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Abstract

The detection of sound events is a key technology for a various set of audio

applications. Sounds are able to transport information through vision borders.

Therefore, a humanoid robot assigned with kitchen tasks improves its interactive

behavior with the environment a lot when using acoustics. While audio scene

analysis employs a lot of subjects, this thesis deals with the recognition of pre-

segmented as well as continuous audio objects using single channel microphone

input. Further prior knowledge on scenes with single and multiple sources was

not used. This means that recognition is performed without information on the

audio context like source positions and statistical information on typical event

sequences. The three explored feature sets consisted of MFCCs with first and

second order temporal derivatives, PCA-ICA features without using temporal

context and PCA-ICA features on several context window sizes. In a first batch

of experiments those features were evaluated for GMMs, forward and ergodic

HMMs on predefined segments for single source data, which was recorded in dif-

ferent kitchens. The results show that for single source data MFCC features

perform worse than ICA features, independent of the classifier. Further, ICA

features covering temporal context gave even better results. The comparison

of forward and ergodic models for different number of states revealed that the

kitchen task class set generally favors ergodic HMMs instead of left-right models.

Another experiment confirmed the superiority of ICA to MFCCs with respect to

the number of gaussian parameters. While the ICA features for an architecture,

which cover shared global interclass properties, appeared to be superior on single

source data, this benefit could not be shown under continuous real world cooking

conditions with background noise. Scarce class occurrences in realworld condi-

tioned data in combination with low recognition performance showed that source

separation, confidence measures and multi track hypothesis output need to be

considered in future research directions. Furthermore, the mapping of acoustic

entities to semantics during labeling and training has to be performed carefully.
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Zusammenfassung

Die Geräuscherkennung ist für viele Audio-Applikationen eine Schlüsseltechnolo-

gie. Geräusche können Informationen unabhängig von optischen Hindernissen

übertragen. Dies macht sie auch für die Erkennung in einem humanoiden Küchen-

roboter interessant. Das Gebiet der Audio-Szenenanalyse umfasst Teildisziplinen

wie Geräuschlokalisation, Geräuschtrennung und Geräuschklassifikation. Auf-

grund des Umfangs dieser Themen beschäftigt sich diese Diplomarbeit mit der

Untersuchung von Erkennungstechniken für zunächst vorgegebene Geräuschab-

schnitte. Weitere Experimente evaluieren die gleichen Techniken auf kontinuier-

lichen Aufnahmen von echten Kochszenarien. In beiden Fällen wurde ein Mikro-

fonkanal ohne Hinzunahme von sonstigem Wissen untersucht. Solches Vorwissen,

wie Kenntnisse über Positionen der Geräuschquellen oder die Berücksichtigung

von Statistiken über den Ablauf von Verhaltens-Sequenzen, verbessert im Allge-

meinen die Geräuscherkennung. Da die Beschaffung dieser Informationen jedoch

sehr aufwendig ist, wurden sie in dieser Arbeit nicht berücksichtigt. Diese Ar-

beit untersucht vielmehr die rein akustischen Eigenschaften von Klängen und

Geräuschen und deren Erkennung anhand von Aufnahmen in Küchenumgebun-

gen. Zu diesem Zweck wurden drei ausgewählte Merkmalsextraktoren in Kombi-

nation mit GMMs, links-rechts HMMs und ergodischen HMMs Erkennungstests

unterzogen. Die ersten Merkmale basierten auf MFCCs unter Berücksichtigung

von Kontext durch die Erweiterung der Merkmalsvektoren um die ersten und

zweiten zeitlichen Ableitungen der MFCCs. Weiterhin wurde die Verwendung

von PCA-ICA Merkmalen ohne und mit Kontext untersucht. Um die Indepen-

dent Components, welche als Geräusch-Subcharakteristiken interpretiert werden

können, gemeinsam in der Merkmals- und auch in der Zeit-Dimension zu ex-

trahieren, wurden verschieden große und zeitlich stark überlappende Ausschnitte

von Merkmalssequenzen analysiert. Eine erste Experiment-Reihe verglich alle

Kombinationen von Merkmalsextraktoren und Klassifikatoren auf Aufnahmen

mit einer Geräuschquelle pro Aufnahmeabschnitt. Die zugrundeliegenden Auf-
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nahmen wurden in verschiedenen Küchen aufgenommen. Die Ergebnisse zeigen,

dass für Aufnahmen mit je einer Geräuschquelle die MFCC Merkmale von ICA

Merkmalen übertroffen werden, wobei die Hinzunahme von Kontext wiederum

Verbesserung brachte. Beim Vergleich von links-rechts HMMs mit ergodischen

HMMs bei variierender Anzahl an Zuständen verbesserte sich die Erkennung wenn

alle Klassen ergodische Topolgien verwendeten mehr als entsprechende links-

rechts Topologien. Weitere Experimente bestätigten die Erkennungsunterschiede

zwischen kontextabhängiger und kontextunabhängiger ICA und MFCCs bei kon-

stanter Anzahl an Gaussverteilungsparametern. Die Merkmale der verwendeten

ICA-Architektur, welche globale Geräuschteilcharakteristiken zwischen Klassen

repräsentieren, konnten für die während des Kochens entstandenen Aufnahmen

zu keiner Verbesserung gegenüber der MFCC-Merkmalen führen. Das seltene

Auftreten der untersuchten Klassen in den Aufnahmen und niedrige Erkennungs-

ergebnisse sprechen dafür Quellentrennung, Konfidenzmaße und mehrspurige Hy-

pothesenausgaben in zukünftigen Untersuchungen einfließen zu lassen. Weiter-

hin sollten die Abbildungen von akustischen auf semantische Einheiten beim La-

belvorgang, im Training und während der Erkennung sorgfältig eingebaut werden,

um die Evaluationsbedingungen und die Erkennerleistung zu verbessern.
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1 Introduction

We are continually surrounded by sound, which means our ears forward sound

to the brain uninterruptedly. The importance of the meanings sounds have for

our life leads to a continuous scanning of sound for sound properties which are

relevant for us.

Audio signals are responsable for many vital emotions in humans. Hearing speech,

music and environmental sounds triggers the creation of stories in our minds,

affects our behavior and our reactions. Our auditive sense forms a strong connec-

tion to our environment. Various digital audio applications which detect, retrieve,

store and process audio signals open fascinating possibilities.

Environmental sound detection is one of those key technologies which are im-

portant for scientific audio applications. Personal diaries make it possible to find

interesting situations in our daily lives by searching for acoustic changes. Context-

aware mobile devices can learn about their environment by acoustic cues, so that

they may adapt their behavior, for example by adjusting the ringing volume or

by individually and automatically answering calls. Content-based information

retrieval systems may enable us to ask for video genres or special movies indexed

by sound events as birdsong, gunshots or screams.

1.1 Motivation

This thesis deals with the recognition of kitchen sounds relevant for a humanoid

robot being developed as part of the [SFB588] project on humanoid robots in

particular, but the suggested approaches should be useful for related recognition

tasks and research on special noise reduction techniques, too. The aim of the

sound event recognizer proposed in this work is to build a system which will

be able to further improve the interactive behavior of the humanoid kitchen

robot which is supposed to assist mostly elderly and disabled people in kitchen
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environments. The system should be able to recognize audible warnings, state

signals and help controlling the attention of the robot in case of danger. Such

sound events can be beeps of microwaves and ovens to let the robot know that

food can be served. The recognition of pushing down a toaster can trigger a

deadlock event detection which could prevent a fire. It can happen that one

forgets to switch off the stove because of a phone call or the door bell, a pot

might boil over or sizzling oil in a pan might catch fire. These are situations

in which the robot needs to pay attention in order to choose the right action.

The ability to recognize and thus to respond to all these audio-signals greatly

improves the environmental model of a humanoid robot, especially in situations

where there is little or no visual evidence for what is going on.

1.2 Objective

For the task of this thesis to classify environmental kitchen sounds, an example

based approach seems to be the right choice since the domain is limited to a cer-

tain number of classes. After investigating related work and setting up criteria

of class selection, a set of classes can be determined. For this setup maximal

informative features representing the characteristics of the selected sounds need

to be found. Furthermore, a combination of those features with appropriate clas-

sification stages needs to be evaluated empirically. To test if the selected features

perform well, a series of experiments have to be evaluated for given segment bor-

ders. Another experiment will reveal which kind of difficulties appear when the

proposed approach is applied to recordings of real world cooking tasks. Therefore

it will be of interest if the implicit model based segmentation works sufficiently

well. If not, a segmentation stage needs to be proposed. A further point of inter-

est is how recognition performance degrades when more than one sound is present

at a time. Depending on the degree of degradation an error analysis should make

it possible to recommend a solution.

The remainder of this thesis is organized as follows: In the next chapter I will

discuss related work. In chapter 3 the details of feature extraction and classifi-

cation stages are explained. Then, in the first part of chapter 4, I will review
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the class selection and data collection procedure before describing the results of

my experiments. I will conclude with a summarization of the main results and a

discussion of future research directions.



2 Related Work

This chapter summarizes publications which are relevant for the recognition of

kitchen sound events. Most of these papers deal with sounds without restriction

to a specific acoustic domain, while this is the case for the sound recognition used

by a humanoid robot that works in a kitchen. This means that some authors in-

tend to distinguish between sound types for a rough categorization and others are

more interested in the audio event recognition process itself such that the acous-

tic domains seem to be selected randomly. Also note, that some authors worked

with training databases consisting of sounds collected from CDs and from the

internet, while this work is interested in real-world sound event recognition and

is therefore based on real-world recordings. Nevertheless the various feature sets

and classifiers, which are applied in the publications shown in this chapter, are

of interest for the specific task of kitchen sound event recognition. Most authors

use information theoretic approaches to improve standard preprocessed features

in combination with Gaussian Mixture Models, Hidden Markov Models or Sup-

port Vector Machines. A choice of related work is shown in the following sections.

[Lu, Zhang, Li] use Support Vector Machine (SVM) classifiers to distinguish be-

tween the 5 sound classes silence, music, background sound, pure speech, and

non-pure speech which includes speech over music and speech over noise. They

achieve up to 96% recognition accuracy using a Gaussian kernel. Classification

was performed per frame and segmentation borders were assumed where classes

changed after a smoothing technique was applied on a sliding window over three

frames. The database consisted of 4 hours recording with about 2600 audio clips

collected from TV programs, the Internet, audio and music CDs. The smoothing

process is rule based and assumes misclassification where one frame has been

classified as belonging to a different class from the surrounding ones. If three

neighboring frames were classified as part of three different classes, the middle
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frame had to be declared as belonging to the class the same class as the first

frame. If the center frame was detected as silence the rules were not applied

since silence is much more likely to appear only with duration of one frame than

the other classes. [Lu, Zhang, Li] also compare SVM results with k-nearest neigh-

bor and GMM classifiers, where a superiority of the SVM classifier was found for

this kind of task.

