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Abstract

Translation has been a bridge to connect people and organizations from di�erent linguis-
tic background. With the grossing trend of globalization in the 21st century, translation by
human e�ort has shown its limitation in time and space. The cost has raised dramatically
for multilinguistic large organization such as European Commission. The development
of low-cost high-e�ciency machine translation is being called for enthusiastically by in-
dividuals as well as international corporations. The frontier of the research has reached
spontaneous speech machine translation, which allows for a real-time communication
between people speaking di�erent languages anytime and anywhere they want. One of
the major challenges in spontaneous speech machine translation is the balance between
accuracy and latency. This work tests novel display strategies aiming to reduce the la-
tency during the dynamic display of the translated transcription. Di�erent strategies has
been designed and implemented to the translation of TED talks, which covers almost
all topics and is given in over 110 languages. The results in this work provides �rst-hand
knowledge of the in�uence of display strategies on the balance of accuracy and latency. It
shows promising future for the dynamic translation scheme. Once fully developed, it will
allow for a much lower latency without the cost of accuracy, which is key to spontaneous
speech translation.
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Zusammenfassung

Übersetzung wurde eine Brücke, um Menschen und Organisationen aus verschiedenen
sprachlichen Hintergrund zu verbinden. Mit der zunehmenden Tendenz der Globalisie-
rung hat die Übersetzung durch menschliche Anstrengung ihre Einschränkung in Zeit
und Raum gezeigt. Die Kosten haben sich für eine mehrsprachige Großorganisation wie
die Europäische Kommission drastisch erhöht. Die Entwicklung einer kostengünstigen
hoche�zienten maschinellen Übersetzung wird von Einzelpersonen und internationa-
len Konzernen begeistert gefordert. Die Grenze der Forschung ist die Maschine Über-
setzung für spontane Rede. Die spontane Sprachübersetzung ermöglicht eine Echtzeit-
Kommunikation zwischen Menschen irgendwann und irgendwo, die verschiedene Spra-
chen sprechen. Eine der großen Herausforderungen bei der spontanen Sprachübersetzung
ist das Gleichgewicht zwischen Genauigkeit und Latenz. Diese Arbeit prüft neuartige
Display-Strategien, um die Latenz während der dynamischen Darstellung der übersetz-
ten Transkription zu reduzieren. Für die Übersetzung von TED-Gesprächen wurden ver-
schiedene Strategien entworfen und implementiert. Die Ergebnisse dieser Arbeit liefern
die Kenntnisse über den Ein�uss von Display-Strategien auf die Balance von Genauigkeit
und Latenz. Es zeigt vielversprechende Zukunft für das dynamische Übersetzungsschema.
Wenn es voll entwickelt, wird es eine viel geringere Latenz ohne die Kosten der Genauig-
keit ermöglichen, es ist einer der wichtigen Schlüssel zur spontanen Sprachübersetzung.
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1. Introduction

1.1. A brief history

Communication between people with di�erent cultural, especially di�erent linguistic
backgrounds has long been challenging. Thousands of years ago, our ancestors have
imagined how fast and strong can our civilization can grow if there was only one lan-
guage and all people could communicate without language barriers. The tower of babel
was merely a mysterious legend, yet, the real problem behind that story hinders until
today. Translation is of great importance in many aspects in our life, for example, from
o�cial diplomacy between governments, to international business cooperation, to per-
sonal communication between individual persons. Especially with the fast development
of technologies in transportation and communication in the past century, the isolation
between di�erent countries and individuals is being eliminated culturally by the om-
nipresent internet and geometrically by the intercontinential airlines. However, the real
challenge for people to make a friend in another cultural background or to make a trad-
ing deal with a company in another continent comes mainly from the language barriers.
The e�ort which has been invested to get through these barriers has been increasing in
the last decades. For example, facing the challenge of 24 o�cial and working language in
European Union, 1750 permenant linguistic sta� and 6000 supporing sta� is working for
European Commission [6]. In European Union, around 1 billion euros is spent on trans-
lation on 506 language directions [7]. The globalization is boosting these demands every
single day. A proportionally increasing cost of translation with the increasing demands is
de�nitely not our best long-term solution. Therefore, translations by human e�ort, even
though probably with a higher quality today, clearly appear to be impotent in the near
future.

Machine translation (MT), here, has the most promising potential to be the best solution
to these problems. The MT now can already bring a fast and e�cient solution translation
at relative lower cost compared to hiring fully quali�ed professional interpreters. A long
distance is still to be covered to make it perfect, and dedicated scientists have been work-
ing hard on it. Once it is well developed, the MT systems will eventually allow everyone
in our planet to be able to communicate with another no matter where and when and
what. This is a long dream coming true and it will signi�cantly bene�t our economy and
advance our civilization.

The spontaneous speech translation is one of the major direction of machine translation
development in the 21st century. With the increasing number of international confer-
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1. Introduction

Figure 1.1: An o�cial �gure from Translation Directorate General of the European Com-
mission showing the amount of translation work the Commission has carried
out [1].

ences and meetings, the spontaneous translation of speech is desperately desired right
now. Just imagine an attendee is listening to a conference talk given in a foreign lan-
guage. It is of great importance for him/her to be able to follow the action of the speaker
and the features on the slides spontaneously as the speaker talks. If the translation is
o�ered after the end of the sentence, the speaker probably has already been continuing
the talk and presenting the next slide while the listener is merely just receiving the in-
formation from the last slide. Besides the conferences and meetings, where professional
interpreters might actually be present, at a probably high cost, spontaneous speech trans-
lation is needed in many other situations in our life, for example when watching foreign
news in a TV, browsing information on the internet, attending lectures in universities
while studying abroad.

1.2. Motivation

The importance of display strategy originated from the requirement of real-time transla-
tion. In the real-time communication, our ultimate goal is to eliminate the delay due to
the MT system, so that the listener in a conversation / talk could real-time follow up the
message and vice versa, exactly like they are speaking the same language.
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1.3. Overview of this thesis

This is especially signi�cant in a real-time dialogue, for example, in a scienti�c conference
talk or during a business negotiation. When the speaker talks, the number of words is
increasing with the proceeding of the sentences. The input to our translation system is
then on-going sentences. Before the speaker �nish a long sentence, the listener could and
should already start to interpret his / her meaning. This requires a extremely low latency
during the translation process. In order to reduce the latency of speech translation system,
a new scheme was presented in [8]. Within this scheme, the current best translation is
displayed in an early stage. The sub-optimal outputs will be presented to the user with low
latency, and the transcribed text and its translation will be updated later. As the updates
are applied, the translation will be better and more accurate during the proceeding of the
sentence. When updates are applied, the output of the translation will be rewritten until
�nal version of output is displayed.

The rewriting during the display means that inaccurate information is presented to users.
This inaccuracy increases when the number of rewritten words increases. In order to
present more accurate information, the most direct strategy is to hide some information,
and display later when more context for better translation is available. This simple strat-
egy, however, will cause a information delay. New display strategies are needed, which
give a good balance between accuracy and information delay.

The ideal display strategy should be able to perfectly predict the number of rewritten
words in the current output at any time. This number of words will then be hidden from
the current display. By hiding these words, of course, a information delay will be gen-
erated. However, this delay is the minimum delay without any rewrite. The aim of this
thesis is to develop new strategies for predicting the number of rewritten words, which
can �nd the best balance between information delay and display rewrites.

1.3. Overview of this thesis

In Chapter 1, after a brief introduction over the machine translation and spontaneous
speech translation, the origin for the work in this thesis is elucidated and details about
the task will be introduced. In Chapter2, some fundamental knowledge about speech
translation is described. A literature review is given in Chapter 3. The important works
in the development of spontaneous speech translation and and the main challenges are
reviewed. Since this thesis focuses on reducing latency during MT, the literature in this
direction is slightly more than other direction. In Chapter 4, some general phenomena
concerning translation and language nature is described. Chapter 5 describes the test data
used in this thesis with an analysis in detail. The detailed ideas of the developed strategies
based on the data analysis are also introduced in this chapter. Chapter 6 presents our re-
sults on novel strategies for display of spontaneous speech translation. The e�ectiveness
as well as the mechanisms behind are discussed in depth. Chapter 7 draws the thesis’
conclusions and outlook for future work is proposed.
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2. Fundamentals: Speech translation

Speech translation technology enables speakers of di�erent languages to communicate. A
speech translation system typically consists of the following three software technologies:
automatic speech recognition (ASR), machine translation (MT) and voice synthesis. The
human speaks into a microphone and the ASR module recognizes the utterance. The input
is then converted into a string of words. The MT module then translates this string. As
output, the translated text can be directly shown to users or converted into speech using
a text-to-speech (TTS) system. Figure 2.1 shows the work�ow of an end-to-end speech
translation system.

