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Abstract

This paper addresses the question of how to in-
crease local coherence in summaries of multi-
party conversations. Due to the interactive na-
ture of dialogues, local regions of coherence of-
ten stretch across different speakers, as for in-
stance in question-answer pairs. We present
an approach to automatically detect those re-
gions of local coherence and evaluate the re-
sulting summaries’ fluency and informativeness.
Our approach increases summary fluency sig-
nificantly while not compromising informative-
ness.

1 Introduction

Summary coherence is one of the major chal-
lenges for extract based summarization meth-
ods: in this case, summaries are not gener-
ated from some abstract semantic representa-
tion, resulting from a deeper analysis of the orig-
inal text, but rather composed of passages from
the original text (usually sentences or clauses)
which are deemed to be relevant by some kind
of relevance metric. When automatically sum-
marizing well structured written texts, such as
newswire data or scientific papers, the follow-
ing strategies have been used to increase local
coherence of such summaries, sometimes used
in combination with each other: (a) lead based
summaries (extracting the contiguous header
of the text) (Brandow et al., 1995; Wasson,
1998); (b) paragraph based summaries (using
paragraphs as minimal extraction units) (Mitra
et al., 1997; Salton et al., 1997); (c) inclusion
of sentences which likely contain antecedents
to anaphora in the current summary sentences
(Johnson et al., 1993); (d) replacement of pro-
nouns and definite descriptions by their an-
tecedents (by means of automatic anaphora res-
olution) (Boguraev and Kennedy, 1997). Other

methods, such as automatic analysis of dis-
course structure (Marcu, 2000), are more aimed
at increasing the global coherence of a summary.

Spoken dialogue summarization introduces
at least one additional dimension of coherence
which is absent from written text generated
by a single author: local cross-speaker coher-
ence. Speakers accept or deny requests from
each other, pose and answer questions, or ac-
knowledge or comment on what was said by an-
other dialogue participant. This paper focuses
on the challenge of how to identify passages
with cross-speaker coherence and to what ex-
tent this cross-speaker information linking helps
to increase the local coherence of spoken dia-
logue summaries. In particular, it addresses the
important subset of the detection of question-
answer regions within a dialogue. This infor-
mation is used when generating extract based
summaries to output complete question-answer
regions, rather than portions of them. A user
study is conducted to look at how our approach
(as well as an optimal oracle) affects both the
fluency and the informativeness of the resulting
summaries.

The organization of this paper is as follows:
The next section motivates the paper, then we
briefly discuss related work in section 3. Sec-
tion 4 describes the corpus we use for the ex-
periments, followed by the description of our
question and answer detection components (sec-
tions 5 and 6), including evaluations thereof.
The effects of Q-A-detection on informativeness
and fluency are evaluated in sections 7 and 8.
We discuss the results of the experiments, as
well as future work in section 9, before we con-
clude the paper (section 10).



2 Motivation

The focus of this work is the issue of lo-
cal coherence in spoken dialogue summaries
in unrestricted domains. The work is per-
formed in the context of a maximum marginal
relevance (MMR) summarizer (Carbonell and
Goldstein, 1998), which is based on TFIDF!
weights, and which uses manually determined
topical segments from spoken dialogues as in-
put. The summarizer also performs automatic
disfluency detection and removal, but uses man-
ually marked sentence boundaries.? For the
purpose of this paper, we use manual tran-
scriptions of the spoken dialogues. To gener-
ate the summary, the MMR summarizer itera-
tively creates a ranked list of sentences based
on their saliency, while minimizing their redun-
dancy with sentences already present in the
summary. The generation process is stopped
when the length threshold of the summary is
reached (e.g., 15% of the words in a segment),
and then the sentences from the ranked list are
presented in text order.

Let us now look at the following MMR extract
summary of a conversation transcript (15%
length of the original; a, al, and b are speaker

labels):

254 b : It’s just it’s very hard to pass
this test right now he is stressed
it’s awful

267 b : He’s taking three hours of classes

269 a : What then what will happen with
the roommate situation

278 al: Are you planning to move closer
to the university

291 a : I guess at school you just kind [...]

