
Reverberation Robust Acoustic Modeling
Using Time Delay Neural Networks

Master’s Thesis of

Emanuel Jöbstl

at the Department of Informatics

Interactive Systems Lab

Reviewer: Prof. Dr. Alexander Waibel

Second reviewer: Prof. Dr.-Ing. Rainer Stiefelhagen

Advisor: M.Sc. Markus Müller

Second advisor: Dr. Sebastian Stüker

4. November 2017 – 3. May 2018



Karlsruher Institut für Technologie

Fakultät für Informatik

Postfach 6980

76128 Karlsruhe

This thesis was written during an exchange

at Carnegie Mellon University in Pittsburgh

(Pennsylvania) and was kindly supported by

a scholarship from DAAD.



I declare that I have developed and written the enclosed thesis completely by myself, and

have not used sources or means without declaration in the text.

Pittsburgh, 1st of Mai, 2018

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Emanuel Jöbstl)





Acknowledgments

First, I would like to thank Prof. Dr. Alexander Waibel for his insightful advice and

support. The foundation of the InterACT and CLICS exchange programs was foresightful,

and I am proud to be one of many students who have greatly bene�ted from these programs.

I would also like to thank my advisors, M.Sc. Markus Müller and Dr. Sebastian Stüker for

their valuable input. I highly appreciate the critical feedback on the results obtained while

working on this thesis.

Interesting and important input was received during discussions with the team mem-

bers of Carnegie Mellon’s InterACT lab. I am very thankful that Florian Metze, Ramon

Sanabria, Shruti Palaskar and Susanne Burger shared their practical knowledge with me.

Last but not least, I would like to thank Martin Thoma for his critical questioning of

my results and his excellent help with proofreading of this work. Furthermore, Martin’s

thorough public documentation of his own research work was of great practical help to

me.

i





Abstract

This work investigates robust acoustic modeling for speech recognition systems based

on hidden Markov models. The focus of this work is put on time delay neural networks.

We �rst design a time delay neural network model for acoustic modeling and provide

empirical results that justify our choice of design parameters. Then, we train the time

delay neural network on augmented data, and compare its performance on reverberated

data with conventional fully connected neural networks.
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Zusammenfassung

In dieser Arbeit wird untersucht, wie eine robuste akustische Modellierung für Spra-

cherkennersysteme, die auf Hidden Markov Models basieren, erreicht werden kann. Der

Fokus der Arbeit liegt dabei auf Time Delay Neural Networks, die mit augmentierten

Daten trainiert werden. Dazu entwerfen wir ein Time Delay Neural Network, wobei die

Designentscheidungen empirisch untermauert werden. Danach führen wir Experimente

mit verrauschten Daten durch und vergleichen unsere Ergebnisse mit solchen, die durch

vollverbundene neuronale Netze erzielt wurden.
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1. Introduction

Automatic speech recognition is an important way of human computer interaction. The

fundamental problem automatic speech recognition attempts to solve is to transform

natural spoken language to text, which can then easily be processed by computer systems.

Especially with the advent of smart mobile devices, more and more use cases for automatic

speech recognition are available, mainly in the form of smart assistants as like Google

Now, Microsoft’s Cortana and Apple’s Siri [1] [2]. There are also many use cases which

are not targeting end users, for example the automatic transcription of university lectures

[3] and the simultaneous transcription of speeches in the European parliament [4].

Despite the recent success of automatic speech recognition, many systems still rely on

microphones which are close to the speaker, or microphone arrays and beam forming. For

many use cases, this is a serious drawback. Users might want to use their smart assis-

tant without picking up their device every time. During lectures, it is hard to transcribe

questions from the audience without handing a microphone to the person who asked the

question. The work [5] gives a good overview about the problems that arise when distant

microphones are used. The most prominent problem is reverberation. Reverberation

happens, informally speaking, when a signal is interfered by weaker, delayed re�ections

of itself.

The goal of this work is to investigate how automatic speech recognition could be made

more robust against reverberation, using an acoustic model based on time delay neural

networks. Our approach for this is the following:

• Chapter 2 introduces basic signal processing and hidden Markov models. This

chapter also focuses on the properties of reverberated audio from a signal processing

perspective.

• Chapter 3 introduces important related work. We explain automatic speech recogni-

tion with a special focus on the structure of acoustic models and the hyperparameters

encountered when decoding. We also give a brief introduction to neural networks

which is followed by an introduction to time delay neural networks. We conclude

the chapter with a summary of acoustic modelling using neural networks. A special

focus is put on sequence training criteria and their di�erentiation.

• Chapter 4 outlines design decisions for our time delay neural network acoustic

model and underpins them with experimental evidence. We also brie�y investigate

the behavior of discriminative training in practice.

• Chapter 5 describes the evaluation of our best time delay neural network acoustic

model on reverberated data. We also compare the performance on reverberated data

to a fully connected network which performed similarly on a clean dataset.
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2. Preliminaries

This chapter summarizes concepts we built upon in this work. First, we give a brief

introduction to signal processing and use this framework to explain the properties of

reverberation in a more formal way. Then, we introduce hidden Markov models, which

are an important concept for understanding most speech recognition systems.

2.1. Reverberation and Reverberated Audio

This section focuses on a formal de�nition of reverberation and provides some intuition

why reverberation makes automatic speech recognition di�cult. Reverberation should

not be confused with echo: Reverberation overlays a signal with many re�ections in a

relatively short time context, while echo refers to few re�ections that happen up to several

seconds from each other. We also give a very brief introduction to signal processing and

system theory, according to the book [6].

2.1.1. Continuous Signals and Systems

Sound can, as any other continuous signal, be described as a continuous function y(t)
where t indicates the time. In literature, the argument t is often dropped when not explicitly

needed to make equations easier to read. Signals can be fed into systems, which in turn

creates an output signal. In the context of this work, we only consider linear, time invariant

systems.

Let S be a linear time invariant system, y1, y2 continuous signals, and c1, c2 constants. The

following three properties hold if and only if a given system is an linear time invariant

system:

S{c1y1(t) + c2y2(t)} = c1S{y1(t)} + c2S{y2(t)} (linearity)

The linear property allows us to treat application of a system to a signal as a linear

transformation in the function space our signals are de�ned in.

y1(t) = S{y2(t)} =⇒ y1(t − t0) = S{y2(t − t0)} (time invariance)

The time invariance property guarantees that the behavior of a system never depends

on the time. In other words, if the input signal to a system is shifted in time, the only

di�erence to the output is a shift in time as well.

y1(t
′) = y2(t

′)

x1(t
′) = S{y1(t

′)}

x2(t
′) = S{y2(t

′)}

 =⇒ x1(t
′) = x2(t

′) (causality)

3



2. Preliminaries

The causality property guarantees that, if two signals are equal for all times t ′ before

a chosen time t0, the output signals of the system processing this signals will also be

equal up to this point. Simply put, the output of a system up to time t0 can not depend

on any input that happens after t0. It is worth to note that all real systems are always causal.

A linear time-invariant system can be characterized by its so called impulse response д,

de�ned as the system output when presented with a so called dirac impulse δ .

д(t) = S{δ (t)}

The dirac impulse δ is a function that is formally de�ned by the following equation.

д(t2) =

∫ ∞

−∞

y(t)δ (t − t2) dt (2.1)

It can be said that the dirac impulse is zero for all t not equal to zero. The integral over

the dirac impulse de�ned to be one.

Given de�nition 2.1, as well as the linear property, we can show that the impulse re-

sponse of a system is indeed su�cient to calculate the output signal for any given input

signal.

x(t) = S{y(t)}

= S

{∫ ∞

−∞

y(τ )δ (τ − t) dτ

}
=

∫ ∞

−∞

y(τ )S{δ (τ − t)} dτ

=

∫ ∞

−∞

y(τ )д(τ − t) dτ

Furthermore, we de�ne the convolution operation, ∗, for two given signals as follows.

(y1 ∗ y2)(t) =

∫ ∞

−∞

y(τ )y2(τ − t) dτ (convolution)

A convolution is thus an operation that combines two functions to create a new function.

Given this de�nition, we can write the output signal x of a system S given an input signal

y as convolution with the impulse response д of the system.

x(t) = S{y(t)} = (y ∗ д)(t)

2.1.2. Properties of Reverberation

The acoustic properties of a room can be approximated as a linear time invariant system

[5]. The properties of this system are dependent on the properties of the room itself, for

example the shape, size and surface of the wall, as well as the location of the sound source

and the location of the receiver. Especially regarding automatic speech recognition, [7]

4



2.1. Reverberation and Reverberated Audio

gives results that show that the location of a speaker relative to the microphone can have

a very large impact on recognition results.

The measured impulse response of a real reverberation can be seen in �gure 2.1. This

speci�c sample is taken from the Aachen Impulse Response database [8]. Such a sample

can be created by creating a very brief sound impulse, for example a clap, in an otherwise

silent room, and then recording the sound for a few seconds.

As described in [5], we can divide the impulse response of a reverberation into the direct

transmitted sound itself, early re�ections, and late reverberation. The intuition behind

is that the original sound wave arrives at the receiver �rst. After that, re�ections of the

signal which were re�ected once by the walls of the room arrive. These re�ections are

already dampened signi�cantly. Then, re�ections of re�ections will be received, and so on,

until the sound waves become so weak that the room is silent again.

−100 −50 0 50 100 150 200 250 300 350 400 450 500 550

Milliseconds

A
m

p
l
i
t
u

d
e

Direct

Transmission

Early Re�ections Late Reverberations

Figure 2.1.: Room impulse response of a lecture hall

It is important to note that late reverberations can be measurable for several hundred

milliseconds.

To illustrate the impact of reverberation in a more formal way, we can use the decom-

position into direct transmitted sound, early re�ection, and late reverberation. We de�ne

a approximation of a room impulse response that subsequently overlays an audio signal

with weaker copies of itself.

дrir (t) = w0δ (t) +
n∑
1

wn ∗ δ (t − tn)

Here, wn are weighting factors, which represent the dampening of our re�ections. tn
are the delays until our re�ection is received. We now consider the system Srir associated

with the impulse response дrir , apply the audio signal y and observe the output x .

5



2. Preliminaries

x(t) = Srir {y(t)}

= (дrir ∗ y)(t)

=

∫ ∞

−∞

д(τ )y(τ − t) dτ

=

∫ ∞

−∞

[
w0δ (t) +

∑
n

wn ∗ δ (t − tn)

]
y(τ − t) dτ

=

∫ ∞

−∞

δ (t)y(τ − t) dτ +
∑
n

∫ ∞

−∞

wnδ (t − tn)y(τ − t) dτ

= w0y(t) +
∑
n

wny(t − tn)

If the room impulse response is non-zero over at a certain time interval tn, the audio

signal produced at t will still in�uence the received signal x at t + tn.