[Cho, Choi, Bang] employ non-negative matrix factorization (NMF) which learns

parts-based representation in the task of sound classification. NMF based fea-

tures are compared to ICA features. 5 state HMMs were trained using stan-

dard maximum likelihood training procedure. The database consisted of TIMIT

speech data, recordings from commercial CDs and some environmental sounds

downloaded from the internet. Their NMF basis images show more local prop-

erties, while ICA basis images, on the other hand, appear to be spread more

globally. This means that each NMF basis vector showed the auditory receptive

field characteristics which activate only few selected frequencies over time, while

the activations for each ICA basis vector were spread out over a global range.

The superiority of NMF compared to ICA reported in this paper can be explained

by the database and the ICA architecture used. The database contained sounds

which had been resampled at 8kHz and the underlying ICA architecture was not

explained at all. 2 of 10 classes were speech and another 5 were music related

sounds. The 3 remaining typical environmental classes only contained less than

19% of the tested sounds. Therefore the evidence for superiority of NMF to ICA

concerning environmental sounds in general is uncertain.

A comparison of MFCCs and MPEG7 features is reported by [Xiong et al.]. For

purposes of classification HMMs are investigated using both maximum likelihood

criteria as well as entropic training as explained by [Casey01]. The paper does

not reveal which kind of MPEG7 feature branch was actually used but it seems

that the authors compared the PCA variant to MFCCs since they only mention

the optional application of ICA and do not report explicit results concerning

ICA features. Their database consisted of broadcast TV interfering background

noise. Best results were achieved using MPEG7 features in combination with
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entropically trained HMMs. Nearly the same performance (0.13% absolute dif-

ference) was achieved by MFCCs in combination with standard maximum likeli-

hood HMMs.

In [Kwon, Lee] ICA based feature extraction for phoneme recognition is compared

to MFCCs representing state of the art speech recognition features. [Kwon, Lee]

observed that ICA features perform better than MFCCs when using a small

training database while ICA features perform poorer than MFCCs when used

on large databases. After a modification of ICA application an accuracy was

reported, which would be comparable to the result obtained when using MFCCs

on a large database. The modification in this paper is that ICA was also used to

extract independent components in the time domain. Compared to FFT this has

the advantage that ICA uses filters which have been learned from speech signals

that have non-uniform center frequencies and non-uniform filter weights. There

is the common problem of phase sensitivity when using localized basis functions.

Phase shift is not relevant in speech recognition when segments of speech signals

are kept short. This is why after estimating the ICA unmixing matrix a Hilbert

transform was used to obtain smoother estimates of the energy coefficients. Af-

terwards a second ICA stage working in the frequency domain was chained to

remove redundant time shift information.

[Hyvarinen, Hurri et al.] introduce a framework with several models of statistical

structure for coding of image sequences. Sparseness is a property that is used in

ICA. An extension of ICA to cover temporal coherence as well as energy correla-

tions is called ”spatiotemporal bubbles”. Thus a spatiotemporal basis vector can

represent a contour element moving in a specific direction. This idea of extracting

basis functions in ICA covering topographic as well as temporal continuity will

be transferred to sequences of audio features in chapter 3.1.3.

[Dufaux, Besacier et al.] automatically detect and recognize impulsive sounds

such as glass breaking, human screams, gunshots, explosions and slamming doors.

They use a median filter to normalize sequences of energy activations in 10 and

40 frequency bands. For segmentation a sequence of binary decisions was per-
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formed on this normalized frame sequence, using an adaptive threshold. High

quality recordings taken from different sound libraries were classified on frames

of the frequency bands mentioned, using GMMs and HMMs. The authors report

recognition results of 98% at 70dB and above 80% at 0dB SNR, even under severe

Gaussian white noise degradations.

[Casey02] introduces a system for automatic classification of environmental sounds,

musical instruments, music genre and human speakers which has been incorpo-

rated into the MPEG-7 international standard for multimedia content descrip-

tion. This system can also be used for computing similarity metrics between

a target sound and other sounds in a database. [Casey02] is trying to find a

representation that offers a compromise between dimensionality reduction and

information loss. That is why the use of SVD, PCA and ICA is proposed. This

can achieve dimensionality reduction whilst retaining maximum information. Af-

ter spectrum normalization with applying the L2 norm on dB scaled frequency

bins a reduced set of basis functions received from a SVD-ICA system is stored

per class, while retaining those basis functions which code most information mea-

sured on the eigenvalues of the covariance matrix. [Casey02] suggest finding sta-

tistically independent bases per class by application of ICA on the reduced basis

vectors received by SVD. This means that ICA has to be applied on each class-

dependent matrix consisting of eigenvectors in the frequency domain rather than

their corresponding coefficients. Once the bases have been stored, acoustic input

can be classified after each normalized spectral frame has been projected against

all bases. Finally the scores of all corresponding HMMs were compared and the

class with the highest score is supposed to be present in the audio data.

[Kim, Burred et al.] compare three different MPEG-7 features with MFCC for

general sound classification, using a 7-state left-right HMM classifier. The three

branches are PCA, ICA and non-negative matrix factorization (NMF). Their

database consists of 12 classes with 60 examples in each class. 10 classes were

taken from the ”Sound Ideas” [SoundIdeas] database which is a collection of

sound effects. The remaining 2 classes were male and female speech. 3 different

feature dimensions were compared. [Kim, Burred et al.] conclude that MFCC
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perform better than MPEG-7 features. A thourough look at the results shows

that this conclusion is only correct for the two lower dimensional features, while

ICA and PCA performed better for the highest feature dimensionality tested.

Even the middle dimensional features performed only slightly better in the case

of MFCC than the ICA features. Finally, it is not clear if this superiority really

comes from the feature extractors themselves because MPEG-7 feature extraction

is both usually and in the authors implementation performed on normalized log

scale octave bands, while MFCCs work on logarithmic melscale coefficients. On

the other hand, MPEG7 features are intercomparable while performing on the

same frequency bands. Therefore their results show a significant superiority of

ICA and PCA over the NMF features.



3 Methodology & Theory

After giving a basic explanation and interpretation of three preprocessing ap-

proaches in this chapter, a brief recall on two well known classifiers with respect

to the environmental sound domain will be given. The combination of preproces-

sors and classifiers will be evaluated in later chapters to show whether the sug-

gested methods can improve a baseline sound recognition system. Segmentation

and Decoding were explored in the last two subsections for the sake of complete-

ness and to provide an interface for future research directions, even though their

implementation was out of scope for this thesis.

3.1 Pre-processing

The following subsections give a theoretical background for one basic and two

further advanced preprocessing techniques.

3.1.1 Baseline Feature Extraction

For the baseline system a feature extraction standard was chosen which is state-

of-the-art baseline for speech recognition and which many researchers working

on sound event recognition use as well. After applying an FFT on a 16msec

hamming smoothened window of data sampled at 44.1 kHz, I filtered 20 melscale

coefficients, calculated 13 cepstral coefficients on the log melscales and filtered

context by first and second temporal derivatives, which resulted in further 26

coefficients. Both MFCCs and temporal derivatives were unified in 39 dimensional

feature frames.
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3.1.2 Independent Component Feature Extraction

In order to achieve the goal of finding the characteristics of a sound event, it is

possible to think of a sound event as consisting of a mixture of subcharacteristic

properties. One way to find these properties is to use independent component

analysis (ICA). The following subsection provides a general understanding of

ICA and its application in the context of sound event recognition. This second

pre-processing technique is motivated by a mathematical interpretation of sub-

characteristic properties describing a sound. This technique constitutes the body

for the thesis and will be reused by the third preprocessing stage which will be

examined. Using a finite number of feature sequence frames, ICA looks for a

certain view of this data stream which is most efficient in terms of statistics.

By keeping this view estimated on training data also for recognition purposes as

well, the test data can be classified in a feature space that codes maximum infor-

mation with a minimum of coding length. To reach maximum coding efficiency

either the basis vectors of a new basis (the new view) need to be independent,

since dependency would mean redundancy or the new feature stream needs to be

expressed by a basis which makes the feature coefficients maximum independent.

The coding efficiency for the given data sequence which asks for independence in

the linear combination of a transformed feature stream with the new basis can

be kept either in the new basis, or in the transformed data. These two possibili-

ties result in two different ICA architectures, which are explained in [Bartlett98]

for the vision domain. Each architecture needs to store the counterpart to the

independent components received from the training feature sequences. Counter-

part, in this context, means that when making the coefficients of the new feature

representation stream independent, the basis has to be stored and vice versa.

By multiplying a test feature vector with the inverse of the stored matrix, the

underlying hidden sources of the mixing process are revealed.

When looking at the ICA architecture used in this thesis the interpretation of

ICA application is as follows: A single sound event can be regarded as if it was

a combination of properties. Some of these properties might be shared with

a subset of other classes. Other properties might be shared with yet another

subset of some other classes. Therefore, each class can be seen as an individual



3.1 Pre-processing 11

combination of properties which can be shared among all classes. The separation

into properties can make use of high order statistics, so ICA searches for directions

in the feature space in a way that resulting independent components (which can

be the new feature frames in this ICA architecture) show independence of a higher

order than is reachable by a covariance matrix which contains only second order

statistics.

For the application of environmental sound recognition, this entails searching for

independent components in all environmental sound classes all at once. Note

that this ICA architecture differs from the one proposed by [Casey02] since the

procedure described here looks for independence based on inter class analysis

while [Casey02] extracts intra-class independent components. Both procedures

seem to be reasonable for classifying environmental sounds while the favor for

the inter-class case in this thesis comes from the number of parameters that are

invariant to the number of classes in the recognition process. For the architecture

used by [Casey02] an unmixing matrix has to be stored per class. [Casey02]

therefore needs to project each feature frame against as many bases as classes are

present in the recognition task during classification.

Preparations

In order to make the ICA estimation more effective some preparatory steps are

useful. After subtracting the mean, the data is whitened, which means applying a

linear transformation that removes the covariances and normalizes the variances

to unit length. Removing covariances is equivalent to decorrelating the observa-

tion matrix. By whitening the data the number of free parameters of the ICA

basis matrix to be estimated is also decreased from n2 to n(n−1)/2 [Hyvarinen99]

because the transformation makes the matrix orthogonal and an orthogonal ma-

trix contains only n(n− 1)/2 degrees of freedom. The whitening transformation,

which includes the decorrelation, can always be calculated by a singular value

decomposition (SVD) of the covariance matrix. The dimensionality was reduced

to 13 while at the same time keeping at least 95% of the information according

to the measure

I(k) =

∑k
i=1 D(i, i)∑n
j=1 D(j, j)

(3.1)
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where D is the diagonal matrix of sorted eigenvalues received from SVD, k is

the number of kept basis vectors and n is the original number of basis vectors.