Figure 2.1: A diagram showing the work�ow an end-to-end speech machine translation
system [2].

The content of spontaneous speech appears more likely to be in a natural, casual and daily
style. Therefore, speech translation faces a much more complex situation comparing to
a written or well prepared speech. The typical characteristics of spontaneous speech
are: frequent use of �ller words such as “well” or “um”; repetition of words such as “you
know” and “I mean”; change of ideas or the way of expression, etc. These characteristics
are usually not expected in well-structured sentences and normally do not help to clarify
the meaning of the speaker.

Many works have been carried out in the past decades, and great progress has been made
(TC-STAR for parliamentary speeches, GALE for broadcast news, interACT, STAR-DUST,
TC-STAR for lectures and seminars). Figure 2.2 presents the progress in both ASR and
MT system [2]. A real-time translation system speci�cally applied in the lectures has been
developed speci�cally for German-English lecture translation in universities [9], [10]. The
components of the system are modi�ed for the subject of the lecture domain in order to
reduce the latency of the translation. It has been already online and tested in several
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2. Fundamentals: Speech translation

lectures and achieved a considerable performance in high accuracy and low latency [11],
[12].

Figure 2.2: Progress of the TC-STAR system from 2004 to 2007. The progress in word
error rate and BLEU score are ploted over the time [2].

2.1. Automatic speech recognition

Automatic speech recognition (ASR) is the method used for converting human speech
into text by computers. The components of an ASR system are shown in Figure 2.3.

Figure 2.3: Components of a speech recoginition system.

Front End

Front End is the �rst part of an ASR system. It includes signal processing and spectral
features extraction. The Front End reduces the in�uence of undesired components in order
to improve the accuracy of the system, for example environmental noise. The Front End
also reduces the amount of data to improve the e�ciency of the system. The typical steps
in the processing of Front End are: Anti-Aliasing Filter, Analog-to-Digital(AD) conversion,

6



2.1. Automatic speech recognition

Windowing, fast Fourier transform (FFT), Power-Spectrum computing, feature extraction.
The spectrum contains the most important information, from which the spectral features
can be extracted. For example, Mel-Frequency Cepstral Coe�cients (MFCCs) and Linear
Predictive Coe�cient (LPC) are two commonly used spectral features. More details can
be found in [13].

As shown in Figure 2.3, after the processing of Front End, an observation sequence, which
is the spectral feature representation sequence of the acoustic observation, is obtained.
Denote O = o1,o2, ...,ok as the observation sequence, andW = w1,w2, ...,wn as the word
sequence. The Decoder �nd the word sequence W that is the best match of the input
observation sequence O . Applying Bayes’ rule,

P (W |O ) =
P (O |W ) · P (W )

P (O )
, (2.1)

where P (O ) is a constant for a complete sentence.

The Decoder chooses the word sequence Ŵ that maximize the probability P (W |O ) given
the observation sequence O . Thus,

Ŵ = arg max
w

P (W |O )

= arg max
w

P (O |W ) · P (W ).
(2.2)

In Equation 2.2, the probability P (O |W ) represent the Acoustic Model, and P (W ) represent
the Language Model.

The process of ASR using acoustic model, pronunciation dictionary and language model
is shown in Figure 2.4.

Acoustic Model

Acoustic model represents the relationship between an audio signal and the phonemes or
other linguistic units that make up a speech. The audio signal is represented in term of
feature vectors. Many factors can a�ect the building of an acoustic model: speakers in dif-
ferent genders and at di�erent ages, the environment in which the audio is recorded, the
microphone used. The acoustic model is often based on hidden Markov models (HMMs).
Each phoneme has a HMM. The model of a word is the concatenation of the HMMs of its
phonemes sequence. More details about HMM and its application in speech recognition
can be found in [13].

Pronunciation Dictionary

Pronunciation Dictionary de�nes the mapping from words to sub-word units, usually
phonemes. It means that the pronunciation dictionary contains a list of words with asso-
ciated pronunciation represented as a combination of phonemes. Generally, most words
have a single pronunciation. The variants of pronunciation can cause errors in speech
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2. Fundamentals: Speech translation

Figure 2.4: Process of speech recognition. The original image is in German from [3].

recognition. The size of the dictionary varies from few to millions of words and depends
on the application and the language.

Language Model

Language model is used to model the word sequences in the language. The A-priori-
Probability P (W ) for a word sequenceW is given by language model. In speech recogni-
tion, the computer tries to match sounds with word sequences. Generally, the language
model presents the linguistic properties of the language and provides context to distin-
guish between words and phrases that sound similar. Language modeling is used in many
language processing applications, such as speech recognition, machine translation, part-
of-speech tagging, parsing, handwriting recognition, information retrieval. More details
will be presented later in this chapter.

2.2. Statistical machine translation

The task of machine translation is to translate text from one language to an other lan-
guage. A foreign sentence f is denoted as f = f1 f2... fi ... fI , where fi is a word in source
language, I is the length of the sentence. The sentence in target language is denoted as
e = e1e2...ej ...e J . The translation tasks turn into �nding the most probable translation ê

8



2.2. Statistical machine translation

for a given sentence in the source language f . Applying Bayes’ rule,

ê = arg max
e

p (e | f ) = arg max
e

p ( f |e )p (e )

p ( f )

= arg max
e

p ( f |e )p (e )
(2.3)

Equation 2.3 is proposed by Brown et al. [14] for a word-based translation model. It is
the fundamental equation of machine translation. As shown in Figure 2.5 , the translation
process can be taken into three parts: the Translation Model providesp ( f |e ), the Language
Model provides p (e ) and the Decoder searches for the best translation ê .

Figure 2.5: A word-based translation system.

2.2.1. Languagemodel

As mentioned above, the language model is used to model the word sequences in the
language. It represents the relationship between words. The language model provides the
probability P (W ) over a given word sequence W = w1,w2, ...,wm. The language model
indicates whether a sentence is �uent or reasonable. Since some words are more likely to
co-occur with others, the language model also indicates whether a word translation �ts
in the sentence. The occurrence sequence of the words also plays a role. The language
model can indicate whether the word order is good in the sentence.

The most common language models are n-gram models. In general, a n-gram model pro-
vides the probability of a word given the n − 1 previous words. The probability P (W ) of
a word sequenceW can be decomposed as:

P (W ) = P (w1)P (w2 |w1)P (w3 |w1,w2)...P (wm |w1, ...,wm−1)

=

m∏
i=1

P (wi |w1, ...,wi−1)
(2.4)

9



2. Fundamentals: Speech translation

Based on the nth order Markov property, it is assumed that the probability of observing
the word wi in the context history of the preceding i − 1 words can be approximated by
the probability of observing it in the shortened context history of the preceding n − 1
words. With this assumption, P (W ) can be written as:

P (W ) ≈
m∏
i=1

P (wi |wi−(n−1), ...,wi−1) (2.5)

The n-gram probabilities can be calculated by simply counting the occurrences of n-gram
in a text corpus. This is called the maximum likelihood estimation.

P (wi |wi−(n−1), ...,wi−1) =
count (wi−(n−1), ...,wi−1,wi )∑
w count (wi−(n−1), ...,wi−1,w )

(2.6)

The n-gram models with n = 2 and n = 3 are commonly referred to as bigram and trigram
language models respectively. The unigram model is the most simply n-gram model, it
provides the probability without the history of previous word.