2.1.3. Impact of Reverberation on Digital Audio Samples

Before formally introducing automatic speech recognition during a later chapter, we want

to show that the impact of reverberation can be signi�cant for many applications that

process sound or speech.

Before a signal can be processed on a computer, it has to be measured. This process

is called sampling. Formally, we can describe sampling as the following operation, where

tA is called the sampling interval. We call ydiдital a discrete signal:

ydiдital (t) = y(t) ∗
∞∑
n=0

δt − ntA

This yields a time series of in�nite length which is hard to process. Thus, signals are

usually cut into pieces, which are then independently processed from each other. This is

called windowing. For the most simple form of windowing, we can set all signal values

outside of a certain range to be zero. Formally, this can be de�ned by multiplying the

signal with a rectangle function σrect ,a(t):

σrect ,a(t) =

{
1 if − a < t < a

0 otherwise

When working with signals, especially for classi�cation tasks, methods built upon the

fourier transform are used very often [9] [10] [kitasr2018stueker]. The fourier transform

transforms a signal y(t) from its time domain to the frequency domain Y (f ). The resulting

functionY (f ) is called the spectrum and gives the distribution of energy over all frequencies

for the original signal y(t). The fourier transformation can be de�ned for continuous or

discrete signals, as well as for discrete and windowed signals. In the case of discrete

6



2.1. Reverberation and Reverberated Audio

windowed signal, this is called the short time fourier transform, which was �rst described

in [11]. It can formally be de�ned as follows, with an arbitrary window function σ :

Y (n,ω) =
∞∑

m=−∞

y(mtA)σ ((n −m)tA)e
−jωn

(2.2)

The function Y (n,ω) gives the signal magnitude for a certain time window n and a fre-

quency window ω. The time resolution depends reciprocally on the frequency resolution

and vice versa. It is not possible to increase the frequency resolution while not decreasing

the time resolution.

We can investigate the e�ects of a reverberated signal on the short time fourier transform

by applying the same approach as in the previous chapter. The resulting short time fourier

spectrum of the reverberated and sampled signal is given as follows:

Y (n,ω) =
∞∑

m=−∞

w0y(mtA)σ ((n −m)tA)e
−jωn +

∞∑
m=−∞

∑
n

wny(mtA − tn)σ ((n −m)tA)e
−jωn

(2.3)

Equation 2.3 shows that, for su�ciently large tn and wn, signi�cant noise is added to

neighboring time windows. To recapitulate from the last chapter, the tn for a large room

can be up to several tenths of seconds, while the window size for most applications is in

the hundreds of milliseconds.

This mathematic observation shall serve as a motivation for this work. Reverberation, es-

pecially late reverberation can be a hard problem that signi�cantly distorts measurements

of signals. To cope with reverberation, applications can consider large time windows in the

�rst place. Time delay neural networks, which are introduced in section 3.2 can naturally

deal with a such wide windows in a stable way.

We conclude this explanation with a more visual example. Figure 2.2 shows the magnitude

of the short term fourier transformation for a short speech segment, as well as the short

term fourier transformation for the same speech segment after it has been reverberated

using the impulse response shown in Figure 2.1. Such a magnitude representation is also

called spectrogram in literature.

7



2. Preliminaries

0 1 2 3

Time (Seconds)

F
r
e
q

u
e
n

c
y

0 1 2 3

Time (Seconds)

Figure 2.2.: Spectrogram of a clean and a reverberated audio sample. The left side shows a

clean recording of a speaker saying “A B C”. The right side shows the recording

after it was reverberated by the impulse response shown in Figure 2.1. It can

clearly be seen that the reverberation caused the signal to become smudged

along the time axis.

2.2. Hidden Markov Models

A Hidden Markov Model (HMM) is a discriminative model. Understanding hidden Markov

models throughly is fundamental for understanding automatic speech recognition systems

that build upon hidden Markov models.

To explain hidden Markov models, we �rst introduce the concept of a Markov chain. A

Markov chain is a sequence of random variables X = x1,x2, . . . .xt−1,xt . . . ,xT and a �nite

number of states s1, . . . , sn, where the probability of entering a certain state at time t + 1
only depends on the state at time t :

P(xt+1 = sjt+1 |xt = sjt ,xt−1 = sjt−1 . . . ,x1 = sj1) = P(xt+1 = sjt+1 |xt = sjt )

This assumption is also called the Markov assumption. If the probability of moving

from state sjt to state sjt+1 is independent of the current time t , we call a Markov chain

homogeneous.

We now extend our homogeneous Markov chain and assume that we can no longer

observe the state sjt at a given time t directly, but a symbol vk that was emitted. We

8



2.2. Hidden Markov Models

formally de�ne:

S = {s1, . . . , sn} (states)

V = {v1, . . . ,vm} (symbols)

A = (aij) (state tansmission probability)

aij = p(xt+1 = sj |xt = si)

B(k) = (bj(k)) (emisson probability)

bj(k) = p(vk |xt = sj)

π = (πi) (initial state probability)

πi = p(x1 = si)

The tuple λ = (S,V ,A,B,π ) speci�es a hidden Markov model. We furthermore introduce

the graphical notation for hidden Markov models seen in �gure 2.3. Unspeci�ed transitions

and observations have probability zero.

s1

a11

s2

a12

a21

a22

s3

a23

a32

a33

v1

b1(1) b2(1)

v2

b2(2) b3(2)

Figure 2.3.: Graphical example of a hidden Markov model with three states and two

observations

2.2.1. Forward and Backward Algorithm

Given a sequence of observed emissions, a so called observationO = {o1, . . . ,ot }, a hidden

Markov model can be used to evaluate the probability p(O, λ) of the observation, given the

parameters λ. For calculating this joint probability, the forward algorithm or the backward
algorithm is used. For the forward algorithm, let αT (j) be the probability of having observed

O and being in state sj at the end of the observation. We de�ne recursively for any previous

time t :

α1(j) = πjbj(o1)

αt (j) = bj(ot )
N∑
i=1

aijαt−1(i)

p(O |λ) =
N∑
j=1

αT (j)

9
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For the backward algorithm, we de�ne a similar recursive algorithm, starting from the

latest time observation. Here, β0(j) is the probability of observing O when starting from

state sj .

βT (j) = 1

βt (j) =
N∑
i=1

aijbj(ot+1)βt+1(i)

p(O |λ) =
N∑
j=1

β0(j)

2.2.2. The Decoding Problem

Besides calculating the probability of an observation sequence, �nding the most likely

state sequence X = {X1,X2, . . . ,XT } given an observation O and a hidden Markov model

λ is of interest for automatic speech recognition, as we will explain in section 3.3.5. This

problem is called the decoding problem, which is solved by the viterbi algorithm. The viterbi

algorithm is very similar to the forward algorithm. The main di�erence is that we search

for the maximum probability in each step instead of calculating the sum:

δ(j) = πjbj(o1)

Tt (j) = argmax

k

{
aijδt−1(k)

}
δt (j) = bj(ot )aijδt−1(Tt (j))

The path with the highest probability can be found by starting at the highest δT for the

last time step, and then tracing the assigned maximum predecessors backwards using T .

2.2.3. Learning Hidden Markov Model Parameters

Given a hidden Markov model topology, which is essentially only the number of states n
and the number of emission symbols m, as well as a training set of observations O , we

can use the so called Baum-Welch algorithm to optimize the initial state probabilities π ,

transmission probabilities A and emission probabilities B.

We �rst de�ne two auxiliary variables, given an observation O and the parameters λ:

γt (i), the probability of being in state i at time t and ξt (i, j), the probability of being in state

i at time t and state j at time t + 1.

10
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γt (i) = P(xt = i |O, λ)

=
P(xt = i,O |λ)

P(O |λ)

=
αt (i)βt (i)∑N
j=1 αt (j)βt (j)

ξt (i, j) = P(xt = i,xt+1 = j |O, λ)

=
P(xt = i,xt+1 = j,O |λ)

P(O |λ)

=
αt (i)aijβt+1(j)bj(ot+1)∑N

i=1

∑N
j=1 αt (i)aijβt+1(j)bj(ot+1)

Using this two auxiliary variables, we can �nd new parameters λ iteratively. Let π ∗,
a∗ij and b∗j be the new parameters after one iteration of the Baum-Welch algorithm.

b∗j (k) =

∑T
t=1,ot=vk

γt (j)∑T
t=1 γt (j)

π ∗i = γ1(i)

a∗ij =

∑T
t=1 ξt (i, j)∑T
t=1 γt (j)

It should be noted that the Baum-Welch algorithm is a special case of the expected maxi-
mization (EM) algorithm applied to hidden Markov models. The expected maximization

algorithm gives a maximum-likelihood estimate of parameters, even if the data set used

for the estimation has incomplete or missing values. A proof can be found in [12].
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This chapter will give a brief introduction to neural networks and time delay neural

networks, as well as an introduction to automatic speech recognition with hidden Markov

models. We also describe acoustic modelling using neural networks. These are the

necessary building blocks for the work presented in this thesis.

3.1. Neural Networks

In machine learning research, the goal of a neural network is to approximate arbitrary

functions. The basic idea of neural networks, so called perceptrons, were �rst introduced

by Rosenblatt in [13]. While the �rst neural networks were biologically motivated, neural

networks can be interpreted as composition of functions. The relation between these

functions forms a directed graph. In this work, we will only cover feed forward neural
networks. They are called feed forward neural networks because there are no feedback

connections: The relation between all functions in the neural network forms an acyclic

directed graph. Feed forward networks are an important building block for many machine

learning applications.

More formally, as described in [14], a feed forward neural network can be described as

a model y = f ∗(x ,θ ), approximating an existing function y = f (x). In this example x
is the input, y is the output and θ are the model parameters which are learned during

training. f is the function to approximate and f ∗ is a composition of many functions with

the parameters θ .