Decorrelation is a weak kind of making the data independent which should speed

up the estimation of the independent components of higher statistical order.

ICA transformation

One mathematical key to finding the relation between coding efficiency and inde-

pendence is entropy, which is related to the coding length of a random variable.

As explained by [Hyvarinen99] a sparse distribution of a random variable has less

entropy than a Gaussian distribution of a random variable with the same mean

and covariance since the sparse one concentrates its values more on a specific

value. An example of such a sparse distribution is a spiky probability density

function (pdf) with heavy tails is the Laplace distribution

p(usuperGaussian) =
1√
2
exp(

√
2|usuperGaussian|) (3.2)

The corresponding random variable is called a super-Gaussian random vari-

able. The second possibility for a random variable to be non-Gaussian is to

be sub-Gaussian which also means that it has less entropy than a corresponding

Gaussian-distributed random variable. This typically results in a flat pdf con-

stant near zero and being very small for other values. An example for such a

sub-Gaussian distribution is the uniform distribution

p(usub−Gaussian) =





1
2
√

3
if |usub−Gaussian| ≤

√
3

0 otherwise
(3.3)

The Central Limit Theorem tells us that the distribution of the sum of two inde-

pendent random variables tends to get more Gaussian-distributed. The other way

round, to measure if two random variables are getting more independent, their

change of non-Gaussianity has to be observed. Non-Gaussianity can be measured

using negentropy. After calculating the mean and covariance of a random vari-

able u, the entropy of its corresponding Gaussian distribution can be obtained.

Negentropy is the entropy difference between this Gaussian distribution and u’s

real distribution. For a random variable u it is defined by

J(u) = H(uGaussian)−H(u). (3.4)
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Negentropy’s properties are always giving non-negative values, which are zero if

and only if u has a Gaussian distribution. Further negentropy is invariant for

invertible linear transformation. The calculation of negentropy is costly when

using the real distribution of a random variable, which means that the samples

itself had to contribute to the computation. In practice an approximation

J ≈ c[E{G(u)} − E{G(s)}]2 (3.5)

of negentropy is often used with c being a constant proportional factor. Here

s ∼ N(0, 1) is a zero mean unit variance Gaussian random variable, while u is

assumed to have zero mean unit variance as well. Some examples for general

purpose contrast functions G are

G1(w) = 1
4
w4

G2(w) = 1
a
log(cosh(aw)) 1 ≤ a ≤ 2

G3(w) = 1
b
exp(−bw2/2) b ≈ 1.

(3.6)

G1 gives kurtosis which is a classical measure for non-Gaussianity. It is defined

by

kurt(u) = E{u4} − 3(E{u2})2 (3.7)

and is a normalized version of the fourth central moment of a distribution. The

disadvantage using kurtosis is that this measure is very sensitive to outliers.

[Hyvarinen99] investigated the robustness of the contrastfunctions on artificial

source signals, two of which were sub-Gaussian, and two were super-Gaussian.

The source signals were mixed using several different random matrices, whose

elements were drawn from a standardized Gaussian distribution. For test of ro-

bustness four outliers whose values were ±10 were added in random locations.

[Hyvarinen99] results show that G2’s estimates are better than the estimates by

G1 while G3 gives slightly better results than G2 since it grows more slowly and

therefore is more robust to outliers.

Now a brief look on the terminology of ICA variables is useful. The ICA tu-

torial by [Hyvarinen99] may also help to understand ICA basics. As already

mentioned, the ICA transformation essentially aims at discovering the hidden
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information components y, which can be received by transformation and contain

the subcharacteristic properties we are looking for. The observed feature frames

can be regarded as the basis of a stochastic process. By constraining the hidden

information components y with statistical properties the transformation matrix

W can be estimated. There are two possibilities for constraining the y compo-

nents. First, the dimensionality could be reduced by constraining the number

of y components while retrieving maximum information of the observations x,

which leads to the application of PCA or factor analysis. The second possibility

is to require statistical independence of the components y, which means that no

value of one component should contain information on other components. While

factor analysis requires a Gaussian distribution of the data examined, for which

independent components can be found easily, ICA looks for the statistical in-

dependence of non-Gaussian data. Since sound events are suspected to often

have non-Gaussian distributions ICA can be applied, with expecting reasonable

transformed data. The previously mentioned transformation matrix W reveals

the hidden subcharacteristic information y = Wx by unmixing the observed

frequency frames in the sense of statistical independence. The unmixing filter

W = MB> combines the whitening matrix M and the ICA basis B into one

matrix only, which will be used to project the observed features onto the new

characteristic feature space. Often ICA is shown in the form of the mixing filter

A = M−1B to show how the observed data x = Ay is composed.

Now that a brief introduction to ICA theory and to the variables used has been

given, the approximation of negentropy can be explained more in detail. The

Fast-ICA [Hyvarinen et Oja] deflation method estimates the independent com-

ponents one-by-one (hierarchical decorrelation). This deflation method succes-

sively seeks vectors v which are initially orthogonal to all previously determined

directions. The search for v can be accomplished by calculating

max J(v>x) (3.8)

with variance of v>x = 1 and v normalized to unit norm after each iteration.

As soon as the change of negentropy is below a threshold ε and the maximum

allowed iteration number η is not reached, the component has converged.
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3.1.3 Temporal Independent Component Feature Extraction

The characteristics of sounds are spread out in the frequency domain as well as

in the time domain. This is why it is also important to extend the basis functions

over several frames, which restricts the independent component analysis to pick

out only those subcharacteristics which also need to be shared over a given time

window of frame length t. This can be performed by passing not only frame

by frame to the analysis stage but rather by simply stacking all frames with

dimensionality d of the time window in a new frame with dimensionality d · t.
This stacking has to be done iteratively for all frames of dimensionality d with

a time window sliding frame by frame. The resulting frames of dimensionality

d · t then have to be passed to the independent component analysis. They cover

context of size t−1 and overlap widely, as shown in illustration 3.1. Figure 3.2 is

a visualization of an ICA unmixing matrix without covering context, while figures

3.3, 3.4, 3.5 and 3.6 cover context with sliding windows over 3, 5, 7 and 9 frames,

which were used as input to ICA. In these figures, the vertical axis corresponds to

basis coefficients, while within all figures showing filters for stacked feature inputs,

the horizontal axis corresponds to time. For visualization purpose a normalization

of matrix coefficients was performed such that maximal values correspond to the

color black while white represents minimal matrix coefficients, which can be also

negative. Note that in the figures showing context dependent filters some basis

vectors exhibit strong temporal patterns, and some seem to be completely static.

3.2 Classifier

After extracting relevant features for the sound domain in form of short time

snapshot sequences, their typical values per class need to be learned, including

their change over time. One way to find a mapping to classes is simply to learn the

distributions of feature coefficients belonging to one class. In this case temporal

behavior may be coded implicitly in the distributions when context is used in the

feature set. A standard approach to learn these feature coefficient distributions is

summarized in the next subsection. Another possibility is to use explicit mapping

of temporal behavior given by the feature stream, which will be explained in the
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Figure 3.1: Contextual feature stream generation for sliding context win-

dows covering 5 feature frames

Figure 3.2: Nonstacked ICA-unmixing matrix
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Figure 3.3: 3 frames stacked ICA-unmixing matrix

Figure 3.4: 5 frames stacked ICA-unmixing matrix

Figure 3.5: 7 frames stacked ICA-unmixing matrix
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Figure 3.6: 9 frames stacked ICA-unmixing matrix

second subsection.

3.2.1 Gaussian mixture models

For the classification of the three proposed features Gaussian mixture models

(GMMs) are a good choice since they cover the feature space with several different

weighted multivariate distributions. First of all the number of Gaussians per class

has to be determined. In order to do so, all pre-processed features belonging to

one class are collected. Then the Bayesian Information Criterion scores (BIC

scores) [Chen et al.] for clustering this data with k-means into 1..k clusters has

to be compared. The maximum number of clusters is k = number of frames
50

, to

have at least 50 samples on average for one cluster, since a rule of thumb says

to take at leat 100 samples per free parameter and frames are half overlapping.

The highest BIC score leads to the corresponding number of Gaussians for the

Gaussian mixture parameter estimation of this class. After that all other classes

need the same processing. A Gaussian mixture model is a weighted sum of normal

distributions which can be evaluated according to

fx(x) =
1

(2π)
n
2 |Σ| 12

exp
[
−1

2
(x− µ)T Σ−1(x− µ)

]
, (3.9)

where µ is the mean vector and Σ the covariance matrix. The weights are itera-

tively estimated using the EM algorithm according to the aim of maximizing the

likelihood for the observed probability density function. The covariance matrix

was kept diagonal.
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3.2.2 Hidden markov models

Hidden Markov models (HMMs) [Rabiner et al.] are widely used for speech recog-

nition and are increasingly applied for the purpose of environmental sound recog-

nition as well. While GMMs, as a special case of HMMs, have to decide frame by

frame which is the most likely class, HMMs behave in a similar way, however cov-

ering temporal dynamics between frames belonging to one class. For this reason,

class decisions can be made on frame sequences rather than single frames. Since

in the HMM case characteristics can be coded along paths as they appear in the

recording, HMMs should be superior to GMMs in covering temporal aspects un-

der idealized circumstances (which means when there is an optimal topology for

each individual sound). An HMM consists of N states, a transition probability

matrix A = {aij}, a distribution of initial probabilities πi, a set of observation

densities and the output probabilities bj(x) =
∑M

m=1 cjmN(x, µjm, Σjm), where

N is the normal distribution with mean µ and covariance matrix Σ weighted by

cjm. Here, parameter estimation is also done iteratively according to the EM al-

gorithm. Since an HMM topology describes possible transition paths for feature

frame sequences over time the following two subsections explain the models that

seemed relevant for recognizing environmental sounds.

Ergodic Models

An ergodic HMM has a full connected topology. Transitions from any state to

any other state, including self loops as shown on the left of figure 3.7, are allowed.