301 a : Because sometimes I perceive especially
when we first start talking that you’re
sort of struggling to speak english

304 b : That’s only because I just spent the
weekend with four people I that only
know spanish

365 al: Do you are you taking lots of photos

with your trips on

It is quite obvious that part of the reason for
the impression of incoherence in this example
is related to the fact that several questions in

'TFIDF: term frequency times inverse document fre-
quency

2A detailed description of the dialogue summariza-
tion system is provided in the first author’s dissertation
(Zechner, forthcoming).

this segment of the dialogue lack their corre-
sponding answers (sentences 269, 278, 365). To
increase the local summary coherence, we would
like to be able to (a) identify the questions, (b)
identify their answers, and (c) link them to-
gether such that whole question-answer regions
can appear in the summary. We now present,
as a comparison, a 15%-summary of the same
underlying text as above, but adding complete
Q-A regions whenever the MMR algorithm en-
counters a question or its answer, assuming an
oracle knowing the location of the Q-A regions
(Q and A denote questions and their answers):

264 b : It’s just it’s very hard to
pass this test right now he
is stressed it’s awful
267 b : He’s taking three hours of classes
Q 269 a : What then what will happen with

the roommate situation

A 271 b : No

A 272 b : I'm moving

Q 278 al: Are you planning to move closer
to the university

A 279 b : Yes

291 a : I [...]

301 a : Because sometimes I perceive
especially when we first start
talking that you’re sort of
struggling to speak english

304 b : That’s only because I just spent
the weekend with four people I
that only know spanish

Q 365 al: Do you are you taking lots of
photos with your trips on
A 366 b : Yeah

We can see that the effect of an approach for
Q-A detection would be an increase in local co-
herence and text fluency. At the same sum-
mary size, these Q-A regions will cause some
other sentences (or parts thereof) to disappear
from the summary, so its overall informativeness
could be affected negatively. However, we con-
jecture that this effect will be compensated by
the higher informativeness of the locally coher-
ent Q-A regions. Thus, our initial hypothesis
for this paper is that when adding a question-
answer detection component to the summarizer,
(a) the coherence of the resulting summaries will
be increased, which will be reflected in higher
fluency and readability, and (b) the informative-
ness of the summary (its accuracy or relevance)
will not decrease significantly.



3 Related Work

While some amount of research has been done
in the area of knowledge based summariza-
tion of spoken dialogues in narrow domains
(Kameyama et al., 1996; Reithinger et al.,
2000), extract based dialogue summarization in
unrestricted domains has been explored very lit-
tle so far. Research on audio summarization
in general (without focusing on dialogues) has
been conducted in the context of the TREC
spoken document retrieval conferences and the
DARPA Broadcast News workshops in recent
years (Valenza et al., 1999; Hirschberg et al.,
1999). Our own previous research described
a first prototype of a dialogue summarization
system in (Zechner and Waibel, 2000) and its
embedding in an architecture for transcribing,
archiving, retrieving, and summarizing of multi-
party meetings in (Waibel et al., 2001).

Detecting a question and its corresponding
answer can be seen as a sub task of the speech
act (SA) detection and classification task. Most
systems described in the literature have been
operating in narrow and well-defined domains,
but recently, (Stolcke et al., 2000) presented a
comprehensive approach to speech act model-
ing with statistical techniques that extends to
corpora of potentially unrestricted domains. A
good overview and comparison of recent related
work can also be found in this article. Re-
sults from their evaluations on SWiITCHBOARD
data (Godfrey et al., 1992) show that word
based speech act classifiers usually perform bet-
ter than prosody based classifiers, but that a
model combination of the two approaches can
yield to an improvement in classification accu-
racy.

4 Corpus

The corpus we use for our Q-A detection exper-
iments reported in this paper is characterized in
Table 1. We use human generated transcripts
of spoken dialogues from four different genres:

e English CALLHOME and CALLFRIEND: 12
dialogues from the Linguistic Data Consor-
tium (LDC) collections, of which we used
8 for general system tuning and develop-
ment of the answer detection component
(8E-CH) and 4 for an independent evalua-
tion set (4E-CH) (LDC, 1996). These are

recordings of phone conversations between
two family members or friends.

e NEwsHour (NHouRr): Excerpts from
PBS’s NewsHour TV show with Jim
Lehrer (recorded in 1998).

e CrossFIRE (XFIRE):  Excerpts from
CNN’s CrossFIRE TV show with Bill
Press and Robert Novak (recorded in
1998).

e GrouP MEETINGS (G-MTG): Excerpts
from recordings of scientific project group
meetings? (recorded in 1998).