In practice, the functions composing a feed forward neural network are often simply

chained, so that their relation graph simply forms a path. In this case, the functional

components are called layers. A feed forward neural network of this form with n layers

can be written as follows:

y = f ∗n . . . (f
∗
2
(f ∗

1
(x ,θ1),θ2) . . . ,θn)

For this type of neural network, f ∗
1

is applied to the input, then f ∗
2

is applied to the

output of f ∗
1

and so on, until the �nal layer is reached. The output of the �nal layer is the

output of the neural network. Figure 3.1 shows a graph based representation of such a

neural network. Each node represents a function, arrows represent data �ows.

x f ∗
1

f ∗
2 . . . f ∗n y

Figure 3.1.: Simple graphical interpretation of a feed forward neural network
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Even with this simpli�cation, it has been shown that such a feed forward neural network

can approximate any function with any desired accuracy. This is called the universal
approximation theorem [15]. The caveat is �nding the correct function f ∗n to use in each

layer and the correct parameters θn. Also, �nding the function to approximate is non-trivial

in the �rst place. We will discuss these problems in the next sections.

3.1.1. Training Neural Networks

As with most machine learning approaches, we train the neural network by using a

training dataset, containing a lot of data points sampled from the distribution we seek to

approximate. We usually do not want the neural network to excel only on the training

data set, but rather to perform well on unseen data. This ability is called generalization.

We can approximate the error on unseen data by testing the neural network on a test
dataset. The test dataset must never be used for adjusting the neural network parameters,

as this will make the test dataset worthless. The situation where a network performs well

on the training dataset but worse on the test dataset is called over�tting. The network

basically memorizes the distribution of the training dataset, but fails to generalize on the

test dataset.

Given the de�nition in the past section, we can treat the problem of training a given neural

network as �nding appropriate parameters θ to minimize a certain error function or loss
function E = L(y), where E denotes the error and y the network output. The error E is

usually some metric that judges the network performance based on the training data set.

The state of the art algorithm for optimizing the parameters of a neural network is called

stochastic gradient descend, a special application of naive gradient descend.

3.1.1.1. Naive Gradient Descent

To apply gradient descend, we have to calculate the derivative of the loss function, given

a certain input, with respect to a certain parameter θi . Since this derivative is multi-

dimensional, it is called the gradient. Given a feed forward neural network, we can write

the error as follows:

E = L(f ∗n . . . (f
∗
2
(f ∗

1
(x ,θ1),θ2) . . . ,θn))

Thus, the derivative of the error with respect to a certain weight can be calculated by

applying the chain rule:

∂E

∂θi
=
∂L

∂yn

∂ f ∗n
∂yn−1

. . .
∂ f ∗i+2
∂yi

∂ f ∗i
∂θi

Where yk is the result of f ∗
k

.

We know that the gradient
δE
δθi

will become zero in a local minimum, local maximum or

saddle point of our error E. Since the gradient also gives the direction of the steepest slope,

we can simply update our parameters iteratively, until we converge into a local minimum.

θi,t+1 = θi,t − ϵ ∗
δEt
δθi,t
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In this equation, t denotes the current time and the parameter ϵ is the so-called learn-

ing rate. ϵ has to be chosen by the designer of the neural network and in�uences not

only the speed of convergence, but also whether the network converges at all. In litera-

ture, propagating the error gradient through a neural network is called backpropagation.

Backpropagation in the context of neural networks was �rst described in [16].

3.1.1.2. Stochastic Gradient Descend

In practice, naive gradient descend does not work well, as described in [17]. The reason is

that the function we seek to optimize when training a neural network is not convex and

might have many local minima. Optimizing iteratively on a stationary error term makes

this approach prone to falling into local minima.

The state of the art algorithm for training neural networks is called stochastic gradi-
ent descent (SGD), which was �rst described in a context of neural networks in [18].

Stochastic gradient descent introduces two fundamental changes and is. First, we no

longer calculate our error term and corresponding gradient for the whole dataset, but

for a randomly sampled subset of our data set, which is called a mini batch, where the

size of the mini batches is a design parameter. Second, we decrease our learning rate

while training progresses. According to [14], iterating on mini batches adds noise to our

error term, which in turn o�ers a regularization e�ect which was shown to lead to better

generalization.

The noise introduced by stochastic gradient descend originates from the fact that we batch

our dataset. Even if all batches, if averaged, represent the same distribution as our whole

training dataset, each batch has a slightly di�erent distribution. The shape of the loss

function, and thus the gradient, changes slightly with each mini batch. This is the main

reason why stochastic gradient descend is less prone to get stuck in local minima then

naive gradient descend. The noise added by this stochastic process does not go away, even

when we reach a global minimum. According to [14], this is be the main motivation for

decreasing the learning rate over time. Furthermore, this property implies that the mini

batch size is also an important design choice for achieving good generalization, not only

for achieving fast training.

A disadvantage of stochastic gradient descend is the slower convergence, since we need

more steps. This is remedied by the fact that it is easier to calculate the gradient for a

small mini batch instead of the whole dataset at once. In practice, we usually shu�e our

dataset, split it into mini-batches, and then process each mini batch once. An iteration

over all mini batches in the dataset is called an epoch.

3.1.1.3. Learning Rates and Learning Rate Scheduling

With stochastic gradient descend, we choose a separate learning rate ϵk for each epoch k .

In the scope of this work, we only introduce exponential decay, a very simple scheduling

algorithm for the learning rate, although numerous other schedulers exist.

Exponential starts with a learning rate k0 for the initial batch and multiplies the learning
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rate by a factor of 0 < p < 1 after each epoch.

kn = kn−1 ∗ p

A variant of exponential decay keeps the learning rate constant for a number epochs, until

the improvement of error measured on the test dataset falls below a certain threshold. This

variant is called newbob. Newbob scheduling is widely used by the speech recognition

community. It was �rst introduced in [19].

3.1.1.4. Momentum

Momentum is another technique that was shown to avoid local minima. When using

momentum, we do not apply the gradient directly to our model, but rather use a moving

average of the gradient of the last batches. There are multiple versions to achieve momen-

tum when using stochastic gradient descend. This work uses the notation introduced in

[20], which was throughly analyzed in the context of deep learning in [21]:

υi,t+1 = υi,t ∗ ρ + ϵ ∗
δEt
δθi,t

θi,t+1 = θi,t − υi,t+1

Here, υ is called the velocity, it is a linear combination of the last velocity and the current

gradient. ρ is the term de�ning the momentum. It controls how much of the velocity is

added to the current gradient. All other variables are de�ned as in section 3.1.1.1.

3.1.2. Neural Network Architectures

In practice, neural network layers are often formed by combining an a�ne transformation

with a non-linear function. Since a�ne transformations of data vectors can be interpreted

as matrix-vector multiplications, we can write a layer function in the following way, where

xk is the input vector for kth layer,Wk is the matrix de�ning the a�ne transformation of

the kth layer, and φ is the non-linear activation function of layer k .

f ∗k (xk) = φk(Wkxk)

The count of layers, as well as the size of each Wk are design decisions and depend on

the task. We call the count of layers depth of a neural network, and count of rows inWk

the width of layer k . The contents ofWk , called the weights of layer k , are the trainable

parameters θ for models of this form.
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3.1.2.1. Activation Functions

Non-linear activation functions, or simply activation functions, can be roughly classi�ed

into two groups: Activation functions which are applied element-wise and thus do not

change the dimension of the data, as well as activation functions which are applied on

groups of elements of the input vector and change the dimension. The latter case is

commonly fund with so called pooling functions. The choice of the activation function φ
has signi�cant impact on the performance of a neural network and has been subject to

many bodies of research, as summarized in [22]. In this work, we will only discuss the

ReLU, p-norm and softmax activation functions.

So�max

φ
so f tmax
τ (X )i =

e
xi
τ∑

x j∈X e
xj
τ

The softmax activation is de�ned as an

operation over the whole input, but does

not reduce the dimension. It maps all

output values to a space between 0 and

1, preserves the rank of each output and

also guarantees that the sum over all out-

puts is exactly 1. Therefore it produces a

valid probability distribution and is usu-

ally used for the last layer of a neural

network for classi�cation problems. The

term τ is called the softmax temperature.

It can be used to change the contrast of

the distribution produced by the softmax

activation. A higher temperature τ will

lead to a distribution more smooth. A

lower τ will lead to a more sharp distri-

bution, that concentrates a higher proba-

bility at the maximum value.
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Figure 3.2.: Example of a vanilla softmax

(τ = 1) for an input vector

containing two values
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Figure 3.3.: Example of a softmax with

adjusted temperature (τ = 1

4
)

for an input vector contain-

ing two values
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Rectified Linear Unit (ReLU)

φReLU (x) =

{
0 x < 0

x x ≥ 0

First introduced in [23], ReLU nonlinear-

ities have proven successful in practice.

The computation of ReLU nonlinearity is

cheap, also the gradient never saturates

for positive values of x . For negative

values, the gradient is zero, which can

be a disadvantage.

−2 −1 1 2

−2

−1

1

2

x

φReLu(x)

Figure 3.4.: The ReLU function.

P-norm Pooling

φLp(X ) = p

√∑
x∈X

xp

The p-norm nonlinearity was de-

scribed by [24]. This nonlinearity

operates on a set X of input elements

and reduces them to one. The size of the

set X , called group size, as well as the p
are design parameters. For a �xed p of 2,

the p-norm is also called L2 pooling.
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Figure 3.5.: Example of p-norm with p =
2 and an input group contain-

ing two values

Max Pooling

φmax (X ) = max

x∈X
x

Max pooling is a nonlinearity that,

like p-norm, operates on a group of

inputs X . The output of a max pooling

nonlinearity is the largest element in X .
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Figure 3.6.: Example of max pooling with

an input group containing

two values
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3.1.2.2. Batch Normalization

Several di�erent forms of batch normalization exist. In this work, we only consider the

concept introduced in [25], which can be formulated as follows:

y =
x − E[x]√
Var[x] + ϵ

Here, Var[x] is the variance of our input vector x , E[x] is the expected value of x and ϵ is a

small constant to avoid division by zero. The normalization is not applied on a single value

of x , but rather on a whole batch when using stochastic gradient descend. The motivation

behind batch normalization is to �x the distribution of activations within the network,

where the mean is �xed to 0 and the variance is �xed to 1. This makes it easier to use

nonlinearities which saturate for very large or very small activations.

3.1.3. The Cross Entropy Loss Function

There exist numerous loss functions for neural networks. Technically, any metric can be

used as loss function, although loss functions do not necessarily have to be metrics. One

of the most widely loss functions for classi�cation tasks is the cross entropy (CE) function.

For two probability vectors p and q, the cross entropy can be written as follows:

H (p,q) = −
∑
x

p(x) logq(x) (3.1)

The cross entropy loss function minimizes the so called Kullback-Leibler (KL) divergence.

