
Karlsruhe Institute of Technology

Master Thesis

A Hierarchical Approach to Neural
Context-Aware Modeling

Author:
Patrick Huber

1st Reviewer:
Prof. Dr. Alexander Waibel

2nd Reviewer:
Prof. Dr. Tamim Asfour

Supervisor:
Dr. Jan Niehues

This thesis is submitted in fulfillment of the requirements
for the Master’s degree of Science

at the

Institute for Anthropomatics and Robotics (IAR)

Interactive Systems Lab

May 28th 2017 to November 27th 2017

i

Declaration

I, Patrick Huber, hereby declare that I have developed and written the enclosed the-
sis titled, A Hierarchical Approach to Neural Context-Aware Modeling

completely by myself, and have not used sources or means without declaration in the
text. Furthermore, I declare, that this thesis has not been prepared for another ex-
amination or assignment, either wholly or excerpts thereof.

Date: Signed:

ii

Abstract
In the research field of natural language processing, many approaches for transla-

tion and transcription tasks are based exclusively on the local context of a sentence.
This restriction is reasonable when working with techniques such as n-gram models.
Modern machine-learning approaches, for example neural networks, have become far
more powerful and thus lifted the restriction of the models to a local context. There-
fore, the potential of employing an extended context to enhance natural language
processing systems is examined by evaluating the systems on a newly introduced
text-understanding task.

In the context of text understanding problems, a novel task to detect semantic
errors in contextual text passages is established. The definition of the task does
thereby not disclose any information about the position of the modifications, nor give
insight about the number of out-of-context substitutions on the data.

To evaluate the computational models on the task, an existing large-scale data
source is adopted through a newly introduced automated modification process. Al-
tering the data on a semantic level enables the machine-learning algorithms to be
tested against a challenging set of modified text passages that require comprising a
broader narrative discourse. The automated modification process is applied to the
2016 TEDTalk corpus containing over 2,000 TEDTalks distributed over various fields
and topics. Automating the process enables the cost-effective modification of the
complete dataset.

To create a baseline setup, a standard language model and a supervised binary
classification model are employed. Both approaches are only referring to one sentence
at a time and thus are not capable to infer meaning out of the greater context.

In order to overcome this limitation, a new model topology is developed to assess
the potentials of employing an extended context to improve existing systems. The
new model-design hierarchically encodes the narrative history and employs the most
salient features of the long-term context to support the intra-sentence out-of-context
error detection.

The result of the evaluation shows the limitation of the baseline models, indicat-
ing that the contextual errors cannot be identified when limiting the computational
models to a single sentence. Utilizing the context-aware topology with hierarchical
context representations increases the performance, showing the efficiency of hierarchi-
cal context models for the semantic error detection task.

iii

Zusammenfassung
Moderne Ansätze im Bereich der natürlichen Sprachverarbeitung verwenden einen

sehr beschränkten Kontext für Übersetzungs- und Transkriptionsaufgaben. Diese Be-
grenzung ist bei der Verwendung von n-gram basierten Ansätzen sinnvoll. Moderne
Maschine-Learning Algorithmen, wie Neuronale Netze, sind inzwischen jedoch deut-
lich fortgeschrittener und machen diese Beschränkung hinfällig. Im Zuge dieser En-
twicklung wird das Potenzial eines erweiterten Kontextes für maschinelle Sprachver-
arbeitungssysteme untersucht und auf eine Textverständnis Aufgabe angewandt.

Im Bereich der Textverständnis Probleme wird dazu eine neue Aufgabe zur Erken-
nung von semantischen Fehlern in kontextuellen Textabschnitten eingeführt. Per Def-
inition der Aufgabe werden weder Informationen über die Position der modifizierten
Wörter im Text, noch die Anzahl an Ersetzungen preisgegeben.

Um die Berechnungsmodelle auf der Aufgabe zu evaluieren wird eine existierende
Datenbasis mit einem neuentwickelten Modifikationsprozess angepasst. Die Daten
werden dabei auf einem semantischen Level verändert, so dass verschiedene maschinelle
Lernverfahren darauf getestet werden können. Die Modifikationen verlangen die Ver-
wendung eines erweiterten Zusammenhangs. Der automatisierte Prozess wird auf
die TEDTalk Datenbank aus dem Jahr 2016 mit über 2.000 TEDTalks aus unter-
schiedlichen Themengebieten angewandt, um den Datensatz für die Textverständnis
Aufgabe anzupassen. Die Anpassung des Datensatzes erfolgt aufgrund der Automa-
tisierung des Prozesses zu minimalen Kosten.

Als Ausgangspunkt für die Evaluation wird ein einfaches Sprachmodell sowie ein
überwachtes, binäres Klassifikationsmodell trainiert und getestet. Beide Ansätze
basieren dabei nur auf einen Satz und sind deshalb nicht in der Lage Informationen
aus dem Zusammenhang zu erschließen.

Um diese Beschränkung zu überkommen wird ein neues Modell entwickelt, welches
das Potenzial eines erweiterten Kontexts für existierende Systeme aufzeigt. Der neu
entwickelte Ansatz fasst den Zusammenhang des Texts dabei hierarchisch zusammen
um die Erkennungsrate von Kontext-Fehlern zu verbessern.

Das Ergebnis der Evaluation zeigt, dass die kontextuellen Fehler beim Verwenden
eines lokalen Kontexts von nur einem Satz nicht gefunden werden können. Bei der
Verwendung von Modellen mit hierarchischer Kontextrepräsentation wird die Erken-
nungsrate von Kontext-Fehlern verbessert. Das Ergebnis zeigt damit das Potenzial
von hierarchischen, kontextsensitiven Modellen für die Aufgabe der kontextuellen
Fehlererkennung.

iv

Acknowledgements
I would like to thank my thesis advisor Dr. Jan Niehues of the Interactive Systems
Lab at the Karlsruhe Institute of Technology (KIT). The door to Jan’s office was
always open whenever I ran into an issue with my research or writing. He consistently
supported me to make this thesis my own work and steered me in the right direction
whenever needed.
I would also like to acknowledge Lansi Chu and Tobias Huber for their support and
continuous encouragement as the proof readers of this thesis, and I am greatly thankful
for their very valuable comments.
Finally, I want to express my profound gratitude to my parents and to my whole family
for providing me with help and advice throughout my years of study and through the
process of researching and writing this thesis. This accomplishment would not have
been possible without them.

Thank you.

Patrick Huber

v

Contents

Declaration i

Abstract ii

Zusammenfassung iii

Acknowledgements iv

1 Introduction 1
1.1 The Institute . 1
1.2 Motivation . 2
1.3 Problem Statement . 2
1.4 Contributions to the Field . 2
1.5 Structure of the Thesis . 3

2 Background 4
2.1 Neural Networks . 4

2.1.1 Perceptron . 4
2.1.2 Feed-Forward Neural Networks 6
2.1.3 Recurrent Neural Networks . 6

2.2 Language Models . 8
2.3 Frameworks . 9

2.3.1 Keras . 9
2.3.2 Tensorflow . 10

3 Related Work 11

4 Task Definition and Preparation 12
4.1 The Task . 12
4.2 Transformation Process . 13

4.2.1 Tokenization . 13
4.2.2 Dataset Filtering . 13
4.2.3 Part-of-Speech Tagging . 13
4.2.4 Candidate Selection . 14
4.2.5 Contextual Replacement . 14
4.2.6 Output . 15

vi

4.3 Comparison of Data Sources . 15
4.4 Evaluation of the Transformation Process 18
4.5 Data Partitioning . 19

5 Model Topology 20
5.1 Preprocessing . 20

5.1.1 Atomic Elements . 20
5.1.2 Data Representation . 21

5.2 Baseline Model . 22
5.2.1 Language Model . 23
5.2.2 Binary Classification Model . 29

5.3 Context Aware Model . 29
5.3.1 Context Representation . 30
5.3.2 Context Aware Encoder . 32
5.3.3 Context Aware Decoder . 33

6 Evaluation 35
6.1 Measures . 35

6.1.1 F-Score . 35
6.1.2 Perplexity . 37

6.2 Baseline Model . 38
6.2.1 Language Model . 38
6.2.2 Binary Classification Model . 42

6.3 Context Aware Model . 44
6.3.1 NMT Context Representation 44
6.3.2 Context Aware Language Model 45
6.3.3 Attention-based Context Aware Language Model 51
6.3.4 Context Aware Binary Model 56

6.4 Evaluation Overview . 59

7 Conclusion 60

8 Further Work 62

A Code 63
A.1 Baseline Model . 63

A.1.1 Language Model . 63
A.1.2 Binary Classification Model . 64

A.2 Context-Aware Model . 64
A.2.1 NMT Context Representation 64
A.2.2 Context Aware Language Model 66
A.2.3 Attention-based Context Aware Language Model 67
A.2.4 Context Aware Binary Model 68

vii

B Raw Data 70
B.1 Baseline Model . 70
B.2 Context-Aware Model . 73

viii

List of Figures

2.1 Simplified Model of a Biological Neuron (Aboukarima et al., 2015) . . 5
2.2 Model of a Perceptron derived from Jain et al. (1996) 5
2.3 Common Neural Activation Functions (Karn, 2016) 6
2.4 Feed-Forward Network Topology (Quiza and Davim, 2011) 7
2.5 RNN Topologies (Karpathy, 2015) . 7

4.1 Dataset Generation Process . 16
4.2 TEDTalk Change-Log . 17
4.3 Modified TEDTalk File . 18
4.4 Distribution of Original and Modified Word Predictions 18

5.1 Preprocessing Applied to the TEDTalk by Matt Stone 23
5.2 Basic Neural Language Model developed by Bengio et al. (2003) 24
5.3 Folded- and Unfolded LSTM-RNN for the Baseline Language Model,

based on Olah (2015) . 25
5.4 Embedding Transformation . 26
5.5 t-SNE Visualizations of Word Embeddings learned during the Training

of the Language Model . 27
5.6 Recurrent Neural Network Design derived from Olah (2015) 27
5.7 Sequence-to-Sequence Model Overview 30
5.8 Language Model Context Vector Extraction 31
5.9 NMT Model Thought-Vector Extraction 32
5.10 Hierarchical Context Representation 33
5.11 Full Encoder-Decoder Model Design 34

6.1 Unfiltered F-Score Example . 36
6.2 Baseline Language Model F-Score . 41
6.3 Baseline Language Model Perplexity 42
6.4 Baseline Binary Classification Model F-Score 43
6.5 NMT Model Perplexity . 45
6.6 Context Aware Language Model Topology in Tensorboard 47
6.7 Context Aware Language Model F-Score (with Neural Machine Trans-

lation Context Representation) . 48
6.8 Context Aware Language Model Perplexity (with Language Model Con-

text Representation) . 49

ix

6.9 Context Aware Language Model F-Score (with Language Model Con-
text Representation) . 50

6.10 Context Aware Language Model Perplexity (with Neural Machine Trans-
lation Context Representation) . 50

6.11 Attention Based Context Aware Language Model Topology in Tensor-
board . 52

6.12 Attention Based Context Aware Language Model F-Score (with Lan-
guage Model Context Representation) 53

6.13 Attention Based Context Aware Language Model Perplexity (with Lan-
guage Model Context Representation) 54

6.14 Attention Based Context Aware Language Model F-Score (with Neural
Machine Translation Context Representation) 55

6.15 Attention based Context Aware Language Model Perplexity (with Neu-
ral Machine Translation Context Representation) 55

6.16 Context Aware Binary Classification Model F-Score (with Language
Model Context Representation) . 57

6.17 Context Aware Binary Classification Model F-Score (with Neural Ma-
chine Translation Context Representation) 58

x

List of Tables

4.1 Comparison of Different Data Sources 15

6.1 Language Model Instance Hyper-Parameters 40
6.2 Baseline Language Model Final Result 41
6.3 Baseline Binary Classification Model Final Result 42
6.4 NMT Model Hyper-Parameters . 44
6.5 Context Aware Language Model Hyper-Parameters 46
6.6 Context Aware Language Model (with Language Model Context Rep-

resentation) Final Result . 48
6.7 Context Aware Language Model (with Neural Machine Translation

Context Representation) Final Result 51
6.8 Attention Based Context Aware Language Model Hyper-Parameters . 53
6.9 Attention Based Context Aware Language Model (with Language Model

Context Representation) Final Result 54
6.10 Attention based Context Aware Language Model (with Neural Machine

Translation Context Representation) Final Results 56
6.11 Context Aware Binary Classification Model Hyper-Parameters 57
6.12 Context Aware Binary Classification Model (with Language Model Con-

text Representation) Final Result . 58
6.13 Context Aware Binary Classification Model (with Neural Machine Trans-

lation Context Representation) Final Result 59
6.14 Final Comparison of the Model Performance 59

B.1 Language Model Perplexity . 70
B.2 Language Model F-Score . 71
B.3 Binary Classification Model F-Score 72
B.4 NMT Context Representation Perplexity 73
B.5 Context Aware Language Model Perplexity (with Language Model Con-

text Representation) . 73
B.6 Context Aware Language Model F-Score (with Language Model Con-

text Representation) . 74
B.7 Context Aware Language Model Perplexity (with Neural Machine Trans-

lation Context Representation) . 74
B.8 Context Aware Language Model F-Score (with Neural Machine Trans-

lation Context Representation) . 75

xi

B.9 Attention-based Context Aware Language Model Perplexity (with Lan-
guage Model Context Representation) 75

B.10 Attention-based Context Aware Language Model F-Score (with Lan-
guage Model Context Representation) 76

B.11 Attention-based Context Aware Language Model Perplexity (with Neu-
ral Machine Translation Context Representation) 76

B.12 Attention-based Context Aware Language Model F-Score (with Neural
Machine Translation Context Representation) 77

B.13 Context Aware Binary Model F-Score (with Language Model Context
Representation) . 78

B.14 Context Aware Binary Model F-Score (with Neural Machine Transla-
tion Context Representation) . 79

1

Chapter 1

Introduction

The field of Artificial Intelligence (AI) has been skyrocketing for the last few years, be-
coming one of the most promising research topics in the context of computer science.
Even though many of the basic concepts and methodologies for state-of-the-art algo-
rithms have already been developed decades ago (McCulloch and Pitts, 1943; Kleene,
1951), the recent abundance of data and the increasing availability of computational
resources enabled a revival of machine learning.

Machine Learning as a major research field within AI strives to achieve universal
application in solving arbitrary tasks rather than special functionalities and well-
defined functions. This trend is also reflected on the research topic of natural language
processing (NLP). Closed systems that are only applicable for a limited group of people
or under special preconditions are no longer sufficient and mostly replaced by universal
approaches being able to adopt and learn self-reliant.

In the area of NLP, many approaches for translation and transcription systems have
been solely based on a local context using methodologies like n-grams and sentence-
based lattices for decades. With the introduction of neural networks, the base concept
for the models changed, but the restriction to a very limited scope remained. The
context of most modern translation and transcription systems is still limited to a
single sentence, not considering valuable information of the greater context.

1.1 The Institute

The Interactive Systems Lab (ISL) formed in 1989 is part of the Institute of Anthro-
pomatics and Robotics (IAR) at the Karlsruhe Institute of Technology (KIT).

The IAR focuses on human centered research with the goal to enhance human-
machine collaboration (IAR).

In this context, the ISL is a research lab aiming to enhance multilingual, multi-
modal communication between humans and computers focused on NLP tasks. The
main research topics are speech recognition and synthesis as well as translation sys-
tems and language understanding (ISL). The mission and vision of the ISL is not only

Chapter 1. Introduction 2

to develop new technologies on an academic level, but also to introduce and transi-
tion the results directly into the society (ISL). This approach was already successful
in creating solutions for real-world problems by introducing Jibbigo in 2009, the first
commercially available speech translator on a mobile phone and the first ever lecture
translation service in 2012.

1.2 Motivation

Two highly complex tasks in the area of NLP are the transcription of natural speech
and the translation of unstructured text. While both tasks use different approaches
and methodologies, the most state-of-the-art systems in both areas only take one
sentence at a time into account. This limitation is reasonable, as it addresses the
most general case. Additionally, the systems complexity increases by adding a longer
context through the introduction of new free parameters. Just taking a longer context
into account is therefore not advisable. Nevertheless, considering a longer context can
highly benefit the performance of the overall system.

1.3 Problem Statement

With the motivation for this thesis mentioned above, it should be determined whether
an extended context can enhance the semantic error detection within contextual text
passages compared to systems solely relying on a local context.

1.4 Contributions to the Field

We present a new approach to enhance existing models by incorporating a narrative
context. The context-aware extension can benefit many computational models in
various fields, especially when working with contextual text bases.

A prominent example where the context-aware extension can add direct value to
the overall computation is automatic speech recognition (ASR). In addition to the
acoustic model, the language model plays a crucial role in the fundamental equation
of speech recognition. The context-aware models proposed within this work can highly
benefit the language model by extending the employed context.

Another application is to augment translation systems. State-of-the-art systems
are mostly utilizing the advantages of asynchronous encoder-decoder neural network
designs. To extend these models to take a longer context into account, an additional
computation step can be added after the translation itself. The history of prior trans-
lated sentence can then be employed to assess the currently translated sentence and
enhance the reliability of the translation.

Chapter 1. Introduction 3

1.5 Structure of the Thesis

This thesis contains eight chapters describing the process to design and evaluate the
newly proposed context-aware computational model. Following this chapter, the main
concepts used within the thesis are introduced in chapter 2 and the previous work
conducted in the wider area of context-aware models is discussed in chapter 3.

In chapter 4, the newly developed semantic error detection task is introduced and
formally described. Subsequently, the developed modification process to extend the
evaluation dataset with out-of-context tokens is presented. The chapter finishes with a
short remark on the data partitioning process to separate the data into three mutually
exclusive sets for training, development and testing.