The corpus was manually annotated in the
following three dimensions:

1. topical boundaries: First, four to six hu-
man annotators marked topical boundaries
independently, and in a second phase, a
sub-group of two annotators constructed a
“gold standard”, based on boundary posi-
tions selected by at least half of the annota-
tors in the first phase. The resulting corpus
comprises 80 topical segments in total. For
all experiments in this paper, the summa-
rization system operates on these topical
segments individually.

2. relevant text spans: The same group of 4-6
annotators marked text spans4 comprising
about 10-20% of the words in each topical
segment which should form their summary-

relevant “cores”.?

3. questions and their answers: Questions
and answers were marked up in the fol-
lowing way: Every sentence which is a
question was marked as either a Yes-No-
question or a Wh-question. Exceptions
were back-channel questions, such as “Is
that right?”, rhetorical questions, such as
“Who would lie in public?”, and other
questions which do not refer to a propo-
sitional content. These were not marked

nteractive Systems Laboratories, Carnegic Mellon
University

4Typically, these correspond to speaker turns or sen-
tences, but they can be longer or shorter, as well.

5 A second phase for the “gold standard” creation was
also conducted here; this paper, however, does not make
use of the gold standard annotations, but rather of the
average of the individual annotations in the first phase
(see section 7.1).



Data set 8E-CH 4E-CH NHour XFIRE G-Mra
dialogues (total) 8 4 3 4 4
topical segments (total) 28 23 8 14 7
different speakers (average) 2.1 2 2 6 7.5
sentences (average) 280 366 101 281 304
questions (in % of sentences) 3.7 6.4 6.3 9.8 4.0
disfluent (in % of words) 16.0 16.3 11.8 4.2 23.9

Table 1: Data characteristics for the corpus.

(even if they have an apparent answer),
since we see the latter class of questions as
irrelevant for the purpose of increasing the
local coherence within summaries. For each
Yes-No-question and Wh-question which
has an answer, the answer was marked with
its relative offset to the question it belongs
to. Some answers are continued over sev-
eral sentences, but only the core answer
(which usually consists of a single sentence)
is marked. This decision was made to bias
the answer-detection module towards brief
answers, and to avoid the question-answer
regions getting too lengthy, at the expense
of summary conciseness.

5 Automatic Question Detection

For training of the question detection compo-
nent, we use the manually annotated set of
roughly 200,000 SWITCHBOARD speech acts.®
We used two different methods: (a) a speech
act tagger,” and (b) a decision tree based on
trigger word and part-of-speech information.

The speech act tagger tags one speech act at a
time and hence can only make use of speech act
unigram information. Within a speech act, it
uses a language model based on parts of speech
(POS) and the 500 most frequent word/POS
pairs. It was not specifically optimized for the
task of question detection. Its typical runtime
for speech act classification is about 10 speech
acts per second.

The decision tree classifier (C4.5, (Quinlan,
1992)) uses the following set of features: (a)
POS and trigger word information for the first

LVCSR

from

SFrom the Johns Hopkins University
Summmer Workshop 1997, available
http://www.colorado.edu/ling/jurafsky /ws97/.

"Thanks to Klaus Ries for providing us with the soft-
ware.

and last five tokens of each speech act®; (b) SA
length; and (c) occurrence of POS bigrams. The
set of trigger words is determined by collecting
words which frequently occur close to sentence
boundaries.? To obtain the most discriminative
POS bigrams, i.e., bigrams whose distribution
varies heavily across Q-SAs vs. non-Q-SAs, we
used the following procedure:

1. for a balanced set of Q-SAs and non-Q-SAs
(about 9000 SAs each, see Table 3): count
all the POS bigrams in SA positions 1..5
and (n —4)..n (using START and END for
the first and last bigrams, respectively) and
memorize position type (beginning or end

of SA) and SA type (Q-SA vs. non-Q-SA)
2. for all bigrams:

(a) add 1 to the count (to prevent division
by zero)

(b) divide the Q-SA-count by the non-Q-
SA-count

(c) if the ratio is smaller than 1, invert it
(ratio:=1/ratio)
(d) multiply the ratio with the total fre-

quency of Q-SA-count and non-Q-SA-
count combined!®

3. extract the 100 bigrams with the highest
value

We trained two versions of the decision tree:
(a) with an unbalanced training set of about
20,000 SAs from the SWITCHBOARD training
data which reflects the true distribution of SAs

8Shorter SAs are padded with dummies.

