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ABSTRACT

For many practical applications of speech recognition sys-
tems, it is desirable to have an estimate of con�dence for
each hypothesized word, i.e. to have an estimate which
words of the speech recognizer's output are likely to be cor-
rect and which are not reliable.
Many of today's speech recognition systems use word lat-
tices as a compact representation of a set of alterna-
tive hypothesis. We exploit the use of such word lat-
tices as information sources for the measure-of-con�dence
tagger JANKA [1]. In experiments on spontaneous hu-
man-to-human speech data the use of word lattice related
information signi�cantly improves the tagging accuracy.

1. INTRODUCTION

Current speech recognition systems are far from perfect.
Unfortunately, number and location of the errors in their
output is usually unknown. However, this information could
be used in a number of applications. Examples are word se-
lection for unsupervised adaptation schemes like MLLR [5],
automatic weighting of additional, non-speech knowledge
sources like lip-reading, or aiding a NLP system towards
generating repair dialogs in case a semantically important
word has a low con�dence.
Consider the sentence "Mary loves her little child" and the
corresponding speech recognizer output "Eight Mary loves
her brittle child". Then, the desired output of a measure of
con�dence (MOC) tagger would be "0.0, 1.0, 1.0, 1.0, 0.0,
1.0" where "0.0" stands for a recognition error and "1.0"
for a correctly recognized word.

Previous work has shown [1] [2] [3] that the representation
of alternative hypothesis, like N-best-lists or word lattices,
can be used estimate word-level con�dence. Many state-
of-the-art speech recognition systems output their result in
the form of word lattices anyway. Therefore, it would be
convenient if a MOC tagger could be built on this type of
output alone. In this work, we describe several di�erent
features which can be extracted from word lattices alone.
The correlation of the features with the actual error rate
on an independent test set is measured. In experiments
carried out on spontaneous speech data we show that a
high-accuracy MOC tagger can be built basing only on the
word lattice. In an additional experiment, we compare the
results of the purely lattice-based con�dence tagger with

the performance of a con�dence tagging system that uses a
combination of the lattice-based features with a large set of
non-lattice related knowledge sources.

2. EVALUATING CONFIDENCE TAGGER

Di�erent methods for the evaluation of con�dence measur-
ing systems have been proposed [8] [7] [10]. However, the
best method for scoring depends on the application for the
con�dence tags. In this work, con�dence accuracy CA, de-
�ned as

CA =
Number of correctly assigned tags

total number of tags
(1)

is used.

Another measure, which can only be used for continu-
ously valued con�dence tags, is the plot of precision (PRC)
and recall (RCL) over decision threshold. PRC and RCL
are de�ned as

PRCX =
Number of correctly assigned tags for class X

Number of total tags for class X
(2)

RCLX =
Number of correctly assigned tags for class X

total number of elements in class X
(3)

where X 2 fcorrect; falseg.
A single metric for con�dence scores, which can be viewed

as normalized cross entropy, has been proposed by NIST as

S =

H(C) + 1

N
(
P

correct

log
2
(Pc) +

P

incorrect

log
2
(1� Pc))

H(C)
(4)

where Pc is the output of the MOC tagger for the a-
posteriori probability that word c has been correctly rec-
ognized. H(C) is the base entropy H(C) = �(p log p+(1�
p) log(1�p)) and p the a-priori probability that a hypothesis
word is correct.

3. DERIVING KNOWLEDGE SOURCES

FROM WORD LATTICES

In many applications of speech recognition it is desirable to
have more than one hypothesis for a given utterance. In
such cases, many existing speech recognition systems use
word lattices as output format. Through the use of word
lattices a very large number of alternative hypotheses can
be stored with a small amount of memory.



In our system, a word lattice is a directed graph, where the
nodes are associated with words and the links represent the
possible succession of words in the di�erent hypothesis. As
the same word may have a di�erent number of frames when
followed by a di�erent successor, the acoustic word scores
must be stored in the links rather than in the nodes of the
lattice.