The Kullback-Leibler divergence measures the distance of two probability distributions

and was introduced in [26]. The Kullback-Leibler divergence is equal to zero if, and only

if, the two given distributions are also equal. For two probability vectors p and q, it can be

written in the following way:

DKL(p,q) = −
∑
x

p(x) log
p(x)

q(x)

To show the connection between the cross entropy and the Kullback-Leibler divergence,

we �rst assume that q is the distribution we seek to optimize. Thus p can be thought of as

an example from our training dataset, or in other words, the distribution we seek to match.

Therefore, p, can be assumed to be �xed. We can write the Kullback-Leibler divergence as

follows:

DKL(p,q) = −
∑
x

p(x) [logp(x) − logq(x)]

= −
∑
x

p(x) logp(x) −
∑
x

p(x) logq(x)

Since we are not interested minimizing the distribution p, we can drop the �rst sum,

and thus receive the cross entropy loss as in equation 3.1.
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3.1.4. Cross Entropy Loss for Classification

When training neural networks, we often deal with classi�cation problems. In this case, we

seek to assign a single class to a given input sample: Our target probability p has exactly

one element which is one, all other elements are zero. In this case, the cross entropy loss

can be simpli�ed to the so called negative log likelihood loss, where i is the index of the

correct class in p.

DNLLL(i,q) = − logq(i) (3.2)

It has to be noted that this loss functions all operate on probability vectors: All elements

have to be between 0 and 1 and sum to unity. Therefore, a softmax activation function is

usually applied before calculating the loss.

It can further be shown that training using a cross entropy loss function trains the network

to predict posteriori probabilities [27]. Formally, given an network input x and a class

ci , the network will predict p(ci |x). Since posteriors are inherently biased towards more

frequent classes, we might want to estimate the likelihood p(x |ci) instead, depending on

our use case. With bayes’ theorem, we can write the posterior depending on the likelihood.

p(ci |x) =
p(x |ci)p(ci)

p(x)

We now assume p(x) to be equal for all x and solve the equation for the likelihood:

p(x |ci) =
p(ci |x)

p(ci)

The probability of observing a certain classp(ci) is called a prior. The prior can be estimated

from the training data, or from the network output given a random sample of the training

data set. Using the likelihood instead of the prior is especially important when the examples

in the training set are highly unbalanced with regard of one or more classes.

3.2. Time Delay Neural Networks

Time delay neural networks were introduced by Waibel et al. in [28]. The purpose of time

delay neural networks is to model long time dependencies in a robust way. The central

idea behind this network type is to use several time frames of input as well as layers that

impose temporal structure.

To achieve this, we not only consider the current frame x0,t , but also the n previous

frames x0,t−1, ...,x0,t−n as input. These frames are delayed in time, hence the name. Then,

the a weighted sum is applied to the input, where the weights are learned parameters.

This is called a TDNN unit or TDNN layer with a �lter kernel of size n. TDNN layers can

be stacked. If this is the case, preceding layers have to be extended to produce an output
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that contains multiple time frames. We call a network of stacked TDNN layers time delay

neural network.

Formally, we can calculate the output of the k-th TDNN layer at time t for feature vectors

with size one as follows:

xk,t =
n∑
i=1

wk,ixk−1,t−i

Where wk,i is denotes the i-th weight of the weighted sum used by the k-th layer and xk,t
denotes the output of the k-th layer at time t .
This equation can be rewritten using a discrete convolution operator. In this case wk is

called a convolution kernel.

xk = wk ∗ xk−1

For feature vectors containing more than one feature, we introduce the concept of channels.
A channel can be considered a dimension in the feature. We can write this case for p input

channels and q output channels, where wk,j is now a multi-dimensional kernel, producing

the output channel j. Each TDNN layer will learn q such kernels, while each kernel is

large enough to take all p input channels into account.

xk,j = wk,j ∗ xk−1

The concept of interpreting TDNN layers as convolutions is not new. The generalization

to multi-dimensional convolutions is called convolutional neural networks and was shown

to be incredibly successful [23]. Since TDNNs only apply the convolution over the time

dimension, it can be useful to interpret a TDNN as a so called �nite impulse response (FIR)

�lter. As described in [6], �nite impulse response �lters are inherently stable, as they the

output is always a sum of �nite elements. They also do not accumulate rounding errors.

In [28], another interesting property is given: Since there are a lot less learned parameters

than operations, a TDNN layer is forced to only focus on the most important features in

the data, which leads to better generalization. This so-called parameter sharing is achieved

by averaging gradients of all operations for the respective weight, independent of the time

context t . According to [14], this is one of the main reasons of success for convolutional

neural networks in general.

It should be noted that in modern TDNNs, the input context of a layer often extends

to future time frames. An example would be the input vector x0,t+n, ...,x0,t , ...,x0,t−n.

3.2.1. Pooling, Stride and Splicing

Many successful convolutional architectures, as [23], combine convolutional layers with

pooling nonlinearities. This is done because pooling over the layer output enables the

network to learn several di�erent representations of the same concept, where the pooling

will forward the output of the most dominant representation to the next layer [14].

Furthermore, it was shown that using larger steps in the convolution operation can lead

to better results [29]. In the context of TDNNs, this means that we would not use adjacent

frames for concatenating our input, but frames which are further apart. In literature,
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this is called stride or strided convolution, where the stride s gives the distance between

concatenated frames. For a strided convolution, the input vector can be written as:

x0,t ,x0,t+s , ...,x0,t+ns

It is also possible to de�ne a list of indexes S = (s1, ..., sn) to concatenate, which is especially

useful if the distance between concatenated frames should not be uniform. This operation

is called splicing and was introduced by [30]. In this case, our input vector becomes:

x0,ts1,x0,t+s2, ...,x0,t+sn

3.2.2. A Visual Example

TDNNs allow a straight-forward interpretation of their layer outputs as multi-dimensional

signals, which makes visualization over time helpful. We want to conclude this section

with the visualization of a tiny TDNN that was trained to distinguish 53 phones in an audio

sample. We use 40 log-mel coe�cients as features. Log-mel coe�cients are introduced in

section 3.3.1.1.

Figure 3.7 shows a tiny TDNN model in the time domain. Our input vector has 40 channels

and a time context of 21. The �rst TDNN layer uses 40 �lter kernels of size 5 ∗ 40 and a

stride of 4. It and is followed by an L2 polling with group size 2, resulting in a layer output

with 5 time frames and 20 channels. The second TDNN layer uses 40 �lter kernels of size

5 ∗ 20 and a stride of 5. It is also followed by an L2 pooling with group size 2, resulting in

an output spanning 1 time frame and 20 channels. In the end, we apply a linear layer that

maps the 20 channels to 53 phone classes, including special classes for silence and noise.

Input (21 × 40)

xt−10 xt+10

TDNN 1/L2 pool

Hidden (5 × 20)

TDNN 2/L2 pool

Output (1 × 20)

yt

Figure 3.7.: Tiny TDNN model

We trained this tiny TDNN model on 14 hours of voice data using SGD and the newbob-

learning rate scheduler. Figures 3.8, 3.9 and 3.10 show the learned �lter kernels and weights

after training. Brighter colors indicate higher values, the horizontal axis corresponds to

time, while the vertical axis corresponds to channels. For the �rst TDNN layer, it can be

seen that �lters which are in the same pooling group learn similar parameters. For the

other layers, the �lters are harder to implement, as TDNN layers do not preserve the order

of channels. They are still shown for completeness.
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Figure 3.8.: 40 learned �lters of TDNN layer 1

Figure 3.9.: 40 learned �lters of TDNN layer 2

Figure 3.10.: A�ne transformation learned by the �nal linear layer

We now visualize the outputs of di�erent layers given an audio sample of a few seconds

length. Figures 3.11 to 3.17 show the output of the TDNN and L2 pooling layers, as well

as the output after the linear and the softmax layer. Such layer outputs are also called

activations. The input features, 40 log-mel features per time frame, are shown in Figure

3.11 and originate from a female speaker saying “And these are always periods, ladies and
gentlemen, accompanied by turbulence.”.

Figure 3.11.: Input features extracted from the audio sample

Figure 3.12.: Output of the �rst TDNN layer

Figure 3.13.: Output of the �rst L2 pooling layer
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Figure 3.14.: Output of the second TDNN layer

Figure 3.15.: Output of the second L2 pooling layer

Figure 3.16.: Output of the linear layer

Figure 3.17.: Output of the softmax layer, the �nal network output

We observe the TDNN outputs in �gures 3.12 and 3.14 and their respective L2 pooling

outputs in �gures 3.13 and 3.15. It can be seen that the TDNN �lter kernels generated

a signal with multiple channels, where the L2 pooling reduced the number of channels

but preserved dominant features. The maximum activations in the TDNN layer output

are still dominant after the L2 pooling. We can see that the linear layer output in �gure

3.16 generated a prediction for each time frame by combining the features generated by

the previous TDNN and L2 pooling layers. Here, the maximum activation corresponds to

the most likely phone. The softmax layer in �gure 3.17 essentially increases contrast, so

the phone with the maximum probability can be easily seen. In this case, each row in the

image corresponds to a single phone class, whereas each column corresponds to a time

frame.

3.3. Automatic Speech Recognition

Automatic speech recognition (ASR) is the task of generating a text transcription from a

given sample of spoken language using a computer system. In literature, this problem is

also referred to as speech to text (SST ).

Many approaches exist for solving this task. In this work, we will focus on automatic

speech recognition using systems that are based on hidden Markov models. The contents

of this section, except otherwise noted are based on the books [31], [32] and [1].

Automatic speech recognition systems usually follows an architecture that separates
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preprocessing of the audio signal and decoding. The preprocessing transforms a brief time

window of the audio signal into a feature vector. The decoding uses a statistical model

assembled from an acoustic model, a dictionary and a language model to calculate the most

likely text representation, given the feature vectors.

More formally, we can treat the decoding as a classi�cation problem. Let a be a set of

feature vectors, we seek to �nd the word sequence w∗ that was most likely for a under

our model. That can formally be written as follows:

w∗ = argmax

w
P(w |a)

We do not know P(w |a), but can re-write it using Bayes’ theorem:

w∗ = argmax

w

P(a |w)P(w)

P(a)

Since p(a) is the same for all possible word sequences w , we can drop the denominator

from this equation:

w∗ = argmax

w
P(a |w)P(w) (3.3)

Equation 3.3 is called the fundamental equation of automatic speech recognition. While the

fundamental equation seems straight forward, the di�cult task is to create a reliable and

computationally tractable model for approximating the probability of an acoustic feature

given a word sequence, P(a |w) and the probability of observing a word sequence P(w).
Finding P(a |w) is the purpose of the acoustic model. The language model is responsible

for �nding P(w).