In this paper, we use the notions of speech acts and
sentences interchangeably.

10 eaving out this step favors low frequency high dis-
criminative bigrams too much and causes a slight reduc-
tion in overall Q-detection performance.



SA tagger unbalanced DTree balanced DTree
precision Y .63 .26
recall .61 51 .84
Fi-score .59 .56 40
PTavg .59 .57 .55
typical classification speed (SAs/sec) 10 1000 1000

Table 2: Question detection performance on the 8E-CH corpus using three different methods.

in general and questions in particular; (b) with a
balanced training set of about 18,000 SAs from
the SWITCHBOARD training data which con-
tains approximately the same number of ques-
tions and answers. The motivation for the latter
decision tree was to enforce focus on the rel-
atively infrequent Q-classes (see Table 3) and
hence trying to boost recall at the expense of
precision, since the classifier would overestimate
the Q-classes on a non-skewed test set.

We evaluated the speech act tagger and the
decision tree classifiers on the 8 E-CH data set.
Table 2 reports precision, recall, Fj-scorell,
and precision-recall average!? for these question
detection experiments with the three different
classifiers used. Note that while the decision
trees’ performance is only slightly below the
speech act tagger’s scores, their typical classifi-
cation speed is two orders of magnitude higher.
For the remainder of this paper, we use the
unbalanced decision tree as question detection
component, which yields the best compromise
in overall performance (pr,,,) and runtime.

6 Automatic Answer Detection

After identifying which sentences are questions,
the next step is to identify their answers. From
the annotations, we observe that for the major-
ity of the Yes-No- and Wh-questions, the answer
is to be found in the first sentence of the speaker
following the speaker uttering the question. In
the remainder of cases, the majority of answers
are in the second (instead of the first) sentence
of the other speaker. Further, there are usually
no (or only very few) sentences uttered by the
speaker who posed a question after the ques-
tion is being asked and before the next speaker
starts talking. Unlike for the question detection
task, we here use a set of heuristic rules whose

Up = ;i—};, where P=precision and R=recall.
12 P+R
Pravg = -12-

parameters we train on the annotated corpus:

e if the first speaker change after the question
occurs more than mazChg sentences after
the question, the search is stopped and no
Q-A-pair is returned

answer hypotheses are sought for maxi-
mally mazSeek sentences after the first
speaker-change after the question, but not
over interruptions by any other speaker,
i.e., we check within a single speaker re-
gion!? (this is also the stopping criterion
for the following two heuristics)

answers have to be minimally minAns
words long; if they are shorter, we add
the next sentence to the current answer hy-
pothesis

even if the minimum answer length is
reached, the answer can be (optionally) ez-
tended if at least one word in the next
contiguous sentences matches a word from
the question (parameter sim); two differ-
ent stop lists (StopShort, StopLong), or no
stop list are used to remove function words
from consideration (parameter stop)'?

Our heuristics further handles simple embed-
ded questions of the type speaker A-Q1,
speaker B-Q2, speaker_ A-A2,
speaker B-A1, while disallowing crossovers
of the type speaker A-Q1, speaker X-Q2,
speaker B-Al, speaker Y-A2, where Al is
the answer to Q1 and A2 the answer to Q2.
The output of the algorithm is a list of triples
< Q, Astart, Aeng >, where () is the sentence-1D
of the question, Ag,.; the first sentence, and
A.nq the last sentence of the answer. There are
four possible outcomes for each hypothesized

12 A sequence of sentences spoken by the same speaker.
1 StopLong contains 571 words, StopShort only 89
words, most of which are auxiliary verbs and filler words.



unbalanced set | balanced set
Yes-No-questions 539 5569
Wh-questions 199 1989
other questions 178 1621
questions total 916 (4.6%) 9179 (50.3%)
non-Q speech acts 18784 9064
total speech acts 19700 18243