Training was initialized with one state, and the same steps were applied as if there

were Gaussian mixture models. But rather than calculating the BIC scores for

a different number of clusters, k-means has to be applied with the same number

of clusters as states will be there in the ergodic topology. Since k-means enables

us to know which frames are similar distributed and therefore should belong to

the same state, all frames for this cluster can be accumulated and the number

of Gaussians for this state can be estimated as described for the case of having

no HMM topology with the BIC approach. After this initial estimation for the

number of Gaussians per state Viterbi training was applied.
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Figure 3.7: Two 3-state Hidden Markov Models, on the left an ergodic

model and on the right a forward connected model allowing state skipping

Forward Models

A major advantage of ergodic HMMs is that after this first initialization they are

able to learn the temporal order of sound events without subsegment alignment to

HMM states and are invariant during classification to different temporal orders

of characteristics belonging to one sound event class. There are sounds which

are harder to recognize without temporal order such as putting pans on a stove,

lightening matches or even phone rings. For those, forward models with causal

dependency seem to be more suited. Therefore this topology was evaluated as

well. There are different possibilities for left-right models. The connections to all

states in one direction used is illustrated on the right of figure 3.7. This means

skipping states, self loops and exit transitions are allowed for all states, only

jumping backwards in time is not possible.

3.3 Segmentation

A good overview of segmentation strategies is given by [Kemp et al.]. The fol-

lowing subsections are intended to review possible segmentation approaches for

the application of sound event recognition in a humanoid robot.
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3.3.1 Model based Approaches

In model based segmentation [Bakis et al.] approaches acoustic classes have to be

defined and trained before segmentation (i.e. HMMs, GMMs). This means that

the distribution of feature vectors for each condition is modeled as a Gaussian

mixture. Each feature vector gives a likelihood of the frame for all classes. An

HMM, modeling allowed class transitions, can be used to output the most likely

path through the classes modeled by their Gaussians, when applying the Viterbi

algorithm. The borders of segments are assumed to be at time points where

Viterbi tells a change of the trace.

3.3.2 Energy based Approaches

Energy based segmentation searches for breaking intervals in an audio signal by

using thresholds. It is assumed that segment borders are in the center of these

breaking intervals.

After computing the power for a short time analysis window, a smoothing fil-

ter may be applied to remove artefacts. For smoothing Finite Impulse Response

(FIR) filters or median filters over several frames are possible. An energy thresh-

old has to be defined and the regions of the signal which have energy below the

assumed value are going to be categorized as silence. Basically, silence periods can

be detected with this segmenting approach if the energy was below the threshold

for a given time period.

3.3.3 Metric based Approaches

Metric based segmentation can be used for several kind of acoustic data which

contain speech, music and environmental sounds. Therefore, two neighbored

sliding windows of sets containing acoustic vectors with underlying Gaussian

mixture models are compared according to a suited distance measure.

For two probability density functions PA and PB, each modeling one of those

windows, a suited segmentation distance measure proposed by [Siegler, et al.] is
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the symmetric Kullback-Leibler distance

KL(A,B) :=
1

2

∫

x
(PA(x)log

PA(x)

PB(x)
+ PB(x)log

PB(x)

PA(x)
)dx (3.10)

Another metric based segmentation measure proposed by [Chen et al.] is the

Bayesian Information Criterion (BIC), which is known as model selection criterion

in statistics. BIC is a likelihood criterion which is adversely affected by the

complexity of the model. Less parameters in the model or better accuracy in the

estimation process of the model can compensate the disadvantage of complexity.

BIC is defined by

BIC(m) = log(L(X,m))− λ

2
·#(m) · log(N) (3.11)

where L(X,m) is a likelihood function for model m selected out of a model set M

where #(m) represents the number of Parameters used in the model M. X is a

series of feature vectors extracted from the input signal which are modeled by an

independent Gaussian process with mean µ and covariance matrix Σ belonging

to the selected model. The penalty weighting factor λ is supposed to be constant

1.

To detect a single change point in a time window, the log likelihood ratio of two

models is compared. The first model assumes that the data has a homogenous

distribution over time and can be modeled by one Gaussian distribution, while

the second model hypothesis that there is a change point. This would result in

two Gaussian distributions one modeling the first part of the time window up to

the change point and the second modeling the data from the change point up to

the end of the time window. The log likelihood ratio can be evaluated for every

time frame i of the window according to

R(i) = N · log(|Σ|)−N1 · log(|Σ1|)−N2 · log(|Σ2|). (3.12)

with Σ being the covariance matrix for the first model covering all frames of

the window. Σ1 and Σ2 are the covariance matrices for frames 1..i and frames

i + 1..N of the window. Both models can be compared according to BIC with

the equation

BIC(i) = R(i)− λ

2
·#(m) · log(N) (3.13)
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and #(m) again being the number of parameters in model M . A change point

will be detected at time

t = argmaxiBIC(i) (3.14)

if BIC(t) > 0 which means that the model with two Gaussian distributions is

favored according to its model complexity and accuracy. As long as both models

(one with a single Gaussian distribution and the second with two distributions)

are similar, BIC(i) will be increasing, otherwise decreasing.

Multiple change points may be detected by applying the single change point

algorithm successively until an inflection point is found and then restarting the

algorithm with an interval starting from the last detected inflection point.

3.4 Decoding

After a processing of the continuous audio input stream, the classifiers 3.2 can be

employed by a decoder. This section explains how to use a decoder with respect

to the application in a robot.

A decoder searches in a continuous audio input stream for the most likely sequence

of class name outputs. If the class models allow flexible duration alignments, as

given in the HMM case, at each time frame different hypothesis candidates can

be competing. Only those hypothesis candidates compete, which meet each other

in a lattice, depending on their duration modeling. The lattice is used to con-

struct paths, allowed by the syntax of a grammar according to the durational

constraints of the classes.

The most likely hypothesis at a time does not necessarily have to stay the winner

after future frames will have been processed. The question arises when to be sure

that the part of the hypothesis being processed so far will not change during the

future progress of decoding. For a kitchen robot this is important to know due

to providing fast and secure reactions. To answer this question it is necessary to

know when a candidate hypothesis can be declared as beaten and can be removed.

The answer can be given after considering the simpler case where two hypothesis

candidates meet in the same lattice node representing an allowed class transition

according to a not necessarily used grammar. Then their scores will be compared

and only a backpointer to the class having the better score will be stored. As
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soon as there is a timepoint when all still active hypothesis candidates meet in

only one lattice node the corresponding best hypothesis can be output earliest

with certainty according to [Spohrer82]. This output starts from the time point

in the past when the same event happened the last time or the data input started.

Freeing memory for beaten hypothesis candidates have not beed implemented

for the decoder of the JANUS Recognition Toolkit [JRTk] and can be done as

follows. As long as the predecessor of a node belonging to a beaten candidate

has only one successor namely the one who was just beaten it can be removed

and backpointers can be cleaned up to free memory. This removal process has to

be done iteratively backwards in time for this candidate to be removed until a

node of the dying candidate has another not dying successor which corresponds

to another still competing hypothesis candidate.



4 Experiments

First this chapter describes which criteria led to a selection of classes used in

this work. Then the explanation will be given how recordings and data labeling

were performed. Further parts of this experimental section are divided in the

evaluation of recordings where only one sound source was available at a time and

a second part where overlapping sounds were present in the recordings.

4.1 Class Selection

The humanoid robot has the task to support and assist humans in the kitchen.

An initial brain storming which sounds may occur in a kitchen environment even

under extreme conditions and a selection of those which can be relevant for an

interaction between humans and robots led to the categories shown on top of

tables 4.1, 4.2 and 4.3. After the categories were determined, all relevant sound

instances which belong to each category were tried to be found.

4.2 Data Collection and Labeling

Nearly all sounds selected by the categories found in the last chapter were recorded

in 5 kitchens using the Sony stereo microphone ECM-719 and a Sony High-

Minidisc Walkman MZ-NH700 (see figure 4.2). The small portable recorder al-

lowed uncompressed PCM recordings at 44.1 kHz with 16 bit per channel on a

1 Gigabyte Disc and lossless data transfer via USB. I collected roughly 6,000

sound events and segmented them manually. The segments were divided into

70% training and 30% test data by random. There is an overlapping of kitchens

used for training and testing because not every kitchen had the same devices. In

the 5th kitchen, data was recorded for three real world cooking tasks. Volunteers

were asked to make eggs and bacon with toast, pancakes or spaghetti bolognese.
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Figure 4.1: Illustration of recording configuration.

In 4 kitchens only one sound source per recording was tried to capture while elim-

inating other sounds like fridge noise or clock ticks. When a relevant sound was

found during the labeling process, which still had an overlapping with another

one, this segment was not used for training. It also happened quite often that a

sound produced by the recorder during data storage affected the recording. In

those cases the affected segments were left out, too, while plain versions of this

sound where also used to train the class that contains all non-relevant sounds.

This special class got the name others and covers for example fridge cracks, street

noise, birds, moving of oven sheets, opening and closing the dishwasher. Each

source was recorded multiple times from different locations to account for differ-

ent reverberation conditions as illustrated by figure 4.1. All recognition systems

performed on the first channel of the stereo microphone.

The recordings were labelled into 56 classes which were later semantically mapped

to 21 classes [table 4.4] using parallel connected HMMs as known from pronun-
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Table 4.1: Observation of dangerous situations.

activities danger sound

pan is taken off, put on or

moved on the stove, arbi-

trary cooking sounds on the

stove

forgotten to switch off

the hotplate

contact sound be-

tween hotplate and

pan

sizzling in the pan pan catches fire sizzling

boiling water in the pan no more water, water

boils over

boiling water, fizzling

to toast deadlock of the toaster

⇒ fire

click

switching on a gas stove too big blaze to light a match,

cigarette lighter,

lighter, noise of

burning gas

water leaks out (dish

washer, sink unit, washing

machine)

water damage running water, flowing

water

baking, cooking, boiling burned food, fire egg timer
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Table 4.2: Observation of human activities.

human activities reaction of robot sound

speech start speech recognition human speech

to enter or to leave the

kitchen

welcoming, saying good bye,

paying attention to the hu-

man wishes, paying atten-

tion to danger (leaving)

opening and closing

door, ringing tele-

phone, ringing cell

phone, ringing door

bell, footsteps on

different grounds

cutting vegetable,

bread, burning fingers

paying attention to injuries crying, screaming, ex-

clamations

let fall dishes sweeping broken dishes,

bring comfort to the human

breaking dishes,

breaking glass

Table 4.3: Observation of automated activity.

automated activity reaction of robot sound

starting, stopping

events

start appropriate ac-

tion (i.e. start intern timer,

handing toasted bread, turn

off oven, open microwave,

clear out dishwasher or

washing machine, readout

next line of recipe

click (toaster), beeps

like timer sounds,

ringing or shaking

tones like telephone

or cell phone, door

bell, beater, kitchen

appliances,
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Figure 4.2: High quality recording devices for uncompressed data storage

and lossless transfer to the computer

ciation variants in speech recognition. This mapping was necessary because the

56 classes were too detailed. Since in a semantic class the acoustics can vary,

during the training procedure still 56 acoustic classes needed processing. This

means that for each of the 56 classes a model was estimated. While for testing

the most likely acoustic class was 1 selected out of 56, the semantic hypothesis

output came up by mapping the acoustic classes to their corresponding semantic

classes, according to the entries in the dictionary. For example pronunciation

variants in the dictionary for the semantic class pan on stove were all combina-

tions of putting, moving and removing pans on and from a ceramic as well as a

metal stove.