3.3.1. Preprocessing

Preprocessing, also called the frontend, transforms some audio signal into a sequence of

feature vectors. To do so, we sample an audio signal using a microphone, then the signal

is windowed and the frequency spectrum is calculated for each window of the signal. This

process is called short time fourier transform, as de�ned equation 2.2. Hence, the resulting

spectral coe�cients are also often called fourier coe�cients. It should be noted that there

are more sophisticated approaches to extract the frequency components of a windowed

signal, notably the continous wavelet transform, as described in [33], which has better

properties in terms of time and frequency resolution.

There exist numerous approaches to transform the spectrum of a signal to useful fea-

tures. In this work, we only discuss so called log-mel coe�cients.
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3.3.1.1. Log-Mel Coe�icients

Log-mel coe�cients were introduced in [28] and [34]. This approach is physiologically

motivated: Similar to human hearing, the mel-scale provides a better relative frequency

resolution in lower frequencies [28].

As given in [35], the mel-scale is de�ned by the following relation to the regular frequency

given in Hertz fHz :

MEL(fHz) = 2595 log
10

(
1 +

fHz
700

)
Very often, the number of coe�cients is reduced to get smaller feature vectors (σ1, ...,σn).
This is done by summing all coe�cients in certain windows σk on the mel-scale:

MELk =

∫
σk(f ) ∗MEL(f )δ f

Usually a triangle window is used. In literature, the weighted sum is sometimes referred

to as �lter bank [9].

The k-th log-mel coe�cient is then calculated by applying a logarithm:

lMELk = log(MELk)

A graphical example of log-mel coe�cients can be seen in �gure 3.11.

In literature, Mel-Frequency-Cepstral-Coe�cients (MFCCs) are frequently mentioned. They

are not to be confused with log-mel coe�cients. MFCCs can be calculated by applying an

inverse discrete cosine transform on the log-mel coe�cients [10].

3.3.2. Acoustic Model

The acoustic model A is responsible of giving us the likelihood of observing a certain word

sequenceW , for a given sequence of features X .

P(X |W )

In the case relevant for this work, acoustic models make use of hidden Markov models

combined with some discriminative classi�cation approach. The discriminative classi�er

is responsible for predicting the observation probability for a certain symbol of the hidden

Markov model. The most prominent classi�er for this speci�c task is the gaussian mixture

models, which combines several normal distributions to approximate a more complex dis-

tribution. The parameters of the acoustic model are usually learned using the Baum-Welch

equations introduced in the section 2.2.

Before we explain the architecture of the hidden Markov model used for the acoustic

model, we have to introduce the linguistic concepts of phonemes, phones and allophones.
Phonemes are sound atoms in a spoken language, that are relevant for the meaning of

a spoken word. In other words, if a phoneme in a spoken word changes, the meaning

of this word would change. Allophones are di�erent pronunciation version of the same
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phoneme. Phones are simply distinct sounds that are found in a language, regardless of

whether swapping a phone changes the meaning of the word or not.

In the context of this work, we only work with acoustic models that model so called

context dependent sub-phones, which are then combined into words or word sequences

using the dictionary. Sometimes, allophones are modeled as well, to capture variants. For

simplicity we will also refer to allophones as phones as well.

Context dependent phones include predecessor and successor phones into their model.

This happens by introducing extra hidden HMM states for n-tupels of phones. These

context-dependent phones are then called polyphones. In the case of a context of two,

three or four phones, they are called diphones, triphones or quinphones, respectively. This

approach leads to a very high number of HMM states quickly, so context-dependent phones

have to be chosen carefully.

For modeling so-called sub-phones, the model distinguishes between start, middle, and

end part of an phone as three distinct hidden Markov model states, which represent the

phone together. This has the advantage of introducing speed invariance into the model: It

does no longer matter whether a certain phone was spoken very slowly or fast. Figure

3.18 shows a hidden Markov model for such an approach. It is important to note that for

this approach, several transition probabilities in the HMM are set to zero to force a certain

topology.

as am ae

as am ae

Figure 3.18.: Hidden Markov model for a phone model with three sub-states for start as ,
middle am and end ae

A single HMM state in such a model is also referred to as distribution or senone for historical

reasons [1].

Given a HMM model, we assume we can decompose any word sequenceW into a state

sequence s1, ..., sn and every observation X into an observation sequence o1, ..., 0n. We can

now write the distribution P(X |W ) in a state-based way:

P(X |W ) =
∏
sj∈W

p(oj |s, sj−1)

3.3.3. Dictionary

The purpose of the dictionary is to describe the pronunciation of words in terms of phones.

A common way to create a dictionary is to generate it using a set of rules and a list of

words, and then �ne-tune it by hand. The dictionary also contains di�erent pronunciation

variants for each word.
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A

E

1

n eI b A l Ä

Figure 3.19.: Markov chain for pronunciation variants of the word enabler, where the state

names correspond to their respective IPA phones

Figure 3.19 shows such a model for di�erent variants of a single word. Emissions are

not shown, as each state in this model refers the acoustic model associated with the

corresponding phone. Transitions that are not modeled in the dictionary are zero, also

the dictionary has no trainable parameters. This example does not take polyphones into

account. A model including polyphones would lead a signi�cantly larger model.

3.3.4. Language Model

In the fundamental formula of speech recognition, the language model gives the probability

of a word sequence:

P(W )

For simpli�cation, we can re-write the language model as probability of a word w ∈W
following a certain sequence of words.

P(W ) =
∑
wi∈W

p(wi |wi−1, ...,wi−n)

Since languages tend to have many words, calculating the probability for each possible

word sequence would be intractable. Instead of this, so called n-gram language models

can be used. n-gram language models count the occurrence of word tuples of length n in a

large text corpora. The occurrences are then used to calculate the probability of a word wi ,

given n − 1 predecessors wi−1, ...,wi−n. In other words, n-gram language models estimate

p(wi |wi−1, ...,wi−n).

For a 2-gram model, the transition probabilities can be directly derived by counting

of occurrences for each successor of each word. An example for such a model is shown

in �gure 3.20. For larger n, we have a state for each feasible combination of words. The

number of states quickly grows very large in this case.
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that

1

2

is

1

4

1

4

1

4

not

0

1

2

0

1

0

Figure 3.20.: Markov chain built from a 2-gram language model for the sentence “That that
is, is; that that is not, is not.", omitting start and end literals

It should be noted that other approaches for language modeling exist, for example recurrent

neural network based language models [36].

3.3.5. Decoding Process

The decoding step combines the acoustic model, dictionary, and language model to �nd the

text for a given observed utterance. This section describes decoding in a very fundamental

way. In real-world applications, many more details are considered. [32] and [1] give a very

detailed description of di�erent decoding approaches.

The viterbi approximation [32] states that the most likely word sequence can be approxi-

mated with the most likely state sequence. With this assumption, it is possible decompose

any word sequenceW into a number possible sequences of HMM states using the intro-

duced HMM-based acoustic model and the dictionary. LetQW = (s1, ..., sn) be such a HMM

state sequence associated with a word sequence W . We can re-write the fundamental

formula of speech recognition in the following way [37]:

W ∗ = argmax

W
P(W ) max

QW ∈W
P(X |QW )

With this formulation of the search problem, �nding the probability for a certain word se-

quence given the observation sequenceX is reduced to �nding the probability of observing

a state sequence, given an observation sequence. Since our acoustic model is HMM-based,

we can use the viterbi algorithm to �nd this probability. We can even expand the idea

and include the language model into the viterbi search: Every time a word boundary is

crossed, we can multiply the probability of our current path with the probability of the
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given word transition. This approach can be formulated in the following way:

W ∗ = argmax

W

∏
wi∈W

P(wi |wi−1, ...,wi−n) max

Qw∈wi

∏
sj∈Qw

p(oj |sj , sj−1) (3.4)

Here, we evaluate the language model for each word wi in our word sequenceW , given

the predecessorswi−1, ...,wn relevant for the language model. We multiply this probability

with the sum of likelihoods of each state sj in most likely variant Q of word wj , given

the previous state and the observation at oj . With this formulation, the whole model can

be expressed as a single HMM. More speci�cally, word transition probabilities are also

modeled in the HMM for each possible word transition. While it is, in theory, possible to

search for the most likely word sequence using the viterbi algorithm using this approach,

models built this way fail for large vocabulary tasks as they become intractable. A more

thorough explanation about how language models are e�ciently integrated can be found

in [31].

3.3.5.1. Decoding Hyperparameter

The formulation of the viterbi algorithm given in section 2.2.2 is naive and visits all possible

states. We can save resources by using a greedy breath-�rst search with a heuristic, that

picks the next state to visit. Such a search algorithm is also called A* algorithm in literature

[38]. However, this approach is also not tractable in practice, as the model becomes very

large for tasks with many vocabularies. Therefore, a so-called beam search is used. A beam

search discards paths with a probability that fall below a certain threshold, which we call

the master beam ormb.

We consider three more details. First, we want to avoid multiplications, because they are

computationally expensive. We therefore maximize the negative log-likelihood instead of

raw probabilities. Second, we add the scaling factor lz to weight the acoustic model versus

the language model, which was shown to be very useful in practice. Also we add another

parameter lp which can be used to penalize too short or too long word sequences. With

this in mind, we can rewrite the fundamental formula in the following way:

W ∗ = argmax

W
− log

(
P(X |W )P(W )lz |W |lp

)
= argmax

W
− log P(X |W ) − lz log P(W ) − lp log(|W |)

The master beammb, and the coe�cients lz and lp are hyper-parameters that have to be

tuned for optimal results.

3.3.6. Error Metrics

Every machine learning system needs to be tested on data it has not seen before. For this

purpose, error metrics are used. Error metrics provide a way to objectively measure the

performance of a machine learning system. In the �eld of automatic speech recognition,

30



3.3. Automatic Speech Recognition

three dominant error metrics are used: frame error rate (FER), Word error rate (WER) and

sentence error rate.