Chapter 5 discusses the data preprocessing and makes the first decisions influencing
the design of the models. It describes the transformation process to convert the data
into adequate inputs for the models. Following this, multiple baseline model topolo-
gies are introduced and explained. Consecutively, the design of the newly proposed
context-aware model is described in this chapter.

The evaluation of the computational approaches is shown in chapter 6. Multiple in-
stances with different hyper-parameters are implemented and tested. The approaches
are assessed against the development dataset in a first step and the best perform-
ing model is subsequently evaluated against the test set. The chapter closes with an
overview of all model instantiations and their respective performance.

Finally, a conclusion is drawn in chapter 7 and further steps are shortly described
in chapter 8.

4

Chapter 2

Background

In the following chapter the basic terminology, algorithms, computing systems and
frameworks that will be used within this thesis, are described. This introduction
should give a fundamental understanding of the basic concepts and provide an overview
of the context.

2.1 Neural Networks

Artificial neural networks (in the following also referred to as neural networks) have
been firstly introduced by McCulloch and Pitts (1943) in their work A logical calculus
of the ideas imminent in nervous activity. At the time, the approach was purely con-
ceptual, describing the idea of a connectionist network consisting of neurons inspired
by the biological brain. Every element in the network is receiving inputs, processing
them and generating outputs. Despite the purely conceptual nature of artificial neu-
ral networks, the basic research by McCulloch and Pitts already covers the most vital
parts of current state-of-the-art neural networks. Unlike the classical tasks that com-
puters were initially developed for, neural networks are trying to solve tasks that are
inherently easy for humans to perform, but particularly difficult for machines. One
of the most famous examples for this type of tasks is pattern recognition (Shiffman,
2012).

Since the first mentioning of artificial neural networks in 1943, many different
types and adoptions for specific tasks have been developed. In image recognition and
face detection, convolutional neural networks (CNNs) are widely used. In the field
of NLP recurrent neural networks (RNNs) are common. Despite the differences in
the architecture, all these neural networks share a set of commonalities including the
basic computational units, so called perceptrons or artificial neurons.

2.1.1 Perceptron

The perceptron (or artificial neuron) is the basic computational unit in an artificial
neural network; it resembles a mathematical model of a biological neuron. A simplified

Chapter 2. Background 5

model of a biological neuron is shown in figure 2.1.

Figure 2.1: Simplified Model of a Biological Neuron (Aboukarima
et al., 2015)

Within the model, the three major components of a biological neuron are dis-
played. The dendrites receive electrical signals from other cells, representing the
inputs of the neuron. The neuron body processes these signals received from the
dendrites and activates the axon to transmit an output signal to connected cells.
At the synapses, located between the dendrites and axons, the electrical signals are
modulated (Aboukarima et al., 2015).

In comparison to the biological neuron, figure 2.2 shows the architecture of an
artificial neuron.

Figure 2.2: Model of a Perceptron derived from Jain et al. (1996)

All major parts of the biological neuron are also modeled in the perceptron. The
inputsX = {x1, x2, x3, ..., xn} represent the dendrites. Instead of electrical signals, the
perceptron receives numerical values as its inputs. The characteristics of the synapses
are also modeled within the artificial neuron by multiplying the inputsX with a weight
matrix W . The behavior of the biological cell body, emitting an output signal when
the inputs outreach a certain threshold, is calculated as a weighted sum of the inputs
with the weight matrix

∑
X ∗W by the perceptron. On this summation of inputs

and weights, a non-linear activation function is subsequently applied to determine the

Chapter 2. Background 6

output of the artificial neuron. Some of the common activation functions, including
the sigmoid and hyperbolic tangent non-linearity, are shown in figure 2.3.

Figure 2.3: Common Neural Activation Functions (Karn, 2016)

The complete computation of the perceptron can be described by the equation

a = g(
∑
n

W n ∗Xn) (2.1)

with g representing the activation function of the neuron and a being the output of the
perceptron. While a single perceptron, fully described by equation 2.1, only executes
a simple and very limited computation, the artificial neural network’s complexity is
introduced by the connection of these simple units.

2.1.2 Feed-Forward Neural Networks

Feed-forward neural networks are one of the most common and basic types of connec-
tionist models. The network composes of a hierarchical arrangement of perceptrons
separated in discrete layers building on top of each other. The information within the
network flows strictly in one direction, from the input layer towards the output layer,
without any cycles (Figure 2.4). Thus, feed-forward networks are a generalization
of the simple perceptron, extending the functionality to be able to create universal
approximations of arbitrary functions (Hornik et al., 1989).

2.1.3 Recurrent Neural Networks

In comparison to feed-forward neural networks, RNNs contain directed cycles to allow
the system to embody a dynamic temporal behavior. This allows RNNs to overcome
the restriction of feed-forward and convolutional networks, which only accept fixed-
sized inputs and produce fixed-sized outputs. Furthermore, these models are also
limited to a set amount of computational steps determined by the number of layers in
the model. RNNs on the other hand enable an arbitrary number of operations within
the network on both input and output sequences, thus making RNN computations

Chapter 2. Background 7

Figure 2.4: Feed-Forward Network Topology (Quiza and Davim,
2011)

turing-complete (Siegelmann, 1995). These characteristics are especially interesting
for NLP tasks. Working with flexible length sentences as inputs and outputs, text-
based tasks highly benefit from the flexible layout of RNNs.

Figure 2.5: RNN Topologies (Karpathy, 2015)

The ability of RNNs to employ flexible length input and output sequences resulted
in various architectural patterns to be developed. The most common designs are
displayed in figure 2.5. Within the figure, every rectangle represents a tensor, while
arrows indicate computations.

On the left side, a standard feed-forward network, as described in section 2.1.2,
is shown for comparison (one-to-one). The feed-forward network takes a fixed-size
tensor as an input and returns a fixed-size output tensor. Next to the feed-forward
network, an unfolded RNN with fixed-size input and sequence output is displayed
(one-to-many). This type of network is frequently used for tasks like image caption-
ing, where an input picture with a set amount of pixels is entered, while the output
is a sequence of words describing the picture. The many-to-one architecture in the

Chapter 2. Background 8

middle of the figure takes a sequence as the input of the model and outputs a fixed-
size tensor at the end of the computation. This type is widely used within the area
of sentiment analysis with a sentence fed into the network and the sentiment of the
sentence returned. For tasks with input and output sequences, two different architec-
tures can be applied. An asynchronous design as shown in the second model to the
right, or a synchronous approach as shown on the right. The asynchronous approach
first feeds in the complete input sequence. After all the inputs are entered, the system
starts to output the resulting sequence. Through this asynchronous design, the whole
information of the input sequence is stored within the network before any output is
made. A common use-case for this kind of network topology is neural machine trans-
lation, where the whole input sentence in a source language L1 is fed into the system
before the sentence is translated into the target language L2. In contrast to that, the
synchronized many-to-many topology takes one input of the sequence and calculates
one output simultaneously. This approach is used for many sequence classification
tasks (Hochreiter and Schmidhuber, 1997).

2.2 Language Models

A language model can be described as an estimator on how likely a sequence of words
W is a valid sentence in a language. A language model LM should therefore be true
in the following cases:

pLM(”Y ou have a nice dog”) > pLM(”A nice dog you have”) (2.2)

pLM(”Y ou have a nice dog”) > pLM(”Y ou think a nice dog”) (2.3)

This small example shows that the choice of words as well as the order of words inW is
important for the performance of the language model LM . To target that, language
models are applied on a sequence of words W rather than an unordered set. The
traditional approach to solve this problem is to use an n-gram model. N-gram models
are a statistical tool to compute the probability of a given word wn to appear after
a known sequence of words (w1 , w2 , ..., wn-1). The equation of a general n-gram
model using the chain rule is described by

p(w1, w2, ..., wn) = p(w1) ∗ p(w2|w1) ∗ ... ∗ p(wn|w1, w2, ..., wn-1) (2.4)

Since it is not possible to find sufficient examples for every word wn after a sequence
of predecessors w1, w2, ..., wn-1 in the text, the n-gram model is extended by the
Markov assumption and narrowed down to a n-gram model with usually n <= 4. To
normalize the n-gram probabilities, the count is divided by the number of appearances

Chapter 2. Background 9

of the word, the unigram probability.

p(w2|w1) =
count(w1, w2)

count(w1)
(2.5)

There are many extensions to the standard n-gram model to enhance performance,
such as different smoothing approaches (Add-One, Good-Turing, Kneser-Ney), Back-
Off methods and interpolation (Koehn, 2009). These n-gram models have been state
of the art for many years.

Through the fast increase of computational resources within the last decades and
the new possibilities to compute neural networks, neural language models are improv-
ing rapidly and already outperform the classical n-gram approach, as described by
Bengio et al. (2003). Neural language models thereby use neural networks to calcu-
late the probability function. One of the reasons the neural approach is superior to
the n-gram approach is the way it targets the curse of dimensionality. While n-gram
models fight the problem by limiting the history of the text, neural language mod-
els use a so-called embedding layer to reduce the complexity. This approach, first
brought up by Bengio et al. in 2003, represents every word in the vocabulary as a real
valued point in a vector space, which drastically reduces the amount of parameters
of the network. Word embeddings are then used as inputs for the RNN. The use of
RNNs allows the neural language model to learn significantly longer contexts than the
respective n-gram approach.

2.3 Frameworks

Throughout the last years, machine learning frameworks have followed the trend of AI
with an increasing amount of high-quality computational libraries. In the following
sections, some of the most advanced neural network libraries at the time of writing
this thesis will be analyzed and compared due to their suitability for the task.

2.3.1 Keras

Keras is a high-level open source machine-learning library especially designed to facili-
tate neural networks. The library is fully written in python building on top of Tensor-
flow, Microsoft Cognitive Toolkit (CNTK) and Theano. The focus of the framework
is on fast prototyping, reducing the time from the idea to the finished result and
accelerating research. The framework supports CNNs as well as RNNs and can be
executed on CPUs and GPUs (Chollet).

With these properties, the library is suited for standard neural network topologies,
which are inheritably supported through high-level wrappers. The framework can
also be used for individual network designs through the custom extension concept.

Chapter 2. Background 10

Nevertheless, new and individualized network topologies are often easier to generate
from low-level libraries.

2.3.2 Tensorflow

Tensorflow is an open source low-level machine-learning interface originally developed
by Google to implement and execute machine-learning algorithms. The library can be
used for a wide variety of computational tasks including neural network models. Ten-
sorflow is supported by a steadily growing community and delivers production-ready
implementations within a wide range of areas such as speech recognition, computer
vision, NLP and many more (Tensorflow Documentation). The Tensorflow library
comes in a separate version for CPU and GPU enabled computations. The state-
ful dataflow-like model within Tensorflow allows the computations to be flexible and
comprehensive. To enhance debugging procedures within large graphs, the integrated
Tensorboard functionalities enable visual representations of the topologies.

The characteristics described above make the Tensorflow framework particularly
interesting for customized neural networks with special topologies. Compared to the
Keras framework, Tensorflow offers a more flexible approach to create computational
graphs from low-level modules (Abadi et al., 2016).

11

Chapter 3

Related Work

There are multiple related approaches to the newly introduced semantic out-of-context
error detection task. The LAMBADA dataset introduced by Paperno et al. (2016)
is one of the first and most comprehensive data sources addressing the task of text
understanding by the means of word prediction. One of the main differences between
our newly introduced task and the LAMBADA dataset is the possibility to modify
large data sources at a low cost. Through our fully automated modification process to
enable datasets on the task, large corpora can be modified with out-of-context tokens.
This greatly benefits deep learning algorithms, as they need an extensive amount
of data to be trained on. The modification process introduced in this thesis, thus,
represents a cost efficient alternative to hand crafted databases, which are not only
tedious to create, but with $1.24 per data point (Paperno et al., 2016) are also very
expensive. Other related datasets are the Children’s Book Test (CBT) dataset by Hill
et al. (2015) and the CNN/Daily Mail benchmark by Hermann et al. (2015), which
both focus on summarization and question answering tasks. In the domain of NMT,
Sennrich (2016) introduced a dataset with automatically inserted errors focusing on
advanced computational models. The paper by Burlot and Yvon (2017) proposes
an evaluation process for NMT models, assessing the morphological properties of a
system. The process substitutes nouns, as well as other part-of-speech tokens with
filtered and randomly chosen replacement words.

Within the domain of context-aware models, most approaches focus on question
answering tasks rather than semantic out-of-context error detection. Related work
within the area of question answering is conducted by Iyyer et al. (2014a) show-
ing that recursive neural networks can be combined with a parse tree (De Marneffe
et al., 2006) and a multinomial logistic regression classifier to achieve good results on
trivia-like tasks by extracting the essential information from the context. The task
introduced by Iyyer et al. varies from this work, as it targets a question-answering
problem based on a short paragraph rather than an out-of-context prediction on long
narratives. Additionally, it utilizes a heterogeneous methodology instead of an end-to-
end connectionist learning approach. Other related work is conducted by Iyyer et al.
(2014b).

12

Chapter 4

Task Definition and Preparation

The following sections describe the newly introduced semantic out-of-context error
detection task. The first section (4.1) defines the task itself and shows the significance
and complexity of the semantic out-of-context error detection. In the second section,
the process to create the ground-truth is described, followed by a section on suitable
large-scale datasets. The following section evaluates the data transformation process
and the last section describes the data partitioning.

4.1 The Task

Within the area of text understanding, our new evaluation task is defined as the
detection of out-of-context errors in contextual text passages. Therefore, artificially
inserted out-of-context error tokens are uniformly distributed over the dataset. In
comparison to approaches with well-known target words wn, the out-of-context word
replacements within this task are at random positions wr in the series of word-tokens
described by the ordered sequence of words W =(w1,w2,...,wm) and wn, wr ∈ W .
Compared to the task of finding the correct word wn at a known position, which can
be described as a classification task, the presented task can be interpreted as a binary
sequence labeling problem defined by the input sequence W = (w1,w2,...,wm) of length
M representing the text passage and the output sequence Looc = (l1, l2, ..., lm), also
of length M , with li ∈ Looc representing the label of the input element wi ∈ W . The
labels Looc thereby separate the two classes {0, 1}, representing valid-context tokens
(0) and out-of-context tokens (1). Through the definition of the task, every word
wr ∈ W needs to be assessed against every other word wq ∈ W in the sequence
with r 6= q. The task definition does not provide any information about the position
of the modifications, nor give any insight about the total number of out-of-context
substitutions on the data.

Chapter 4. Task Definition and Preparation 13

4.2 Transformation Process

The goal of the dataset transformation process is to modify an existing database
by artificially inserting out-of-context errors in text passages with strong contextual
features. The six-staged substitution procedure is fully automated to enable the mod-
ification of entire large-scale datasets without the costly validation of the data by
human subjects. A crucial task emerging through the automated processing is the
reasonable replacement of context related words. The substitutions fulfill two require-
ments. First of all, the modified dataset serves as the ground truth to test the train
context-aware computational models against. Secondly, through the out-of-context
modifications on the training set, supervised models can be trained on the data. The
modifications are achieved through the following computational steps.

4.2.1 Tokenization

To be able to make predictions, it is crucial to carefully split the continuous data into
word tokens. Simply splitting the data at white spaces results in poor performance
of the model, as the simple tokenization does not cover special cases like contractions
(don’t instead of do not). The tokenizer needs to separate contractions and punc-
tuations, which both do not contain white spaces. To also take these special cases
into account, the Natural Language Toolkit (NLTK) tokenizer framework is used to
split the data. The careful tokenization of the data consumes a noticeable amount
of computation time. To save computational resources, the tokenized result is saved
on the hard drive to be reusable. After the tokenization of the data, the tokens are
sorted by their appearance in the data. The count of every word in the data source
will be used later to improve the insertion of out-of-context samples.

4.2.2 Dataset Filtering

To enhance the dataset quality, non-contextual parts of the data are removed, espe-
cially excluding self-contained short text passages with less than 200 words.

4.2.3 Part-of-Speech Tagging

For the semantic out-of-context substitutions, only certain part-of-speech (POS) classes
are taken into account. Thus, every token in the dataset is assigned a POS category.
As described by Paperno et al. (2016), context is especially critical to nouns, whereas
other POS classes can often be inferred directly out of the local context of a sentence.
Our substitution process, therefore, focuses on the replacement of nouns.

Chapter 4. Task Definition and Preparation 14

4.2.4 Candidate Selection

To ensure that a text passage contains a sufficient context, the nouns determined by
the POS-tagger are filtered for contextual coherence. A context is assumed if the same
noun appears multiple times within the same text passage. The last appearance of
the noun within a context of up to ten sentences qualifies as a suitable replacement
and is saved as a potential out-of-context substitution candidate. Out of the list of
potential replacement candidates, a predetermined number of tokens are randomly
selected according to a uniform distribution.

4.2.5 Contextual Replacement

For every selected token in the original dataset, a syntactically suited replacement
token is determined. This task is especially challenging, as the substitute word should
not be semantically close to the original one. Replacing with such words leads to
substitutions with synonyms and is difficult to find. If the substitute word on the
other hand is too syntactically different, the task can be solved without the use of a
narrative model. To solve this problem, two different approached are analyzed:

• Replacement by word2vec similarity

• Replacement by appearance window

The replacement by word2vec similarity is based on Google’s pre-trained word
embedding model word2vec, which compares words in a high-dimensional real-valued
space. The substitution algorithm takes the original word and computes 50 related
words from the word2vec model based on their cosine similarity (Word2Vec). This
approach has two major drawbacks.
The first drawback is the nature of an external data source. The Google word2vec
model contains over 1,000,000 common English words, but does not cover all the
potential words to substitute. This leads to the problem, that the original words that
have not been found within the word2vec model cannot be encoded.
Secondly, the computational approach to find related words with the word2vec vectors
is not consistent in terms of difficulty, as with decreasing cosine similarity the retrieved
words are quickly turning from synonyms to purely random words. By automatically
choosing a word, the chance of either taking a synonym or a syntactically non-fitting
word is high. Therefore, the word2vec approach does not fulfill the requirements for
this task.