4.3 Evaluation on Single Source Data with given Segment

Borders

4.3.1 Evaluation Criterions

The maximum likelihood (ML) criterion was used for evaluation, which is to take

the hypothese that gives the best score of all hypotheses. A miss means that

given a label reference the hypothesis did not coincide while hit means that the

hypothesis output agrees with the reference. According to the ML criterion, the

classification error per class

CE(class) =
number of misses for class

number of references for class
(4.1)
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Table 4.4: Collected Data.

class # training ex. # test ex. all ex.

(dur. in sec) (dur. in sec) (dur. in sec)

boiling 221 (662) 98 (319) 319 (981)

bread cutter 25 (40) 11 (27) 36 (67)

cutting vegetables 134 (89) 58 (41) 192 (130)

door 114 (101) 50 (44) 164 (144)

door bell 50 (110) 22 (55) 72 (164)

egg timer ring 11 (34) 6 (17) 17 (51)

footsteps 240 (140) 104 (66) 344 (206)

lighter 84 (42) 37 (20) 121 (61)

match 141 (131) 62 (59) 203 (189)

microwave beep 110 (30) 49 (17) 159 (47)

others 858 (1130) 369 (547) 1227 (1677)

oven switch 472 (133) 208 (60) 680 (194)

oven timer 12 (16) 6 (8) 18 (24)

overboiling 186 (129) 81 (70) 267 (199)

pan stove 584 (308) 256 (132) 840 (439)

pan sizzling 107 (343) 46 (146) 153 (489)

phones 134 (920) 63 (393) 197 (1313)

speech 125 (82) 55 (38) 180 (120)

stove error 18 (12) 8 (5) 26 (17)

toaster 119 (92) 53 (46) 172 (138)

water 421 (1129) 184 (464) 605 (1593)

total 4166 (5670) 1826 (2573) 5992 (8243)
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and the precision per class

PREC(class) =
number of correct hits for class

number of hypotheses for class
(4.2)

were evaluated to report an averaged classification error (ERR) and an averaged

precision value (PREC) over all classes. This makes all classes equal important,

since the number of samples differed between classes.

4.3.2 Significance Test

The experiments in this section were performed on data with given segment bor-

ders. When comparing error rates p1 and p2 of two systems for isolated sounds

of the same data set, p1 and p2 are not independent. This is because similar

algorithms may have errors in common. Therefore [Gillick89] offers a more direct

and elegant solution using the test of [McNemar47].

The test’s null hypothesis asserts that, given that only one of the two recogni-

tion systems makes an error, it is equally likely to be either one. This means

that the estimation of the conditional probability that the one recognition sys-

tem makes an error on an utterance, given that only one of the two recognizers

makes an error, should give the same estimate for the other system. The num-

ber of sound events n10, which are incorrectly classified by the first system and

correctly classified by the second system, follow a binomial distribution B(k, q)

with k = n10 + n01 being the sum of all errors made by only one system. With

q01 =Pr(System1 classifies an utterance correctly, System2 classifies the same

utterance incorrectly) and q10 vice versa, [Gillick89] defines q = q10/(q01+ q10).

For the null hypothesis q = 1/2, n10 has a B(k, 1/2) distribution. For a random

variable M drawn from B(k, 1/2), the probability

P =





2Pr(n10 ≤ M ≤ k) if n10>k/2

2Pr(0 ≤ M ≤ n10) if n10 < k/2

1.0 if n10=k/2

(4.3)

gives the ratio of occasions for which the observed difference arised by chance. If

P < α, where for example α = 0.05 is the significance level, a significant difference

is available and the null hypothesis has to be rejected. The probabilities were
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computed by

P =





2
∑k

m=n10




k

m




(
1
2

)k
if n10>k/2

2
∑n10

m=0




k

m




(
1
2

)k
if n10<k/2

(4.4)

4.3.3 GMM Results

The three feature sets proposed in chapter 3.1 were evaluated for Gaussian mix-

ture models. The results and parameters are shown in table 4.5 and discussed

in the following subsections in the same order. The experiment was evaluated

according to the mentioned criteria. The 4th column of table 4.5 gives the total

number of Gaussians averaged over all classes. The number of Gaussians per

class was determined according to the BIC criterion as explained earlier. The

5th column also gives the number of coefficients each feature frame had.

Table 4.5: Results and parameters for Gaussian mixture models.

System-ID ERR PREC averaged dim

#Gaussians (BIC)

BASE 17.3% 80.6% 2.5 39

ICA1 13.2% 79.7% 9.0 13

ICA3 11.8% 80.7% 10.0 13

ICA5 11.2% 80.2% 10.0 13

ICA7 10.8% 83.4% 15.1 13

ICA9 11.8% 82.3% 9.7 13

Baseline system

The standard preprocessing BASE (3.1.1) was applied which led to 39 coefficients

of which 13 were MFCCs and 26 covered temporal derivatives of first and second

order. Classification was done with Gaussian mixture models using the viterbi
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algorithm. The error ERR on the test set was about 17% while the averaged

precision PREC was about 81% as shown in table 4.5.

Standard ICA features

Contextless ICA features were calculated on 20 log melscale coefficients after

centering and whitening the data. Centering, whitening and projection could

be summarized in one matrix transformation. The error ERR decreased by 4%

compared to the baseline while the precision measure PREC is about the same

as in the baseline system. Note that the ICA system only uses 13 dimensional

features instead of the baseline with 39 dimensions. This difference shows that

independent components are able to cover relevant information on environmental

sound data quite well. Nevertheless, some classes were found to have worse

results. Very silent sounds like taking a pan off the stove or silence itself were

detected seldom while many classes with pitch could be identified nearly without

error.

ICA on temporal stacked features

Before applying ICA and classifying as in the standard ICA approach additionally

temporal stacking was applied as explained in chapter 3.1.3.

As table 4.5 shows, the performance of all stacked variants was found to be

better than the baseline system and the ICA system without stacking. The

classification error ERR decreases with increasing number of stacked frames up

to a minimum at 7 frames while 9 frames has a slightly worse performance. This

general decrease obviously is due to temporal ICA’s nature to extract relevant

information from both time and frequency domain. Since keeping the number

of coefficients for the classifier constant while increasing the context size, ICA’s

performance has to decrease at some point, because with the same number of

parameters more information needs to be coded. This overdrawing might also

lead to only rarely shared basis vectors between sound classes which does not

have to be bad in view of the deconvolution of sound event characteristics, but

the effect of overfitting not necessarily neighbored subcharacteristics overweighs.

Accordingly the same happens analog to the averaged precision PREC with a
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small drop for the ICA5 system. The trend of performing better when having

more context is due to receiving stronger characteristics when more temporal

context information is available. Further note that the additional information

that the frames are stacked according to their time order can be obtained during

dimensionality reduction. 7 neighbored frames correspond to a time window

width of 80ms since 20ms frames are half overlapping.

Discussion

The superiority of ICA compared to the baseline seems to be obvious in terms

of ERR and PREC. But when having a look on the number of Gaussian param-

eters it is observable that with increasing recognition performance the number

of Gaussians raised also. This observation holds for the improvement for contex-

tual systems, too. Therefore, another experiment needs to analyze this effect by

keeping the number of Gaussians constant. This experiment will be discussed in

section ??. McNemar’s significance test further confirms that there is a difference

between the 7 frames stacked ICA system and the baseline features as well as

between ICA7 and the unstacked ICA1 for GMM classifiers (see table 4.6). The

improvement from the baseline features to the ICA system using no context could

not be shown to be significant. While the dimension of the ICA basis was 13x13

for all ICA systems no matter if unstacked or stacked, the unmixing matrices

which contain both the whitening transformation and the ICA basis grew to the

number of coefficients each system had after stacking per frame. Stacked features

were received by sliding windows of sizes 3, 5, 7 and 9 frames. The dimensionality

after stacking of the melscale coefficients grew to 60, 100, 140 and 180. This new

dimensionality was again reduced by retaining a subset of eigenvectors, which

were given by SVD. This subset was chosen by sorting the eigenvectors according

to the size of their eigenvalues and keeping the most informative ones (at least

95% proportional information according to the measure shown in equation 3.1),

resulting in 13 dimensions for all context sizes. So, the resulting unmixing ma-

trix sizes were 13x20, 13x60, 13x100, 13x140 and 13x180 for systems with window

frame sizes 1, 3, 5, 7 and 9. The computational efficiency during evaluating SVD

on the covariance matrix increases a lot with a growing number of stacked frames

but this is an offline process only done once for all classes together. Although
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there are more trained parameters in the stacking systems than in a conventional

feature extraction process like the standard preprocessing, some parameters can

be economized during classifier training.

Table 4.6: McNemar’s significance test for GMMs with α-fractile = 0.05.

”1” means significant difference, ”0” means no significant difference.
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GMM BASE 0 1

GMM ICA1 1

4.3.4 HMM Results

Gaussian mixture models can be regarded as a special case of HMMs, i.e. those

with only one state. By allowing to have more than one state, the temporal

distribution of different characteristics of some sound classes were expected to be

modeled more efficiently. To find out if the subcharacteristics of environmental

kitchen sounds can be modeled better with forward or ergodic connected topolo-

gies, all feature and classifier combinations with 2, 3 and 4 state HMMs were

evaluated. For both types of topologies the error ERR will be reported first,

followed by the precision measure PREC. Finally each subsection relates the re-

sults to the number of Gaussian parameters. In the following tables BASE again

represents the baseline feature set and ICAn represents the ICA systems applied

on contextual windows of size n.

Ergodic HMMs

When comparing the error ERR between the baseline and the nonstacked and

stacked ICA systems, which are shown in table 4.7, ICA systems show better

recognition results than the baseline throughout all systems regardless to the
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number of states. For all number of ergodic HMM states used this superiority is

significant at least for the baseline features and ICA7 (see tables 4.10, 4.11 and

4.12). Now observe that with increasing number of context up to 7 frames there is

a trend to have less errors with only two exceptions being ERG ICA3 for 3 states

and ERG ICA1 for 4 states. 9 frames contextual window show less performance.