3.3.6.1. Frame Error Rate

Frame error rate simply measures the classi�cation error on frame level and is mostly used

in connection with acoustic models. It can be calculated by counting how often the class

of a frame was predicted incorrectly by the acoustic model. Given a sequence of classes

predicted by our model Y∗ = (y∗
1
, ...,y∗n) and a sequence of reference labels Y = (y1, ...,yn),

we can write the frame error rate as follows:

FER(Y ∗,Y ) =
1

n

n∑
i=0

1|y∗i =yi

Here, 1|y∗i =yi is an indicator function that is one if y∗i and yi are equal and zero otherwise.

The frame error rate is always between zero and one and is usually given as a percentage.

The interpretation of what a class represents depends on the acoustic model. It could, for

example, be a phoneme, an allophone or a hidden Markov model state.

3.3.6.2. Word Error Rate

The word error rate is the most common error metric when testing complete speech

recognition tools. Before we explain the word error rate, we introduce the so called

Levenshtein distance. The Levenshtein distance of to sequences A = (a1, ...,an) and B =
(b1, ...,bn) gives the minimum number of insertions, deletions and substitutions which are

necessary to transform A to B. The Levenshtein distance can recursively de�ned as:

LD0,j(A,B) = j

LDi,0(A,B) = i

LDi,j(A,B) =


LDi−1,j−1(A,B) + 0 if ai = bi

min


LDi−1,j(A,B) + 1

LDi,j−1(A,B) + 1

LDi−1,j−1(A,B) + 1

otherwise

The Levenshtein distance of the whole sequence is:

LD(A,B) = LD|A|,|B |(A,B)

The word error rate WER(W ∗,W ) of two word sequencesW ∗ andW can now be de�ned

using the Levenshtein distance:

WER(W ∗,W ) =
LD(W ∗,W )

|W |

Here,W is the reference hypothesis,W ∗ is the output for the system we seek to benchmark.
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3.3.6.3. Sentence Error Rate

The sentence error rate counts errors on a sentence level. As soon as a single word in a

sentence is di�erent as in the reference, the sentence is rated as incorrect. The sentence

error rate is usually calculated over a corpus V that contains many sentences v1, ...,vn. It

can be formally written as:

SER(V ∗,V ) =
1

n

n∑
i=0

1|v∗i =vi

Here, V is the reference, V ∗ is the set of sentences predicted by our model. 1|v∗i =vi is a

indicator function that is one if and only if v∗i equals vi .
It should be noted that in ASR, a sentence is not essentially a sentence in the grammatical

sense, but rather a certain segment of a larger corpus. Therefore, sentences are also referred

to as utterances.

3.4. Acoustic Modeling using Neural Networks

As mentioned in section 3.3.2, acoustic models combine a discriminative classi�cation algo-

rithm with a hidden Markov model. Neural networks can be used as such a discriminative

classi�cation algorithm. A neural network can be used to directly predict the likelihood

of a state si of the hidden Markov model p(x |si) given a feature x . In this context, we call

the states labels and the features samples. This approach makes our model essentially

a Markov chain, since the states are now assumed to be directly observable. In [39],

an excellent summary of the approach is given, although �rst experiments with neural

network based acoustic modeling already happened signi�cantly earlier [40]. Notably,

recent advancements were with robust acoustic modeling using a TDNN by Peddinti et

al. [41] [30]. Their experiments have shown that an acoustic model based on a TDNN

was signi�cantly better for reverberated speech than a acoustic model based on a fully

connected network, when trained on reverberated data.

We will now introduce three loss functions that are used in the �eld of automatic speech

recognition. Since neural network training is based on gradient descend, will also show

how we can derive gradients from the given loss functions. Brief versions of this deriva-

tions can be found in [42], very detailed analysis of the loss functions in the context of

ASR can be found in [43] and [44].

3.4.1. Maximum Likelihood Estimation

For maximum likelihood training, we use the viterbi algorithm to calculate the most likely

state sequence on for a given reference sentence and corresponding observations. This

is called a forced alignment. Then, each audio frame is labeled with its most likely state,

according to the viterbi pass. We treat each state as a separate class and use this dataset

for training a model using the negative log posterior as loss function. This optimizes the
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frame error rate. Formally, this loss function be written for an utterance as:

LCE = −

n∑
t=0

logp∗st

Where n is the length of the utterance, st is the correct state at time t , given by the viterbi

pass and ot is the observed feature vector at time t . p∗st a shorthand for the predicted

posterior probability for state st produced by our model, formally p∗(st |ot ). For a single

frame, this loss function is equal to the negative log likelihood loss from equation 3.2.

Therefore, we also refer to this training variant as cross entropy loss based training.

We now assume that the probability p∗st is produced by the output of a neural network

model which uses a softmax activation as the �nal layer. Let y∗sj be the output of the layer

before the softmax layer for state sj . We can calculate the gradient for our loss function

for a single frame with respect to y∗sj as follows:

∂LML

∂y∗sj
= −
∂ logp∗st
∂y∗sj

= −

∂ log

exp(y∗st )

exp

(∑n
i=0 y

∗
sj

)
∂y∗sj

= −
∂ y∗st −

∑n
i=0y

∗
sj

∂y∗j

= 1 − δt j

Where δij is the so called kronecker delta.

δij =

{
1 i = j

0 otherwise

After the neural network acoustic model was trained over the whole training set, labels

can be re-written, and another neural network acoustic model can be trained with the new

labels. This process can be iterated several times to improve results.

3.4.2. MaximumMutual Information Estimation

Maximum mutual information (MMI ) estimation was introduced for estimating hidden

Markov model parameters in speech recognition systems in [45]. The training criterion

maximizes the ability of the model to discriminate between the correct distribution and

any other distribution. In other words, this training criterion minimizes the sentence

error. Let V be the set of all utterances. In the context of speech recognition, we can

give a loss function that maximizes mutual information between an observation sequence

O = (o1, ...,on) and a word sequence U ∈ V as follows:

LMMI = − log
p(O |U )P(U )∑

V ∈V p(O |V )P(V )
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In [42], a very similar formulation is given, which is maximized over all utterances, while

our loss function is minimized for a single utterance U . This is more convenient when

working with neural networks. The original formulation af a convenient optimization

criterion for MMI estimation was given in [46].

Given the viterbi approximation from equation 3.4, we can assume that our word se-

quences can be separated to state sequences SU = (sU ,1, ..., sU ,n) which we found using

our speech recognition system with P(U ) =
∏n

t=0 p
∗(sU ,t ). This approach was also chosen

in [45], to simplify the error criterion. Furthermore, we replace the set V by the set

M, which contains them best state sequences found during our forward-backward pass

for the utteranceU , a practical simpli�cation which is given in [46]. The criterion becomes:

LMMI = − log

∏n
t=0 p

∗(ot |sU ,t )p
∗(sU ,t )∑

V ∈M

∏n
t=0 p

∗(ot |sV ,t )p∗(sV ,t )

With the theorem of bayes, we can expand:

p∗(ot |sU ,t ) =
p∗(sU ,t |ot )

p∗(sU ,t )

With this, we can simplify and express LMMI in terms of p∗(sU ,t |ot ).

LMMI = − log

∏n
t=0 p

∗(sU ,t |ot )∑
V ∈M

∏n
t=0 p

∗(sV ,t |ot )

This expression can be di�erentiated with respect to the posterior probability p∗(sU ,t |ot )
to calculate a gradient for training a neural network model with backpropagation. Again,

let p∗sj,t be p∗(sj,t |ot ).

∂LMMI

∂p∗sj,t
=
∂ log

∑
V ∈M

∏n
t=0 p

∗
sV ,t

∂p∗sj,t
−

n∑
t=0

∂ logp∗sU ,t

∂p∗sj,t

=

∑
V ∈M δ(sV ,t )(sj,t )

∏n
t=0 p

∗
sV ,t∑

V ∈M

∏n
t=0 p

∗
sV ,t

1

p∗sV ,t

−
δ(sU ,t )(sj,t )

p∗sj,t

We can now rewrite the �rst fraction in terms of probabilities, more precisely the

probability of visiting state sj at time t while we observe O . The fraction is indeed this

probability: We divide the sum of probability of state sequences which visit sj,t by the sum

of the probability of all sequences. We can use this to simplify the �rst fraction.

∂LMMI

∂p∗sj,t
=
p(sj,t |O, t)

p∗sV ,t

−
δ(sU ,t )(sj,t )

p∗sj,t

This formulation is familiar. It corresponds to the de�nition of γt (j) from section 2.2.3,

that is produced by the forward-backward algorithm when training hidden Markov model

parameters. We conclude this derivation by a compact formulation of the gradient for the

MMI loss function:

∂LMMI

∂p∗sj,t
=
γt (j) − δ(sU ,t )(sj,t )

p∗sj,t
(3.5)
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In literature, particularly [42], a variant, which has to be maximized, is used:

∂LMMI

∂p∗sj,t
≈
δ(sU ,t )(sj,t ) − γt (j)

κ
(3.6)

Here, κ is an acoustic scaling factor, which corresponds to the lz introduced in section

3.3.5.1.

3.4.3. Overall Risk Criterion Estimation

The family of overall risk criterion estimation (ORCE), or minimum bayes risk (MBR) ob-

jective functions for hidden Markov models was introduced in [47]. They are optimized

to minimize the number of insertions, deletions and substitutions at either word, phone,

or state level. The speci�c variants are called minimum word error (MWE) and minimum
phone error (MPE) criterion for words and phones. For minimizing the error at state level,

the criterion is called state minimum bayes risk (sMBR). Several pieces of literature suggest

that the MPE and sMBR objective functions, if carefully tuned, perform better than frame

based maximum likelihood estimation in experiments [48][43][44][30].

We can formally de�ne the whole family as loss function:

LOCRE =

∑
V ∈V P(O |V )P(V )λ(V ,U )∑

V ′∈V P(O |V ′)P(V ′)

Where V is a set containing all possible hypothesis for an observation O , and U is

the reference hypothesis. λ(V ,U ), called the raw accuracy, would ideally be the leven-

shtein distance of U and V , divided by the length of the correct hypothesis U . λ(V ,U )
can either be measured on state level, phone level or on word level for sMBR, MPE and

MWE, respectively. In practice, simpler metrics are often used, which do not rely on the

computationally expensive calculation of the levensthein distance [48].

To derive a gradient for training a neural network, we again formulate the criterion

on state level:

LOCRE =

∑
V ∈V λ(U ,V )

∏n
t ′=0 p

∗
sV ,t ′∑

V ′∈V

∏n
t ′=0 p

∗
sV ′,t
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Now, we di�erentiate, factor out the �rst fraction and cancel the last fraction:

∂LOCRE

∂p∗sj,t
=

∑
V ∈V λ(U ,V )

∏n
t ′=0 p

∗
sV ,t ′∑

V ′∈V

∏n
t ′=0 p

∗
sV ′,t

∑
V ′∈V δ(sV ′,t )(sj,t )

1

p∗sj,t

∏n
t ′=0 p

∗
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We now use γt (t) like before and introduce two new symbols to simplify the equation.