Table 3: Speech act frequencies for the 2 decision tree training sets.

triple: (a) irrelevant: a Q-A pair with a wrong-
fully hypothesized question (this is the fault
of the question detection module, not of this
heuristics); (b) missed: the answer was missed
entirely; (c) completely correct: A.,q coincides
with the correct answer sentence ID; and (d)
correct range: the answer is contained in the
interval [Agiqre, Aeng] but does not coincide
with Ag,gs. For the calculation of precision,
recall, and Fj-score, we count classes (c) and
(d) as correct and use the sum of all classes
for the denominator of precision and the total
number of Q-A-pairs as the denominator of
recall.

To determine the best parameters, we var-
ied them across a reasonable set of values and
ran the answer detection script for all com-
binations of parameters, using again the SE-
CH corpus. The following parameter setting
yielded the best answer detection performance:
maxChg = 2, maxSeek = 4, minAns =
10, stm = on, stop = no.

Table 4 presents the results of the Q-
detection, using the decision tree trained on
unbalanced data, and the Q-A-detection, us-
ing the output from the decision tree, for all
5 sub-corpora. Except for the rather small
NEwsHOUR corpus (with fewer than 20 ques-
tions or Q-A-pairs to identify), the typical Q-
detection Fj-score is around .6 and the Q-A-
Fy-score around .5. In two cases, the Q-A-
detection performance is slightly better than
the Q-detection performance. This seems puz-
zling at first glance but can be explained by the
fact that the answer detection algorithm prunes
away a number of Q-hypotheses, reducing the
space for potential Q-A-hypotheses.

Summary generation using detected
Q-A-regions

When we use the Q-A-detection component to
aid summarization, the basic MMR algorithm
stays the same. However, whenever a sentence
which is part of a Q-A-region is put into the
ranked list, the whole region is now added to
the summary. This amounts to taking the max-
imum MMR score of the sentences within a Q-
A-region to be its representative. Q-A regions
are always described with the triple of sentence-
IDs defined above: < @, Agtart, Aend >.

7 Influence on Summary Accuracy

This section uses a numeric score, summary ac-
curacy, to represent the quality of a summary.
It is based on human relevance annotations of
the dialogues and reflects how close the sum-
mary represents the opinion of the majority of
the annotators. We first define summary ac-
curacy, and then present experiments and their
results, using the MMR summarization system
and various methods of Q-A detection.

7.1 Definition

For each topical segment s, for each annotator
a, we define a boolean word vector of annota-
tions ws 4, each component w;, ; being 1 if the
word w; is part of a relevant text span for that
annotator and segment, and 0 otherwise. We
then sum over all annotators’ annotation vec-
tors and normalize them by the number of an-
notators per segment (A) to obtain the average
relevance vector for segment s, r;:

A .
b L (1)

To obtain the summary accuracy score sas
for any segment summary with length N, we



8E-CH 4E-CH NHour XFIRE G-Mrta
Q to detect 83 94 19 110 49
Q hypotheses 67 60 16 71 52
Q-detection (F}) .56 .58 .80 .60 .59
Q-A pairs to detect 68 69 18 79 32
Q-A pair hypotheses 54 54 14 54 33
Q-A-detection (F7) 51 .60 81 51 51

Table 4: Performance comparison for Q- and Q-A-detection (Q-detection with unbalanced decision

tree).

Q-A pairs | no Q-A det. automatic oracle
SE-CH 68 0.569 (0.170) 0.568 (0.169) 0.559 (0.170)
4E-CH 69 0.605 (0.128) 0.608 (0.123) 0.599 (0.139)
NHour 18 0.457 (0.232) 0.476 (0.248) 0.453 (0.230)
XFIRE 79 0.603 (0.129) 0.621 (0.151) 0.598 (0.118)
G-MrTa 32 0.572 (0.194) 0.595 (0.155) 0.572 (0.194)
total 266 0.574 (0.163) 0.582 (0.163) 0.568 (0.164)

Table 5: Average summary accuracy (with standard deviations in brackets) for 15% summaries,

using three different Q-A-detection methods.

multiply the boolean summary vector summ;'®

with the average relevance vector rs, and then
divide this product by the sum of the N highest
scores within r, (maximum achievable score),
rsorts being the vector rg sorted by relevance
weight in descending order:

Summ;yrs
N .
>oisq rsort

(2)

sas N =

It is easy to see that the summary accuracy
score always is in the interval [0.0, 1.0].