This is highly probable due to saturation of the ICA basis as already explained

for the GMM systems. When looking for the best system for a given number of

states, ERG ICA7 is the best one for ergodic models. The winning system for

this type of topology is a 3 state system of ICA features for 7 frame windows.

By the look of the precision measure PREC for ergodic HMMs shown by table 4.8,

the best systems are ICA systems with context, when comparing same number of

states according to PREC. These contextual ICA systems all had better precision

values than the baseline and ICA without context. A trend to improve precision

is observable at least up to 7 frame windows for 2 and 4 state systems. The 3

state nonstacked ICA system shows less precision performance than the baseline.

Even when looking on the PREC values for increasing context, ERG ICA3 and

ERG ICA5 have less precision than the nonstacked ERG ICA1, while the pre-

cision for ERG ICA7 jumps up and clearly outperforms the baseline. To relate

the error rates and precisions to the number of Gaussians shown in table 4.17,

first note that the baseline has three times more coefficients for feature vector

than ICA systems. The table reports averaged number of Gaussians per system

estimated by BIC. When comparing the number of Gaussians be aware that to

know the number of Gaussian parameters for the baseline you need to multiply

the values by 78 since the feature dimensionality is 39 leading to 39 means and

39 variance coefficients in the diagonal covariance matrix. For the same reason

the number of Gaussian parameters for ICA systems can be evaluated when mul-

tiplying the values by 26. To compare Gaussian parameters instead of number of

Gaussians the first column needs to be multiplied by 3. For ergodic systems the

table mainly shows that with increasing number of states the number of Gaus-

sians increases for the baseline and all ICA feature sets. When an ICA system

makes use of stacking in most cases it needs more Gaussians than the nonstacked

variants. This observation qualifies the improvement of ERR and PREC through

to increasing stacking sizes. For this reason the fixed Gaussian experiment shown
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in a later section needs to clarify whether this recognition trend is invariant to

the number of Gaussians. The baseline features could be compared with the

ICA7 features in the case where both system topologies have 3 ergodic connected

states. The number of Gaussians is roughly about the same with respect to the

feature dimensions. The corresponding error rates had a significant improvement

(see table 4.11) in favor of 3 state ergodic ICA7.

Forward HMMs

When relating ERR for forward connected HMMs between the baseline features

and ICA feature sets (table 4.7), ICA systems show much better error rates, as

already present for ergodic HMMs. Those improvements from baseline features

to ICA1 and ICA7 features, as well as the improvement from contextless ICA1

to ICA7 features are significant (tables 4.10, 4.11 and 4.12). When looking at

systems with same number of states, more stacking brought improvement for 2

states up to a stacking size of 5 frames, for 3 states up to 7 frames and for 4

states up to 9 frames except FWD ICA3 with 4 states. It seems that the error

ERR improves, when the context size and the number of states are increasing

simultaneously. This means, that the more overlapping each neighbored frame

pair has, the stronger the temporal and causal dependencies can be covered,

when the number of Gaussians is uncompressed over time. Up to a stacking

size of 7 frames, 3 state forward HMMs performed better than corresponding

2 and 4 state systems. The best forward system was FWD ICA7 for 3 states.

Like in ergodic systems PREC (table 4.8) shows that ICA on context windows

have best precision, when comparing systems with the same number of states.

These best context systems again were better than ICA without context. For

2, 3 and 4 states PREC decreased with increasing context. Sole exception was

outlier FWD ICA3 with 3 states, only performing slightly better than the context

successor FWD ICA5. All ICA systems with and without context had better

PREC results than the baseline. When checking the corresponding number of

Gaussians in table 4.17 again, it is observable that most stacked ICA systems

need more Gaussians according to BIC. For the baseline and all ICA features the

number of Gaussians increased with increasing number of states, while nonstacked

FWD ICA1 did not have this trend for 3 and 4 states. 3 state forward models
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had similar number of Gaussians for different context sizes while the performance

increased with stacking measured with ERR.

Comparison of Forward and Ergodic HMM Results

As in the two sections before, the error rates ERR will be compared before re-

lating precisions between ergodic and forward topologies. Finally the parameter

differences are reviewed. In general, ergodic HMMs achieved better error rates

than forward HMMs when comparing same feature classifier combinations. The

systems for which this is not the case have underlined values. There is a maxi-

mal ERR difference of 0.7% between the two types of topologies for the systems

with underlined values. For the other systems ergodic models are performing

better. These observations show that ergodic models are a good choice for the

environmental kitchen class set. Ergodic state transitions allow different tem-

poral frame orders inbetween sounds while short time context is captured by

stacking. For example, the doorhandle in the class door should be trained and

recognized with assignment to same states by appropriate kmeans initialization.

Therefore, opening and closing a door can be handled by the same class since

the temporal order is not such important when only interested in an event door.

The same argumentation holds for detecting speech. Ergodic models performed

better for speech since the phoneme order is not relevant for detection of speech.

An ergodic model can cover arbitrary phoneme orders while a forward model can

not. However, the superiority of forward models to ergodic models could not be

shown to be significant (refer to tables 4.10, 4.11 and 4.12) for ICA1 and ICA7

systems in general when applying the same type of topology for all classes at once.

Baseline features on the other hand had significant better results for all ergodic

models when comparing to forward models. Pushing down a toaster, switching

on a lighter and ring tones were among the classes which could be modeled best

with forward models. Ergodic models performed better for the already mentioned

classes speech and doors. The class others, which is a garbage model, performed

very well for ergodic models as well. Best system in terms of ERR was ergodic

ICA7 with 3 states at 9.4% error while the corresponding forward topology led to

10.5%. Both topologies agree in terms of ERR that the baseline was beaten by

ICA systems and that stacking improves performance. Note that these results are
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averaged values shown a general tendency of topology favors. The best topology

should still be selected per class.

For all recognition systems confusion matrices were produced to identify which

classes where mainly confused by this example based approach. The visualization

of the confusion matrix for the best system is shown in figure 4.3 where the num-

ber of Gaussians was estimated by BIC. Most confused classes among all systems

were speech and water, and subclasses like put pan on stove and move pan on

stove, while the main activations are on the diagonal, which shows reasonable

recognition performance.

Figure 4.3: Confusion matrix visualization for ergodic 3 state HMMs with

ICA7 features.

Precision results (table 4.8) are only better for one third of forward topologies

compared to the ergodic ones, which is shown by underlined values. In contrast to

the ERR comparison both topologies have similar precision results. Nevertheless,

best precision values were given for 3 states by the ergodic HMMs when using

ICA7 features. The same results were gained by the best forward connected

system ICA7 with 2 states. The total best precision system for both topologies is

ergodic ICA9 for 4 states, which has nearly the same result as the just mentioned
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best ERR system ergodic ICA7 with 3 HMM states. The number of Gaussians

for both topologies are about the same. In 3 of 4 cases forward models had better

ERR rates, but those needed more Gaussians. The nonstacked ICA systems with

3 states differed most, even if this difference is only 2.7 Gaussians on average.

Table 4.7: Error ERR for ergodic and forward HMMs.

System-ID 2 states 3 states 4 states

ERG BASE 20.2% 14.4% 16.1%

ERG ICA1 12.2% 11.5% 11.5%

ERG ICA3 11.9% 10.8% 11.7%

ERG ICA5 11.8% 11.5% 11.1%

ERG ICA7 10.7% 9.4% 10.5%

ERG ICA9 11.8% 10.4% 11.3%

FWD BASE 23.3% 20.6% 19.4%

FWD ICA1 13.1% 12.3% 13.9%

FWD ICA3 12.1% 11.0% 11.7%

FWD ICA5 11.1% 11.0% 12.3%

FWD ICA7 11.5% 10.5% 11.4%

FWD ICA9 11.2% 11.5% 11.1%

4.3.5 Comparison of GMM and HMM results

In terms of ERR and PREC the 2 state ergodic ICA systems without stacking

and with stacking over 7 frames (tables 4.7, 4.8) performed better than their

corresponding 1 state systems (table 4.5). These differences could not be shown

to be significant (tables 4.14 and 4.15. For all 2, 3 and 4 state ergodic systems

the GMMs were beaten in terms of PREC except for 2 state ergodic models with

baseline features. Results for ergodic 3 and 4 state topologies compared to GMMs

when using ICA1 (table 4.14) and ICA7 (table 4.15) features are significant.

Also note that the evaluation criteria are average values and different classes
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Table 4.8: Precisions PREC for ergodic and forward HMMs.

System-ID 2 states 3 states 4 states

ERG BASE 79.3% 83.5% 82.2%

ERG ICA1 81.2% 82.5% 82.2%

ERG ICA3 81.8% 82.1% 82.6%

ERG ICA5 83.1% 81.7% 84.4%

ERG ICA7 84.0% 85.5% 84.8%

ERG ICA9 83.5% 84.7% 85.7%

FWD BASE 77.3% 75.7% 81.7%

FWD ICA1 81.3% 81.9% 81.7%

FWD ICA3 81.5% 84.0% 82.2%

FWD ICA5 83.3% 83.7% 83.7%

FWD ICA7 85.5% 83.7% 84.6%

FWD ICA9 84.2% 83.9% 85.0%

Table 4.9: Class averaged number of Gaussians per system estimated ac-

cording to BIC.

Topology (# states) BASE ICA1 ICA3 ICA5 ICA7 ICA9

GMM 2.5 9.0 10.0 10.0 15.1 9.7

ERG(2) 3.0 12.0 11.4 14.2 15.0 13.6

ERG(3) 4.5 12.9 14.1 16.5 15.0 15.6

ERG(4) 5.2 14.4 16.0 17.2 18.0 18.0

FWD(2) 3.1 11.3 12.1 14.2 13.9 14.1

FWD(3) 4.3 15.6 14.3 16.7 16.5 16.7

FWD(4) 5.0 14.6 15.9 18.1 17.3 17.2

probably need different topologies. Generally GMMs have less parameters than

all forward and ergodic HMM systems when using same feature sets. The number
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Table 4.10: McNemar’s significance test for 2-state HMMs with α-fractile

= 0.05. ”1” means significant difference, ”0” means no significant differ-

ence.
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Table 4.11: McNemar’s significance test for 3-state HMMs with α-fractile

= 0.05. ”1” means significant difference, ”0” means no significant differ-

ence.
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of Gaussians for ICA7 features is comparable between GMMs and 3 state ergodic

HMMs. Therefore, the ergodic system is preferable since the best error rates from

both classifiers are in favor of ergodic HMMs.
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Table 4.12: McNemar’s significance test for 4-state HMMs with α-fractile

= 0.05. ”1” means significant difference, ”0” means no significant differ-

ence.
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3 state forward models on ICA7 also have significant better error rates than the

GMM classifier (see table 4.15), but also the number of Gaussians is higher.