The replacement by appearance window approach is based on the assumption that
words with a similar word count on the original dataset are suitable substitutes. There
are multiple reasons that support this hypothesis.
(1) Words with a similar word count appear about equally often within the language.
This avoids very common words being substituted by rare words.

Chapter 4. Task Definition and Preparation 15

(2) The replaced words are typically not related to the original word, as the overall
word count generally does not infer semantic affiliation. The chance to exchange a
word with its synonym is therefore relatively low.
(3) Empirical tests with the replacement by appearance window approach have shown
to be a reasonable trade-off. The semantic differences between the words can be found
within the context while it is difficult to spot the replacements within one sentence.
Within the appearance window further filtering regarding the tense and grammatical
number are executed to determine the most suitable substitution.

As a result of this, the replacement by appearance window approach is chosen to
find suitable word substitutes within a similarity window. The window is initially set
to ±10 words around the appearance of the original noun and can be extended up to
±30 words. Within the appearance window the substitute noun is chosen randomly.

4.2.6 Output

After the process is finished, the result is saved on the hard drive. To enhance the
flexibility of the data for different tasks, multiple outputs are generated. The outputs
are:

• The change-log file with all the changes in JSON format (changes_text)

• The original text (original_text)

• The modified text (modified_text)

• The text with indicated modifications (indicated_text)

• The text with synchronous original and modified words (sync_text)

Figure 4.1 shows the high-level program flow of the manipulation process.

4.3 Comparison of Data Sources

Criteria OpenSubtitles Reuthers TED

Dataset size 106k movies 1.8m articles 2.6k talks
Availability Free On request Free
Contextual features Low High High
Format XML Text XML
Miscellaneous Different genres Short news articles Long talks

Table 4.1: Comparison of Different Data Sources

To determine a suitable dataset to modify with the described substitution process
and test the computational models on, three different types of data sources that

Chapter 4. Task Definition and Preparation 16

Figure 4.1: Dataset Generation Process

can provide narrative information are compared. The two main factors taken into
account are the dataset size and the contextual features of the data. To complete the
comparison, further criteria like the availability, the format and miscellaneous features
are analyzed.

One type of data that is often taken into account is movie subtitles. The main
advantages of movie subtitles are the wide variety of genres and the large amount
of available data. With over 106,000 different movies, the OpenSubtitles database

Chapter 4. Task Definition and Preparation 17

is a huge and free corpus to train on (Tiedemann, 2016). However, as movies are
multimodal with a heavy focus on visual information, the subtitles alone are often not
enough to recover contextual features; especially fast changes in settings and multiple
storylines make the retrieval of a continuous narrative inaccessible. Therefore, the
OpenSubtitles movie database is not suitable for the task.

The second frequently used dataset type is news articles. News transcripts cover
a broad field of topics and have high internal cohesion, covering one narrative story
per article. The Reuthers news corpus contains 1.8 million news stories with strong
narrative features (Lewis et al., 2004). The corpus is not free to download, thus, a
special request needs to be made to the owners. Even though the data source fulfills
most of the requirements, the main problem with the news articles dataset is the
average length per news story. To be able to resolve long-term contextual features,
the dataset needs to have an extended narrative story. As the news stories provided
are not of sufficient length, the corpus is not suitable for the task.

The third type of data source in this comparison is presentations. Speeches are
normally coherent in their topic as well as multiple thousand words long. One famous
corpus containing a wide variety of presentations is the TEDTalk dataset, containing
over 2,600 talks. Every talk covers one specific topic and is scheduled to be between
30 to 45 minutes in time. With these two factors, coherence and length, the dataset
is a great fit for the task of context comprehension.

Out of this comparison, the TEDTalk database is chosen as the suitable database
for the evaluation of the computational models. The data contains transcripts of
presentations held between 2007 and 2016 and can be downloaded in a structured
XML format from the WIT3 website, which simplifies the processing of the corpus
(Cettolo et al., 2012). Apart from the data, the transcripts of the talks contain
additional metadata. The TEDTalk corpus has strong contextual features and long,
coherent contexts, which makes the dataset especially suitable for the task of context
comprehension by error detection. Additionally, it covers a wide variety of topics,
which keeps the data unbiased and supports generalization.

Figures 4.2 and 4.3 show two outputs of the modified TEDTalk data. Figure 4.2
displays the change-log JSON-file containing the collection of changes applied to the
TEDTalk. Every dataset in the collection contains the index of the changed token,
the original word and the replacement. With this information the changes are fully
defined. 165 performance engineering

257 oceans businesses
563 system place

Figure 4.2: TEDTalk Change-Log

Chapter 4. Task Definition and Preparation 18

Figure 4.3 contains a short piece of the modified TEDTalk by Marina Abramović
An art made of trust, vulnerability and connection from 2015. One word within the
extract has been replaced according to the modification process explained above.

Welcome to the performance world. First of all, let’s explain what
the performance is. So many artists, so many different explanations,
but my explanation for engineering is very simple.

Figure 4.3: Modified TEDTalk File

4.4 Evaluation of the Transformation Process

With the process described above, all TEDTalk transcripts between 2007 and 2016
are modified with out-of-context errors (Cettolo et al., 2012). The design of the mod-
ification process assures that the changes are semantical rather than syntactical. To
prove the quality of the data modifications, the distribution of the original TEDTalk
tokens is compared with the replaced words (Figure 4.4). Therefore, every word in
the vocabulary is assessed at the replaced positions. The probabilities of the words
are sorted and divided into four equal quarters representing the four classes on the
x-axis. The distribution of the original TEDTalk tokens, with 93.35% of the words
within the top 25% of the vocabulary, shows the effectiveness of the baseline language
model on the original data. The distribution of the modified words, with 84.6% of
the artificially replaced words within the highest quarter (75%-100%), shows that the
replacements also fit well in the local context.

0-25% 25-50% 50-75% 75-100%

0

20

40

60

80

100

%
in

Q
ua

rt
er
s

Original TEDTalk Tokens
Replaced TEDTalk Tokens

Figure 4.4: Distribution of Original and Modified Word Predictions

As the analysis is executed on the unseen development set, the substitutions in
general do not seem to be obvious when only analyzing the sentence itself. The
comparison of the original words with the modified words at the same position shown
in figure 4.4 proves that the modifications on the TEDTalks keep the syntactical

Chapter 4. Task Definition and Preparation 19

correctness within the sentence as the replacements cannot be found with the standard
language model. Please note that this comparison does not give any insight in how
good the language model can predict semantically wrong words within the text, as
only the positions of the modified tokens are taken into account for the comparison.
The language model itself and the result on the modified TEDTalk corpus will be
discussed later.

4.5 Data Partitioning

The 2,600 modified TEDTalks are split into disjoined training, development and test
sets. For the ratio of the sets, the commonly used 60 − 20 − 20 split is utilized to
randomly distribute the data into mutually exclusive partitions with 60% training,
20% development and 20% test data.

20

Chapter 5

Model Topology

To assess the influence of the context for the semantic error detection task, as de-
scribed in section 4.1, a novel context-aware network topology is presented. The first
section describes the necessary preprocessing to enable the data to be inserted into the
networks (5.1). To compare the newly developed network designs against a baseline,
standard neural network models employing a local context are described in section
5.2. The extended topology integrating a broader context into the computation is
subsequently described in section 5.3.

5.1 Preprocessing

To be able to feed data into a neural network, multiple preprocessing steps need to
be performed. In the first step, an atomic element is defined. As the data in this case
is in text format, there are two established ways to encode the input for the neural
network: character-based or word-based. In the next step, the data is transformed
into a corresponding numerical representation to run the computational model.

5.1.1 Atomic Elements

The first task of the preprocessing is to decide on the atomic element to use within the
models. This decision influences the preprocessing of the data as well as the design
and architecture of the computational model. Common approaches are to encode the
input word-by-word or character-by-character. This initial decision has great impact
on the performance of the model.

Character based systems have a single symbol as input and output at each time
step, leading to predictions on character level. During training, the network needs
to learn not only the structure of sentences, but also the word structure to output
valid words, which makes the tasks inheritably more difficult. The approach is most
commonly used for languages with rich morphology such as Finish, Turkish and Rus-
sian. The sub-word information introduced through the character level improves the

Chapter 5. Model Topology 21

system for these languages. In addition, character-based systems on average need less
parameters than word-based approaches (Kim et al., 2015; Xie and Rastogi, 2017).

An advantage of word-based models over character-based models is the limitation
to a known set of words. While character-based models can create all kinds of fictional
words, word-based models are limited to a vocabulary of a known size and a well-
defined <UNK>-Token, which represents all other words. This makes many tasks
easier to perform, as words can be easily compared. Furthermore, word-based models
on average show higher accuracy and lower computational cost than character-based
LMs (Kim et al., 2015).

The large vocabulary size in word-based systems introduces large input and out-
put layers, while the hidden layer is relatively small. As the character-based model
additionally learns the word structure, the hidden layer is larger for character-based
approaches (Kim et al., 2015).

The task to find out-of-context words in a contextual text is, therefore, very suit-
able for the word-based approach. The use of words as atomic elements additionally
simplifies the word-to-word evaluation.

5.1.2 Data Representation

To transform the data into suitable inputs for the computational model, the dataset
is loaded from the hard drive into the working memory. The data is subsequently
tokenized on sentence and word level to preserve the hierarchical structure of the text.
Depending on the chosen vocabulary size nvocab, only the nvocab most frequent words
are kept in the vocabulary. All other words are substituted by the <UNK> token. The
choice of a proper vocabulary size is an important part of the preprocessing and should
not be chosen too small, as the vocabulary size highly influences the performance of
the system later on.

To indicate the beginning and end of a sentence, a leading <START> token and
a trailing <END> token are added to the data.

As neural networks are purely numeric, words cannot be used as the inputs for
the computational model. Therefore, the text is transformed into a numeric repre-
sentation. To create this representation, there are (nvocab + 4) classes generated, one
class for every word in the vocabulary plus four additional classes for the <UNK>,
<START> and <END> token as well as the <PAD> symbol, which will be dis-
cussed later. The affiliation of a word to one of the groups is represented through a
one-hot-encoding.

In the one-hot-encoding every class is represented as an integer value within an
array of length (nvocab+4). As every class contains exactly one word of the vocabulary
and every word is only present in one class, the array consists of (nvocab + 3) zero

Chapter 5. Model Topology 22

values and a single one value. This representation is highly redundant and inefficient,
especially as the number of classes grows. To represent a word within the vocabulary,
(nvocab + 4) ∗ 4Bytes of memory are used (assuming 32bit integer values). For a
vocabulary size of 30,000 words, that results in a memory usage of 30, 004 ∗ 4 =

120, 016Bytes = 120kBytes to encode one input. To overcome this problem the
words need to be encoded in a more efficient way.

As the classes in the one-hot-encoding are mutually exclusive, an index-representat-
ion can be used, where classes are represented by the index of the one-hot tensor.
Instead of having a tensor with (nvocab + 3) zero values and a single one value for
example at position 22, only the index of the one value, which is index 22, is saved.
This way, the sparse (nvocab +4) dimensional tensor can be encoded in a single integer
value. To transform the words in the vocabulary into the numeric representation, a
bidirectional mapping between the words in the vocabulary and unique indexes are
created. The transformation is described by the function f and the unordered list
[u1, u2, ..., un] as inputs and returns [f(u1), f(u2), ..., f(un)], with n > 0.

Through the definition of the vocabulary, the number of words is limited to a
fixed amount. Apart from the limitation of words in the vocabulary, the length of a
sentence is limited as well, to be able to input the data into the computational model.
Just using the length of the longest sentence as an upper bound, however, leads to
excessive unnecessary computation, as an average sentence is normally significantly
shorter. It is therefore advisable to choose a smaller sentence length that covers
most of the cases. Sentences that exceed the limitation are shortened to the chosen
length and sentences that are shorter than the defined sentence length are padded
and masked for the network to properly handle multiple length inputs. The padding
adds the specified <PAD> token to the end of the sentence to extend the input to
the required length. With this unique token defined, the masking can dynamically
cut this token out through a simple binary comparison. Figure 5.1 illustrates the
complete preprocessing pipeline.

5.2 Baseline Model

Neural language models are the state-of-the-art approach for unsupervised prediction
of words based on the sentence history. In this case, the language model is used as the
baseline to improve the context comprehension task upon. As one of the first, Bengio
et al. (2003) proposed a computational model to target the task of language modeling
using neural networks. The model shown in figure 5.2 will be used as a starting point
for the creation of the model. The detailed design of the system is illustrated in the
following section. After discussing the architecture of the neural language model, a
supervised alternative of the model using binary classification will be introduced.

Chapter 5. Model Topology 23

I don’t just see a person. I see an opportunity.

↓[
I don ′t just see a person .
I see an opportunity .

]
↓[

I don ′t just see a person .
I see an < U > .

]
↓[

< S > I don ′t just see a person . < E >
< S > I see an < U > . < E >

]
↓

word <P> a an don I just person see ’t . <S> <E> <U>
index 0 1 2 3 4 5 6 7 8 9 10 11 12

↓[
10 4 3 8 5 7 1 6 9 11
10 4 7 2 12 9 11

]
↓[

10 4 3 8 5 7 1 6
10 4 7 2 12 9 11

]
↓[

10 4 3 8 5 7 1 6
10 4 7 2 12 9 11 0

]

Figure 5.1: Preprocessing Applied to the TEDTalk by Matt Stone

5.2.1 Language Model

The architecture of the baseline neural language model is derived from the original
model proposed by Bengio et al. (2003), which employs the most fundamental archi-
tecture for a neural language model. The model in figure 5.2 takes an index encoded
one-hot representation as the input, which is transformed into a real valued tensor
in the embedding layer. The embedded values are fed into the hidden layer using
the tanh activation function. The output layer consists of one neuron per class. As
activation for the output layer the softmax function is used to create probabilities.

The basic architecture by Bengio et al. (2003) is extended by state-of-the-art algo-
rithms and elements to enhance the models’ performance on the task. The recurrent

Chapter 5. Model Topology 24

Figure 5.2: Basic Neural Language Model developed by Bengio et al.
(2003)

neural network described in the paper is realized with standard RNN cells. This type
of cells is problematic as it cannot keep long-term memory due to the design of the
cell. For the baseline network, the state-of-the-art LSTM units are used within the
hidden layer of the network as proven more effectively by Xie and Rastogi (2017).
Within the paper Deep Poetry: Word-Level and Character-Level Language Models for
Shakespearean Sonnet Generation Xie and Rastogi (2017) showed the superior per-
formance of LSTM cells compared to GRU and standard RNN cells for word-RNNs
(Sundermeyer et al., 2012). The architecture that is used for the baseline system is
shown in figure 5.3.

Input Layer

The input layer is the gateway for the preprocessed data to be entered into the com-
putational model. As the index-encoded representations of the words in the dataset
are not related (there is no order to the indexes, as there is no order to the words them-
selves), the network provides one neuron for every class in the one-hot-encoded data.
The outputs of the preprocessing are index-encoded and therefore every word is rep-
resented by one integer value. Nevertheless, every integer value in the preprocessing

Chapter 5. Model Topology 25

Figure 5.3: Folded- and Unfolded LSTM-RNN for the Baseline Lan-
guage Model, based on Olah (2015)

output does represent a tensor of the vocabulary size nvocab in the one-hot-encoding.
For the data to be entered into the neural network, the one-hot-representation is
needed. Therefore, the number of neurons in the input layer is fixed to the number of
unrelated classes nvocab. The main purpose of the input layer is to provide an entry
point into the computational model, as the neurons within the input layer do not
perform any non-linear computation. The layer can therefore be seen as a placeholder
to enter the data into the network. To simplify the input of data and to enhance the
systems’ performance, all state-of-the-art deep learning frameworks are supporting
the index-representation as input for the one-hot-encoded input layer to save space
during training and testing.

Embedding Layer

The next layer within the computational model is the embedding layer, which
was first introduced by Bengio et al. (2003). Without the embedding layer, the high
dimensional input is propagated through the network and the densely connected lay-
ers increase the amount of connections in a polynomial manner. This leads to an
immensely high number of weights. The problem, referred to as the curse of dimen-
sionality, is tackled by using an embedding layer.

Instead of propagating the sparse one-hot-encoded input layer, the embedding layer
utilizes a combination of static word vectors and flexible weights to densely represent
words as real valued points in a high dimensional vector space. This transformation
drastically reduces the amount of parameters of the network and learns semantic
relations between words jointly during the training process (Bengio et al., 2003; Xie

Chapter 5. Model Topology 26

and Rastogi, 2017). The essential role of the embedding layer is to transform the one-
hot-encoded input from the previous layer into an n-dimensional real valued vector
by applying the parameterized function W :

W : words→ Rn (5.1)

W is typically implemented as a lookup matrix where every row represents one class of
the input. The result is a matrix of dimension [nvocab ∗sizeembedding] initialized with a
random uniform distribution within the range [−1, 1). The randomly initialized matrix
is static throughout the training process and shared between all inputs. Parameterized
by the matrix θ, the matrix-lookup is defined by:

W θ(wn) = wn × θ = θn (5.2)

Figure 5.4 shows a small example of the transformation within the embedding layer for
a matrix θ with vocabulary size nvocab = 4 and an embedding size sizeembbeding = 5.