In practice, problems occur when a n-gram is not seen in training. Therefore, smoothing
is necessary to solve this problem. There are many di�erent methods of smoothing. The
simplest appoach is called "Add-One" smoothing. It adds a �xed count of 1 to every count.
One of the most common used smoothing is called Kneser-Ney smoothing proposed by
Kneser and Ney in [15]. A study of smoothing techniques for language modeling [16] has
shown that the Kneser-Ney smoothing and modi�ed Kneser-Ney smoothing work well
and outperform the other methods.

2.2.2. Translationmodel

The translation model provides the probability of the target sentence being a transla-
tion of the source sentence. The translation models using Equation 2.3 are proposed by
Brown et al. [14]. These models translate directly word to word, and model the word-
by-word translation probabilities. A word-based translation is not popular nowadays,
because there is no strict word to word correspondence for many language pairs. These
models (also known as IBM models) are currently used to generate word alignment for
phrase extraction in phrase-based translation models.

Phrase-based MT system is the state-of-the-art MT system using phrase-based translation
approach [17]. In this approach, the sentence is translated in the unit of phrase instead
of word. Here, the phrases typically are not linguistic phrases, they could be any contin-
uous sequence of words. They are automatically extracted from corpora using statistical
methods.

The phrase-based translation allows for alignments with di�erent number of words. For
example, one Chinese word is often aligned to a multi-word English phrase. This is di�-
cult to generate from word-based translation. The phrase-based model also encapsulates
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2.2. Statistical machine translation

context, which is only modelled by the language model in word-based model. An other
advantage of phrase-based model comparing to word-based model is that it allows for
local reordering within phrase boundaries.

Figure 2.6: Phrase-based translation with reordering [4].

An example of phrase-based translation is shown in Figure 2.6. The sentence is split into
non-overlapping phrases, and each phrase is then translated into the target language.

2.2.3. Decoder

The Decoder searches for the best translation. It �nds the word sequence that maximize
p ( f |e )p (e ) from all possible word sequences in the target language to get the best transla-
tion. Here, only two models, language model (LM) and translation model (TM), are taken
into account. The fundamental equation Equation 2.3 can be represented as

ê = arg max
e

p ( f |e )λTMp (e )λLM

= arg max
e

exp (λTMloд(p ( f |e )) + λLMloд(p (e )))
(2.7)

where λLM is a weight for language model and λTM is a weight for translation model. It
can be generalized unsing log-linear model:

p (x ) = exp (
n∑
i=1

λihi (x )), (2.8)

where hi (x ) is a feature function and λi is the weight for that feature. For example, for
translation model, hTM (e ) = loд p ( f |e ), λTM leads to more accurate translations.

Thus, the equation is now represented as

ê = arg max
e

(exp (
n∑
i=1

λihi (x ))) = arg max
e

(
n∑
i=1

λihi (x ))

= arg min
e

(
n∑
i=1
−λihi (x ))

(2.9)
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2. Fundamentals: Speech translation

With the log-linear model, the translation system is no longer restricted to translation
model and language model. More models that indicate di�erent features can be added
to the translation system. As shown in Figure 2.7, a modern phrase-based translation
system includes models such as distortion model, word-count model and phrase-count
model. Each of these models has a feature function that returns a score. The score of
a sentence e is the sum of all weighted feature scores. All these feature weights will be
tuned in the training step to produce the best translation.

Figure 2.7: A Phrase-based SMT system [5].
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3. RelatedWorks

The subject of this work originates from the �eld of spontaneous speech translation. Chal-
lenges and their detailed solutions in this �eld would be too long stories for this thesis.
The general goal of my work is based on the question: how to reduce the latency during
the spontaneous speech translation without sacri�cing the translation quality. Some of
the related work in the �eld will be reviewed here.

The spontaneous speech translation normally contains two components: ASR and MT.
The hypotheses from ASR are sent to MT for translation. The very simplest strategy
would be to start the MT process when the ASR recognized that the sentences are �nished.
In�uence of various strategies of the automatic sentence segmentation and punctuation
prediction are discussed in [18]. It has been shown that these strategies have improved
the interface between ASR and MT. Yet, the latency here with these strategy is too large
to support a spontaneous speech translation. The chunking of segments of data from
ASR into larger meaningful groups will greatly help to reduce the latency here, and have
become the next focus of the research.

Utterance chunking has been considered as a common method to Fügen and Kolss in 2007
[19] investigated the in�uence of utterance chunking on the latency of the MT with an
empirical study. In�uence on the MT latency from di�erent chunking strategies such as
using sentence boundaries as criterion and using punctuation as criterion (only �ts for
ASR of Spanish) were compared. Strategies in this work have shown their limitation,
leaving open questions for the future.

The chunking process here between ASR and MT does improved the spontaneity of the
whole translation process, yet the time lag of translation output is still unsatisfying for
spontaneous speech translation. A decoder was then designed to process to streaming
input from the speaker [20]. This structure and the algorithm of the decoder have shown
better performance than the other sentence segmentation strategies in ASR by then.

A segmentation and punctuation recovery scheme was designed by Paulik et al. in 2008
[21], which signi�cantly improved the spontaneous speech MT performance for three
pairs of languages (English to Spanish, Chinese to English and Arabic to English). Addi-
tionally, two features were introduced which allow for introducing short intra-sentence
segments without sacri�cing the translation quality.

An incremental speech translation approach was introduced in 2012 [22] for speech-to-
speech translation. The partial hypotheses generated by the ASR is used as the input for
MT. The method has shown its advancement in lowering latency. However, when the
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3. Related Works

output translation was synthetic voice, this was at a cost of translation accuracy since the
output voice cannot be rewritten. This tradeo� between latency and accuracy remained
as a question.

In 2013, Sridhar et al. [23] on one hand improved the accuracy of ASR by applying the
vocal tract length normalization (VTLN) and constrain model adaptation (CMA); and on
the other hand pointed out that the stalls in pipelines is the major reason for the latency
in MT, and bu�ers would be helpful to improve the synchronization between di�erent
components in order to further reduce the latency.

Phrase alignment structure of the language pair [24] was applied as a input segmenta-
tion method. Monotonic phrase alignments from were extracted from a word alignment
matrix [25], which was used to train the translation program. Here the best result from
the tradeo� between latency and accuracy was found using incremental translation of
monotone-based segments.

An algorithm for sentence segmentation was proposed by Oda et al. in 2014 [26]. Here,
the mean number of words in a segmentation is decided in the �rst place and then the
segmentation boundaries were inserted using greedy search and dynamic programming
followed by feature controlled regularization. With this algorithm, the sentences were to
be segmented into smaller units for translation and therefore a lower latency is acquired.
An expansion of the features applied was foreseen as the future work. Challenging the
results in [26], Shavarani et al. in 2015 [27] use Pareto-optimal segmentation approach to
achieve a 12% improvement in latency without lowering the quality. The average segment
length and the segment number tuned the tradeo� between accuracy and latency.

Facing the fact that a long-range word reordering in some language pairs appears to be in-
evitable, for example, German-English and Japanese-English, algorithm concerning pre-
diction of the unseen part of the sentence (verbs in this case) has been developed [28]. In
this work, the case of German (a typical verb-�nal language) translated into English (a
verb-medial language) is studied speci�cally. The reinforcement learning was applied to
organize prediction and translation into a novel strategy. The method still needed work to
be put into action. This very challenging and pioneering idea appears to be very promis-
ing to revolutionarily reduce the latency in spontaneous speech translation. Oda et al.
in 2015 [29] followed up this idea and developed syntax-based simultaneous translation
strategy. Here, both prediction of syntactic constituents and waiting until a meaningful
unit is available is implemented. Through experiments in English-Japanese translation
for TED talks, an improvement in reducing latency has been seen.

Looking for di�erent strategies for MT to acquire a better accuracy and latency balance,
researchers investigated in detail the strategies chosen by human interpreters during the
real-time translation and interpretation. He et al. in 2016 [30] studied the di�erences in
simultaneously interpreted text and batch translated text done by human interpreters,
in order to model these strategies for MT. For verb prediction, human’s and machine’s
performance was put into test [31] and compared. The results showed that for both human
and machine, predicting the verb is possible. The more the sentence was revealed, the

14



better prediction can be made. The authors also suggested a benchmark which can be
used in many �elds concerning spontaneous translation.