To illustrate the computation of summary ac-
curacy, we present a simplified example in Fig-
ure 1, where the segment to be summarized con-
sists only of one sentence and is annotated by
two human coders.

Suppose we want to summarize the 10-word
sentence in Figure 1 using 5 words (i.e., cre-
ating a 50%-summary). Suppose the summa-
rizer yields the string “for the concept summary
accuracy” as output. Since there are 5 words
with an average relevance score of 1.0, the max-
imum achievable score for a 5-word summary
would be 5.0, and the corresponding optimal
summary would be the string “simplified exam-

5For every word: 1 if the word is in the summary, 0
otherwise.

ple for summary accuracy”. Summing the aver-
age scores of the 5 words in the actual summary
yields 4.0. So the summary accuracy for this
sub-optimal summary is 4.0/5.0=0.8.

7.2 Experiments

To get an idea about how the summary accuracy
changes using Q-A-pair detection and linking,
we first tuned the parameters of the MMR sum-
marization system, using the 8E-CH sub-corpus
only. For the Q-A-detection component, we use
three different options: (1) no Q-A-detection
(this is the baseline system for this experiment),
(2) automatic Q-A-pair detection with the un-
balanced Q-detection decision tree and the A-
detection script, and (3) optimal Q-A-pair de-
tection, using an oracle informed by the human
annotators’ mark-ups.

Table 5 shows the results of these experi-
ments. While we note that in most cases, the
differences are rather small (¢-test: ¢ < .6, no
significant differences overall), we have to take
into account the low number of Q-A-pairs in
most of the dialogues. In dialogues with a
larger number of Q-A-pairs, there is sometimes
a noticeable improvement in summary accuracy,
particularly for the automatic Q-A detection
method. On average, the accuracy scores for the



TEXT:

annl: X X X
ann2: X X X
avg.score: O 0 01 1 1

this is a simplified example for the concept summary accuracy

X X
X X X X
0.5 0.5 1 1

Figure 1: Example for the computation of the summary accuracy score.

oracle summaries are slightly below the base-
line, while the summaries using our automatic
detection module are slightly above the base-
line. In short, this experiment shows that using
Q-A-detection for summary generation does not
significantly affect summary relevance.

8 User Study

For the purpose of testing whether Q-A-
detection can increase the local coherence of
summaries, we performed a user study. We
picked the 15 dialogue segments with the high-
est number of questions, since we wanted to
quantify the effect of Q-A detection on texts
which are particularly rich in Q-A-regions. For
each of these dialogue segments, we took the
same three versions of summaries described in
the preceding section, each of them again at
15% length of the original (by word count). We
had to exclude four segments which did not
change when using Q-A-detection, due to the
fact that the top-ranked sentences did not be-
long to any Q-A regions.

We then asked 6 subjects to rank the three
different versions of summaries of the remain-
ing 11 texts for (a) informativeness and (b) flu-
ency (the latter should reflect local coherence).
To aid the ranking process, the subjects had to
score the summaries first using a discrete scale
from 1 to 5 (for both dimensions). Informative-
ness should measure how much information the
summary contains (“dense” vs. “sparse” text);
the criterion for fluency should be how easy it
is to read the summary and how coherent it is.

The order of the texts, as well as the sum-
mary versions within each text, were random-
ized. The average summary length was 142
words, thus each subject had to read and eval-
uate a text corpus of about 4700 words, which
took, on average, about 31 minutes to complete.

Table 6 presents the results of this study.
Each number in the table is the average of 66
scores (11 texts times 6 subjects). For the rank
scores, we gave 3 points to the first rank, 2 to

the second, and 1 point to the last ranked sum-
mary version. In case of rank ties, we assigned
2.5 points (for rank 1=2) or 1.5 points (for rank
2=3), respectively. We observe that while the
informativeness of the different summary ver-
sions does not change on average (no statistical
difference), there is a significant improvement
in fluency over the baseline for both summaries
using automatic Q-A detection and oracle Q-A
detection (significant at o < 0.05).'® Individ-
ual subjects’ scores did not differ much in these
overall trends.