3.1. Link probability

For a given word lattice, the probability of any link may be
computed in very much the same way as in the standard
forward-backward algorithm [12] for HMMs. Here, the lat-
tice nodes can be viewed as HMM states, and the links of
the lattice give the possible transitions. As the nodes are
associated with the words in the hypothesis, the emission
probability of a node is the acoustical score of this word at
this time segment. The transition probability can be taken
from the statistical language model which has been used in
the decoding process. As a result of the forward-backward
algorithm, the probability of each link in the lattice is avail-
able. These probabilities can be directly interpreted as a-
posteriori probabilities for words (the start nodes of the
links) occurring in the time segment of the link.

The plot of recognition error probability over gamma is
shown in �gure 1.
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Figure 1. Error rate over feature value for feature gamma

3.2. Hypothesis density

In the decoder of a speech recognizer for large vocabular-
ies, unlikely hypos must be pruned from the search space.
In time segments where the probability for a word Wi is
very much higher than the probability of all other words,
most of the competing other words are pruned. As the word
lattice can be viewed as the compact representation of the
decoder search space, the number of links that span such a
time segment should be low. If, on the other hand, a great
number of words has similar likelihood in a time segment,
no e�ective pruning can take place, and hence the num-
ber of links in this time segment will be high. As a high
number of hypos with similar likelihood implies a higher
probability of error, the number of links that span the time
segment of a word in the most likely hypothesis should be
strongly correlated with the word error. This number can

be easily computed for each frame of an utterance. For each
word, we computed three numbers of competing links: at
the word beginning, at the word end, and the average num-
ber averaged over the time segment into which the word was
aligned. The resulting features are named nTa, nTe and
nAverage, respectively. To capture the e�ects of high or
low con�dence of the neighbouring words, we also computed
the hypothesis density at the last frame of the predecessor
word and the �rst frame of the successor word. This two
features were named nPre and nAfter.

3.3. Acoustic stability

For this feature [6] [7], a number (typically 100) of alterna-
tive hypotheses with di�erent weighting between acoustic
scores and language model scores is computed. Each of
these hypotheses is aligned against the reference output of
the recognizer, where the reference output is de�ned as the
output with the (assumedly) best weighting between acous-
tics and language model. For each word of the reference
output, the number of times the same word occurs in the
set of alternative hypotheses, normalized by the number of
alternative hypotheses, is taken as feature value.

3.4. Correlation results

To exploit the usefulness of the new features, we computed
the (linear) correlation of the feature values with the likeli-
hood of a recognition error. A high correlation indicates a
useful feature. As a comparison, a 'classical' feature for con-
�dence evaluation, the normalized acoustic score per frame,
is shown. The correlation coe�cients are summarized in ta-
ble 1.

Feature correlation

gamma 0.520
A-stabil 0.481
nPre -0.401
nAfter -0.231
nTa -0.388
nTe -0.335
nAve -0.377

normScore -0.171

Table 1. Correlation coe�cients to c/f tag

4. EXPERIMENTAL

4.1. Database

For all described experiments we used the GSST database,
which has been collected simultaneously at four di�erent
sites in Germany. It consists of high-quality recordings of
human-to-human spontaneous German dialogs in the ap-
pointment scheduling domain, i.e. two persons try to sched-
ule a meeting within the next month.
A more detailed description of the database is given in [1].

For the evaluation of the word lattice features described
in this paper, we used a subset of 1251 utterances from
the GSST database. None of the speakers of this subset
was used for the training of the acoustic models and the
language model of the recognizer. The subset data was



divided into a training, crossvalidation and test set. Table
2 shows the composition of the subset of the database used
for training and evaluation of the measure of con�dence
classi�cator.

set speakers utterances words duration
(min)