Inspired by human interpreters, Niehues et al. [8] developed a dynamic transcription
scheme in order to drastically reduce the latency. Instead of waiting for enough informa-
tion for accurate translation with large latency, a hypothesis could already be outputted
with the proceeding within one utterance in a dynamic fashion. Any improvement / cor-
rection to the already outputted transcription is allowed to update the former output in
order to guarantee a high �nal accuracy. Here, the accuracy of the translation is high at
the end of a sentence, and inaccuracy in the scheme appears as the inaccurate information
displayed during the output updates.

In the existing works, the latency in the spontaneous speech translation is mostly inter-
preted as a result from where ASR output for the subsequent MT. There is a clear trend
that the latency caused by the ASR accuracy and segmentation strategy will soon come to
an acceptable range for spontaneous translation. Here another downstream step – spon-
taneous output of MT results to display – starts to show more and more of its e�ect on
the latency in the whole translation process. This is where this work comes in and em-
barks on improving the MT display strategy in order to further improve the spontaneous
speech translation system performance.
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4. Rewrite during display

In order to reduce the latency of speech translation system, a dynamic transcription can
be implement. The current best translation is displayed in an early stage. The translation
of the on-going sentence will be displayed and updated. The display wil be rewritten until
the whole sentence is spoken.

To explain the reasons which cause rewrite during display, an example of English to Ger-
man translation using MT system is described here. In this thesis, the “input” and “output”
means the input to MT system and output from MT system, “display” is the informations
presented to users.

Table 4.1: Example showing rewriting in translation between English and German

To mimic the process of speaking a sentence word-by-word, a complete sentence is bro-
ken into segments (Input in Table 4.1). Each segment is the integration of the previous
segment and a new added word.

The output of MT system is the translation result of the input segment (Output in Ta-
ble 4.1). When a new word is added to the input (input is updated), the exisiting transla-
tion (output) will be updated (replaced by the translation of the updated segment). This
updated output may simply add some new words to the previous output, or rewrite the
previous output partially or even entirely.

One can, of course, “honestly” display all the output to users at a cost of a considerable
number of rewrites during the display. More rewrites in this process means more inaccu-
rate information is presented to users. As shown in Table 4.1, some words of output can
be hidden to reduce rewrites during display in order to present accurate information.
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4. Rewrite during display

For example, if one “honestly” displays the output to users, there will be 4 rewritten words
when the whole sentence is spoken. If one hides some words of each output, there will be
no rewritten word while the information presented to users will be delayed. The display
will be frozen as “Ich” in the period of 3 updates (see Table 4.1 Display without rewrites).

4.1. Why rewrite

The rewriting during the display cannot be avoided. Here are some reasons cause display
rewriting.

1. The machine translation system is normally optimized to work on whole sentences.
This means that the translation system can only generate a high-quality translation after
the whole sentence is inputted. The translation of uncomplete sentences is normally
inaccurate. With more words is added, the previous output of the MT may change.

2. Nature of language.

Lexical ambiguities. Some words have more than one meanings, and the translation of
the word depends on context. Therefore, a new added word may change the meaning of
present input, and of course the previous output will be rewritten.

Di�erent word order in di�erent languages. Most nominative-accusative languages, which
have a major word class of nouns and clauses that include subject and object, de�ne con-
stituent word order in terms of the �nite verb (V) and its arguments, the subject (S), and
object (O). Theoretically, there are six possible basic word orders for the transitive sen-
tence: subject-verb-object (SVO), subject-object-verb (SOV), verb-subject-object (VSO),
verb-object-subject (VOS), object-subject-verb (OSV) and object-verb-subject (OVS). There-
fore, rewriting is necessary in translation between languages in di�erent word orders.

4.2. Long-Range Reordering

As mentioned above, di�erent languages has di�erent word orders in the sentence to
represent the same meaning. MT systems need to reorder words in the source sentence
to produce �uent output in the target language. Comparing to word-based translation,
phrase-based machine translation systems can capture short range reorderings within the
phrase boundaries.

However, for some language pairs, long-range reorderings have to be performed. This
appears very often in translation between languages with di�erent word order, especially
in German-to-English and English-to-German translation. These long-range reordering
means that the whole sentence may have to be rewritten when the last word of the sen-
tence is known, even if the translation of the sentence before is perfectly correct. This
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4.2. Long-Range Reordering

is usually only due to the di�erences in languages and cannot yet be avoided by improv-
ing the MT system. Here are some cases showing the di�erences which can cause severe
rewriting in translation between German and English:

1. Position of the negation. In German, the negation “nicht” likes to travel all the way to
the end of a sentence at times. This happens most often with declarative sentences. For
example:

Er hilft mir nicht.

He doesn’t help me.

2. Position of the verb. With a compound verb (consisting of a main verb and a helping
verb), English usually keeps the two parts together. In German, however, the conjugated
verb must be in the second position, while the other verb almost always goes at the end
of the phrase. For example:

Ich werde das Buch bald lesen.

I will read the book soon.

3. Pre�x verb. Verb pre�xes in German can be separable or inseparable. A separable pre�x
usually is moved to the end of a sentence when the verb is conjugated. For example:

Sie hörte mir zu.

She listened to me.

4. Subordinate clause. German has verb-medial order in main clauses, but verb-�nal order
in subordinate clauses. The verbs all go at the end of the phrase in subordinate clauses.
For example:

Ich wusste nicht, dass du so klug bist.

I didn’t know that you were so smart.

These long-range reorderings introduce great di�culties during the display of the trans-
lation of an on-going sentence by presenting inaccurate information to users.
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5. Display Strategies

5.1. Analysis

Before the display strategies are developed, the data analysis is necessary.

The data used in this thesis is taken from TED talks. TED talks cover almost all topics
in more than 100 languages. The speakers should present their ideas in an innovative
way in form of short talks of maximum 18 minutes. TED talks are very good parallel data
available free for speech translation.

Here two talks are taken as the test data. The data is a set of bilingual translations: from
English to German and from German to English.

TED talk 1 contains 1700 complete sentences, a total of 23192 words in German and 24778
words in English. TED talk 2 contains 1565 complete sentences, a total of 23927 words in
German and 25263 words in English.

5.1.1. Data pre-process

To mimic the word-by-word input, preprocessing of the data is necessary.

First, these two talks are separated into sentences, and each sentence is broken into a
series of segments. As shown in Table 4.1, sentence “I do not like co�ee.” will be broken
into 5 segments (“I”, “I do”, “I do not”, “I do not like”, “I do not like co�ee”) as mentioned
above. These segments are the inputs to MT system. Thus, 4 data are obtained: TED talk
1 in English with 23192 segments, TED talk 1 in German with 24778 segments, TED talk
2 in English with 23927 segments, TED talk 2 in German with 25263 segments.

Second, each data is translated into target language with two di�erent reordering type
(long-range reordering and short-range reordering). For example, TED talk 1 in En-
glish will be translated into German with short-range reordering (named as TED1.EN-
DE.Short), and with long-range reordering (named as TED1.EN-DE.Long). The same pro-
cedure and same naming method is applied to the other three data from the �rst step.
For example, TED2.DE-EN.Short refers to the data of TED talk 2 from German to English
translation using short-range reordering. The 8 translated text here is the test data in this
thesis.
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5. Display Strategies

The experiments based on these two talks get similar result, so in this work only the
results of TED talk 2 data are shown. All �gures and tables shown in this work are based
on the results of TED talk 2.

5.1.2. Data analysis

In Chapter 4, the possible reasons causing rewriting during the spontaneous speech trans-
lation were described. It is reasonable to speculate that the number of rewritten words
will increase with the increasing length of input to the MT system. Before starting to de-
velop new display strategies, it was necessary to analyze our data �rst to acquire a clear
knowledge of the input and the output. The data TED2.EN-DE.Long is analyzed as an
example, and part of the results are presented in Table 5.1.

Table 5.1: English to German translation using long-range reordering based on the TED
talk 2 (�rst 30 rows)
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5.1. Analysis

In Table 5.1, the �rst column is the length of the input to MT system. The second column
represents the average length of output from MT system (translation of input). The third
column is the average number of rewritten words in the current output (words will be
rewritten in next output update).