W θ(w2) =

0
1
0
0

T

×

0.2 −0.5 −0.8 0.1 0.9
−0.8 −0.4 0.1 −0.6 0.0
−0.1 −0.3 0.8 0.9 −0.4
0.9 −1.0 −0.3 0.7 0.5

 =

−0.8
−0.4
0.1
−0.6
0.0

T

Figure 5.4: Embedding Transformation

With this computation, words are transformed into another domain, but as the
matrix is immutable, no semantic relations are learned. To be able to learn word
embeddings, the outputs of the embedding layer are weighted by the layer connec-
tions. The flexible weights, combined with the static word embeddings, add semantic
information about the words during the training process.

Figure 5.5 shows an example of the learned word embeddings projected into a
two-dimensional value space using the t-distributed stochastic neighbour embedding
(t-SNE) technique. The extract shown contains two clusters of words. In the top
left corner the words police and military are close together, in the right lower area, a
cluster of names has formed.

Recurrent Layer

The recurrent layer (also called context layer or state) is the essential building block
of the computational model to encode the sequential nature of continuous text, which
cannot be modeled without a temporal component. Using a standard feed-forward
neural network for the language model would therefore exceed the architectural limits
very fast. Due to the topology of the RNN model, every time step is not only depended
on the direct input at the time but also on the history. Figure 5.6 shows the overall
structure of a folded and unfolded recurrent neural network respectively.

Chapter 5. Model Topology 27

Figure 5.5: t-SNE Visualizations of Word Embeddings learned dur-
ing the Training of the Language Model

Figure 5.6: Recurrent Neural Network Design derived from Olah
(2015)

The recurrent layer A represents the main building block of the network. It com-
bines two input sources to compute its internal state ht: the value from the dense
representation of the words, transformed by the embedding layer xt at time step t

and the former hidden state of the network ht-1 from the last time step t− 1. There-
fore, the output yt is not only influenced by the input xt, but by the entire history of
past inputs. The RNN displayed in figure 5.6 on the left can hence be understood as
multiple copies at different time steps t, each passing the internal state to the succes-
sor (right side of the figure). The internal state h of the RNN gets updated at every
time step representing the history of the network. The initial state to calculate the
first hidden state h0 is initialized with zeroes.
During the learning process of the network, three matrices are trained to adjust the
networks output according to its input:

• The weight matrix W xh between the input xt at time t and the hidden layer ht

Chapter 5. Model Topology 28

• W hh between the hidden layer at time step t− 1 and t

• W hy between the hidden layer ht and the output yt

Figure 5.6 shows the matrices as arrows. The update of the hidden state and the
output layer can be described by equations 5.3 and 5.4, with g and h being element
wise applied activation functions.

ht = g(W hh ∗ ht-1 +W xh ∗ xt) (5.3)

yt = h(W hy ∗ ht) (5.4)

Please note that the network shares the weight parametersW xh, W hh andW hy across
all time steps to reduce the total number of parameters. The equations further de-
scribe the standard version of RNN units. This type of artificial neurons has some
fundamental restrictions when applied on real-world problems, as it is not able to
learn long-term dependencies (Bengio et al., 1994). In practice, the slightly different
long short-term memory (LSTM) and gated recurrent units (GRU) units are mostly
used (Hochreiter and Schmidhuber, 1997; Cho et al., 2014), as these types of neurons
outperform the classical RNN cells through advanced update equations and additional
dynamics (Chung et al., 2014). Nevertheless, the basic concept remains the same for
the different RNN cells (Hochreiter and Schmidhuber, 1997).

The neural language model implements a synchronous recursive network with a
many-to-many relation, as the network processes one input word at a time and predicts
the most likely next word synchronously. To achieve a higher abstraction within the
model, multiple recursive layers can be stacked together. The output of the recursive
layer is fed into the final layer of the computational model, the output layer.

Output Layer

The final layer of the neural network encodes the result of the computation. De-
pending on the definition of the network parameters, the output layer varies in shape.
For the language modeling task the output is the prediction of the next word within
the given sequence, therefore, the output layer encodes every possible word class. Just
like the input layer, the number of neurons in the output layer is defined by the vo-
cabulary size nvocab. As the output of the language model is defined as probabilities,
the layer performs a softmax operation on the inputs computing the equation

σ(zt) =
ezt∑K
k=1 e

zk
(5.5)

with σ representing the softmax function and zt = W hy ∗ ht encoding the layer input
as the product of output of the recursive layer and the weight matrix. The softmax

Chapter 5. Model Topology 29

non-linearity ensures that the sum of all outputs at each time step sums up to one

K∑
k=1

σ(zk) = 1 (5.6)

The output of one class at one time step can be interpreted as the probability of the
encoded word following at the next time step.

5.2.2 Binary Classification Model

The second baseline model used within this thesis is a binary supervised network.
Through the automatic data source augmentation with out-of-context tokens (chap-
ter 4), supervised models can be trained on the data. The unsupervised language
model described in the previous section learns the structure of a sentence and pre-
dicts the next word solely based on the history of the sentence. In contrast to the
language model learning on unlabeled data, the supervised approach uses labeled data
to discriminate between the classes. Through the additional information to which class
the word belongs to, the supervised model performs a binary classification with two
output classes

original→ 0

out− of − context→ 1

instead of one output class per word in the vocabulary. This change influences the
architecture of the computational model as the number of neurons in the output
layer of the network is reduced from 30,000 neurons down to 2. The inputs of the
network and the input layer, as well as the embedding layer and the hidden layer stay
unmodified. The unsupervised model definition of the language model described in
the previous section is adopted accordingly to be able to perform supervised training
on. Additionally, the preprocessing procedure is adopted, as the target values changed
from the next word within the sequence to a binary decision on which class the current
word within the sequence belongs to. With these changes performed, a new supervised
model is trained.

5.3 Context Aware Model

To improve the performance on the semantic out-of-context error detection task, the
narrative is taken into account. Only using information out of the current sentence, as
done by the baseline systems in section 5.2, is per definition of the task not effective. A
broader discourse is therefore employed to enhance the performance. The key element
to efficiently retrieve the narrative out of a longer context is to encode and compress
the context information effectively.

Chapter 5. Model Topology 30

To be able to design a context aware model, the context needs to be present
within the network before the first output is made. This requirement is also crucial
for other tasks based on neural networks, for example neural machine translation
(NMT), sentiment analysis and chatbots. All these tasks require the whole input to
be encoded within the system before any output can be made. For this type of task,
the so called sequence-to-sequence (also sometimes written sequence-2-sequence) or
encoder-decoder models are employed as described in the paper by Sutskever et al.
(2014). The model consists of an encoder part that encodes the inputs and maps
them into a fixed size vector. This vector, often referred to as the thought vector, is
then used to initialize the hidden state of the second part of the model, the decoder.
The specific functionality executed by the decoder varies significantly depending on
the given task. Nevertheless, the decoder always generates the output sequence of the
network. Figure 5.7 shows the high-level structure of a sequence-to-sequence model
reading the input sentence "ABC" and producing the output sequence "WXYZ".

Figure 5.7: Sequence-to-Sequence Model Overview

In comparison to the standard model defined in figure 5.7, the architecture is
changed to fit the task of context aware modeling. Mainly developed for translation
systems, the standard sequence-to-sequence model takes words as inputs for both the
encoder and the decoder. To input the narrative into the encoder, the model design is
adopted. While the decoder stays mostly identical to the one proposed by Sutskever
et al. (2014), the encoder is augmented with a hierarchical component to compress the
context information. To create a proper context representation within the encoder,
multiple processing steps need to be applied for the thought vector to contain all the
significant information of the context. The various parts of the computational model
are further discussed in the following sections.

5.3.1 Context Representation

The context representation is a crucial part of the context-aware model definition.
To be able to represent the whole context in a fixed size vector requires a strong
compression of the data. Throughout the compression, the vital parts of the context
need to be preserved to augment the decoder of the model with the information of
the complete history. To efficiently encode the information of the narrative, a three-
layered approach is implemented.

Chapter 5. Model Topology 31

An established approach to encode and compress the salient information on a word
level is word embeddings, mapping sparse one-hot-encoded input tensors into dense
representations. This representation is learned jointly with the model itself and learns
to encode semantical meaning in the output representation. The transformation of the
one-hot-encoded input representations into dense real-valued vectors applies the first
layer of abstraction to the context representation. To keep track of a narrative story
within a sentence, a similar encoding approach within greater context is developed. A
simple lookup table, as they are used to calculate word embeddings, is not sufficient to
represent a whole sentence. For the sentence representation a more complex approach
is employed. Two distinct methodologies to retrieve the context representation on
sentence level are used within this thesis:

• The final hidden state of a language model

• The final hidden state out of a neural machine translation system

The first method to encode a sentence is to utilize the final state of a language
model hidden layer as a dense representation of the sentence. During the training of
the language model, it learns which word wi is most likely to follow a given sequence
of previous tokens {w1...wi-1} by keeping track of the sentence history. The history is
thereby kept within the hidden state of the recursive layer, which is directly propagated
into the output layer. Cutting off the output layer of the existing language model
described in section 5.2.1 returns the 512 dimensional hidden state of the network
instead of the 30,000 output classes. The hidden state at the last time step encodes
the information of the complete sentence. Figure 5.8 shows the adopted architecture
of the neural language model to retrieve the final hidden state.

Figure 5.8: Language Model Context Vector Extraction

The second approach to encode the sentences is through a neural machine transla-
tion system. Based on the sequence-to-sequence network proposed by Sutskever et al.

Chapter 5. Model Topology 32

(2014), a translation model from English to German is implemented. The model ar-
chitecture encodes the English input sentence into a fixed size thought-vector before
the network starts to decode the sentence in German. Through this architectural
restriction, the complete information used by the decoder to output the German sen-
tence is solely based on the thought-vector initializing the hidden state of the decoder.
The entire information of the English source-sentence is therefore stored within the
fixed sized vector. That makes the thought-vector of the neural machine translation
system an efficient encoding of the context on a sentence level. Figure 5.9 shows the
setup of the neural machine translation system.

Figure 5.9: NMT Model Thought-Vector Extraction

During the joint training of the encoder and decoder the English source sentence
is given to the encoder while the German target sentence is used as an input to the
decoder. The outputs of the decoder are then trained to output the next word of the
German sentence such as the neural language model in section 5.2.1.

To retrieve the context representation from the jointly trained neural machine
translation encoder-decoder model, the decoder part is detached and the thought-
vector is used as the output of the system as indicated in figure 5.9.

5.3.2 Context Aware Encoder

With the compressed sentence representations encoded in a 512 dimensional real val-
ued tensor within the range [−1.0, 1.0), the sequence-to-sequence encoder can be fed

Chapter 5. Model Topology 33

with the most salient features of the narrative. In comparison to standard sequence-
to-sequence models used for neural machine translation and chatbots, the architecture
of the model is modified. As the standard encoder-decoder models take text as the
inputs for both the encoder and the decoder, the architecture is adopted to use the
hierarchical context representations. Hence, the model is able to handle multidimen-
sional inputs. The complete three-layered hierarchy to encode the context is shown
in figure 5.10.

Figure 5.10: Hierarchical Context Representation

With this approach, the narrative story is highly compressed and efficiently en-
coded into a 512 dimensional thought-vector. The hierarchical methodology of the
model ensures that the most salient features on every level of abstraction are merged
together into one fixed-size representation. Initializing the decoder with the thought-
vector representing the narrative story enables the computation to adapt to the given
context.

5.3.3 Context Aware Decoder

The decoder within a sequence-to-sequence model is initialized by the hidden state
of the final encoder time step. The computation is thereby triggered through the
completion of the encoder calculation. This asynchronous design ensures that all the
information from the encoder, in this case the whole narrative context representation,
is available within the system before the decoder starts. Through this design choice,
the architecture is superior for tasks that require a set of initial information to perform
computations.

Chapter 5. Model Topology 34

While some tasks (e.g. translation) need to define different computational phases
during training and testing (mostly referred to as training- and infer-phase), the com-
putation for the task of context comprehension by semantic error detection remains
unmodified for both phases. The structure of the decoder is highly dependent on the
specific task. Nevertheless, the overall encoder-decoder model has a well-defined over-
all topology: The encoder calculates the context vector from the multidimensional
narrative input of the former narrative and the decoder computes a prediction for the
current sentence.

With this approach, to first encode the narrative and then analyze the current
sentence including that information, the model can extract semantic meaning out of
the context. Furthermore, the sequence-to-sequence approach possesses an additional
helpful characteristic for the specific task of narrative-based word prediction through
the independence of the encoder and decoder inputs. This allows the encoder to take
complex sentence encoding as an input while the decoder inputs the sentence. An
high-level overview of the complete architecture is shown in figure 5.11.

Figure 5.11: Full Encoder-Decoder Model Design

35

Chapter 6

Evaluation

In the following chapter, the computational models are evaluated. At first, every
model is individually assessed on the development set. The best performance on the
measures is subsequently evaluated on the test set. Whenever possible, the results
are normalized by the word unigram probability. The methodologies to evaluate the
models are illustrated in the following section. Afterwards, the results of the individual
models are shown. An overall comparison is drawn at the end of the chapter.

6.1 Measures

To assess the performance of the models on the text understanding task, every model
is evaluated on the newly introduced task defined in chapter 4. For the unsupervised
models, the non-task-specific perplexity measure is additionally assessed.

6.1.1 F-Score

The F-score is a common way to evaluate computational models on the binary se-
quence labeling problem. The score measures the systems’ performances by consider-
ing the precision p and the recall r defined by

p =
tp

tp+ fp
(6.1)

r =
tp

tp+ fn
(6.2)

where tp is the true positive labeled results, fp is the false positive labeled results and
fn is the false negative labeled results. The F-score is calculated by

F = 2 ∗ p ∗ r
p+ r

(6.3)

and represents the weighted average of its two factors, precision and recall (F-Score
Definition).

Chapter 6. Evaluation 36

The newly introduced instance of a binary sequence labeling problem is defined
as the task to measure the ability of a computational model to discriminate words
according to the context relevance. Therefore, every token W in the data sequence is
assigned a binary label Looc ∈ {0, 1}, with 0 representing valid-context tokens and 1

indicating out-of-context tokens.

To evaluate the performance of the models, the probability of every word wr ∈W
is compared to the likelihood of every other word wq ∈ W , with r 6= q. The words
in W are subsequently ordered according to the probability within the sequence. To
normalize the data, the predicted probabilities are additionally divided by the unigram
probability.

0 1 2 3 4 5 6 7 8 9 10

·104

1%

2%

3%

4%

5%

6%

7%

8%

Threshold

F
-S
co
re

Figure 6.1: Unfiltered F-Score Example

A perfect system would assign the lowest probabilities to the semantic out-of-
context tokens. As the task definition does not give the number of replacements, the
amount of out-of-context tokens is unknown. However, to compare the models, a
dynamic threshold thresrange for the separation between the original words and the
replaced tokens is utilized. The best separation threshold is evaluated by analyzing
the F-score for every possible threshold on the development set. For the TEDTalk
development set with 1 million word tokens, the threshold parameter is set to range =

[1..1, 000, 000] with a step size of 100. For the purpose of readability, the displayed
F-scores are pre-filtered for the best generation of every model instance and limited
to the least likely 100,000 words. Figure 6.1 shows an example with unfiltered data.

Chapter 6. Evaluation 37

6.1.2 Perplexity

To measure the performance of the model, the perplexity is calculated for various
epochs on the development set. The metric measures how efficiently the language
model predicts unseen data and is defined as

PP (W) = P (w1w2...wN)−
1
N = N

√
1

P (w1w2...wN)
(6.4)

The base equation for the perplexity PP (W) of the word W within a sequence of
length N is defined in equation 6.4. For a coherent sequence of words, the proba-
bility of every word is dependent on the previous sequence. The inverse probability

1
P (w1,w2...wN) can therefore be transformed into

∏N
i=1

1
P (wi|w1...wi-1) as illustrated in

equation 6.5.

N

√
ΠN
i=1

1

P (wi|w1...wi-1)
(6.5)

The probability of the word wi defined by P (wi|w1...wi-1) is calculated by applying
the neural language model on the sentence {w1, w2, ..., wi-1, wi}. The output of the
calculation is the probability distribution at time step i. The product

∏
in equation

6.5 multiplies the inverse probabilities of all words within the sequence. This leads to
very large values for the product

∏
when dealing with longer sequences. To enhance

the numeric stability of the computation, the calculation is transferred into the log-
space by extending the function with 2log2(PP (W)), as shown in equation 6.6.

2
log2 N

√
ΠN

i=1
1

P (wi|w1...wi-1
)

(6.6)

Utilizing the logarithm rules, the product
∏

is converted into a sum
∑

, by moving
the log into the product (Equation 6.7).

2
∑N

i=1 log2(P (wi|w1...wi-1)−
1
N) (6.7)

Applying the power rule to the exponent adds − 1
N as a factor in the sum as shown

in equation 6.8.
2
∑N

i=1−
1
N
∗log2(P (wi|w1...wi-1)) (6.8)

The factor − 1
N is constant within the sequence modeled by the sum

∑
and can thus

be pulled out of the summation (Equation 6.9).

2−
1
N
∗
∑N

i=1 log2(P (wi|w1...wi-1)) (6.9)

With the perplexity measure defined in equation 6.9, the calculation is numerically
stable and can be applied on the output of the computational models (Perplexity
Definition).

Chapter 6. Evaluation 38

6.2 Baseline Model

The two baseline models, described in section 5.2, are evaluated on the preprocessed
evaluation dataset shown in chapter 4. First, the language model instance is trained
and tested. Subsequently, the supervised binary classification network is set up and
evaluated.