∂LOCRE

∂p∗sj,t
=
γt (j)

p∗sj,t

[
λ(U ,V ) − λ(U ,V |sj,t ))

]
λ(U ,V ) is the average raw accuracy for all sequences, weighted by the probability of each

sequence. λ(U ,V |sj,t ) is the average raw accuracy for all sequences that pass through state

j at time t , also weighted by the probability of each sequence.

Again, in [42], a variant of this gradient is de�ned:

∂LOCRE

∂p∗sj,t
≈
γt (j)

κ

[
λ(U ,V ) − λ(U ,V |sj,t ))

]
Where κ is an acoustic scaling factor, like before.
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4. Design of a TDNN Acoustic Model

Our approach for creating a robust TDNN acoustic model is to �nd a TDNN model that

performs good on clean data �rst. Therefore, we had to make several design decisions.

Most of the design decisions were justi�ed by experiments, while some were taken from

related work. This chapter summarizes the decisions made and the corresponding results.

It should be noted that the experiments about robust acoustic modeling with TDNNs

described in [30] and [41] provided the main motivation for this work, therefore we based

some of our parameters on their result.

4.1. Training Data and System Setup

All experiments in this work only concern the neural network part of our acoustic model,

which is a HMM/TDNN hybrid. The speech recognition system itself, as well as all data, the

HMM part of the acoustic model, the dictionary and the language model, are based upon

the system described in [49]. The system is built upon the Janus recognition toolkit [50].

We utilize a four-gram language model and the CMU Pronouncing Dictionary [51], which

uses 39 phones. The acoustic model uses quinphones and has 8156 di�erent distributions,

which means that the HMM part of our acoustic model has 8156 di�erent states.

The training and test dataset for the acoustic model consist of 468 hours of English

speech from the TED-LIUM v2 [52], Broadcast News [53] and Quaero 2010-2012 datasets.

From these 468 hours, 17 hours are randomly selected as test set, 451 hours are used for

the training set.

The development dataset, used for tuning the hyperparameters, consists of the english

IWSLT 2013 evaluation dataset for the ASR track [54]. This dataset consists of 3.9 hours

of TED talks. The word error rates for all experiments in this chapter were measured on

this development set.

Each frame of samples in the datasets consists of 40 log-mel features which were normal-

ized over the whole utterance to have mean zero and variance two. Each frame covers

32 milliseconds. The frame shift between successive frames is 10 milliseconds. The sam-

pling rate of the audio data was 16 kHz.

The neural network training was done using a custom framework, build on top of Py-

Torch [55]. Pytorch is a machine learning framework that supports GPU accelleration,

parallelization along multiple systems and automatic di�erentiation. In the context of this

work, several contributions were made to the PyTorch framework.

37



4. Design of a TDNN Acoustic Model

4.2. Neural Network Parameters

This section focuses on parameters that are related to the neural network design. For all

models in this section, the word error rate was estimated by using lp and lz that were tuned

for each model separately. The priors were estimated by counting labels over the whole

training set.

4.2.1. Input Context

The time input context of all our TDNN models is (−13, 9), which means the TDNN sees the

current frame, thirteen frames in the past, and nine frames in the future. This parameter

was taken from the smallest TDNN model described in [41].

4.2.2. Count andWidth of Layers

The count of layers and width of each layer is one of the most important design parameters

for neural networks. As in [41], all our models use the same amount of channels for each

TDNN layer. Only the count of observed time frames changes with each layer.

Model: Four Layer Five Layer

Layer 1 2 3 4 1 2 3 4 5

Kernel Size 5 2 2 2 5 5 3 2 2

Stride 3 2 2 2 2 1 1 1 1

Table 4.1.: Kernel size and stride parameters for the two di�erent architectures

We decided to test a four layer model with exactly the same parameters as the small-

est model in [41]. This model also included a splicing layer after layer one. The splicing

con�guration was (0, 1, 2, 3, 3, 4, 5, 6), relative to the previous layer. For the second model

we tested, we decided to use larger kernels and one more layer. For this purpose, we

removed the splicing layer and increased the layer count to �ve. Table 4.1 gives the kernel

size and stride over time for each layer in each architecture. For both models, we used an

L2 pooling nonlinearity with group size of ten followed by a batch normalization layer

after each TDNN layer.

Figure 4.1 shows the word error rate for the two di�erent architectures, given the count

of channels. It can be seen that the four-layer architecture performed better than the

�ve-layer architecture. We found the optimal count of channels for the four-layer model

to be 300. This contradicts [41], where 400 channels were used.
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Figure 4.1.: Word error rate for di�erent choices of layer and channel count

4.2.3. Nonlinearity

Following [24], we tested a L2 pooling nonlinearity with group size if ten after each TDNN

layer. Using the L2 norm can be problematic, as the gradient is not de�ned when all

inputs in the pooling group are zero. The authors of [24] propose to use a modi�ed batch

normalization layer after each L2 pooling layer, which solves the problem. We propose

an alternate approach, which is setting the gradient to zero if all inputs become zero.

Furthermore, we also tested max pooling as a possible nonlinearity. All experiments were

conducted on the four-layer architecture described before. Figure 4.2 shows the results.
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Figure 4.2.: Word error rate for di�erent choices of nonlinearities

In our case, the usage of L2 pooling with a modi�ed gradient outperformed the other

nonlinearities. It was not possible to compare L2 pooling without any modi�cations, as

our training became unstable.

4.3. Training Setup

This section is focused on the training setup for our acoustic model. Out setup is closely

related to the setup described in [49]. We essentially use the same speech recognition

system, the same labels, as well as the same samples for training our acoustic model.

39



4. Design of a TDNN Acoustic Model

4.3.1. Shu�ling of Dataset

For our experiments, we benchmarked two di�erent shu�ing strategies with a six-layer

fully connected network: Shu�ing of the whole dataset once before training, and shu�ing

of the whole dataset before each epoch. The results can be seen in �gure 4.3.
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15.3

Word Error Rate

Figure 4.3.: Word error rate for di�erent shu�ing strategies

We can see that shu�ing the training dataset before each epoch decreased the word

error rate.

4.3.2. Learning Rate and Learning Rate Decay

As in [49], we utilize the newbob learning rate scheduler for stochastic gradient descend

training. We used an initial learning rate of 0.08 and a momentum of 5. The SGD variant
1

used is the variant introduced in section 3.1.1.4. This variant was also used in [49].

Figure 4.4 shows the word error rate per epoch when using newbob. It can be seen

that there were almost no improvements during epoch four, but the word error rate im-

proved as soon as the decaying started after epoch four. Figure 4.5 shows the frame error

rate per epoch for the same training run. It can be seen that exponential decay reduces

the frame error rate signi�cantly. The model used for this experiment was the four layer

TDNN introduced in the previous section.

1
The SGD variant is not equal to the default SGD variant implemented in PyTorch.
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Figure 4.4.: Word error rate per epoch when using newbob training. The exponential

decaying of the learning rate started after epoch four.
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Figure 4.5.: Frame error rate per epoch when using newbob training. The exponential

decaying of the learning rate started after epoch four.

4.3.3. MMIE Training

Since the experiments described in [30] show improvement when sMBR discriminative

training is used, we attempted to use discriminative training as well. Our implementation

used maximum mutual information estimation (MMIE), as described in section 3.4.2. We

picked this training variant as a �rst step, since it is easier to implement than any variant

of overall risk criterion estimation. Both approaches should show some improvement over

cross entropy loss on frame level, according to several bodies of work [44] [42].

For MMIE training, we pre-trained a four layer TDNN acoustic model with frame-based

cross entropy loss for a single epoch. Then, we started MMIE training on a per-utterance

basis. For this purpose, we wrote a module that enabled interoperability between the Janus

recognition toolkit and PyTorch. The training was done on multiple machines with a total
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4. Design of a TDNN Acoustic Model

of 256 processors, the gradients were averaged before each SGD step.

While our experiments consistently showed high improvements in terms of frame er-

ror rate, the word error rate increased signi�cantly: The model reached a WER of 17.6
using cross entropy loss, but only a WER 25.6 was reached after the MMIE training �nished

the �rst epoch. This e�ect was also described in more practically oriented literature [56]

for MMIE without any further modi�cations.
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Figure 4.6.: Frame error rate per Epoch when using cross entropy loss, as well as frame

error rate over a single epoch when using MMIE on a TDNN

Detailed results regarding the frame error rate are shown in �gure 4.6. It can be seen that

the MMIE training converged signi�cantly faster than cross entropy training. Also, the

error on the test data set is signi�cantly closer to the error on the training data set.

These results were achieved using the four-layer TDNN model. Caution has to be taken

when comparing the results: While the amount of data in both test data sets is the same,

they are not equal as training and testing for MMIE happens on per-utterance basis, while

the test and training sets for the cross entropy loss training were created on per-frame basis.

Although the results regarding frame error rate look interesting, we did not pursue this

approach any further, due to the resulting high word-error rates and the numerous details

one has to consider for working MMIE training on neural networks [56].

4.4. Decoding Parameters

Tuning decoding parameters is important for achieving a high accuracy on word level. The

decoding parameters are not directly related to the acoustic model, but rather the decoding

process. Di�erent acoustic models might still require di�erent decoding parameters for

best performance.

42



4.4. Decoding Parameters

4.4.1. Acoustic Model Scaling and Length Penalty

Our experiments have shown that the lp and lz parameters are depending on each other.

Therefore we can not optimize them separately. We choose to perform a grid search over

a reasonable parameter space.
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Figure 4.7.: Illustrative example of the word error rate for di�erent lp and lz parameters

for a four-layer TDNN

An example of the word error rate for di�erent lp and lz for the four-layer TDNN model

is illustrated in �gure 4.7. Our experiments have shown that the optimal parameters are

similar for each of the models we tested. It is still advisable to �ne tune the parameters for

each model. Taking the initial values for a small grid search from a similar model usually

leads to good results.

4.4.2. Master Beam

We tested several architectures with di�erent master beams. Master beams between four

and six appeared to work best, but we did not �nd any pattern that correlates with the

network architecture. This indicates that the optimal master beam depends on several

factors, not just on the architecture of the neural network model itself.