(a) (b)

Figure 5.1: (a) Change of average number of rewritten words with the increasing of input
length; (b) Change of average number of rewritten words with the increasing
of average output length. This �gure is plotted using the data of English to
German translation using long-range reordering based on the TED talk 2.

Figure 5.1 plots the average number of rewritten words against input length and aver-
age output length. It can be clearly observed in Figure 5.1a that the average number of
rewritten words increases with an increasing length of input, in an almost linear fashion.
Figure 5.1b shows that the the average number of rewritten words increases with the in-
creasing of average output length, while the slope of the curve is increasing showing an
exponential rise.

Taking an overview of the data, it is worth noticing that the majority of the outputs has
less than three rewritten words. For example, for data TED2.DE-EN.Short: There are in
total 23927 outputs, and the number of rewritten words for all output is 49678. Among all
these outputs, there are 15275 of them that have 0 rewritten words, 4053 have 1 rewritten
word, and 2062 have 2 rewritten words. The outputs with less than three rewritten words
are 89.4% of the total output number.

The distribution of the output with di�erent number of rewritten words is shown in Fig-
ure 5.2. It is interesting that over 60% of outputs have 0 rewritten word. For nearly 90%
of outputs, the number of rewritten words is not larger than 2, but these 90% output only
rewritten 8177 words, which is about 15% of all rewritten words. This means that only a
very small part of outputs causes a huge number of rewritten words. For example, from
the data in Figure 5.2, some outputs even need to have more than 20 words rewritten.
This is a major contribution to the number of rewritten words, yet it is like “accidents”,
which are practically impossible to be foreseen.
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5. Display Strategies

Figure 5.2: Distribution of the number of outputs with di�erent number of rewritten
words. This �gure is based on the data TED2.DE-EN.Short.

5.2. Strategies

5.2.1. Definitions

As introduced in Chapter 4, the translation process for a word-by-word speaking sentence
is that, when a new word is added to the MT system input (input is updated), the exisiting
translation (MT system output) will be updated (replaced by the translation of the updated
input), and the display to users will also be updated.

For a mathematical representation, assuming that there are X sentences in the data, and
there are Y segments for each sentence. An input to MT system can then be denoted as
S_INij , where i is an index from 0 to X − 1, j is an index from 0 to Y − 1. The output
from the MT system is denoted as S_OUTij , and the display to users is denoted as S_DISij .
For two segments, Seд1 and Seд2, function LM (Seд1, Seд2) represents the longest match
of Seд1 and Seд2. The length (number of words) of a segment Seд1 is denoted as N (Seд1).

The rewritten words for an output are the words that will be rewritten in next output
update. The number of rewritten words for an output is denoted as N_RW _OUTij ,

N_RW _OUTij = N (S_OUTij ) − N (LM (S_OUTij , S_OUTi (j+1) )) (5.1)

For each output the number of hidden words is denoted as nij , which is also known as
output delay. The display to users then can be written as the follow equation:

S_DISij = S_OUTij (0 : (N (S_OUTij ) − nij − 1)) (5.2)

where Seд(a : b) means part of the segment Seд from word index a to b.

The number of rewritten words for a display is denoted as N_RWij .

N_RWij = N (S_DISij ) − N (LM (S_DISij , S_DISi (j+1) )) (5.3)
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5.2. Strategies

The number of rewritten words, N_RWi , during display until the whole sentence i is
spoken can be expressed as:

N_RWi =
∑
j

N (S_DISij ) − N (LM (S_DISij , S_DISi (j+1) )) (5.4)

The average number of rewritten words will then be

N_RW =
∑

i
∑

j N (S_DISij ) − N (LM (S_DISij , S_DISi (j+1) ))

X
(5.5)

The average output delay is expressed as

n̄ =

∑
i
∑

j nij

X × Y
(5.6)

For example, the results in Table 5.1 are obtained as following:

The average output length can be expressed as
∑
i N (S_OUTi0)

X when input length is 1. Be-
cause the output is “honestly” displayed to users, S_DISij = S_OUTij . The average number
of rewritten words can be expressed as

∑
i N_RWi0

X when input length is 1.

5.2.2. Display strategies

Based on the de�nitions above, my task, in another wrods, is to develop a strategy to
determine the output delay nij , which can minimize the average number of rewritten
words N_RW without increasing n̄. Five strategies (including a baseline strategy) are
developed to achieve this goal.

Here, an example from data TED2.EN-DE.Long is given in order to better introduce the
strategies.

Table 5.2: An example of segment translation.

Baseline strategy S0:
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5. Display Strategies

Hypothesizing that a certain number of words will always be rewritten in the next output
update, the most direct strategy is put into test as a starting point: the last n words in the
output will be hidden, and the rest of them will be displayed. In this strategy, nij = n. Here
n is changed from 0 to 20. Because the average sentence length in English is 15-20 words
[32], it is reasonable to set the number of hidden words not bigger than 20. The average
number of all the rewritten words during display are recorded, and plotted against the
output delay.

Applying strategy S0 to the example in Table 5.2, when n = 2, the result is shown in
Table 5.3.

Table 5.3: An example of strategy S0.

Strategy S1:

As shown in Figure 5.1a, the average number of rewritten words increases with an in-
creasing length of input, the slope of the curve is nearly unchanged. The value of av-
erage output delay for certain input length is calculated as a mean value of all 8 data.
When N (S_INij ) = 10, the average output delay is 2.65, when N (S_INij ) = 20, the av-
erage output delay is 6.98, when N (S_INij ) = 25, the average output delay is 9.87, when
N (S_INij ) = 30, the average output delay is 12.61.

Therefore, for each input, the input length N (S_INij ) is checked and r is set as a factor
to present the ratio of number of hidden words to input length. If 0 < N (S_INij ) 6 10,
nij = 0 × r ; if 10 < N (S_INij ) 6 20, nij = 1 × r ; if 20 < N (S_INij ) 6 25, nij = 2 × r ; if
25 < N (S_INij ) 6 30, nij = 3 × r ; if 30 < N (S_INij ), nij = 4 × r . For r = 1, 2, 3 and 4, four
groups of test are performed in this strategy. The value of r is set to approach the value
of average output delay mentioned above.

Apply strategy S1 to the example in Table 5.2. The input length N (S_INij ) of segment 4
is larger than 10, therefore, nij = 1× r . For the other three segments, nij = 0. When r = 2,
the result is shown in Table 5.4

Strategy S2:

Going through the data in greater detail, it is found that when the previous output has
rewritten words, there is a strong possibility that the current output also has rewritten
words. Therefore, a new strategy (referred to as strategy S2.0) is developed checking the
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5.2. Strategies

Table 5.4: An example of strategy S1.

number of rewritten words in previous output S_OUTi (j−1) , which is N_RW _OUTi (j−1) ,
and hidding the same number of words in the current output S_OUTij and displaying the
rest of them.Thus, nij = N_RW _OUTi (j−1) . A threshold T for nij is then set. The tests are
done with di�erent thresholds T (T1 = 5, T2 = 10, T3 = 15, T4 = 20).

Further on, it turns out that the number of rewritten words in the current output is some-
times bigger than the previous one. In other words, N_RW _OUTij > N_RW _OUTi (j−1) .
Therefore, as alternatives of strategy S2.0 in the same frame, another two strategies, S2.1
and S2.2, is set up asigning nij = N_RW _OUTi (j−1) + 1 and nij = N_RW _OUTi (j−1) + 2,
respectively. For each of them, a threshold T (T1 = 5, T2 = 10, T3 = 15, T4 = 20) is set.

Applying strategy S2.1 to the example in Table 5.2, the output delay changes with the
rewritten number of previous output, nij = N_RW _OUTi (j−1) + 1. For example, for seg-
ment 2, the number of rewritten words is 1, the output delay is then set as 2 for segment
3. The result is shown in Table 5.5.

Table 5.5: An example of strategy S2.1.

Strategy S3:

Strategy S1 and S2 are designed with the aim of improving the basic strategy S0. Strategy
S3.x in this section is sketched up aiming for the ideal situation. My goal in this thesis
is to develop a strategy to determine the number of hidden words for each display nij ,
which can minimize the average number of rewritten words N_RW . The ideal strategy
should then allow for perfect prediction of the number of rewritten words N_RW _OUTij
for each output, and these words are hidden for a more accurate display to users. In this

27



5. Display Strategies

case, nij = N_RW _OUTij , and there will then be no rewrites during display at a cost of
the theoretically lowest output delay.