6.2.1 Language Model

To train and test an instance of the baseline neural language model, the hyper-
parameters of the network need to be defined. Hyper-parameters are referred to
as the parameters of the computational model and the training process itself. For
many of the free parameters, extensive studies have been conducted on general tasks,
to achieve the optimal performance. Nevertheless, through differences in the network
topology and special requirements for certain tasks, the best set of hyper-parameters
is not necessarily the combination of the best individual parameters. Thus, many of
the parameter combinations require careful adoptions to achieve the best results.

One of the most important hyper-parameters during the training of the neural
language model is the loss function. With a given label yi for a data point representing
the ground truth and the output of the neural network f(xi|θ) for the input xi at time
step t and the neural network θ, the loss function measures the error of the label-
output combination. The loss used for the training of the network is defined by

loss(f(xi|θ), yi) = ln(f(xi|θ)) ∗ yi (6.10)

calculating the product of the natural logarithm of the network output and the ground-
truth. As the loss is defined per data point, it is used within a more general cost
function, summarizing multiple loss functions over a greater part of the training set.
The number of data points that are combined together is defined by the batch size.
The cost function used for the model is the cross entropy cost function defined by

ε = − 1

n

N∑
i=1

loss(f(xi|θ), yi) = − 1

n

N∑
i=1

ln(f(xi|θ)) ∗ yi (6.11)

The cost function summarizes N data points by calculating the sum of the respective
loss functions. To normalize the cost of the network, the result of the summation is
divided by the negative amount of data points − 1

n . This error value ε is the input for
the optimizer of the model that is used to minimize the cost function through back
propagation of the error into the network.

Various functions have been developed to solve the optimization task. Most of
the modern optimizers are momentum based including the Adagrad, AdaDelta, and
Adam algorithms. The Adam optimizer has multiple advantages compared to the

Chapter 6. Evaluation 39

other learning methods and is proven to work very well in practice. It outperforms
the other algorithms through its fast learning speed, leading to a rapid converge. It
also avoids common optimizer problems such as high variance and vanishing learning
rate (Kingma and Ba, 2014). The nature of the Adam optimizer decrements the learn-
ing rate throughout the training process to improve the performance of the network
and avoid local minima. Even though the learning rate is dynamically adopted over
time, the initial value of the learning rate parameter still has crucial impact on the
optimizer’s performance and needs to be carefully chosen. For the language model,
the learning rate has been set between 1e − 3 and 1e − 4 where a rate of 1e − 3 is
recommended by the original authors (Kingma and Ba, 2014).

Another important hyper-parameter of the network is the number of generations.
Depending on the depth and width of the network, the necessary epochs until the
network converges varies greatly. The number of iterations is a trade-off between
network size and computation time. As most of the models evaluated within this thesis
have been empirically proven to converge within 16 iteration and the computational
effort during the training remains reasonable, the models are trained for 16 iterations.

Through computational constraints of the models, further assumptions need to be
made. One important parameter to establish is the vocabulary size nvocab. While the
size of the vocabulary has been kept flexible during the model definition, it needs to be
defined for the instance of the network. As described in the previous chapter, the size
of the vocabulary corresponds to the number of classes and defines the dimension of the
input and output layer of the computational model. This direct dependency between
the vocabulary size and the dimensions of the network makes the vocabulary size an
important factor. If nvocab is chosen very small, the performance of the system will
decrease as many words are substituted by the <UNK> token. Setting the number of
classes disproportionately high will significantly slow down the training process. The
size of a reasonable vocabulary is also highly dependent on the data source and can
range from a few thousand words (Bengio et al., 2003) up to a million (Mikolov et al.,
2013) unique tokens in the vocabulary. For the task of language modeling on the
TEDTalk dataset the vocabulary size nvocab is set to 30,000 unique words resulting in
30,000 classes.

Aside from the limitation of possible input words though the vocabulary size, the
maximal length of a sequence is defined. For language models one sentence tradition-
ally represents a sequence. Thus, the length of the average sentences determines the
maximal sequence size of 50 tokens.

The sparse input of the computational model defined by the vocabulary size is in-
ternally transferred into a dense representation through the embedding layer as shown
in figure 5.4. Therefore, the second dimension of the embedding layer defined by the
matrix of dimension [nvocab ∗sizeembedding] has a fundamental impact on the network.
The input of the embedding layer defined by nvocab is transferred into representations

Chapter 6. Evaluation 40

in the real valued space. This representation must yield enough entropy to sufficiently
discriminate the various input classes. A suitable size for the embedding has been
determined at around 300 dimensions (Xie and Rastogi, 2017).

The recursive layer plays a crucial role for the memory capacity of the network.
Hence, the neurons within the layer need to be able to store enough information of
the previous time steps. This makes the number of neurons within the layer a key
feature of the network, which significantly determines its performance. 512 neurons
per hidden layer have been established an efficient compromise amongst memorization
and performance.

An overview of the hyper-parameters is shown in table 6.1.

Parameter Model value

Optimizer Adam
Cost Function Cross Entropy
Learning Rates [1e-3, 5e-4, 1e-4]
Iterations 16
Vocabulary Size 30,000
Sequence Length 50
Embedding Size 256
Hidden Layer Size 512
Hidden Layers 1
Batch Size 100

Table 6.1: Language Model Instance Hyper-Parameters

Further selected hyper-parameters of the computational model include the number
of hidden layers and the batch size. With a larger number of hidden layers in the
model, a higher degree of abstraction can be achieved at the cost of additional network
parameters, which need to be learned during training. The amplification of the model
slows down the learning process and requires a larger set of training data. Therefore,
adopting the number of layers significantly changes the networks’ performance during
training and testing. By changing the number of hidden layers in the network and the
resulting increase of free parameters, the batch size is adopted accordingly. Adding
one additional layer of computation with the hyper-parameters described in table 6.1
introduces an extra (5122 + 512) weights and 512 further neuron states that need to
be kept in memory.

All parameters within one batch need to be accessible in memory as the update
of the model is performed on batch-level by applying the cross entropy cost function
and propagating the error back into the network through the optimizer. These com-
putational steps can easily exceed the systems’ memory limitations. Adopting the
batch size is a common way to avoid this limitation without reducing the amount of
computational layers.

Chapter 6. Evaluation 41

The model with the hyper-parameters described in table 6.1 is trained on the
modified and preprocessed TEDTalk data.

Figures 6.2 and 6.3 show the results of the evaluation for the baseline language
model on the development set. The first graph (6.2) displays the F-score of the neural
networks on an increasing threshold range. Figure 6.3 shows the measured perplexity
on the development and training set.

0 1 2 3 4 5 6 7 8 9 10

·104

1%

2%

3%

4%

5%

6%

7%

8%

Threshold

F
-S
co
re

LR 1e-3 (Generation 8)
LR 5e-4 (Generation 10)
LR 1e-4 (Generation 16)

Figure 6.2: Baseline Language Model F-Score

Based on the analysis of the two measures, iteration 10 of the model with learning
rate 5e− 4 reaches the best performance with a F-score of 6.49% on the development
set. Hence, this model is selected for the final evaluation of the unsupervised baseline
model. The final result on the test set is shown in table 6.2.

Measure Model Performance

Precision 4.12%
Recall 15.42%
F-score 6.51%
Perplexity 115

Table 6.2: Baseline Language Model Final Result

Chapter 6. Evaluation 42

2 4 6 8 10 12 14 16

50

100

150

200

250

300

350

Generation

P
er
pl
ex
it
y

LR 1e-3 (DEV)
LR 5e-4 (DEV)
LR 1e-4 (DEV)

LR 1e-3 (TRAIN)
LR 5e-4 (TRAIN)
LR 1e-4 (TRAIN)

Figure 6.3: Baseline Language Model Perplexity

6.2.2 Binary Classification Model

The F-score of the supervised computational model is shown in figure 6.4 for the three
distinct learning rates 1e− 3, 5e− 4 and 1e− 4.

The best performance is achieved in generation 8 utilizing the model with a learning
rate of 1e − 3 by separating the binary classes at the least likely 5,000 tokens. The
resulting F-score on the development set is 10.16%. The respective model with the
best performing 8th generation is therefore evaluated on the test set, specifying the
maximal performance of the supervised computational model on the task. The results
are shown in table 6.3.

Measure Model Performance

Precision 8.94%
Recall 11.76%
F-score 10.16%

Table 6.3: Baseline Binary Classification Model Final Result

Chapter 6. Evaluation 43

0 1 2 3 4 5 6 7 8 9 10

·104

1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%
14%
15%

Threshold

F
-S
co
re

LR 1e-3 (Generation 8)
LR 5e-4 (Generation 14)
LR 1e-4 (Generation 10)

Figure 6.4: Baseline Binary Classification Model F-Score

Chapter 6. Evaluation 44

6.3 Context Aware Model

To evaluate the influence of the broader context on the task of out-of-context error
detection, three different context-aware model topologies are instantiated. The com-
putational models employed are:
(1) A context-aware language model,
(2) an attention-based context-aware language model and
(3) a supervised context-aware binary model

Each model architecture employs two different context representations as described
in section 5.3.1.
(a) The final state of a language model (LM-CR) and
(b) the thought-vector of a translation model (NMT-CR).
The first context representation is based on the best performing language model de-
scribed above. The second approach, utilizing the NMT model, is shortly analyzed in
the following section.

6.3.1 NMT Context Representation

With the NMT model architecture described in section 5.3.1, the translation model
is trained for 16 generations with three different learning rates of 1e − 3, 5e − 4 and
1e − 4. Table 6.4 summarizes the free hyper-parameters used for the training. The
parameters are chosen as close as possible to the parameters used within the language
model, to keep the two context representations comparable.

Parameter Model value

Optimizer Adam
Cost Function Cross Entropy
Learning Rates [1e-3, 5e-4, 1e-4]
Iterations 16
Vocabulary Size (English) 30,000
Vocabulary Size (German) 30,000
Sequence Length 100
Embedding Size 256
Hidden Layer Size 512
Hidden Layers 1
Batch Size 100

Table 6.4: NMT Model Hyper-Parameters

The result of the bilingual training is shown in figure 6.5, displaying the average
perplexity of the learned translation model tested on the mutually exclusive devel-
opment set. The best perplexity is achieved by the model with a learning rate of
5e − 4, reaching a minimal perplexity of 46 in generation 8. Due to overfitting, the

Chapter 6. Evaluation 45

2 4 6 8 10 12 14 16
0

50

100

150

200

250

Generation

P
er
pl
ex
it
y

LR 1e-3
LR 5e-4
LR 1e-4

Figure 6.5: NMT Model Perplexity

perplexity increases in later iteration again. Using the described model represents a
good trade-off between training efforts and performance. The final perplexity of the
translation model evaluated on the test set is 49.

6.3.2 Context Aware Language Model

The context-aware language model implements the standard encoder-decoder model
defined in chapter 5. To be able to compare the network with the baseline language
model and assess the influence of the context on the system performance, the hyper-
parameters of the context-aware system are chosen similar to the baseline model’s
parameters. The utilized hyper-parameters are described in table 6.5.

To create a reasonable trade-off between training time and model performance, the
additional context parameter is restricted to 10 sentences. Based on these parameters,
the context-aware language model is instantiated and trained. The exact topology of
the neural network is shown in figure 6.6 created with the Tensorflow visualization
tool Tensorboard.

The Tensorboard visualization of the network shows the data flow through the
computational graph. The topology includes four input placeholders for the data to
be fed into the network during training and testing.

The two inputs for the encoder are the sentence representations and the context
length, which are entered into the network at every time step. The dimension of the

Chapter 6. Evaluation 46

Parameter Model value

Optimizer Adam
Cost Function Cross Entropy
Learning Rates [1e-3, 5e-4, 1e-4]
Iterations 16
Vocabulary Size 30,000
Sequence Length 50
Context Length 10
Embedding Size 256
Hidden Layer Size 512
Hidden Layers 1
Batch Size 100

Table 6.5: Context Aware Language Model Hyper-Parameters

sentence representation data is

[batch size× context length× sentence representation] (6.12)

To keep the batch size flexible between training and testing, the batch size dimen-
sion stays undefined and is determined during the execution of the network. This
is possible, as the two other dimensions are defined and the batch size dimension
can be dynamically inferred from these. Applying the hyper-parameters of the net-
work, described in table 6.5, the input for the sentence representations is of dimen-
sion [?, 10, 512]. The context length is represented by a one-dimensional tensor of
size [batch size] and contains the context length of every input (sentence representa-
tion) into the network. This information is crucial for the computational graph, as
the flexible length of the context needs to be available to the network, to stop the
computation after the context is fully fed into the network. This procedure is nec-
essary rather for the correctness of the system than for the performance (Tensorflow
Documentation). With the sentence representation and the context length defined,
the encoder can dynamically compute the overall context of the system and pass the
resulting thought-vector into the decoder part of the network.

The decoder inputs are the target sentence and the sentence length with the target
sentence input having a dimensionality of

[batch size×max sentence length] (6.13)

representing the current sentence evaluated within the context. The batchsize di-
mension is undefined to allow different batch sizes during training and testing and
the max sentence length dimension is of size 50 resulting in the input dimensions of
[?, 50]. Every value in the tensor is an integer representing the position of the word in
the one-hot encoded vector. This index-encoded input representation is subsequently

Chapter 6. Evaluation 47

Figure 6.6: Context Aware Language Model Topology in Tensor-
board

entered into the embedding layer. The embedding layer maps the [?, 50] dimensional
integer-valued input into a [?, 50, 256] dimensional space of real values. This transfor-
mation does not affect the first two dimensions of the tensor. The second input of the
decoder is the sentence length, which defines the length of every sentence input, with
the dimensions [batch size]. This does not contradict with the intermediate embed-
ding computation, as the embedding layer does not influence the first two dimensions.
Together with the thought-vector from the encoder, the decoder computation is exe-
cuted for every word in the target sentence and forwarded to the output layer through
a tensor of dimension [?, 50, 512] containing the output of the hidden units.

The models are trained on the TEDTalk training data for 16 iterations and sub-
sequently evaluated on the development set to determine the best performance of the
computation. The included measures for the context-aware language model on the
development dataset are the perplexity and the normalized out-of-context detection

Chapter 6. Evaluation 48

rate.

The results of the network utilizing the final state of the language model (LM-CR)
to calculate the sentence representations are shown in figures 6.7 and 6.8.

0 1 2 3 4 5 6 7 8 9 10

·104

1%

2%

3%

4%

5%

6%

7%

8%

Threshold

F
-S
co
re

LR 1e-3 (Generation 2)
LR 5e-4 (Generation 6)
LR 1e-4 (Generation 10)

Figure 6.7: Context Aware Language Model F-Score (with Neural
Machine Translation Context Representation)

The F-score evaluation in figure 6.7 reaches the best performance of 7.21% sepa-
rating the least likely 7,000 words with a learning rate of 5e−4. The perplexity graph
(6.8), comparing the three learning rates, confirms the suitability of the model with
a learning rate of 5e− 4 with a minimal perplexity of 74. With these two individual
measures, the best performing network is determined.to be the network with a learn-
ing rate of 5e−4, as it shows good performance on both tasks. The model is therefore
tested on the test set for the final score (Table 6.6).

Measure Model Performance

Precision 5.18%
Recall 11.05%
F-score 7.06%
Perplexity 79

Table 6.6: Context Aware Language Model (with Language Model
Context Representation) Final Result

The results of the context-aware language model using the final state of the base-
line language model to calculate the sentence representations, as described above, is

Chapter 6. Evaluation 49

2 4 6 8 10 12 14 16
60

80

100

120

140

160

Generation

P
er
pl
ex
it
y

LR 1e-3
LR 5e-4
LR 1e-4

Figure 6.8: Context Aware Language Model Perplexity (with Lan-
guage Model Context Representation)

compared to the result utilizing the translation model to encode the sentence repre-
sentations. Therefore, the same evaluation is executed on the development set to find
the best learning rate and training generation.

In the following, figure 6.9 describes the F-scores of the three networks, analyzing
the abilities on the out-of-context error detection task. The second graph (6.10)
subsequently described the perplexities.

With a separation value of 8,000 tokens on the development dataset, the best F-
score is achieved by the model with a learning rate of 5e− 4 in generation 6 (7.55%).
The shape of the perplexity graph in figure 6.10 also shows a good perplexity of 73
for the model with a learning rate of 5e − 4. Building on these results, the best
combination of learning rate and training generation is determined to be generation
6 of model 5e − 4. The results of the model tested on the final test set are shown in
table 6.7.

Comparing the two final outcomes on the test set described in tables 6.6 and
6.7, the approach utilizing the underlying translation model outperforms the baseline
language model. While the performance on the development set is on the same level
for both models, the result on the test set indicates an advantage of the translation
based approach. It needs to be additionally noted, that the translation approach had
less data to be trained on, as the approach requires multilingual training data.

The best result on the task utilizing the context-aware translation model is a

Chapter 6. Evaluation 50

0 1 2 3 4 5 6 7 8 9 10

·104

1%

2%

3%

4%

5%

6%

7%

8%

Threshold

F
-S
co
re

LR 1e-3 (Generation 4)
LR 5e-4 (Generation 6)
LR 1e-4 (Generation 16)

Figure 6.9: Context Aware Language Model F-Score (with Language
Model Context Representation)

2 4 6 8 10 12 14 16
60

80

100

120

140

160

Generation

P
er
pl
ex
it
y

LR 1e-3
LR 5e-4
LR 1e-4

Figure 6.10: Context Aware Language Model Perplexity (with Neu-
ral Machine Translation Context Representation)

Chapter 6. Evaluation 51

Measure Model Performance

Precision 5.43%
Recall 11.31%
F-score 7.34%
Perplexity 76

Table 6.7: Context Aware Language Model (with Neural Machine
Translation Context Representation) Final Result

detection rate of 7.34%. Compared to the performance of the baseline model with
a test result of 6.51%, the detection rate has been increased by 0.83% absolute and
12.75% relative. This shows, that the context-aware extension of the model enhanced
the performance on the semantic error detection task.