4.3.6 Fixed Gaussian Experiment

In earlier experiments increasing performance due to stacking was observable.

As this was accomplished with increasing number of parameters, it was not clear

which free variable caused the recognition improvement. This is why another

experiment was performed in which the total number of Gaussians was fixed

per system. Furthermore, the total number of Gaussians had to be distributed

equally to all states in one topology. This means that the ergodic 3 state system

had 5 Gaussians per state, while the corresponding GMM consisting of one state

had 15 Gaussians. The ERR results shown by table 4.17 and the precisions by

table 4.18. For this experiment following observations can be made: stacked

ICA input leads to significant better recognition results in terms of ERR and

PREC than the ICA system without context (see table 4.16). Further note that

the baseline features performed even worse than the ICA1 system, which is a

significant difference, at least for the ergodic topology (table 4.16). This means
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Table 4.13: McNemar’s significance test for baseline features with α-

fractile = 0.05. ”1” means significant difference, ”0” means no significant

difference.
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Table 4.14: McNemar’s significance test for ICA1 features with α-fractile

= 0.05. ”1” means significant difference, ”0” means no significant differ-

ence.

E
R

G
2

IC
A

1

E
R

G
3

IC
A

1

E
R

G
4

IC
A

1

F
W

D
2

IC
A

1

F
W

D
3

IC
A

1

F
W

D
4

IC
A

1

GMM ICA1 0 1 1 0 1 1

ERG2 ICA1 1 1 0 1 1

ERG3 ICA1 0 1 0 0

ERG4 ICA1 1 0 0

FWD2 ICA1 0 1

FWD3 ICA1 0



4.3 Evaluation on Single Source Data with given Segment Borders 45

Table 4.15: McNemar’s significance test for ICA7 features with α-fractile

= 0.05. ”1” means significant difference, ”0” means no significant differ-

ence.
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that ICA is still superior to MFCCs plus contextual derivatives when eliminating

Gaussian parameter freedom and using ergodic 3 state HMMs.

When looking on the classifiers there is nearly no difference between GMMs and

the ergodic 3 state classifier for the unstacked ICA1 feature set. When comparing

those classifiers for ICA7 features there is also a not significant difference in

support of GMMs (table 4.16). While a significant difference between GMM

and HMM classifiers could not be revealed when all classes used the same type

of topology for ICA features, the comparison of classifiers for baseline features

showed significance in favour of ergodic 3 state HMMs. Individual topology

selection per class including GMMs, too, should even perform better.
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Table 4.16: McNemar’s significance test for systems with fixed number

of gaussians and α-fractile = 0.05. ”1” means significant difference, ”0”

means no significant difference.
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Table 4.17: Error ERR while using the same total number of Gaussians.

System-ID GMM ERG-3

BASE 12.4% 12.2%

ICA1 10.6% 10.9%

ICA7 9.2% 10.2%

4.4 Evaluation on Continuous Multiple Source Data

4.4.1 Evaluation Criteria for multi event recognition

To compare the hypothesis output of different recognition systems and to evaluate

multiple source recordings an evaluation criterion needs to be selected. In the

single source data case precision could measure how safe an output is while the

measure recall shows which proportion of available sounds could be detected.

These two criteria should not be used for multisource data when an overlapping

of sounds is present. For the given setup the hypothesis cannot output more than

one hypothesis at a time. This is why a recall measure cannot reach 100% as soon
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Table 4.18: Precisions PREC for stacked and unstacked GMMs and er-

godic HMMs while using 15 Gaussians at total.

System-ID GMM ERG-3

BASE 80.6% 82.8%

ICA1 82.8% 82.2%

ICA7 85.0% 83.4%

as two sounds occur at the same time even if one of them was detected. Further

the recall performance would decrease the longer time parts have more than one

source. A precision measure is not defined for a single hypothesis output in

the multi reference case, since it assumes that references are mutually exclusive.

Rather a modification of both measures is necessary to account for overlapping

sounds while having one hypothesis stream at a time. An intuitive modification

of precision is to score those parts of the hypothesis as correct, if they are present

in any of the class reference tracks. This is shown by an example in figure 4.5,

where the first parts of both hypotheses A and B were declared as CORRECT,

although reference B was present during the first part of hypothesis A, too. For a

sequence of hypothesis hi and references rf (i) for the same time interval selected

by a general mapping function f(x) a classification accuracy measure

CA1 :=

∑
i duration( hi | hi = rf(hi) )∑

j duration(hj)
(4.5)

can be defined. This measure accounts for the reliability that a hypothesis output

agrees with a reference since all parts of the hypothesis which are not present in

the references are declared as false alarms. In an illustration of CA1 in figure 4.5

the last part of hypothesis B was declared as FALSE for this reason, even it was

not present in any reference. Note that CA1 is in the range from 0 to 1, where

1 means that all parts of the hypotheses did coincide with one of all references

for same time slots. This measure does not tell which ratio of present sounds

were detected. But this is rather important for the recognition of dangerous

situations through sound cues by a humanoid robot. The corresponding measure

for single source data is recall and measures only those hypothesis parts, for

which references are available at same time slots. For multiple source data it can
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happen that while examining one reference class the corresponding hypothesis

was present in another reference class for the same time window. This should not

affect the evaluation of the focused reference class if the hypothesized output was

in deed available in the acoustics. This is why during evaluation the modificated

recall measure should leave these reference parts out, which have hypothesis,

coinciding with other class reference tracks. The reference parts of a selected

class, which are neither detected by the hypothesis, nor the found hypothesis is

not available in another reference track, will be scored as not detected. In the

example, shown by figure 4.4, only the part b2 of a reference class B was not

detected (FALSE classification), because for the time window b1 the hypothesis

does not agree with the reference B, to be sure, but since during b1 the hypothesis

agrees with another reference track A, it will not be taken into account for this

measure. In the example, the last part of hypothesis B was also not taken into

account because recall similar measures rather set out from the reference than

from the hypothesis. With reference sequences ri,c for the class c and a function

d giving the duration this leads to a time based capturing measure defined by

CAP (class) :=





CAPenumerator(class)
CAPdenominator(class)

if CAPdenominator(class) > 0

0 otherwise
(4.6)

with

CAPenumerator(class) :=
∑

i

d( hi | hi = rf(hi),class ) (4.7)

and

CAPdenominator(class) :=
∑

j

[ d(rj,class) − RULEOUT (j, class)] (4.8)

where

RULEOUT (j, class) := d( 4rj,class | ∀c 6= class : hf(4rj,class) 6= rf(4rj,class),c )

(4.9)

is the part of the references ruled out. 4rj,c is any possible subset of the jth

reference time slot in class c. A time based measure over all classes is

CAPTURE :=





∑#(classes)

k=1
CAPenumerator(k)∑#(classes)

l=1
CAPdenominator(l)

if
∑#(classes)

l=1 CAPdenominator(l) > 0

0 otherwise

(4.10)
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Figure 4.4: Recall equivalent: CAPTURE measures which part of the

references could be covered by the hypothesis. The visualization of CAP(B)

is shown.

The range of CAP(c) and CAPTURE is between 0 and 1, where 1 means that

all allowed reference parts were found to be CORRECT for a class c when using

CAP, and for all classes when using CAPTURE. A third measure combining the

properties of CA1 and CAPTURE is the F1 equivalent

FOV ERLAP :=
2 ∗ CAPTURE ∗ CA1

CAPTURE + CA1
(4.11)
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Figure 4.5: Precision equivalent: CA1 measures which part of the hypoth-

esis gave a correct assertion.

4.4.2 Results and Discussion for Continuous Multi Source Data

Experiments for continuous multi source data was performed on the baseline fea-

ture set and on several ICA systems using GMM and 3 state ergodic classifiers.

As result from previous experiments, fixed number of Gaussians were used due

to comparison issues. Tables 4.20 and 4.19 report the results for a multi source

adapted precision and recall measure. Values in table 4.21 account for hypothesis

output reliability as well as for the proportion of detected sounds.

The first two mentioned tables show that recognition results are much worse than

for single source data. This has several reasons. First to mention is that this eval-

uation is measured timebased, making classes more important the longer their

occurrence is. During the process of labeling it was found that relevant classes

had very sparse occurrences except the garbage class others. This explains in part

that multiple source data results are worse than single source ones in terms of the

false alarm measuring CA1 criterion. Note that in the recognition systems there

was not used any prior knowledge and no grammars which could have accounted
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for this problem. The criterion CAPTURE, which is recall similar, performs also

bad because of a far too small training data base. Especially, the class others

needs a lot more training amount and training variation as long as no confi-

dence measure is used to create multi class hypothesis output tracks. Untrained

devices, like for example a noisy exhaust duct, and background noise degraded

performance, too. The background noise also included speech of 4 speakers in a

neighbored room which was only added as reference when the acoustics surely let

identify it.

Furthermore, acoustic property labels are more desirable than semantic ones since

a semantic hypothesis statement is only useful, if all sound event classes cannot

be mixed up pairwise only due to their acoustic properties. Otherwise the rec-

ognizer might detect a part of an acoustic event which in deed can occur in time

parts of another sound and therefore the wrong semantic output is hypothesized.

Semantic labels are also problematic when not all acoustic possible instances were

trained. For instance the acoustics of footsteps in a kitchen environment highly

depends on the ground material as well as the shoe types. In the experiments all

probands had different shoes and different behaviour in moving which resulted in

recognition differences for the sound event class footsteps depending on the cook.

The next observation is that ergodic 3 state models perform slightly better than

GMMs in terms of CA1 and FOVERLAP for the baseline and stacked ICA fea-

tures. This means that at least the reliability of hypothesis outputs can be

improved by ergodic 3 state models.

The baseline features led to better results than ICA features for overlapping multi

source data. One possible reason for this is that the chosen ICA architecture prob-

ably has problems to detect a sound event when more than one is present at a

time. This sensitivity might be due to the ICA architectures property to look for

global subcharacteristics rather than local ones.

Further, it’s hard to compare the model based implicit segmentation with hand-

made labels for a one stream hypothesis output. This is because when more

than one sound is present at a time, the hypothesis can change at uncontrollable

time points between the present sound classes. This means that some segment

borders coincided with the labels, while many other segment borders appeared
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at locations inbetween the label borders of overlapped sounds.

Table 4.19: CAPTURE measure for multi source data

System-ID GMM ERG-3

BASE 22.7% 21.0%

ICA7 10.4% 12.3%

Table 4.20: CA1 measure for multi source data.