To approach this strategy, a method of classi�cation is used to predict nij . The prediction
of number of rewritten words for each output is denoted as n_pij , and then nij = n_pij .

First of all, it is important to select the relevant features for classi�ers. In real-world
situations, we often have little knowledge about relevant features. Therefore, to better
represent the domain, many candidate features are introduced.

The following 6 features are choosen:

Feature 1: input length N (S_INij )

Feature 2: output length N (S_OUTij )

Feature 3: length di�erence between current output and previous output N (S_OUTij ) −
N (S_OUTi (j−1) )

Feature 4: number of rewritten words of previous output N_RW _OUTi (j−1)

Feature 5: POS tag of last word of the translation of input

Feature 6: POS tag of second last word of the translation of input

Based on the data analysis in Subsection 5.1.2, it is clear that the number of rewritten
words increases with the increasing length of input, and it is also increased with the
increasing length of output. Therefore, Feature 1 and 2 are choosen as candidate features.
For Feature 3, an hypothesis is made based on the data characteristics. In this hypothesis,
it is assumed that when the length di�erence between current output and previous output
is too large or negative, it is more likely to have rewrites. Feature 4 is chosen based on
the same thoughts as in strategy S2 - when the previous output has rewritten words, the
following output has a high possibility also having rewritten words. Feature 5 and 6 is
chosen as candidate features based on the speculation, in which di�erent POS-tag of the
last two words in the output may in�uence the chance of the words to be rewritten. For
example, an article in German may have a better chance to be rewritten than a noun.

In order to �nd out which combination of features can get the best classi�cation results,
classi�ers with di�erent features are tested (shown in Table 5.6).

As the �rst strategy of S3.x (referred to as S3.0), the possible prediction results (target
classes) are the possible number of rewritten words, which are numbers from 0 to 80.
Based on the fact that for all the output data, only 0.06% of the outputs have a length of
more than 80 words. As discussed in Subsection 5.1.2, over 60% of the outputs have no
rewrites, and for nearly 90% of outputs, the number of rewritten words is not larger than
2. To perform a prediction in higher accuracy, a further step reducing the target classes
can be implemented. In strategy S3.1, the target classes are reduced to two (0 and 1). If an
output has a rewrite, set the number of rewritten words as 1. In strategy S3.2, the target
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5.2. Strategies

Table 5.6: Classi�ers using di�erent features.

classes are reduced to three (0, 1 and 2). If an output has a rewrite of more than two words,
set the number of rewritten words as 2.

Applying strategy S3.2 to the example in Table 5.2, the output delay is predicted by the
classi�er. The result is shown in Table 5.7.

Table 5.7: An example of strategy S3.2.

Strategy S4:

Strategy S1 and S2 are based on the data analysis in Subsection 5.1.2, and strategy S3 used
classi�cation with di�erent features to predict the number of hidden words. A combina-
tion of strategy S3 and S1/S2 may get some improvement.

Here, strategy S3.2 is choosen. For each output S_OUTij , denote that p1 is the prediction
of binary Classi�er 16 in strategy S3.2, and p2 is the prediction of strategy S1/S2.x. If
p1 = 0 and p2 = 0, then nij = 0; if p1 , 0 and p2 , 0, then nij = p2; else nij = a, where a is
constant. In strategy S4.1, a is 1, and in strategy S4.2, a is 2.

In other words, this strategy works in a way that when both S3.2 and S1/S2.x predict that
the output has no rewrite, then no word is hidden from display; when both of them predict
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that the output has some rewrites, then the hidden words are the same with S1/S2.x; when
only one of them predict that the output has reswrites, then a words will be hidden from
display.

Applying strategy S4.1 to the example in Table 5.2. For example, the output delay for
segment 3 is set as 2 in strategy S2.1 and set as 0 in strategy S3.2, then one word will be
hidden from display. The result is shown in Table 5.8.

Table 5.8: An example of strategy S4.1.

The experiments and results of all these strategies are shown in Chapter 6.

5.3. Tools

Tools and methods applied in this thesis are presented in this section.

5.3.1. Translation system

The translation system applied in this project is an in-house phrase-based machine trans-
lation system. The core of this system is a phrase-based decoder described in [33], which
uses a local reordering window of 2 words. The GIZA++ Toolkit is implemented to realize
the word alignments over the data. Language models are built using the SRILM Toolkit.
The di�erent word order between the languages is modelled using POS-based reordering
[34]. For the work in this thesis, two di�erent reordering types are employed: long-range
reordering and short-range reordering. To model a long-range word reordering for the
translation between German and English, the approach described in [35] is used. The
POS-tags for the reordering models are generated with the TreeTagger [36].

5.3.2. Classification so�ware

A classi�cation softeare, MegaM, is used to predict the number of rewritten words. In nat-
ural language processing, the maximum entropy models are very popular. The MegaM is
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5.3. Tools

an implementation of maximum likelihood and maximum a posterior optimization of the
parameters of these models. Three types of problems can be solved using this software:
binary classi�cation (classes are 0 or 1), binomial regression ("classes" are real values be-
tween 0 and 1; the model will try to match its predictions to those values), and multiclass
classi�cation (classes are 0, 1, 2, and so on). In this project, the binomial classi�cation and
multiclass classi�cation are used.
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6. Experiments and Results

As introduced in Chapter 5, �ve display strategies (baseline strategy included) are devel-
oped. The experiments and results are shown in this chapter.

6.1. Baseline strategy (S0)

In the baseline strategy, the last n words in the output will be hidden, and the rest of them
will be displayed. Here n is changed from 0 to 20. The average number of all the rewritten
words during display are recorded, and plotted against the output delay.

Figure 6.1: Average number of rewritten words plotted against average output delay for
baseline strategy S0. This �gure is plotted using the four data from the TED
talk 2.

In Figure 6.1, x-axis presents the average output delay, also known as n̄ in 5.2.1. In this
case, n words are hidden from each output, which means nij = n. The y-axis presents the
average number of rewritten words, also known as N_RW .
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In general, the average number of rewritten words decreases with an increasing average
output delay, which is expected from our analysis. When the number of average output
delay is small, for example from 0 to 4, the change in the absolute value of the slope is
larger compared to the case when the average output delay is large. This indicates that in
this range (small average output delay) the number of rewritten words drops signi�cantly
with the increasing output delay. With the increase of the average output delay (for ex-
ample after 10), the change in the slope of the curve become smaller and smaller, starting
to show a linear feature. The curves are appears to be more and more horizontal. This is
due to the fact that most outputs have less than 4 rewritten words (shown in Figure 5.2).

What can also be observed in these curces is that the long-range reordering causes more
rewrites than the short-range reordering. The long-range reordering is not ideal for low-
ering the average number of rewritten words, but it is designed to yield a more accurate
translation.

Another interesting point is that English-to-German output has more rewrites than Ger-
man to English output. This is probably due to the special grammar of German. Besides
the reasons summarized in Section ?? Di�erences between English and German, some
additional situation speci�cally concerning English-to-German translation needs to be
discussed here. Unlike English, German nouns can be in three genders: masculine, femi-
nine or neuter. There are four “cases” in German, which correspond to four di�erent roles
a noun can play in a sentence (Nominative, Accusative, Dative and Genitive). Adjectives
function in German just like that in English, except that they take on case endings when
they come right before a noun. The endings of articles and adjectives are determined
by the gender and case of the following nouns. For examples, if one wants to translate
English phrase “my little”, for a dative masculine noun it will be translated as “meinem
kleinen”, for a nominative feminine noun the result will be “meine kleine”. After the
noun is inputted to MT system, the words in output before this noun will highly likely be
rewritten. This will probably cause some rewrites in short length (below 4).

It is also worth noticing that, with the increasing of output delay from 0 to 4, the change
in the slope for EN-DE.Short is slightly more than the other three data. This means that
comparing to the others, EN-DE.Short may have more outputs in which the number of
rewritten words is less than 4. This may because, on one hand, the short-range reorder-
ing causes rewrite with small number of words; on the other hand, as mentioned above,
special grammar characteristic of German nouns causes rewrite in a small range before
the nouns.