6.3.3 Attention-based Context Aware Language Model

The second context-aware language model employs an additional computational con-
cept to extend the encoder-decoder model by introducing an attention mechanism.
Attention has been developed to free the encoder-decoder design pattern from the
fixed-length thought-vector by training the model to directly pay attention to the in-
put sequence of the encoder instead of only relying on the thought-vector to encode all
the relevant information. With this new concept, the output sequence can condition-
ally select relevant information from the input sequence. This approach has proven
to enhance many systems within the domain of NMT and became state-of-the-art for
translation systems (Bahdanau et al., 2014; Luong et al., 2015). Improving the perfor-
mance of encoder-decoder models for translation purposes makes this approach also
interesting for our task of context-aware error detection. The extended computational
graph employing an attention module is displayed in figure 6.11.

Instead of only passing the thought-vector from the encoder to the decoder, the
attention module is interconnected. The additional attention computation takes the
thought-vector from the encoder as well as all the inputs at every time step into
account. During the training, the attention module jointly learns which input to focus
on during the execution. Due to the conditional attention on the encoder outputs, the
network is supposed to be able to further discriminate important content of the source
context from unstructured clutter. The trade-off for these additional computations
are further parameters, which need to be trained during the learning process. To
remain comparable, the hyper-parameters of the system are derived from the baseline
models. The used hyper-parameters are illustrated in table 6.8.

The additional attention parameters are chosen to fit in the existing network topol-
ogy with an attention size equal to the context length and a single layer of attention.
The attention algorithm is chosen to be the Bahdanau attention.

Chapter 6. Evaluation 52

Figure 6.11: Attention Based Context Aware Language Model
Topology in Tensorboard

With this extended architecture, the context-aware language model is trained and
tested. The results on the development set are presented in figures 6.12 and 6.13 for
the sentence representations with the baseline language model. Figures 6.14 and 6.15
show the results based on the translation model.

With the two measures utilizing the baseline language model for the sentence rep-
resentations, the best combination of learning rate and training epoch are determined.
The system with learning rate 5e − 4 reaches the best F-score on the out-of-context
detection task in generation 10 with a threshold of 9,000 words gaining a score of
4.57%. The same model/generation combination also achieves a good perplexity for
the model with 124. Iteration 10 of the 5e − 4 model is, hence, tested on the test
dataset. The result of the measurement is shown in table 6.9.

Chapter 6. Evaluation 53

Parameter Model value

Optimizer Adam
Cost Function Cross Entropy
Learning Rates [1e-3, 5e-4, 1e-4]
Iterations 16
Vocabulary Size 30,000
Sequence Length 50
Context Length 10
Attention Bahdanau
Attention Memory Size 10
Attention Memory Depth 1
Embedding Size 256
Hidden Layer Size 512
Hidden Layers 1
Batch Size 100

Table 6.8: Attention Based Context Aware Language Model Hyper-
Parameters

0 1 2 3 4 5 6 7 8 9 10

·104

1%

2%

3%

4%

5%

6%

7%

8%

Threshold

F
-S
co
re

LR 1e-3 (Generation 10)
LR 5e-4 (Generation 10)
LR 1e-4 (Generation 16)

Figure 6.12: Attention Based Context Aware Language Model F-
Score (with Language Model Context Representation)

The second approach for the attention based model again follows the context repre-
sentations utilizing the translation model to encode the sentence representation. The
results on the development set are described in the graphics below (Figures 6.14 and
6.15)

Chapter 6. Evaluation 54

2 4 6 8 10 12 14 16
100

120

140

160

180

200

220

Generation

P
er
pl
ex
it
y

LR 1e-3
LR 5e-4
LR 1e-4

Figure 6.13: Attention Based Context Aware Language Model Per-
plexity (with Language Model Context Representation)

Measure Model Performance

Precision 3.05%
Recall 7.32%
F-score 4.31%
Perplexity 125

Table 6.9: Attention Based Context Aware Language Model (with
Language Model Context Representation) Final Result

Compared to the attention based model utilizing the baseline language model con-
text representations (6.13), the F-score of the model based on the NMT representation
shows significantly higher F-scores in graph 6.14. The best score is reached by the
model with learning rate 5e − 4 in generation 6 with a threshold value of 10,000
(6.98%). The perplexity aligns well with the F-score, reaching a minimal value for
the model with a learning rate of 5e− 4 in generation 6. The result on the test set is
shown in table 6.10.

In case of the attention based context-aware language model, the sentence encoding
with the translation model achieves significantly better results than the approach uti-
lizing the baseline language model. The best performance on the test set is an F-score
of 6.8%, outperforming the baseline network by 0.29% absolute and 4.46% relative.
With this result, the attention based context-aware language model reaches a better
performance than the baseline, but cannot enhance the performance of the standard

Chapter 6. Evaluation 55

0 1 2 3 4 5 6 7 8 9 10

·104

1%

2%

3%

4%

5%

6%

7%

8%

Threshold

F
-S
co
re

LR 1e-3 (Generation 4)
LR 5e-4 (Generation 6)
LR 1e-4 (Generation 16)

Figure 6.14: Attention Based Context Aware Language Model F-
Score (with Neural Machine Translation Context Representation)

2 4 6 8 10 12 14 16
60

80

100

120

140

160

Generation

P
er
pl
ex
it
y

LR 1e-3
LR 5e-4
LR 1e-4

Figure 6.15: Attention based Context Aware Language Model Per-
plexity (with Neural Machine Translation Context Representation)

Chapter 6. Evaluation 56

Measure Model Performance

Precision 4.68%
Recall 12.43%
F-score 6.8%
Perplexity 82

Table 6.10: Attention based Context Aware Language Model (with
Neural Machine Translation Context Representation) Final Results

context-aware language model described in chapter 6.3.2. A possible explanation for
the performance of the attention based model is that the context relevant information
are at arbitrary positions within the paragraph. This allows no prediction on which
input sentence might contain the most salient information for the context, as the in-
formation is randomly distributed. The network can therefore not learn any relation
between the target sentence and the position of the information in the context.

6.3.4 Context Aware Binary Model

The third model type to test the influence of a context to improve the system per-
formance is the context-aware binary model. In contrast to the other context-aware
models evaluated on the task, the binary classification model is trained on supervised
training data, separating the two classes

original→ 0

out− of − context→ 1

The architecture of the model is similar to the model presented in figure 6.6. The only
architectural difference to the standard context-aware language model is the output
layer, which only contains two neurons performing a softmax activation function on
the binary classes. Nevertheless, this slight design change within the network requires
major changes in the preprocessing pipeline to adapt to the new network. The exact
hyper-parameters used are shown in table 6.11.

All the parameters of the network are kept constant with only the output layer
amount of neurons changed down to the two output classes. This largely decreases
the amount of neurons and therefore the amount of trainable weights in the network.
The former weight matrix between the hidden layer and the output layer with a
size of [512 × 30, 000] containing 512 ∗ 30, 000 = 15, 360, 000 weights is reduced to
the weight matrix of size [512] containing 512 ∗ 2 = 1, 024 individual weight values.
This significantly decreases the computational efforts during the forward calculation
and the backpropagation. The supervised binary classification networks described in
table 6.11 are trained on the supervised TEDTalk training data. The performance

Chapter 6. Evaluation 57

Parameter Model value

Optimizer Adam
Cost Function Cross Entropy
Learning Rates [1e-3, 5e-4, 1e-4]
Iterations 16
Vocabulary Size 30,000
Sequence Length 50
Context Length 10
Output Layer Size 2
Embedding Size 256
Hidden Layer Size 512
Hidden Layers 1
Batch Size 100

Table 6.11: Context Aware Binary Classification Model Hyper-
Parameters

evaluation to find the superior combination of learning rate and training epoch uses
the F-score of the network to compare the two context representations in figures 6.16
and 6.17.

0 1 2 3 4 5 6 7 8 9 10

·104

1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%
14%
15%

Threshold

F
-S
co
re

LR 1e-3 (Generation 14)
LR 5e-4 (Generation 12)
LR 1e-4 (Generation 8)

Figure 6.16: Context Aware Binary Classification Model F-Score
(with Language Model Context Representation)

The best F-score with the baseline language model context representation in figure
6.16 is achieved by the model with 5e−4 as the learning rate in iteration 12. It reaches

Chapter 6. Evaluation 58

a F-score of 13.37% with a threshold value of 3,000 tokens. The model is therefore
further evaluated on the test set, summarized in table 6.12.

Measure Model Performance

Precision 13.4%
Recall 10.72%
F-score 11.92%

Table 6.12: Context Aware Binary Classification Model (with Lan-
guage Model Context Representation) Final Result

The alternative approach utilizing the translation model to encode the sentence
representations is analyzed in figure 6.17.

0 1 2 3 4 5 6 7 8 9 10

·104

1%
2%
3%
4%
5%
6%
7%
8%
9%

10%
11%
12%
13%
14%
15%

Threshold

F
-S
co
re

LR 1e-3 (Generation 4)
LR 5e-4 (Generation 6)
LR 1e-4 (Generation 8)

Figure 6.17: Context Aware Binary Classification Model F-Score
(with Neural Machine Translation Context Representation)

Both learning rates of 1e − 3 and 5e − 4 show a F-score of nearly 14% with the
score of the model 5e − 4 performing slightly better, reaching a F-score of 13.9%
in generation 6 with a threshold of 3,000 tokens. The final result for this setup is
calculated for generation 6 of the model with learning rate 5e−4. The result is shown
in table 6.13.

The performance of both binary classification models is comparable. Nevertheless,
the network topology based on the translation sentence representations achieves better
results on the development and the test set. With a detection rate of 12.23% of all
inserted errors, the result of this model achieves the best results. Even though the

Chapter 6. Evaluation 59

Measure Model Performance

Precision 13.77%
Recall 11.01%
F-score 12.23%

Table 6.13: Context Aware Binary Classification Model (with Neural
Machine Translation Context Representation) Final Result

supervised baseline model reached the best results on the baseline task with a F-score
of 10.16%, the context-aware model enhances this high baseline by 2.07% absolute
and 20.37% relative, showing that the context extension benefits all, unsupervised
and supervised, models.

6.4 Evaluation Overview

The individual scores presented in the previous sections are consolidated in table 6.14.
The direct comparison shows the superiority of context-aware models over sentence-
based approaches. The best result in each category is highlighted for the unsupervised
and supervised topologies.

Model Perplexity Precision Recall F-score

Baseline Lang Model 115 4.12% 15.42% 6.51%
Context Lang Model LM-CR 79 5.18% 11.05% 7.06%
Context Lang Model NMT-CR 76 5.43% 11.31% 7.34%
Context Attn Lang Model LM-CR 125 3.05% 7.32% 4.31%
Context Attn Lang Model NMT-CR 82 4.68% 12.43% 6.8%

Baseline Bin Class Model - 8.94% 11.76% 10.16%
Context Bin Class Model LM-CR - 13.4% 10.72% 11.92%
Context Bin Class Model NMT-CR - 13.77% 11.01% 12.23%

Table 6.14: Final Comparison of the Model Performance

60

Chapter 7

Conclusion

In this work, we presented a novel architecture for context-aware computational mod-
els. The designed task reproduces common errors of state-of-the-art transcription and
translation systems that can be prevented by taking a broader discourse into account.
Our newly introduced substitution approach to modify existing datasets with out-of-
context tokens represents the ground-truth for the assessment of the context-aware
computational models. We show that the substituted tokens are difficult to infer
by models that solely employ the local context. Thus, a context-aware approach is
developed to enhance the performance on the task. Through our automated modifi-
cation process, the necessary ground-truth generation is accessible and fast. With the
2016 TEDTalk database, modified through the automated modification pipeline, we
enabled the training and testing of computational models against real-world out-of-
context errors.

The application of two baseline models shows the difficulty to detect the out-of-
context errors. The unsupervised language model, limited to the local context of
the text, is trained on the unsupervised training data and tested against the ground-
truth on the development and test sets. The second model, utilizing the supervised
information during the training and testing phase, solves a binary classification task.
To assess the significance of a contextual component, multiple hierarchical context-
aware models are implemented to encode the broader discourse of the text into the
computational processing. The context sensitive approaches employing the context of
the text passage are compared with the baseline models to assess the importance of
the context.

The context-sensitive translation model improves the baseline model by a factor
of 12.75% relative and increases the detection rate from 6.51% to 7.34%. The second
approach, to enhance the context sensitive language model by adding an attention
mechanism, was not able to further improve the detection rate of out-of-context errors.
A possible explanation for this behavior is given in the respective chapter.

The supervised model, which already reached an out-of-context detection rate of
10.16% in the baseline version is extended by a context component and further en-
hances the detection rate up to 12.23%.

Chapter 7. Conclusion 61

This consistent improvement of the performance for both, unsupervised and su-
pervised models, shows the significance of the context. This result proves, that the
employment of a context within a contextual text passage enhances the overall per-
formance of the system. Through the shallow design of the networks and the limited
amount of neurons per layer, a basic example for the efficiency of the context is given.
Expanding the network and introducing more sophisticated computational models
can enhance this approach. Nevertheless, the basic assumption that a context-aware
system outperforms models with only local context has been confirmed. Possible
extensions that should be taken into account are described in the next chapter.

62

Chapter 8

Further Work

This work has been conducted to show the superiority of context-aware system over
sentence-based approaches. To keep the efforts within this thesis manageable, some
constraints have been introduced, including limited size topologies and basic network
designs. To further investigate on the matter, an increased number of computational
layers should be employed within the network to learn more abstract relations on the
data. To employ more information from the context, more sophisticated approaches
for the encoder component can be utilized, e.g. using bidirectional encoder architec-
tures. Another open task based on this work is the assessment of different compu-
tational units within the network. We also applied a restriction for the vocabulary
in this work. To save computational efforts during the training process, the vocabu-
lary has been limited for all models. An extended vocabulary and open vocabulary
approaches can further enhance the quality of the models by reducing the amount of
unknown tokens. With a larger vocabulary and deeper models, the embedding layer
is another source for improvements. A larger vector of real-valued word-embeddings
can enhance the abstraction of words in the model.

63

Appendix A

Code

The following chapter contains code snippets of the instantiated model topologies for
the baseline networks and the context-aware models.

A.1 Baseline Model

The baseline models are build on top of the Keras neural network library, which creates
computational models through the interconnection of layers. The specific architecture
is build on a high level structure.

A.1.1 Language Model

from keras.models import Sequential
from keras.layers import Dense, Activation, Embedding, LSTM
from keras.layers.wrappers import TimeDistributed
from keras import optimizers

model = Sequential()
model.add(Embedding(input_dim=len(vocab), output_dim=embedding_size,

mask_zero=True))
Dynamic Number of LSTM Layers
for layer in range(0, nb_hidden_layers):

model.add(LSTM(units=hidden_dimensions, return_sequences=True))
Add a Dense Layer for every Timestep
model.add(TimeDistributed(Dense(len(vocab), activation=’softmax’)))
optimizer = optimizers.Adam(lr=learning_rate)
model.compile(loss=’sparse_categorical_crossentropy’, optimizer=optimizer)

Appendix A. Code 64

A.1.2 Binary Classification Model

from keras.models import Sequential
from keras.layers import Dense, Activation, Embedding, LSTM
from keras.layers.wrappers import TimeDistributed
from keras import optimizers

model = Sequential()
model.add(Embedding(input_dim=len(vocab), output_dim=embedding_size,

mask_zero=True))
Dynamic Number of LSTM Layers
for layer in range(0, nb_hidden_layers):

model.add(LSTM(units=hidden_dimensions, return_sequences=True))
Add a Dense Layer for every Timestep
model.add(TimeDistributed(Dense(1, activation=’sigmoid’)))
optimizer = optimizers.Adam(lr=learning_rate)
model.compile(loss=’binary_crossentropy’, optimizer=optimizer)

A.2 Context-Aware Model

The NMT context representation and the context-aware models use the Tensorflow
deep-learning framework to build the topologies. Tensorflow offers low-level function-
alities to build highly specific models, which cannot be plugged together with the
predefined Keras layers.