System-ID GMM ERG-3

BASE 20.9% 24.4%

ICA7 12.1% 14.7%

Table 4.21: FOVERLAP measure for multi source data.

System-ID GMM ERG-3

BASE 20.9% 24.4%

ICA7 12.1% 14.7%



5 Conclusion

5.1 Summary

Motivated by the ultimate goal of providing an audio sense for a humanoid robot,

which is intended to perform tasks in a kitchen environment, different sound

recognition architectures were investigated. The pre-processing, which focused

on ICA because of its ability to represent shared audio subcharacteristics, was

combined with GMMs, forward and ergodic HMM topologies of first order. The

sound event recognition systems tested used only mono microphone input and no

other prior knowledge. Initially it was explained theoretically how the decoder

of a run-on system can determine the earliest time when the system is able to

output its best hypothesis without a later change. It was found that this can be

employed by an approach that outputs parts of concurrent competing hypotheses.

In the experimental part, first several experiments were performed on real world

recordings segmented manually. Concerning the recordings which capture one

source at a time, the usage of ICA was justified for the task of identifying real

world environmental sounds. For this purpose three pre-processing main branches

were explored. The results for this kind of data with GMM / ergodic 3 state HMM

classifier were that MFCCs including temporal derivatives were outperformed by

contextless ICA features with 23.7% / 20.1% relative error reduction and when

adding context by 37.6% / 34.7% while ICA features had only one third of the

dimensionality the MFCC baseline features had.

Even with a fixed number of Gaussians, which were equally distributed over

states, this benefit was perceptible in all tested cases. The relative error reduc-

tions for GMMs / ergodic 3 state HMMs from the baseline to nonstacked ICA

was 14.5% / 10.7%. Furthermore, ICA features on widely overlapping temporal

contextual windows were found to improve accuracy compared to the baseline fea-

tures by a relatively error reduction of 11.7% and 16.4% when GMM and ergodic
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3 state HMMs were applied. The optimal window size for this feature dimen-

sionality was determined empirically by keeping the dimensionality constant and

increasing the window’s temporal expansion until accuracy decreased and coding

optimality was exhausted. When each class got an individual estimate for the

number of Gaussians according to the model selection criterion BIC, the three

state ergodic HMMs performed best with ICA features in a context of seven

frames. The fixed Gaussian experiment revealed that GMMs modeled stacked

ICA features slightly better than ergodic HMMs with the distribution conditions

already mentioned. This difference is not significant, while same types of topolo-

gies were applied for all classes per system. A significant improvement due to

topology selection was found for the baseline system in favour for the ergodic

models.

Then, the fixed Gaussian systems of the one source per segment experiments

were tested on continuous data with multiple overlapping sources recorded during

real world cooking tasks, again without adding background knowledge. There-

fore, timebased multi source evaluation measures were derived. The results show

that the combinations of pre-processing and classification stages, which perform

reasonable well on single source data, have heavy problems when dealing with

overlapping sounds including noise, like an exhaust duct and background speech.

Even the baseline features performed better than ICA features, which might

reveal that the search for shared global properties in all classes by ICA is not

optimal for that kind of task. Ergodic 3-state models improved recognition perfor-

mance a bit. This means that individual topology selection affects the recognition

performance.

This second batch of experiments, performed on multiple sources, further showed

that the system had to deal with many classes which were not of interest. During

the process of labeling, it was found that class segments of the real world cooking

tasks, which were relevant to the three categories used for class selection, had

few occurrences throughout the recordings as a whole. This and the observa-

tion of performance degradation from single to multi source data indicate that

the training data base is far too small. For a robust recognition of the selected

environmental kitchen sounds much more data needs to be collected. Note also

that semantic labels were used which was found to adversely affect classes with
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similar acoustic parts. Furthermore, it appeared that for one track hypothesis

outputs on multi source data the comparison of model based segmentation bor-

ders and manually labelled borders is not useful, because when more than one

sound is present at a time, the hypothesis can change at uncontrollable time

points between the present sound classes.

5.2 Future Directions

First the author would like to suggest to combine the recognition system with a

discriminative approach, because many false alarms occurred in the multi source

case while the relevant classes had only few occurrences. When discriminating the

classes especially from the garbage class with approaches like LDA and SVM, the

general disadvantage of example-based systems needing huge training databases

can be alleviated. Individual and automatic class based topology selection is

of interest because experiments showed that recognition results depend on the

topology since different sounds need different temporal rhythmic alignments.

The categorization of sounds that are either unknown or have not been trained

enough makes a hierarchical clustering in combination with different feature sets

representing perceptual characteristics necessary. For loudness (depending on the

distance between microphone and source) and duration modeling fuzzy set ap-

proaches are conceivable. Providing both semantic and acoustic properties in the

labels is expensive but would not deliver outputs where for example the sound of

a bread cutting machine and an electric egg beater were mixed up. In particular

the creation of a dictionary for acoustic units, which can be mapped to seman-

tic entities as pronunciation variants in speech recognition, should be performed.

Such an acoustic dictionary with even smaller acoustic units would already affect

the training procedure, when performed on acoustic labels rather than semantic

ones. By providing an interface from such a dictionary to a database of physical

material properties for use in synthetic audio simulation, sound characteristics

could be examined. The simulation can be done by means of finite element meth-

ods where geometric shapes, materials and collision forces can be exchanged for

rigid as well as nonrigid bodies. By saving objects eigenmodes in physical sim-

ulations per shape the materials responsible for the origin of sound should be
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identifiable. Getting many real world recordings of dangerous situations like ex-

plosions is difficult but they can be predicted by means of simulation.

Using prior knowledge as well as source separation promise the highest increase

in recognition performance. The expenditure for getting robust n-gram priors is

high, since a lot of recordings and labeling of real world cooking tasks would be

necessary. The author suggests to define grammars by using knowledge on obvi-

ous human behavior. Combining sound localizers which indicate the distance and

direction of sources with knowledge of the position of acoustic sources would help

minimize false alarms. Further, the recognition setup should include a recognition

track for each class performing on well separated and segmented source streams.

A suggestion for source separation is to combine a multi microphone approach

with blind source separation using ISA [Casey00].

Last, but not least, the examination of ICA evaluating independent components

per class to receive more local sound properties needs to be proposed. This means

getting better intra-class properties than inter-class properties. The resulting sys-

tem could be tested using ICA itself as classifier. By formulating a confidence

measure such ICA classifiers could also output one activation stream per class as

simultaneous hypotheses.



A Instructions for cooks

Thank you for helping with our data-collection!

We plan to build a robot which is able to help in a kitchen, therefore the robot

has to learn what happens in a kitchen during cooking. We are working on the

ear of the robot so that he can hear and recognize certain sounds in a kitchen

that occur during cooking.

During this task, you are asked to cook a meal in a kitchen. Please act nat-

urally, but also cooperatively. For this reason we have some instructions for you.

You will be recorded during your task with audio and video devices.

• Act naturally as if you were in the kitchen of a friend but also cooperatively

• You have to find what you need and tidy things up

• No music or TV during cooking

Before cooking you will get an introduction into the kitchen. You will get a

cooking task with some minor instructions.



Task 1:

Cook 3-4 eggs (sunny side up or easy and over) with bacon and make toast.

• Eggs and bacon are in the fridge

• Toast is stored beside the microwave

Task 2:

Cook spaghetti with bolognese sauce

• spaghetti is in the cabinet

• ground meet is in the fridge

Task 3:

Make some pancakes

• Eggs and milk are in the fridge

• flour is available as well

HAVE FUN :)



B Data storage

All scripts, experiments and collected data including labels will be stored

on the intern network of the Interactive Systems Labs, Karlsruhe, at the

end of this diploma thesis.

B.1 Directory Structure

Directories beginning with the letter ”e” represent systems using ergodic

HMMs, while directories beginning with the letter ”l” contain systems with

forward connected HMMs. GMM systems begin with ”C”. Systems for the

fixed Gaussian experiments end with the letters ”cg”. The first numbers in

directory names for HMM systems tells the stacking size, while the second

number gives how many states were used. When baseline features were

used, the first number was replaced by a ”f”. Each recognition system

consists of the following subdirectories:

– basis stores the basis, mixing filters and unmixing filters

– db contains the training and test database description

– desc contains all description files for features, codebooks, topologies

etc.

– kmeans stores kmeans information per class as well as the ”$feature-

init-gaussians” and ”$feature-init-gaussiansPerState” files, which give

the number of Gaussians estimated by BIC

– labels stores labels produced during training

– means stores the means matrix used as preprocessing for ICA

– param stores the codebook and distribution parameters
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– results contains the hypothesis results

– samples contains accumulated samples per class and per state

B.2 Scripts

Script files which are not censored due to the JANUS license agreement are

listed.

– averageNumberGaussians.tcl extracts the number of Gaussians used

by a system

– calcSilThresh.tcl energy based silence segmenting algorithm (not used

for the experiments)

– countshortsegment.tcl outputs the number of segments in the database

which are shorter than a variable

– createMinLengthConstraintDict.tcl adds minimum length constraints

to a dictionary file

– createOthers.tcl writes a label track ”others” for time intervals not

used by any of the track per class labels

– createTopoTree.tcl creates a topology tree description file for a given

class set

– duration.tcl extracts the available recording amount per class in the

database

– eval.tcl evaluates single source recognition system outputs including

confusion matrices and class merging functionality

– evalotime.tcl evaluates multi source overlapping recognition system

outputs using the measure CAPTURE

– evalonline.tcl evaluates multi source overlapping recognition system

outputs using the measure CA1

– getMinDurationPerClass.tcl outputs the shortest segment lengths per

class
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– merge.tcl merges classes according to a merging lists

– runFile.tcl tests a system and outputs hypotheses from the decoder

– saveResultMergedPerSeg.tcl reads a results per segment file and writes

the corresponding results per segment file for merged classes (only used

for the significance test explicitly, because eval.tcl can merge classes

itself

– saveSilPerKitchen.tcl collects silence frames per location for threshold

estimation (not used in experiments)

– $system/correctms.tcl outputs how many milli seconds of a hypothesis

are correct for overlapping multi track labels

– $system/bicPerState.tcl outputs a bic estimate for the number of gaus-

sians per state

– $system/testConfusion.tcl outputs results per segment file, recall, pre-

cision and confusion matrix for a single source

– db/db.tcl creates dictionary by splitting training and test set randomly

– SIGTEST/sigTest.tcl compares the results per segment files for test of

significance

– SIGTEST/sigMap.tcl creates Latex source for significance tables

– SIGTEST/sigCalcP.tcl outputs the probability used in McNemar’s sig-

nificance test
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