4.4.3. Neural Network Priors

As described in section 3.1.4, it is important to scale the posteriors generated by the neural

network with priors. We tested two di�erent approaches of generating the priors: Gener-

ating them from the complete test dataset and also generating them from the output of a

trained model. In the second case, we selected 15 hours of speech data randomly from our

dataset, computed the neural network output on it, and counted the occurrence of each

43



4. Design of a TDNN Acoustic Model

label in the output.
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Figure 4.8.: Word error rate for priors estimated from the dataset and the model output

As illustrated in �gure 4.8, calculating the priors from the output of the model decreased

the word error rate signi�cantly. These experiments were done on the four-layered TDNN

model.

4.4.4. So�max Smoothing

We also tested the impact of softmax smoothing on the neural network output. The moti-

vation is that a beam search through a hidden Markov model does not work well when the

acoustic model is overcon�dent regarding certain states. Figure 4.9 shows that softmax

smoothing decreased the word error rate for our four-layer TDNN model, when carefully

tuned.
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Figure 4.9.: Word error rate for di�erent softmax adjustments 1/τ for a four-layer TDNN

model
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5. Evaluation on Reverberated Data

This section contains the �nal evaluation. It describes how our model compares to a fully

connected baseline model. The baseline model was tested with di�erent input contexts.

The purpose is to rule out that our model performed better only because of the size of the

input context. The speech recognition system and preprocessing used for this evaluation

is described in detail in chapter 4.

5.1. Neural Network Models

We compare the �nal TDNN model with a fully connected baseline model that was also

used in [49]. This section describes these two models.

5.1.1. Fully Connected Baseline Model

We compare the results of our TDNN with a fully connected network that achieved

comparable performance on the development set. The model consists of six linear layers

with a width of 1600, followed by ReLU nonlinearities. The output layer is a linear layer

followed by a softmax nonlinearity. We tested input contexts of (−13, 9) as well as (−5, 5).

5.1.2. TDNNModel

The TDNN model, which can be seen in �gure 5.1, is based on the results documented in

chapter 4. We tuned the hyperparameters so that the word error rate was minimal on the

development set.

The model consists of four TDNN layers and one linear layer at the end, followed

by a softmax nonlinearity. After each TDNN layer, a L2 pooling nonlinearity with a

pool size of ten is used. As described in section 4.2.3, we set the gradient to zero if all

inputs to the L2 pooling layer are zero. A splicing layer with the splicing con�gura-

tion (0, 1, 2, 3, 3, 4, 5, 6) is inserted after the �rst TDNN layer. The exact con�guration of

kernel sizes and strides can be found in table 4.1. The output of each TDNN layer has

3000 channels, the output of each pooling layer has 300 channels. The input context is

(−13, 9). The count of channels, the modi�ed L2 pooling gradient and the omission of

batch normalization was the main di�erence to the architecture described in [41] and [30].

45



5. Evaluation on Reverberated Data

Input (23 × 40)

xt−13 xt+9

TDNN/L2 pool

Hidden (7 × 300)

Splice

Hidden (8 × 300)

TDNN/L2 pool

Hidden (4 × 300)

TDNN/L2 pool

Hidden (2 × 300)

TDNN/L2 pool

Hidden (1 × 400)

Linear/Softmax

Output (1 × 8156)

yt

Figure 5.1.: Illustration of the �nal TDNN model in the time domain

5.2. Data Augmentation

For creating acoustic models that are robust against reverberation, we train them on a

combination of clear and reverberated data. To create the reverberated data, we use a

collection of recorded room impulse responses, following the theoretical insight given

in section 2.1: For each audio sequence in our data set, we pick a random room impulse

response and convolute the two signals to from a reverberated signal.

The room impulse responses we used are similar as in [7]. However we did only use

the RWCP [57], OMNI [58] and ACE [59] datasets. The AIR dataset [8] was not used,

since di�erent recordings in the dataset vary signi�cantly which made the dataset hard to

normalize.

Evaluating the e�ects of di�erent signal amplitudes was not a goal of this work, as we

can assume that the audio frontend will always provide a reasonable gain. We therefore

normalized the room impulse responses based on their signal energy before performing

the convolution. For the ACE dataset, we found that the energy direct transmission path

was very low compared to the early and late reverberations. In this case, we ampli�ed the
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5.3. Training Setup for Reverberated Data

direct transmission path to generate a usable result. Because of this normalization, each

reverberated signal still had the same volume as the corresponding clean signal. Figure 2.2

shows an audio sample that was reverberated with this method.

5.3. Training Setup for Reverberated Data

We trained each model on the clean training set as described in chapter 4. We separately

trained each model on a combination of the clean and reverberated training set, with a

total length of 902 hours. The reverberated dataset was created by applying the previously

described data augmentation to the complete clean dataset. We used the SGD variant from

section 3.1.1.4 with newbob learning rate scheduling and momentum. The loss function

was frame based cross entropy loss. The input features at each time frame were 40 log-mel

coe�cients as in [49]. We mean normalized our input features over the whole utterance

with a resulting mean of zero and a resulting variance of two. This is di�erent from the

unnormalized 140 dimensional input vector used by [41] and [30] for their TDNN model.

Then, we tuned the lp , lz , master beam and softmax temperature parameters using the

development set mentioned in chapter 4 for each model. The development set was not

augmented. We calculate the priors by randomly sampling 15 hours form the clean data

set and counting the labels produced by the model, given the randomly sampled data as

input.

Since was impossible to �t the combined 902 hour dataset (54 GB) entirely into memory,

and shu�ed loading from disk was very slow with the large input context of (−13, 9), we

reduced the precision of the training dataset to 16 bits for all experiments in this section.

We validated this approach by training a fully connected model on the clean dataset with

the original precision and on the clean dataset with reduced precision. The di�erence in

terms of frame error rate was only 0.02%
1
, where the model trained on original precision

was better. In terms of WER we did not observe any di�erence on the development set. On

a reverberated validation set, the model trained on reduced precision achieved a slightly

better word error rate. The reduced precision of 16 bit enabled us to hold the entire dataset

in memory. With this approach, we were able to reach an average GPU utilization of 98%.

The TDNN model, which has 4.2 million parameters, trained for 14 epochs, where each

epoch took 9.3 hours on the combined dataset on a single GTX 1080 Ti GPU. On the clean

dataset, a single training epoch took 4.2 hours. The fully connected models with short

and long input contexts had 13.2 million and 13.6 million parameters respectively. They

trained for 12 and 11 epochs, where each epoch took 1.3 hours on the clean dataset and

2.3 hours on the combined dataset.

1
1202 frames out of 6013346 on the test dataset.
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5.4. Validation Results

We validate the four-layer TDNN model with the input context (−13, 9), as well as the

fully connected (FC) model with the input contexts (−13, 9) and (−5, 5), trained on clean

and augmented data respectively.

For the validation, we use the tst2014 dataset, which was the validation dataset for the

IWSLT 2014 conference [60]. Similar to our development dataset, the validation dataset

also consists of TED talks. It has a total length of 2.1 hours. We test our models with a

clean and a reverberated version of this dataset.
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Figure 5.2.: Word error rate on the clean and reverberated validation dataset for models

trained on clean and combined training data, respectively

The results of the validation can be seen in �gure 5.2. For models trained on clean

data, the word error rate on the reverberated validation set is high. It can be seen that

models with larger input context performed better on unseen reverberated data. On the

clean validation set, all models performed similar.

For models trained on reverberated data, the performance on the reverberated valida-
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tion set is similar for all three models. The same holds for clean validation data. The

fully connected model with a large input context outperformed the other models on the

reverberated validation set by a small margin. All models performed slightly better on

clean validation data than their counterpart that was trained on clean data only, where the

di�erence was most signi�cant for the fully connected model with short input context.

From this observations we conclude that data augmentation can be su�cient for im-

proving acoustic model performance for reverberated audio. A larger input context can

improve the robustness of the acoustic model in some cases.

49





6. Conclusion

During our evaluation in chapter 5 we found that our TDNN model did not yield a

signi�cant improvement over a fully connected model when trained on reverberated data.

We also found that a fully connected model with the same input context was capable of

slightly outperforming our TDNN model on the reverberated validation set. This results

are di�cult to generalize to TDNNs as a whole for the following reasons:

• In chapter 4, we tuned our TDNN on clean data, with the assumption that a TDNN

model that performs well on clean data also performs well on reverberated data.

• The room impulse response normalization given in 5 might have been too aggres-

sive, thus negating the advantage of TDNNs. In general, it is hard to measure the

comprehensibleness of reverberated audio objectively.

• In literature [30] [41], sMBR training criteria are used for TDNN acoustic model

training. It might be worth to investigate this training procedure more closely when

working with reverberated data.

While the question whether TDNNs or fully connected networks are better for reverbera-

tion robust acoustic modeling is still unanswered, we provide several insights that can

improve speech recognition systems:

• The modi�ed L2 pooling nonlinearity introduced in section 4.2.3 performed better

than L2 pooling combined with normalization.

• Augmented data can be used to boost the performance of acoustic models, even

when only clean audio is of concern, as shown in chapter 5.

• The calculation of priors from the network output, as shown in section 4.4.3, given

a randomly sampled subset of the training data, was shown to outperform priors

which were calculated from the training data set.

• We also provided a mathematically sound di�erentiation of discriminative training

criteria for neural networks in section 3.4, which is not available in literature in this

form.

Overall, we were able to show that acoustic models can be made robust against reverbera-

tion, if they are trained using reverberated data as well, especially when the input context

is large enough.
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A. Appendix

A.1. Optimal Decoder Parameters

The following table contains a summary of all decoder parameters we found to be optimal

for the experiments in our evaluation. This might be useful for reproducing our results or

for further experiments. The table also shows the achieved word error rate on the clean

and reverberated development data set.

Model Name Training Data lp lz mb 1/τ clean WER rvb WER

TDNN (−13, 9) clean -15 95 6 0.9 14.9 27.6

FC (−13, 9) clean -10 90 6 0.8 15.1 28.4

FC (−5, 5) clean -10 90 6 0.8 15.3 35.5

TDNN (−13, 9) clean + rvb -5 95 6 0.85 14.8 20.4

FC (−13, 9) clean + rvb -10 90 6 0.78 14.7 19.8

FC (−5, 5) clean + rvb -10 95 6 1.0 14.6 20.3

Table A.1.: Optimal decoder parameters and word error rate on clean and reverberated

development data set

It should be noted that the parameters shown here are implementation speci�c to the

Janus recognition toolkit [50].
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