A.2.1 NMT Context Representation

import tensorflow as tf
from tensorflow.python.framework import dtypes

Inputs / Outputs
encoder_inputs = tf.placeholder(dtypes.int64, shape=[None,

enc_timesteps_max])
encoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_inputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
decoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_outputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
masking = tf.placeholder(dtypes.float32, shape=[None, dec_timesteps_max])
start_token_infer = tf.placeholder(dtypes.int32, shape=[None])

Cell Definition
encoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)

Appendix A. Code 65

if hidden_layers > 1:
encoder_cell =

tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

decoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)
if hidden_layers > 1:

decoder_cell =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

Encoder
embeddings_enc = tf.Variable(tf.random_uniform([enc_input_dimension,

embedding_size], -1.0, 1.0), dtype=tf.float32)
encoder_inputs_embedded = tf.nn.embedding_lookup(embeddings_enc,

encoder_inputs)
_, initial_state = tf.nn.dynamic_rnn(encoder_cell, encoder_inputs_embedded,

sequence_length=encoder_lengths, dtype=tf.float32)

Decoder
embeddings_dec = tf.Variable(tf.random_uniform([dec_input_dimension,

embedding_size], -1.0, 1.0), dtype=tf.float32)
decoder_inputs_embedded = tf.nn.embedding_lookup(embeddings_dec,

decoder_inputs)

final_layer = layers_core.Dense(units=dec_input_dimension)
helper = tf.contrib.seq2seq.TrainingHelper(decoder_inputs_embedded,

decoder_lengths)
decoder = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper,

initial_state, output_layer=final_layer)
outputs, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder,

maximum_iterations=dec_timesteps_max)
training_output = outputs.rnn_output

helper_infer = tf.contrib.seq2seq.GreedyEmbeddingHelper(embeddings_dec,
start_token_infer, end_of_sequence_id)

decoder_infer = tf.contrib.seq2seq.BasicDecoder(decoder_cell, helper_infer,
initial_state, output_layer=final_layer)

outputs_infer, _, _ = tf.contrib.seq2seq.dynamic_decode(decoder_infer,
maximum_iterations=dec_timesteps_max)

infer_output = outputs_infer.sample_id

Training
loss = tf.contrib.seq2seq.sequence_loss(targets=decoder_outputs,

logits=training_output, weights=masking)
updates = tf.train.AdamOptimizer(learning_rate).minimize(loss)

Appendix A. Code 66

A.2.2 Context Aware Language Model

import tensorflow as tf
from tensorflow.python.framework import dtypes

Inputs / Outputs
encoder_inputs = tf.placeholder(dtypes.float32, shape=[None,

enc_timesteps_max, enc_input_dimension])
encoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_inputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
decoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_outputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
masking = tf.placeholder(dtypes.float32, shape=[None, dec_timesteps_max])

Cell Definition
encoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)
if hidden_layers > 1:

encoder_cell =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

decoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)
if hidden_layers > 1:

decoder_cell =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

Encoder
_, initial_state = tf.nn.dynamic_rnn(encoder_cell, encoder_inputs,

sequence_length=encoder_lengths, dtype=tf.float32)

Decoder
embeddings = tf.Variable(tf.random_uniform([vocab_size,

input_embedding_size], -1.0, 1.0), dtype=tf.float32)
decoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, decoder_inputs)
lstm_output,state = tf.nn.dynamic_rnn(decoder_cell,

decoder_inputs_embedded, sequence_length=decoder_lengths,
initial_state=initial_state)

transp = tf.transpose(lstm_output, [1, 0, 2])
lstm_output_unpacked = tf.unstack(transp)
outputs = []
for index, item in enumerate(lstm_output_unpacked):

if index == 0:
logits = tf.layers.dense(inputs=item, units=vocab_size)

if index > 0:
logits = tf.layers.dense(inputs=item, units=vocab_size, reuse=True)

Appendix A. Code 67

outputs.append(logits)

tensor_output = tf.stack(values=outputs, axis=0)
forward = tf.transpose(tensor_output, [1, 0, 2])

Training
loss = tf.contrib.seq2seq.sequence_loss(targets=decoder_outputs,

logits=forward, weights=masking)
updates = tf.train.AdamOptimizer(learning_rate).minimize(loss)

A.2.3 Attention-based Context Aware Language Model

Inputs / Outputs
encoder_inputs = tf.placeholder(dtypes.float32, shape=[None,

enc_timesteps_max, enc_input_dimension])
encoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_inputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
decoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_outputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
masking = tf.placeholder(dtypes.float32, shape=[None, dec_timesteps_max])

Cell Definition
encoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)
if hidden_layers > 1:

encoder_cell =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

Encoder
encoder_outputs, initial_state = tf.nn.dynamic_rnn(encoder_cell,

encoder_inputs, sequence_length=encoder_lengths, dtype=tf.float32)

Attention
single_cell_dec = tf.contrib.rnn.LSTMCell(hidden_units)
attention_mechanism = tf.contrib.seq2seq.BahdanauAttention(hidden_units,

encoder_outputs, memory_sequence_length=encoder_lengths)
attn_cell = tf.contrib.seq2seq.AttentionWrapper(single_cell_dec,

attention_mechanism, initial_cell_state=initial_state)
decoder_cell = attn_cell
if hidden_layers > 1:

decoder_cell = tf.contrib.rnn.MultiRNNCell([attn_cell for _ in
range(hidden_layers)])

Decoder

Appendix A. Code 68

embeddings = tf.Variable(tf.random_uniform([vocab_size,
input_embedding_size], -1.0, 1.0), dtype=tf.float32)

decoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, decoder_inputs)
lstm_output,state = tf.nn.dynamic_rnn(cell=decoder_cell,

inputs=decoder_inputs_embedded, sequence_length=decoder_lengths,
dtype=tf.float32)

transp = tf.transpose(lstm_output, [1, 0, 2])
lstm_output_unpacked = tf.unstack(transp)
outputs = []
for index, item in enumerate(lstm_output_unpacked):

if index == 0:
logits = tf.layers.dense(inputs=item, units=vocab_size)

if index > 0:
logits = tf.layers.dense(inputs=item, units=vocab_size, reuse=True)

outputs.append(logits)
tensor_output = tf.stack(values=outputs, axis=0)
forward = tf.transpose(tensor_output, [1, 0, 2])

Training
loss = tf.contrib.seq2seq.sequence_loss(targets=decoder_outputs,

logits=forward, weights=masking)
updates = tf.train.AdamOptimizer(learning_rate).minimize(loss)

A.2.4 Context Aware Binary Model

Inputs / Outputs
encoder_inputs = tf.placeholder(dtypes.float32, shape=[None,

enc_timesteps_max, enc_input_dimension])
encoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_inputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
decoder_lengths = tf.placeholder(dtypes.int32, shape=[None])
decoder_outputs = tf.placeholder(dtypes.int64, shape=[None,

dec_timesteps_max])
masking = tf.placeholder(dtypes.float32, shape=[None, dec_timesteps_max])

Cell Definition
encoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)
if hidden_layers > 1:

encoder_cell =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

decoder_cell = tf.contrib.rnn.LSTMCell(hidden_units)
if hidden_layers > 1:

Appendix A. Code 69

decoder_cell =
tf.contrib.rnn.MultiRNNCell([tf.contrib.rnn.LSTMCell(hidden_units)
for _ in range(hidden_layers)])

Encoder
_, initial_state = tf.nn.dynamic_rnn(encoder_cell, encoder_inputs,

sequence_length=encoder_lengths, dtype=tf.float32)

Decoder
embeddings = tf.Variable(tf.random_uniform([vocab_size,

input_embedding_size], -1.0, 1.0), dtype=tf.float32)
decoder_inputs_embedded = tf.nn.embedding_lookup(embeddings, decoder_inputs)
lstm_output,state = tf.nn.dynamic_rnn(decoder_cell,

decoder_inputs_embedded, sequence_length=decoder_lengths,
initial_state=initial_state)

transp = tf.transpose(lstm_output, [1, 0, 2])
lstm_output_unpacked = tf.unstack(transp)
outputs = []
for index, item in enumerate(lstm_output_unpacked):

if index == 0:
logits = tf.layers.dense(inputs=item, units=2)

if index > 0:
logits = tf.layers.dense(inputs=item, units=2, reuse=True)

outputs.append(logits)
tensor_output = tf.stack(values=outputs, axis=0)
forward = tf.transpose(tensor_output, [1, 0, 2])
forward_output = tf.nn.softmax(forward)

Training
loss = tf.contrib.seq2seq.sequence_loss(targets=decoder_outputs,

logits=forward, weights=masking)
updates = tf.train.AdamOptimizer(learning_rate).minimize(loss)

70

Appendix B

Raw Data

This chapter contains the raw data of the presented graphs in the evaluation.

B.1 Baseline Model

Gen Development Training

LR 1e-3 LR 1e-4 LR 5e-4 LR 1e-3 LR 1e-4 LR 5e-4
2 94 305 132 88 323 135
4 80 193 108 61 204 102
6 85 162 105 50 168 91
8 94 145 108 44 148 85
10 107 133 115 39 135 82
12 120 126 121 35 126 79
14 135 120 127 32 119 75
16 151 116 132 29 113 72

Table B.1: Language Model Perplexity

Appendix B. Raw Data 71

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0% 0% 0% 21000 5.8% 4% 6.2%
1000 1% 3.5% 1% 22000 5.8% 3.9% 6.1%
2000 2% 4.7% 1.8% 23000 5.7% 3.9% 6%
3000 2.5% 5.1% 2.4% 24000 5.7% 3.8% 6%
4000 3.1% 5.2% 3.2% 25000 5.6% 3.8% 6%
5000 3.5% 5.2% 3.8% 26000 5.6% 3.8% 5.9%
6000 4.3% 5.3% 4.5% 27000 5.5% 3.8% 5.8%
7000 4.5% 5.1% 5.3% 28000 5.5% 3.7% 5.7%
8000 4.6% 5% 5.8% 29000 5.4% 3.6% 5.6%
9000 4.9% 4.8% 6.2% 30000 5.4% 3.6% 5.6%
10000 5.1% 4.9% 6.3% 31000 5.4% 3.6% 5.5%
11000 5.2% 4.7% 6.5% 32000 5.3% 3.5% 5.5%
12000 5.5% 4.7% 6.4% 33000 5.2% 3.5% 5.4%
13000 5.8% 4.5% 6.5% 34000 5.2% 3.5% 5.4%
14000 5.8% 4.4% 6.5% 35000 5.2% 3.4% 5.3%
15000 6% 4.3% 6.5% 36000 5.2% 3.4% 5.3%
16000 6% 4.3% 6.4% 37000 5.1% 3.3% 5.2%
17000 5.9% 4.2% 6.4% 38000 5.1% 3.3% 5.2%
18000 5.9% 4.1% 6.3% 39000 5% 3.3% 5.1%
19000 5.9% 4.1% 6.2% 40000 5% 3.2% 5.1%
20000 5.9% 4% 6.2% 41000 5% 3.2% 5%

Table B.2: Language Model F-Score

Appendix B. Raw Data 72

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0.1% 0.1% 0% 21001 8% 6.5% 7%
1001 7.4% 4.4% 5.4% 22001 7.9% 6.5% 6.9%
2001 9.1% 5.6% 6.9% 23001 7.7% 6.5% 6.8%
3001 9.5% 5.7% 7.5% 24001 7.6% 6.5% 6.7%
4001 10.1% 5.8% 7.8% 25001 7.5% 6.4% 6.6%
5001 10.4% 5.9% 8.2% 26001 7.4% 6.3% 6.5%
6001 10.3% 6.2% 8.3% 27001 7.3% 6.3% 6.5%
7001 10.1% 6.4% 8.4% 28001 7.2% 6.2% 6.4%
8001 9.9% 6.6% 8.3% 29001 7% 6.2% 6.3%
9001 9.7% 6.7% 8.2% 30001 7% 6.2% 6.2%
10001 9.6% 6.8% 8.2% 31001 6.9% 6.1% 6.1%
11001 9.4% 6.7% 8.1% 32001 6.8% 6% 6.1%
12001 9.2% 6.8% 8% 33001 6.7% 5.9% 6%
13001 9.1% 6.7% 7.9% 34001 6.6% 5.9% 6%
14001 8.9% 6.7% 7.9% 35001 6.6% 5.8% 5.9%
15001 8.7% 6.6% 7.7% 36001 6.5% 5.8% 5.8%
16001 8.6% 6.6% 7.6% 37001 6.4% 5.8% 5.8%
17001 8.4% 6.6% 7.5% 38001 6.3% 5.8% 5.7%
18001 8.3% 6.6% 7.3% 39001 6.2% 5.7% 5.6%
19001 8.2% 6.6% 7.2% 40001 6.1% 5.6% 5.6%
20001 8.1% 6.5% 7.1% 41001 6.1% 5.6% 5.5%

Table B.3: Binary Classification Model F-Score

Appendix B. Raw Data 73

B.2 Context-Aware Model

Generation LR 1e-3 LR 1e-4 LR 5e-4

2 68 211 86
4 54 132 59
6 56 100 52
8 63 84 51
10 76 73 55
12 93 67 58
14 109 62 64
16 134 58 71
18 156 56 80

Table B.4: NMT Context Representation Perplexity

Generation LR 1e-3 LR 1e-4 LR 5e-4

2 82 150 95
4 73 119 78
6 76 102 74
8 84 93 74
10 95 87 76
12 108 83 79
14 122 80 83
16 137 77 87

Table B.5: Context Aware Language Model Perplexity (with Lan-
guage Model Context Representation)

Appendix B. Raw Data 74

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0% 0% 0.1% 21001 6.4% 5.9% 6.2%
1001 2.8% 2.6% 3.3% 22001 6.3% 5.9% 6.1%
2001 4% 4.5% 4.7% 23001 6.3% 5.8% 6%
3001 5.1% 5.5% 5.6% 24001 6.2% 5.7% 5.9%
4001 5.4% 5.8% 6.3% 25001 6.2% 5.6% 5.9%
5001 5.7% 6.2% 6.8% 26001 6.2% 5.6% 5.7%
6001 6.1% 6.4% 7.1% 27001 6.1% 5.5% 5.6%
7001 6.4% 6.5% 7.2% 28001 6.1% 5.4% 5.6%
8001 6.6% 6.6% 7.6% 29001 6% 5.4% 5.5%
9001 6.8% 6.7% 7.5% 30001 5.9% 5.3% 5.5%
10001 6.9% 6.7% 7.4% 31001 5.9% 5.3% 5.5%
11001 6.9% 6.6% 7.3% 32001 5.8% 5.2% 5.4%
12001 6.9% 6.5% 7.2% 33001 5.8% 5.1% 5.3%
13001 6.9% 6.4% 7.1% 34001 5.7% 5.1% 5.2%
14001 6.8% 6.4% 6.9% 35001 5.7% 5% 5.2%
15001 6.8% 6.4% 6.8% 36001 5.6% 5% 5.1%
16001 6.8% 6.3% 6.6% 37001 5.6% 4.9% 5.1%
17001 6.6% 6.3% 6.5% 38001 5.5% 4.8% 5%
18001 6.6% 6.2% 6.5% 39001 5.5% 4.8% 5%
19001 6.4% 6.1% 6.4% 40001 5.4% 4.7% 4.9%
20001 6.4% 6.1% 6.2% 41001 5.3% 4.7% 4.8%

Table B.6: Context Aware Language Model F-Score (with Language
Model Context Representation)

Generation LR 1e-3 LR 1e-4 LR 5e-4

2 81 147 93
4 73 112 77
6 77 97 73
8 85 89 73
10 96 84 75
12 108 80 78
14 122 77 82
16 137 75 87

Table B.7: Context Aware Language Model Perplexity (with Neural
Machine Translation Context Representation)

Appendix B. Raw Data 75

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0% 0% 0.1% 21001 5.6% 5.6% 6.1%
1001 4.6% 3.9% 4% 22001 5.5% 5.4% 6.1%
2001 5.5% 5.3% 5.2% 23001 5.4% 5.4% 6%
3001 6% 5.7% 5.9% 24001 5.3% 5.2% 5.9%
4001 6.5% 6.1% 6.3% 25001 5.2% 5.2% 5.8%
5001 6.6% 6.6% 6.8% 26001 5.1% 5.1% 5.7%
6001 6.6% 6.4% 7% 27001 5.1% 5% 5.6%
7001 6.5% 6.7% 7.2% 28001 5% 5% 5.6%
8001 6.6% 6.5% 7.2% 29001 5% 4.9% 5.5%
9001 6.5% 6.5% 7.1% 30001 4.9% 4.8% 5.5%
10001 6.4% 6.4% 7.1% 31001 4.9% 4.7% 5.5%
11001 6.2% 6.3% 6.9% 32001 4.8% 4.7% 5.4%
12001 6.2% 6.1% 6.9% 33001 4.8% 4.6% 5.3%
13001 6.1% 6.1% 6.8% 34001 4.7% 4.5% 5.3%
14001 6.1% 6% 6.9% 35001 4.6% 4.5% 5.2%
15001 6% 6% 6.7% 36001 4.6% 4.5% 5.1%
16001 6% 6% 6.6% 37001 4.6% 4.4% 5.1%
17001 5.9% 5.9% 6.5% 38001 4.5% 4.4% 5%
18001 5.8% 5.9% 6.4% 39001 4.5% 4.4% 5%
19001 5.7% 5.7% 6.3% 40001 4.4% 4.3% 4.9%
20001 5.6% 5.6% 6.2% 41001 4.4% 4.2% 4.9%

Table B.8: Context Aware Language Model F-Score (with Neural
Machine Translation Context Representation)

Generation LR 1e-3 LR 1e-4 LR 5e-4

2 152 214 171
4 137 162 141
6 126 146 133
8 125 136 127
10 127 129 124
12 131 124 123
14 137 121 125
16 144 118 128

Table B.9: Attention-based Context Aware Language Model Per-
plexity (with Language Model Context Representation)

Appendix B. Raw Data 76

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0.1% 0% 0% 21001 3.6% 3.4% 4.1%
1001 1.7% 1.7% 2.1% 22001 3.6% 3.3% 4.1%
2001 2.3% 2.5% 3.1% 23001 3.6% 3.3% 4%
3001 2.7% 3.2% 3.8% 24001 3.6% 3.3% 4%
4001 3% 3.2% 4% 25001 3.5% 3.3% 4%
5001 3.3% 3.1% 4.1% 26001 3.5% 3.3% 4%
6001 3.4% 3.2% 4.4% 27001 3.5% 3.2% 3.9%
7001 3.6% 3.3% 4.5% 28001 3.5% 3.2% 3.9%
8001 3.6% 3.3% 4.6% 29001 3.5% 3.2% 3.8%
9001 3.7% 3.4% 4.6% 30001 3.4% 3.2% 3.7%
10001 3.7% 3.4% 4.6% 31001 3.4% 3.2% 3.7%
11001 3.7% 3.5% 4.5% 32001 3.4% 3.1% 3.7%
12001 3.7% 3.5% 4.4% 33001 3.3% 3.1% 3.6%
13001 3.8% 3.5% 4.4% 34001 3.4% 3.1% 3.6%
14001 3.8% 3.5% 4.5% 35001 3.4% 3.1% 3.5%
15001 3.8% 3.5% 4.4% 36001 3.3% 3.1% 3.5%
16001 3.8% 3.4% 4.3% 37001 3.3% 3% 3.5%
17001 3.8% 3.4% 4.3% 38001 3.3% 3% 3.5%
18001 3.8% 3.4% 4.3% 39001 3.3% 3% 3.4%
19001 3.7% 3.4% 4.2% 40001 3.2% 3% 3.4%
20001 3.7% 3.3% 4.2% 41001 3.2% 2.9% 3.4%