9 Discussion and Future Work

Both the results from the automatic summary
accuracy evaluation, as well as the results from
the user study show that using Q-A detection
does not significantly decrease the informative-
ness of the resulting summaries: neither evalu-
ation showed a significant difference in informa-
tion content or relevance for the three different
versions of summaries. At the same time, as the
user study clearly indicates, there is a significant
benefit to be gained from including Q-A-regions
in the summary in terms of summary fluency or
local coherence. These results confirm our ini-
tial hypothesis which stated that while we ex-
pect summary coherence to increase with Q-A-
region detection, we are sceptical about its ben-
efit to increase overall summary informativeness
and relevance.

We looked into the question why summary
accuracy (on average) seems to be improving
slightly (though not significantly) when we use
our automatic Q-A detection module, while it
stays at about the level of the baseline when
using the oracle Q-A detection. When inspect-
ing the summaries where this effect is most pro-
nounced, we find that the main reason lies in
the difference in Q-A region size between the
automatic method and the oracle: While the
oracle, derived from the human Q-A annota-

1% Using t-tests.



evaluation dimension Informativeness Fluency
Q-A detection method | no auto oracle | no auto oracle
average score | 3.18 3.18 3.24 | 2.82 3.12 3.50
average rank score | 2.01 2.00 1.99 | 1.68 2.02 2.30

Table 6: Results of the user study comparing three different versions of summaries (average across

all subjects and texts; n = 66).

tions, typically generates short answers (“core
answers”), the automatic method tends to pro-
duce somewhat longer answers, consisting of
multiple sentences. Particularly in cases where
the core answer consists of only one or very few
words (e.g., “yes”), the gain for summary ac-
curacy is negligible. To avoid this effect, the
oracle answer regions would probably have to
be designed longer than they currently are, but
this might have an adverse effect on Q-A de-
tection training and testing accuracy. Another
side effect of the shorter Q-A regions of the or-
acle method is that there are some (albeit few)
cases where the MMR ranking module misses a
Q-A region because the oracle Q-A region does
not include the current MMR-selected sentence
in its answer-part; this sentence is part of an ex-
tended answer region, which is in fact detected
by the automatic answer detection module.

We also want to note some mostly genre-
specific phenomena, which pose problems for
the Q-A detection component:

e In CALLHOME, we sometimes encounter
quoted questions, as in “A: he said: do you
like it?” — “A: and i said: yes”. The an-
swer detection module fails here since the
answer is provided by the speaker posing
the (quoted) question.

e A similar case, also mostly in CALLHOME,
is self-answered questions, such as “A: what
is my plan?” — “A: to graduate next

spring”.

e In CROSSFIRE, we sometimes encounter
questions with anaphoric reference to
larger parts of the discourse, where the
linking to their answers helps little for the
local summary coherence (e.g., “would you
accept that?”, “do you agree to this?”).

Future work in this area includes the follow-
ing:

e Improving the Q-A detection components
by incorporating additional features into
the decision tree (such as distance from
speaker change, preceding hypothesized
speech acts, prosodic information), and op-
timizing the length of the target answer
span.

e Making the algorithm for selecting Q-A re-
gions more sensitive to the overall region
relevance (as opposed to the maximum sen-
tence relevance).

e Learning heuristics to decide when the link-
ing of Q-A regions helps both coherence
and summary accuracy, and when it is bet-
ter avoided.

e Combining different methods for creating
local coherence in a sensible way, e.g., using
trainable weights. For instance, one could
combine weights for lead (segment initial
region) with weights for Q-A regions (em-
phasizing the dialogical nature of a text).

e Exploring the effect of relative and abso-
lute summary size on the benefit of Q-A
detection.

10 Conclusion

We have presented and evaluated an approach
to automatically detect questions and their an-
swers in spoken dialogues in unrestricted do-
mains. The output of this component is used
to aid a MMR summarizer to create summaries
with increased local coherence. Automatic eval-
uations as well as a user study show that
the goal of increasing summary fluency can be
achieved, without compromising summary ac-
curacy.
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