-
bust, compact, and efficient multilingual model set. In
this paper we introduce a data-driven procedure for
mmultilinpual context dependent models. Based on the
phonetic inventor of eight monolingual s stems we
defined a global phoneme set. Sounds which are rep-
resented b the same IPPA § mbol share one common
phoneme categor . For eight langnages this global set
consists of 145 phoneme categories. Table 3 shows
the global phoneme set for five languages in World-
bet notation. About half of the set consists of mono-
phonemes belonging to onl one language, the other
half is shared across at least two languages. Silence
and the noise models are shared across all languages.

4.2 Acoustic model combination

Based on the above described categories we de-
signed different multilingual s stems b combining
language dependent acoustic models in different wa s.
In the s stem ML-mix we share all models across lan-
guages without preserving an information about the
language. For each categor model we initialize one
mixture of 16 Gaussian digtributions and train the
models b sharing the data of five languages (MLS-
miz), seven language (ML 7-miz) and eight languages
( ML8-miz) respectivel . For the ML5-miz s stem we
create context dependent. phoneme models b appl -
ing a decision tree clustering procedure which uses
an entrop based distance measure, defined over the
mixture weights of the codebooks, and a question set
which congists of linguigticall motivated questions
about the phonetic context of a phoneme model. Duy-
ing clustering, the question with the highest entrop
gain is selected when splitting the tree node according
to this question. After reaching the predefined number
of 3000 pol phones the splitting procedure ends.

Another wa,  to share phoneme models across lan-
guages is performed in the multilingual s stem ML-
tog. Here each of the phoneme categories gets a lan-
guage tag attached in order to preserve the informa-
tion about the language. The above described clus-
tering procedure is extended b introducing questions
about the language and language groups to which a
phoneme belongs. Therefore the decision if phonetic
context information is more important than language
information becomes data-driven. We started with
250,000 different quintphones over the five languages
and created two full continuous s stems, one s stem
ML5-tagd with 3000 models, and the second s stem
ML5-tag?5 with 7500 models, which is of same gize ag
five monolingual s stems with 1500 models each.



4.3 Recognition Results

We explore the usefulness of our modeling approach
by comparing the performance of the multilingual sys-
tems for the five languages Croatian, Japanese, Ko-
rean, Spanish, and Turkish as given in figure 2.

‘ B Mono B ML-tag?5 O ML-tag3 ML-mix|

49

g8 a7

Croatian Japanese Korean Spanish Turkish

Figure 2: Results for multilingual setup [Word Error]

The experiments are twofold: first we explore which
sharing method performs best, and second we exam-
ine the profit of sharing the acoustic parameters. The
system architecture, the preprocessing and the train-
ing procedure are identical throughout this tests. To
answer the first question we compare the performance
of the multilingual system ML5-tag3 to ML5-miz for
all languages. Figure 2 shows that the tagged sys-
tem outperforms the mixed system significantly in all
languages by 5.3% error rate (3.1% - 8.7%). This in-
dicates that preserving the language information and
introducing questions about languages achieves signifi-
cant improvements with respect to monolingual recog-
nition.

To answer the second question we varied the num-
ber of polyphones modeled in the best multilingual
system ML5-tag. In ML5-tag3 the model number is
reduced to 40% of the monolingual systems (3000 vs
5x1500), which leads to 3.14% (1.2% - 5.0%) perfor-
mance degradation in average. But not all of the
degradation can be explained by the reduced model
number as the comparison with ML5-tag75 shows.
This system is of same model size like the 5 mono-
lingual systems, but we still observe an average per-
formance gap of 1.07% (0.3% - 2.4%). This finding is
coincident to other studies [3], [6], and [2]. We there-
fore draw the conclusion that so far sharing data across
languages decreases the performance with respect to
monolingual speech recognition.

5 Language Information

In this section we intend to investigate the perti-
nence of language information coded in the acoustic
models. We analyse the ratio of language questions

compared to phonetic questions as well as the lan-
guage information rate of polyphone models.
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Figure 3: Importance of Language Questions

For the purpose of pertinence we computed the sum
of entropy gain from the clustering procedure and plot-
ted it over the number of splitted polyphones in figure
3. The curve "sum of all questions” gives the overall
entropy gain of all questions asked during the clus-
tering procedure, whereas the curve "phonetic context
questions” shows the entropy gain belonging to non-
language questions. The gap between both curves in-
dicates that major parts of the entropy gain results
from language questions. The remaining five curves
give the contribution of questions belonging to only
one language. It is shown that questions about Korean
and Turkish are more important than about other lan-
guages, especially in the beginning of clustering. This
indicates that sounds in those two languages seems to
be different from the rest. Both results demonstrate
that language questions are frequently asked and are
especially in the beginning more important than ques-
tions about the phonetic context of a phoneme. It is
also evident that the data-driven decision does not re-
flect the TPA-based classification across languages.

In table 4 we compile the detailed list of asked ques-
tions ranked by frequency, after clustering 500, 1500,
and 3000 polyphone models. The highly frequent oc-
currence of the question about the language group Ko-
rean+Turkish sustains the above findings. Also the
decreasing importance of language questions towards
the end of splitting process can be seen from compar-
ing column ”500 models” to ”3000 models”.