Table B.10: Attention-based Context Aware Language Model F-
Score (with Language Model Context Representation)

Generation LR 1e-3 LR 1e-4 LR 5e-4

2 82 145 94
4 73 112 78
6 76 98 74
8 85 90 74
10 95 85 76
12 108 81 79
14 121 78 83
16 135 76 88

Table B.11: Attention-based Context Aware Language Model Per-
plexity (with Neural Machine Translation Context Representation)

Appendix B. Raw Data 77

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0% 0% 0% 21001 6.5% 6.1% 6.1%
1001 2.2% 3.2% 3.7% 22001 6.4% 6% 6%
2001 3.8% 5% 5.1% 23001 6.4% 6% 5.9%
3001 4.8% 6.1% 5.9% 24001 6.3% 5.9% 5.8%
4001 5.3% 6.2% 6.3% 25001 6.2% 5.8% 5.8%
5001 5.9% 6.5% 6.7% 26001 6.2% 5.7% 5.7%
6001 6.2% 6.6% 6.9% 27001 6.2% 5.7% 5.7%
7001 6.5% 6.7% 6.8% 28001 6.1% 5.6% 5.6%
8001 6.7% 6.7% 6.9% 29001 6.1% 5.5% 5.5%
9001 6.8% 6.6% 7% 30001 6% 5.5% 5.4%
10001 6.8% 6.6% 7% 31001 6% 5.4% 5.3%
11001 6.9% 6.6% 6.9% 32001 5.9% 5.3% 5.3%
12001 6.9% 6.6% 6.8% 33001 5.8% 5.2% 5.2%
13001 6.8% 6.5% 6.8% 34001 5.8% 5.2% 5.1%
14001 6.8% 6.5% 6.7% 35001 5.7% 5.1% 5.1%
15001 6.8% 6.4% 6.6% 36001 5.7% 5.1% 5%
16001 6.8% 6.4% 6.5% 37001 5.6% 5% 5%
17001 6.7% 6.3% 6.4% 38001 5.6% 5% 4.9%
18001 6.7% 6.2% 6.4% 39001 5.5% 4.9% 4.9%
19001 6.7% 6.2% 6.3% 40001 5.5% 4.9% 4.8%
20001 6.6% 6.2% 6.2% 41001 5.4% 4.9% 4.8%

Table B.12: Attention-based Context Aware Language Model F-
Score (with Neural Machine Translation Context Representation)

Appendix B. Raw Data 78

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0.1% 0.1% 0.1% 21001 9% 8.5% 9.1%
1001 11.1% 8.9% 11.2% 22001 8.9% 8.4% 9%
2001 12.4% 9.8% 12.8% 23001 8.7% 8.3% 8.9%
3001 12.6% 10.2% 13.4% 24001 8.6% 8.2% 8.8%
4001 12.8% 10% 13.3% 25001 8.5% 8.1% 8.7%
5001 12.7% 10.1% 13% 26001 8.5% 7.9% 8.5%
6001 12.1% 10.1% 12.9% 27001 8.4% 7.8% 8.3%
7001 12% 10.1% 12.5% 28001 8.2% 7.8% 8.2%
8001 11.7% 10% 12.1% 29001 8.1% 7.7% 8.1%
9001 11.3% 9.9% 11.9% 30001 8% 7.5% 8%
10001 11.3% 9.8% 11.4% 31001 7.9% 7.4% 7.8%
11001 10.8% 9.6% 11.1% 32001 7.8% 7.3% 7.7%
12001 10.5% 9.4% 10.7% 33001 7.7% 7.3% 7.6%
13001 10.4% 9.2% 10.5% 34001 7.6% 7.2% 7.5%
14001 10.2% 9.1% 10.2% 35001 7.6% 7.1% 7.5%
15001 10% 9.1% 9.9% 36001 7.5% 7.1% 7.4%
16001 9.8% 9% 9.8% 37001 7.4% 7% 7.3%
17001 9.6% 8.9% 9.6% 38001 7.4% 7% 7.3%
18001 9.4% 8.8% 9.5% 39001 7.2% 6.9% 7.2%
19001 9.2% 8.7% 9.3% 40001 7.2% 6.9% 7.1%
20001 9% 8.6% 9.2% 41001 7.1% 6.8% 7.1%

Table B.13: Context Aware Binary Model F-Score (with Language
Model Context Representation)

Appendix B. Raw Data 79

Gen LR 1e-3 LR 1e-4 LR 5e-4 Gen LR 1e-3 LR 1e-4 LR 5e-4

1 0.1% 0.1% 0.1% 21001 9.8% 8.1% 9.4%
1001 11.5% 8.6% 11.6% 22001 9.6% 7.9% 9.2%
2001 13.1% 9.3% 13.3% 23001 9.5% 7.8% 9.1%
3001 13.6% 9.4% 13.9% 24001 9.4% 7.7% 9%
4001 13.4% 9.6% 13.7% 25001 9.2% 7.6% 8.9%
5001 13.6% 9.7% 13.5% 26001 9.1% 7.5% 8.8%
6001 13.6% 9.8% 13.3% 27001 8.9% 7.4% 8.6%
7001 13.3% 10.1% 12.8% 28001 8.8% 7.4% 8.6%
8001 13% 9.9% 12.4% 29001 8.7% 7.4% 8.5%
9001 12.7% 9.7% 12.1% 30001 8.6% 7.3% 8.4%
10001 12.2% 9.6% 11.6% 31001 8.5% 7.3% 8.3%
11001 11.8% 9.5% 11.3% 32001 8.4% 7.2% 8.2%
12001 11.5% 9.4% 11.1% 33001 8.3% 7.1% 8.1%
13001 11.3% 9.3% 10.8% 34001 8.2% 7% 8%
14001 11.1% 9.1% 10.5% 35001 8.1% 7% 7.9%
15001 10.9% 9% 10.3% 36001 8% 6.9% 7.9%
16001 10.7% 8.8% 10.2% 37001 7.9% 6.9% 7.7%
17001 10.4% 8.6% 10% 38001 7.8% 6.8% 7.7%
18001 10.3% 8.5% 9.8% 39001 7.7% 6.8% 7.6%
19001 10.1% 8.4% 9.6% 40001 7.6% 6.7% 7.5%
20001 9.9% 8.2% 9.5% 41001 7.5% 6.6% 7.4%

Table B.14: Context Aware Binary Model F-Score (with Neural Ma-
chine Translation Context Representation)

80

Bibliography

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. J. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Józefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Tensor-
flow: Large-scale machine learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016. URL http://arxiv.org/abs/1603.04467.

A. Aboukarima, H. Elsoury, and M. Menyawi. Artificial neural network model for the
prediction of the cotton crop leaf area. Int. J. Plant Soil Sci, 8:1–13, 2015.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning
to align and translate. CoRR, abs/1409.0473, 2014. URL http://arxiv.org/abs/

1409.0473.

Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Y. Bengio, R. D. andPascal Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137?1155, 02 2003. URL http:

//www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf.

F. Burlot and F. Yvon. Evaluating the morphological competence of machine trans-
lation systems. In Proceedings of the Second Conference on Machine Translation,
pages 43–55, 2017.

M. Cettolo, C. Girardi, and M. Federico. Wit3: Web inventory of transcribed and
translated talks. Proceedings of the EAMT Conference, 16:261–268, 05 2012. URL
http://www.mt-archive.info/EAMT-2012-Cettolo.pdf.

K. Cho, B. van Merrienboer, D. Bahdanau, and Y. Bengio. On the properties of
neural machine translation: Encoder-decoder approaches. CoRR, abs/1409.1259,
2014. URL http://arxiv.org/abs/1409.1259.

F. Chollet. Keras documentation. URL https://keras.io.

J. Chung, Ç. Gülçehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR, abs/1412.3555, 2014. URL http:

//arxiv.org/abs/1412.3555.

http://arxiv.org/abs/1603.04467
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
http://www.mt-archive.info/EAMT-2012-Cettolo.pdf
http://arxiv.org/abs/1409.1259
https://keras.io
http://arxiv.org/abs/1412.3555
http://arxiv.org/abs/1412.3555

BIBLIOGRAPHY 81

M.-C. De Marneffe, B. MacCartney, C. D. Manning, et al. Generating typed depen-
dency parses from phrase structure parses. In Proceedings of LREC, number 2006,
pages 449–454. Genoa Italy, 2006.

F-Score Definition. F-score definition. URL https://machinelearningmastery.com/

classification-accuracy-is-not-enough-more-performance-measures-you-can-use/.

K. M. Hermann, T. Kociský, E. Grefenstette, L. Espeholt, W. Kay, M. Suleyman, and
P. Blunsom. Teaching machines to read and comprehend. CoRR, abs/1506.03340,
2015. URL http://arxiv.org/abs/1506.03340.

F. Hill, A. Bordes, S. Chopra, and J. Weston. The goldilocks principle: Reading
children’s books with explicit memory representations. CoRR, abs/1511.02301,
2015. URL http://arxiv.org/abs/1511.02301.

S. Hochreiter and J. Schmidhuber. Long short-term memory. 9:1735–80, 12 1997.

K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks are
universal approximators. 1989.

IAR. IAR institut fuer anthropomatik und robotik. URL https://www.informatik.

kit.edu/1323.php.

ISL. Interactive systems lab (isl). URL http://isl.anthropomatik.kit.edu/

english/index.php.

M. Iyyer, J. Boyd-Graber, L. Claudino, R. Socher, and H. D. III. A neural net-
work for factoid question answering over paragraphs. In Empirical Methods in
Natural Language Processing, 2014a. URL https://pdfs.semanticscholar.org/

2872/52a5fb2f2a9e311eebf06e5ac49eb52eaadc.pdf.

M. Iyyer, J. Boyd-Graber, and H. Daumé III. Generating sentences from semantic
vector space representations. In NIPS Workshop on Learning Semantics, 2014b.

A. K. Jain, J. Mao, and K. Mohiuddin. Artificial neural networks: A tutorial. 1996.

U. Karn. A quick introduction to neural networks, 2016. URL https://ujjwalkarn.

me/2016/08/09/quick-intro-neural-networks/.

A. Karpathy. The unreasonable effectiveness of recurrent neural networks, 2015. URL
http://karpathy.github.io/2015/05/21/rnn-effectiveness/.

Y. Kim, Y. Jernite, D. Sontag, and A. M. Rush. Character-aware neural language
models. CoRR, abs/1508.06615, 2015. URL http://arxiv.org/abs/1508.06615.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

S. C. Kleene. Representation of events in nerve nets and finite automata. Technical re-
port, RAND PROJECT AIR FORCE SANTA MONICA CA, 1951. URL https://

www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf.

https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
https://machinelearningmastery.com/classification-accuracy-is-not-enough-more-performance-measures-you-can-use/
http://arxiv.org/abs/1506.03340
http://arxiv.org/abs/1511.02301
https://www.informatik.kit.edu/1323.php
https://www.informatik.kit.edu/1323.php
http://isl.anthropomatik.kit.edu/english/index.php
http://isl.anthropomatik.kit.edu/english/index.php
https://pdfs.semanticscholar.org/2872/52a5fb2f2a9e311eebf06e5ac49eb52eaadc.pdf
https://pdfs.semanticscholar.org/2872/52a5fb2f2a9e311eebf06e5ac49eb52eaadc.pdf
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
https://ujjwalkarn.me/2016/08/09/quick-intro-neural-networks/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://arxiv.org/abs/1508.06615
http://arxiv.org/abs/1412.6980
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf
https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM704.pdf

BIBLIOGRAPHY 82

P. Koehn. Statistical machine translation. In Statistical Machine Translation, chapter
Chapter 7: Language Models. Cambridge University Press, http://www.statmt.
org/book/slides/07-language-models.pdf, 2009.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for
text categorization research. Journal of machine learning research, 5(Apr):361–397,
2004.

M. Luong, H. Pham, and C. D. Manning. Effective approaches to attention-based
neural machine translation. CoRR, abs/1508.04025, 2015. URL http://arxiv.

org/abs/1508.04025.

W. S. McCulloch and W. Pitts. A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5:115–133, 1943. URL http://www.

cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre-
sentations in vector space. CoRR, abs/1301.3781, 2013. URL http://arxiv.org/

abs/1301.3781.

C. Olah. Understanding lstm networks, 2015. URL http://colah.github.io/posts/

2015-08-Understanding-LSTMs/.

D. Paperno, G. Kruszewski, A. Lazaridou, Q. N. Pham, R. Bernardi, S. Pezzelle,
M. Baroni, G. Boleda, and R. Fernández. The LAMBADA dataset: Word prediction
requiring a broad discourse context. CoRR, abs/1606.06031, 2016. URL http:

//arxiv.org/abs/1606.06031.

Perplexity Definition. Perplexity definition. URL https://web.stanford.edu/

class/cs124/lec/languagemodeling.pdf.

R. Quiza and J. Davim. Computational methods and optimization. In Machining of
Hard Materials, pages 177–208. 01 2011.

R. Sennrich. How grammatical is character-level neural machine translation? assessing
MT quality with contrastive translation pairs. CoRR, abs/1612.04629, 2016. URL
http://arxiv.org/abs/1612.04629.

D. Shiffman. The nature of code. In THE NATURE OF CODE, chapter Chapter 10.
Neural Networks. Creative Commons Attribution-NonCommercial 3.0 Unported Li-
cense, http://natureofcode.com/book/chapter-10-neural-networks/, 12 2012.

H. Siegelmann. Computation beyond the Turing limit. Science, 268:545–548, 1995.
URL http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf.

M. Sundermeyer, R. Schlüter, and H. Ney. Lstm neural networks for lan-
guage modeling. Annual Conference of the International Speech Communica-
tion Association, 13, 2012. URL https://pdfs.semanticscholar.org/f9a1/

b3850dfd837793743565a8af95973d395a4e.pdf.

http://www.statmt.org/book/slides/07-language-models.pdf
http://www.statmt.org/book/slides/07-language-models.pdf
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
http://www.cse.chalmers.se/~coquand/AUTOMATA/mcp.pdf
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://arxiv.org/abs/1606.06031
http://arxiv.org/abs/1606.06031
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
https://web.stanford.edu/class/cs124/lec/languagemodeling.pdf
http://arxiv.org/abs/1612.04629
http://natureofcode.com/book/chapter-10-neural-networks/
http://binds.cs.umass.edu/papers/1995_Siegelmann_Science.pdf
https://pdfs.semanticscholar.org/f9a1/b3850dfd837793743565a8af95973d395a4e.pdf
https://pdfs.semanticscholar.org/f9a1/b3850dfd837793743565a8af95973d395a4e.pdf

BIBLIOGRAPHY 83

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215, 2014. URL http://arxiv.org/abs/1409.3215.

Tensorflow Documentation. Tensorflow documentation. URL https://www.

tensorflow.org.

J. Tiedemann. Finding alternative translations in a large corpus of movie subtitle.
In N. C. C. Chair), K. Choukri, T. Declerck, S. Goggi, M. Grobelnik, B. Mae-
gaard, J. Mariani, H. Mazo, A. Moreno, J. Odijk, and S. Piperidis, editors, Proceed-
ings of the Tenth International Conference on Language Resources and Evaluation
(LREC 2016), Paris, France, may 2016. European Language Resources Association
(ELRA). ISBN 978-2-9517408-9-1.

Word2Vec. Word2vec, 2017. URL https://code.google.com/archive/p/

word2vec/.

S. Xie and R. Rastogi. Deep poetry: Word-level and character-level language models
for shakespearean sonnet generation. 2017.

http://arxiv.org/abs/1409.3215
https://www.tensorflow.org
https://www.tensorflow.org
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgements
	Introduction
	The Institute
	Motivation
	Problem Statement
	Contributions to the Field
	Structure of the Thesis

	Background
	Neural Networks
	Perceptron
	Feed-Forward Neural Networks
	Recurrent Neural Networks

	Language Models
	Frameworks
	Keras
	Tensorflow

	Related Work
	Task Definition and Preparation
	The Task
	Transformation Process
	Tokenization
	Dataset Filtering
	Part-of-Speech Tagging
	Candidate Selection
	Contextual Replacement
	Output

	Comparison of Data Sources
	Evaluation of the Transformation Process
	Data Partitioning

	Model Topology
	Preprocessing
	Atomic Elements
	Data Representation

	Baseline Model
	Language Model
	Binary Classification Model

	Context Aware Model
	Context Representation
	Context Aware Encoder
	Context Aware Decoder

	Evaluation
	Measures
	F-Score
	Perplexity

	Baseline Model
	Language Model
	Binary Classification Model

	Context Aware Model
	NMT Context Representation
	Context Aware Language Model
	Attention-based Context Aware Language Model
	Context Aware Binary Model

	Evaluation Overview

	Conclusion
	Further Work
	Code
	Baseline Model
	Language Model
	Binary Classification Model

	Context-Aware Model
	NMT Context Representation
	Context Aware Language Model
	Attention-based Context Aware Language Model
	Context Aware Binary Model

	Raw Data
	Baseline Model
	Context-Aware Model