Using this direct strategy as a starting point, the next step is trying to �nd new strategies
which allow for a better balance between the number of rewritten words and the average
output delay. With the new strategies, the number of rewritten words should decrease
while the ouput delay does not increase. In other words, new results should be able to
reach the area closer to the (0,0) point.
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6.2. Strategy 1 (S1)

6.2. Strategy 1 (S1)

In strategy S1, the number of hidden words increases withe the increasing length of input.
In order to appraoch the actually average number of rewritten words, r is setted as a factor
to present the ratio of number of rewritten words to input length, for r = 1, 2, 3 and 4,
four groups of test are performed with their results presented in Figure 6.2. The details
of results can be found in Table A.1 in Appendix.

(a) Result based on TED2.DE-EN.Short. (b) Result based on TED2.DE-EN.Long.

(c) Result based on TED2.EN-DE.Short. (d) Result based on TED2.EN-DE.Long.

Figure 6.2: Average number of rewritten words plotted against average output delay for
strategy S1. This �gure is plotted using the four data from the TED talk 2.

As shown in Figure 6.2, when r is increased from 1 to 4, the average output delay increases
and the average number of rewritten words decreases. The strategy S1 with r = 4 is the
most e�ective. Though the average output delay is more than others, the decrease of
average number of rewritten words relative to baseline is the most signi�cant.

What can be observed in this plot is that this strategy is more e�ective for data using
long-range reordering than short-range reordering. And it is notable that, in Figure 6.2c,
the results fall nearly into the �t curve from results using baseline strategy S0. And the
result of r = 2 is even slightliy above the baseline. The reason for this phenomenon can
be explained as following: with the increasing of output delay from 0 to 4, strategy S0 is
slightly more e�ective for EN-DE.Short than for the other data (see section 5.1.2), while
the e�ect of strategy S1 is relatively equivalent to all the data. This means that for a data
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the more outputs there are with less than 4 rewritten words, the more e�ective is the
strategy S0. It is reasonable to believe that in certain extreme situations, the results from
strategy S1 will be worse than those from strategy S0. For example, when all the outputs
has less than 4 rewritten words.

To sum up, comparing to strategy S0, the strategy S1 can not constantly reduce the num-
ber of rewritten words with the same output delay. It depends on data.

6.3. Strategy 2 (S2.0, S2.1, S2.2)

In strategy S2, the number of hidden words for each display is determined by the number
of rewritten words in the previous output. Three substrategies are tested (for S2.0, nij =
N_RW _OUTi (j−1) ; for S2.1, nij = N_RW _OUTi (j−1) + 1; for S2.2, nij = N_RW _OUTi (j−1) +

2.), and the results are shown below. The details of results can be found in Table A.1 in
Appendix.

(a) Result based on TED2.DE-EN.Short. (b) Result based on TED2.DE-EN.Long.

(c) Result based on TED2.EN-DE.Short. (d) Result based on TED2.EN-DE.Long.

Figure 6.3: Average number of rewritten words plotted against average output delay for
strategy S2. This �gure is plotted using the four data from the TED talk 2.

As shown in Figure 6.3, for di�erent threshold T, the results of strategy S2 improves with
the increasing value of T . The best result in each strategy of strategy S2 comes from
T4 = 20. For each strategy, with the increasingT , the improvement appears to be less and
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less pronounced. This indicates that there may be a limitation of improvement by simply
increasing the value of T .

It is an interesting point that most of results have an average output delay around 2. Its
reason somehow remains elusive. Compared to short-range reordering data, strategy S2.x
shows a more signi�cant improvement for long-range reordering data. This indicates that,
during the output update for long-range reordering data, the outputs contains rewrites
tends to appear one after another.

In general, strategy S2.x gets an improvement over the baseline strategy S0 and o�ers
more stable improvement compared to strategy S1.

6.4. Strategy 3 (S3.0, S3.1, S3.2)

In strategy S3, the classi�cation method is used to predict the number of hidden words.
The MegaM toolkit is used with two di�erent classi�cation types: binomial classi�cation
and multiclass classi�cation. The classi�ers are trained on the data from TED talk 1 and
test on the data from TED talk 2. Four groups of test results are obtained from TED2 (
EN-DE.Short, EN-DE.Long, DE-EN.Short, DE-EN.Long), in this section, only the results
from TED2.DE-EN.Long are shown as an example, the results of others can be found in
Table A.2, Table A.3 and Table A.4 in Appendix.

The results using strategy S3.1 are shown in Table 6.1.

In Table 6.1, the column “accuracy” is the percentage of correct prediction. “average
rewritten” lists the average number of rewritten words during display until a whole sen-
tence is spoken, also known as . “average delay” represents the average output delay
for each display,. The row “do nothing” represents the results of “honestly” displaying
the output to users, and “perfect prediction” represents the result when all the rewritten
words in output are perfectly predicted and hidden from display. The cell highlighted
with red color is the highest accuracy among all 16 classi�ers, and the cell highlighted
with green color is the lowerst average number of rewritten.

As shown in Table 6.1, for both binary and multiclass classi�cation, Classi�er 3 has no
e�ect (the same result as “do nothing”); Classi�er 5 has the highest prediction accuracy;
and Classi�er 13 can get the lowest average number of rewritten words. It has be men-
tioned that for binary classi�cation, the results using Classi�er 9, 10, 15, 16 is somehow
unreasonable. This is probably due to the unexpected e�ects of combining di�erent fea-
tures.

As shown in Table 6.1, all 16 classi�ers do not yet bring satisfactory results: the accuracy
of prediction is not high enough, and comparing to “do nothing”, the improvement in
reducing average number of rewritten words is still rather large. This may be because
the characteristics of the data: as discussed in section 5.1.2, over 60% of the outputs have
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Table 6.1: Results of S3.0 prediction using both binomial and multiclass classi�cation for
all classi�ers. These results are based on TED2.DE-EN.Long.

no rewrites, and for nearly 90% of outputs, the number of rewritten words is not larger
than 2. This being said, the rest 10% of the outputs contribute most of the rewritten words.
Therefore, those outputs with long rewrites may be ignored as “accidents”. The classi�ers
trained on these data may tend to classi�y the test data to class 0, 1 or 2.

Due to the reasons above, there migh be too many target classes in strategy S3.0. To
perform a prediction in higher accuracy, a further step reducing the target classes can be
implemented.

In strategy S3.1, the target classes are reduced to two (0 and 1). If an output has a rewrite,
set the number of rewritten words as 1. The results using strategy S3.1 are shown in
Table 6.2.

In strategy S3.2, the target classes are reduced to three (0, 1 and 2). If an output has a
rewrite of more than two words, set the number of rewritten words as 2. The results
using strategy S3.2 are shown in Table 6.3.
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Table 6.2: Results of S3.1 prediction using both binomial and multiclass classi�cation for
all classi�ers. These results are based on TED2.DE-EN.Long.

It should be mentioned that in strategy S3.0, when all rewritten words are prefectly pre-
dicted and hidden from display, there will be no rewritten word during display. However,
in strategy S3.1 and S3.2, the rewrites still exist even when the prediction is perfect.

Similar to the situation in strategy S3.0, Classi�er 3 in strategy S3.1 and S3.2 has no e�ect.
Unlike in strategy S3.0, Classi�er 9, 10, 15, 16 work �ne in strategy S3.1 and S3.2. For
binary classi�cation, Classi�er 16 has the best performance, which has both the highest
accuracy and lowest number of rewritten words. For multiclass classi�cation, Classi�er
13 has the highest accuracy.

In Table 6.2 and Table 6.3, only the results for data TED2.DE-EN.Long are shown. The
classi�ers that perform the best here may not perform as well as for other data. Observing
the results from all the data (TED2.DE-EN.short, TED2.DE-EN.long, TED2.EN-DE.short,
TED2.EN-DE.long), Classi�er 16 of binary classi�cation has a generally better perfor-
mance.