Second, we want to analyze the language informa-
tion rate of the resulting polyphone models. For this
purpose we computed the language distribution for
each split node as pictured in figure 4. We replaced
the Gaussians distributions in the existing polyphone
cluster tree by these language distributions and recal-
culated the entropy based distance. The cumulated
distance is plotted over the number of nodes in figure



[ # 500model | # 1500 model | # 3000 model |
76 KO+4+TU 100 KO+TU 146  wordbound
38 KOREAN 73 KOREAN 131  back-vow
30 front-vow 73 back-vow 130  front-vow
27  back-vow 65  front-vow 128  consonant
23 vowel 61  wordbound 113 KO+TU
22 unvoiced 53  consonant 98 KOREAN
20 silence 48  unvoiced 97  voiced
19  fric-sibil 48  alveodental 90 vowel
16  wordbound 46  vowel 88  unvoiced
14  nasal 42  voiced 85 nasal
10  voiced 42  nasal 84  alveodental
10  round 36 silence 79 JAPAN.

10 JAPAN. 36  plos-unvoic 63  plos-unvoic
10  consonant 35  frik-sibil 59  frik-sibil

9  plos-unvoic 32 JAPAN. 59  close-vow

9 open-vow 29  round 56  silence

9 CR+JA+SP 28  plosive 55 round

Table 4: Prominence of asked questions

K s§JCT

Figure 4: Language distribution of tree node

5. The most important finding is that main parts of
the language information are clustered out after about
3000 splits, which means that in our case the multi-
lingual system above 3000 polyphone models consists
of mostly monolingual acoustic models.

6 Cross-language Adaptation

In the previous sections we examined the useful-
ness of multilingual acoustic modeling with respect to
monolingual speech recognition. In this section we in-
vestigate the feasibility of the multi-language interface
when applied to cross-language transfer, i.e. the adap-
tation to a new unseen input languages, in this case
to the German language. For adaptation we used up
to 14000 words (1000 utterances) spoken by 13 na-
tive German speaker, for testing 2500 words (200 ut-
terances) spoken by 3 speakers. We performed two
iteration of Viterbi to adapt to the target language
and do not re-cluster the polyphone trees, but simply
training the Gaussian and mixture weights of the lan-
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Figure 5: Language information rate

guage dependent models. The German baseline sys-
tem achieves 15.8% word error rate tested on a 60k-
dictionary.

For recognizing a new target language we need a
pronunciation dictionary suitable for this language in
terms of the phoneme model set of the bootstrap
engine. We investigate two different approaches for
adaptation of target pronunciation dictionaries: the
data-driven and the TPA-based approach, and com-
pare them by running recognition tests using the re-
sulting dictionaries. For our dictionary adaptation ap-
proaches we presuppose that either phonetic labels of
a limited amount of data or a pronunciation dictio-
nary in an arbitrary phoneme set is available. If none
of them is given [4] introduced an algorithm which
achieves promising results using the MMI-based cri-
terion to initialize a phonemic representation and im-
prove this representation iteratively applying a genetic
algorithm. However this approach requires an isolated
word task and thus is applicable to connected speech
only if at least word labels are available.

In the data-driven approach (data-driven) we are
running a phoneme recognizer of the bootstrap lan-
guage to decode utterances spoken in the target
language. The resulting hypotheses are than com-
pared frame-wise to the reference phoneme string. A
phoneme similarity matrix is calculated and every tar-
get phoneme is replaced by the counterpart given the
highest frame confusion frequency. In the heuristic
IPA-based approach (IPA-ML), the target language
phoneme is related to that phoneme of the bootstrap
set which is assigned to the same symbol in the IPA
reference scheme. If no counterpart can be found that
phoneme is chosen, which is as close as possible to the
target phoneme in terms of the ITPA classification. If
we are using our five-lingual systems for bootstrap-
ping a new language each sound can have up to five
counterparts, one in each language. We explore dictio-
naries with different numbers of counterparts. In the



TPA-5L dictionary the decision for the best matching
phoneme is left to the decoder by including 5 language
dependent pronunciation variants, one variant for each
language involved in the model combinagion.

Base- CR Ja KO SP TU  ML5- ML5- IPASL IPA-  data-

line tag#d tag3 ML driven

Figure 6: Cross-Language Performance

Throughout our recognition experiments we explore
four questions: first we analyze the effect of cross-
language transfer from monolingual versus multilin-
gual models by comparing the ML&-miz systems to
the monolingual systems. Second we investigate the
usefulness of the different model combination (ML5-
tagd vs ML5-mix), third we examine the effect of dif-
ferent, parameter size (ML5-tag?d vs MLi-tag¥) and
last but not least we compare the data-driven versus
the TPA-based dictionary approach for the ML§-mix
system. Figure 6 summarizes the results of the recog-
nition tests (the three rightmost bars belong to the
ML3-mix system).

One of the major outcome is that the multilingual
system outperforms all monolingual systerns. The
average performance of the monolingual systems ig
36.4% word error rate (47.4% - 28.4%), versus 27.1%
for ML5-miz. From this result we can conclude that
language transfer from multilingual acoustic modcls
achieves hetter results, especially if few or nothing is
known about the new language. Second, with regard
to cross-language transfer the ML5-mizx system out-
performs the MLi-tag system. This indicates, that
dedicated multilingual systems should be developed
depending on whether crogs- or multilingual gpeech
recognition is projected. In the first casc the ML5-miz
system should be favored, in the latter the MLS-tag
system. Third, increasing the number of model pa-
rameter do not improve the performance (ML5-tag?s
vs ML5 tag3) significantly. Finally we found from the
experiments that the data-driven dictionary approach
is clearly outperformed by the heuristic IPA-based ap-
proach.

7 Conclusion

In this paper a multi-language speech interface
for up to eight languages, namely Chinese, Croat-
ian, Japanese, Korean, Portuguese, Russian, Spanish,
and Turkish is presented. To create multilingual con-
text dependent acoustic models we evaluated different,
methods of pararmeter sharing. The resulting systems
have been applied in language independent and lan-
guage adaptive sctups.
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