Training 46 785 14906 101

Crossvalid. 6 134 3063 22

Test 20 332 5940 39

Total 72 1251 23909 162

Table 2. Database composition

4.2. The JANUS-3 system

The speech-to-speech translation system JANUS-3 [9] is a
joint e�ort of the Interactive Systems Labs at Carnegie
Mellon University, Pittsburgh, and the University of Karl-
sruhe, Germany. The baseline speech recognition compo-
nent of JANUS-3 uses mixture-gaussian, continuous density
HMMs with a scalable amount of parameter tying as acous-
tic model. A standard statistical trigram-backo� language
model is used. In the preprocessing stage, mel-cepstral
LDA-transformed coe�cients are computed with a frame
rate of 10 ms. After the initial recognition run, vocal tract
length normalization [4] is employed.
The JANUS-3 decoder achieved a word error rate of 13.2%
in the 1996 VERBMOBIL evaluation. This was the lowest
error rate of the �ve participating institutions.
In the experiments described, we evaluated the system that
was used for the required test of the 1996 VERBMOBIL
evaluation. The baseline con�dence accuracy on the MOC
test set, when tagging all words with 'correct', was 85.3%.
A detailed description of the JANUS-3 recognizer can be

found in [1] [4].

5. RESULTS

5.1. Evaluation of the new features

To evaluate the performance of the six new features (nTa,
nTe, nAve, nPre, nAfter and the forward-backward
probability gamma), we built a set of linear classi�ers bas-
ing on di�erent combinations of the input features. The
linear classi�ers made use of an LDA transformation based
on the classes [correctly recognized, recognition error]. A
more detailed description is given in [1].

The baseline con�dence accuracy CA on the evaluation
set was 85.3%. The results are summarized in table 3. As a
comparison, the result achieved with 11 not lattice related
features [1] is given.
The classi�er relying solely on the output lattice per-

formed very well in comparison to a classi�er that made
use of the full set of 18 features.

5.2. Classi�er design

The transformation based approach described in the previ-
ous section works well for linearly separable classes. How-
ever, on many data sets it does not yield satisfying results.
Therefore, we compared two additional classi�ers with the

Features CA error reduction

baseline 85.3% -
gamma alone 88.0% 18.3%

nTa + nTe + nAve 87.5% 14.9%
plus nPre and nAfter 87.9% 17.7%

plus gamma 88.4% 21.1%
plus acoustic stability 88.9% 24.5%
acoustic stability alone 87.4% 14.3%

11 non-lattice features 87.3% 13.6%

all features combined 90.0% 29.9%

Table 3. Performance of di�erent feature sets

linear classi�er: a 3-layer neural network (described in de-
tail in [1]) and a decision tree based classi�er, as described
in [11]. The results are summarized in table 4. As can be
seen, the neural net classi�er yields slightly better results,
than the linear classi�er.

Features linear tree neural net

lattice only 88.9% 88.5% 88.9%
all 90.0% 89.6% 90.1%

Table 4. Performance of di�erent classi�ers

5.3. Adding contextual information

It has been shown [1], that the use of contextual informa-
tion, i.e. the neighbouring words, improves recognition per-
formance. Therefore, we added the feature vector of the left
and the right neighbour of each word to the input of the
neural net. As some of the lattice related features contain
contextual information, the additional gain of the context
is expected to be smaller for the lattice based classi�er than
for the full system. The result is shown in table 5.

Features context CA S

lattice only no 88.9% 0.326
lattice only yes 89.1% 0.340

all no 90.1% 0.398
all yes 90.6% 0.416

Table 5. Inuence of contextual information

The result in terms of PRC and RCL are shown in �gure
2. For a recall rate of 90%, i.e. 90% of the correctly recog-
nized words are spotted as such, a precision of more than
95% can be achieved.

6. SUMMARY

We have shown, that the word lattice that is the output of
many speech recognition systems, contains useful informa-
tion which allows to estimate the likelihood of a misrecog-
nition of every word of the recognizer's output. The per-
formance of a con�dence tagger which relied solely on the
lattice was higher than that of a classical approach using 11
non-lattice related features [1], which included normalized
word scores, language model backo�s, word lengths, speak-
ing rate, and others.
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Figure 2. Precision and recall of best system
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