Strategy S3.1 has a higher accuracy compared to strategy S3.2, while strategy S3.2 has a
larger improvement in reduicing the average number of rewritten words.
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Table 6.3: Results of S3.2 prediction using both binomial and multiclass classi�cation for
all classi�ers. These results are based on TED2.DE-EN.Long.

For strategy S3.0, S3.1 and S3.2, each of them has 32 results for all classi�ers. Most of
the points are concentrated in a very small area. Therefore, only one result from each
strategy is shown in Figure 6.4.

It is shown in Figure 6.4, among all the three strategies, strategy S3.0 has the poorest
performance for all four data. The average number of rewritten words may even be higher
than using baseline strategy S0 (e.g. as shown in Figure 6.4d). Strategy S3.1 performs
better for German to English translation, while strategy S3.2 performs better for English
to German translation. However, the improvement of both strategy S3.1 and strategy S3.2
referenced to the baseline strategy S0 are limited.

In general, even though using classi�cation to predict the number of rewritten words is
expected to bring a more systematic design of strategies, the results do not appear to be
promising. Most of the prediction are 0, and a small part of them are 1. There is almost
no other prediction. The reason could be, as mentioned in section 5.1.2, that the outputs
with long rewrites are only a small part of the outputs, which can hardly be predicted.
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(a) Result based on TED2.DE-EN.Short. (b) Result based on TED2.DE-EN.Long.

(c) Result based on TED2.EN-DE.Short. (d) Result based on TED2.EN-DE.Long.

Figure 6.4: Average number of rewritten words plotted against average output delay for
strategy S3. This �gure is plotted using the four data from the TED talk 2.

6.5. Strategy 4 (S4.1, S4.2)

As shown above, for strategy S3.2, although the improvement to baseline strategy S0 is
small, but the predictions still have about 65% accuracy. It seems that strategy S1 and
strategy S2.x can more e�ectively reduce rewrites. Therefore, strategy S4, a combination
of S3.2 with S1/S2.x, may get more improvement. The following �gures only show the
results based on data TED2.EN-DE.Long, the details of the results can be found in Table
A.5 in Appendix.

A mixture between strategy S3 and S1 does not show applauded improvement compared
to strategy S1 (Figure 6.5a). However, a mixture between strategy S3 and S2.x achieved
some improvement compared to strategy S2.x (�gs. 6.5b to 6.5d).

Comparing to strategy S2.x, strategy S4.1 almost do not reduce the average number of
rewritten words while the average output delay is slightly decreased (as shown in �gs. 6.5c
and 6.5d). Comparing to strategy S2.x, the results of strategy S4.2 reduce the average num-
ber of rewritten words with very little (see �gs. 6.5b and 6.5c) or without (see Figure 6.5d)
increasing the output delay.
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(a) Result of combining S3.2 and S1. (b) Result of combining S3.2 and S2.0.

(c) Result of combining S3.2 and S2.1. (d) Result of combining S3.2 and S2.2.

Figure 6.5: Average number of rewritten words plotted against average output delay for
strategy S4. This �gure is plotted using the EN-DE.Long data from the TED
talk 2.

6.6. Comparison of di�erent strategies

In order to better compare the strategies tested above, the results of strategy S0, S1, S2
and S3 is shown in Figure 6.6a. The results using strategy S4.x slightly improve the results
of strategy S2.x. For clearer visualization, results using strategy S4.x is not plotted in
Figure 6.6a. Figure 6.6b shows the results using di�erent strategies on another data, which
is from a additional TED talk to the two previous TED talks in this thesis. This additional
data is introduced to test the stability of the strategies.

Both Figure 6.6a and Figure 6.6b are based on data which is translated from English to
German using short-range reordering. As shown in Figure 6.6b, the additional data has
smaller average number of rewritten words than the test data described in section 5.1.
When the outputs are “honestly” displayed to users, most of the outputs have less than 4
rewritten words.

It is shown in Figure 6.6 that strategy S1 depends on translation results. It shows improve-
ment in Figure 6.6a, but in Figure 6.6b it appears to have a poor performance (compared
to baseline strategy S0).
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(a) Result based on data TED2.EN-DE.Short. (b) Result based on an additional data.

Figure 6.6: A comparison of strategy S1, S2 and S3. Average number of rewritten words
plotted against average output delay.

The performance of strategy S2.x is more stable comparing to strategy S1. When strategy
S1 does not show any improvement with the additional data (Figure 6.6b), strategy S2.x
consistently shows a slightly better performance.

The results of strategy S3.x indicate that the classi�cation method to predict the number
of rewritten words does not appear to be promising. Most of the predictions are 0, and a
small part of them are 1.

Although the strategy S3.x is not e�ective to reduce the rewrite during display, the strat-
egy S3.2 can be used to predict if an output has rewrite or not with an accuracy of about
65%. Based on this fact, the strategy S4.x which combines S3.2 with S2.x can get some
improvement.

In general, all these strategies tested above are more e�ective to the data with more
rewrites. For example, the results based on the data of long-range reordering are bet-
ter than the results based on the data of short-range reordering.
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7. Summary and outlook

Dynamic transcription is a good solution for low-latency speech translation. The current
best translation can be displayed in an early stage to lower the latency, and the tran-
scribed text and its translation will be updated later to improve the accuracy [8]. The
outputs displayed to users will be updated until the whole sentence is spoken. In order
to display more accurate information to users, the most direct display strategy is to hide
some inaccurate information from display. This inaccurate information might be later
updated.

The task of this thesis is to develop new display strategies to give a good balance between
accuracy and information delay. In other words, my goal is to �nd a strategy to predict
the number of words rewritten in output update and then hide these words, so that the
number of rewritten words can be minimized at a low output delay during display.

Five di�erent strategies are proposed and implemented. As baseline, a constant number
of words is hidden for each output. In strategy S1, the number of hidden words increases
with the increasing length of input. In strategy S2.x, the number of hidden words is
determined by the number of rewritten words in the previous output. In strategy S3.x,
the classi�cation method is used to predict the number of hidden words. Strategy S4.x is
a combination of strategy S3.2 and strategy S1/S2.x.

The experiments are based on the data of English-to-German and German-to-English
translation. Strategy S1 is not stable. The results may or may not get improved com-
pared to the baseline strategy S0 depending on data. Strategy S2.x gets an improvement
over the baseline and o�ers more stable improvement compared to S1. The improvement
using strategy S3.x is not satisfactory due to the fact that the number of rewritten words
in each output can hardly be predicted by classi�cation method. Strategy S4.x, the com-
bination of S3.2 and S2.x, shows improvement compared to strategy S2.x.

The display strategies for dynamic transcription in speech translation plays a key role
in the trade o� between accuracy and latency. Ideally, if the rewrites of outputs can be
perfectly predicted and hidden, the information displayed to users during the dynamic
speech translation process will be accurate. This means that the accurate information
can be displayed to users with the lowest information delay. It is important to users to
get unconfusing translation in time. More stable and e�ective display strategies are still
to be found for speech translation between English and German.

Future work may involve designing of strategies using the neural netwok, which may
improve the classi�cation method to better predict the number of rewritten words in
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each output. Display strategies which can be applied to other language pairs other than
German and English is an important direction of research to extend the functionality of
dynamic transcription speech translation.
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A. Appendix

Table A.1: Results of S1 and S2. These results are based on data from TED talk 2.
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A. Appendix

(a) Result based on TED2.DE-EN.Short.

(b) Result based on TED2.EN-DE.Short.
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(c) Result based on TED2.EN-DE.Long.

Table A.2: Results of S3.0 prediction using both binomial and multiclass classi�cation for
all classi�ers.
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A. Appendix

(a) Result based on TED2.DE-EN.Short.

(b) Result based on TED2.EN-DE.Short.
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(c) Result based on TED2.EN-DE.Long.

Table A.3: Results of S3.1 prediction using both binomial and multiclass classi�cation for
all classi�ers.
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A. Appendix

(a) Result based on TED2.DE-EN.Short.

(b) Result based on TED2.EN-DE.Short.
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(c) Result based on TED2.EN-DE.Long.

Table A.4: Results of S3.2 prediction using both binomial and multiclass classi�cation for
all classi�ers.
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A. Appendix

Table A.5: Results of S4. These results are based on data from TED2.EN-DE.Long.
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