
Automatic music transcription using
sequence to sequence learning

Master’s thesis of

B.Sc. Maximilian Awiszus

At the faculty of Computer Science
Institute for Anthropomatics and Robotics

Reviewer: Prof. Dr. Alexander Waibel
Second reviewer: Prof. Dr.
Advisor: M.Sc. Thai-Son Nguyen

Duration: 25. Mai 2019 – 25. November 2019

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association www.kit.edu

Interactive Systems Labs
Institute for Anthropomatics and Robotics
Karlsruhe Institute of Technology
Title: Automatic music transcription using sequence to sequence learning
Author: B.Sc. Maximilian Awiszus

Maximilian Awiszus
Kronenstraße 12
76133 Karlsruhe
maximilian.awiszus@student.kit.edu

ii

Statement of Authorship

I hereby declare that this thesis is my own original work which I created without illegitimate
help by others, that I have not used any other sources or resources than the ones indicated
and that due acknowledgement is given where reference is made to the work of others.

Karlsruhe, 15. März 2017 .
(B.Sc. Maximilian Awiszus)

Contents

1 Introduction 3
1.1 Acoustic music . 4
1.2 Musical note and sheet music . 5
1.3 Musical Instrument Digital Interface . 6
1.4 Instruments and inference . 7
1.5 Fourier analysis . 8
1.6 Sequence to sequence learning . 10

1.6.1 LSTM based S2S learning . 11

2 Related work 13
2.1 Music transcription . 13

2.1.1 Non-negative matrix factorization 13
2.1.2 Neural networks . 14

2.2 Datasets . 18
2.2.1 MusicNet . 18
2.2.2 MAPS . 18

2.3 Natural Language Processing . 19
2.4 Music modelling . 20

3 Methods 23
3.1 Attention mechanism . 23
3.2 Models . 25

3.2.1 LSTM-based S2S . 25
3.2.2 Transformer . 26
3.2.3 Preprocessing layers . 28

3.3 Training . 30
3.4 Features . 31
3.5 Labels . 34

3.5.1 Sequencing . 34
3.5.2 Label furnishing . 36
3.5.3 Training . 36

3.6 Data augmentation . 38
3.7 Synthetic Bach dataset . 38

4 Evaluation and results 41
4.1 Experimental settings . 41

4.1.1 Data . 41

v

Contents

4.2 Results . 43
4.2.1 Architecture . 43
4.2.2 MusicNet . 44
4.2.3 Overfitting . 45
4.2.4 Preprocessing layers . 46
4.2.5 Labels . 48
4.2.6 Features . 48
4.2.7 Overall performance . 49

5 Conclusion 51

Bibliography 53

vi

Abstract

1. Introduction

Automatic music transcription (AMT) is a term used in the field of music information
retrieval (MIR). In this interdisciplinary field AMT is generally defined as a process of
converting acoustic music in a symbolic musical notation as depicted in fig. 1.1. On the
left in the figure is a sound wave symbolising the the acoustic musical signal and the right
sheet music is printed as an exemplary symbolic musical notation.ăGG 4

4

4
4

ˇ ˇ ˇ ˇ
ˇ “ = 120˘

ˇ ˇ ˇ ˇ
ˇ ˇ

Figure 1.1: Automatic music transcription

AMT itself is the key to music information retrieval where disciplines of music, psychology,
computer science, engeneering science and information science come together. Acoustic
music is converted in a format which is easier to analyse by human as well as automatically
analysable by machines. An AMT system helps music students analysing a music piece
where a written form of this piece is missing. In addition to that it makes it easier for
student even to analyse longer music pieces where a transcription by ear would take to much
time. Also a transcribed version can be used to give student feedback what they humanly
transcribed wrong and can help to train the ability of transcribing by ear. Furthermore
composers get support and can convert music into a notational form automatically. This
helps the composers to concentrate on the creative part of playing musical sounds instead
of thinking about the specific notation. Also for a band rehearsal it could be useful when
a musician plays music and can directly show her or his colleagues the sheet music to play
along or share the musical idea with other bands.

More precisely AMT is defined by the non-profit organization International Society for
Music Information Retrieval (ISMIR): Each year at the symposium hosted by the ISMIR
algorithms in the field of MIR are evaluated as part of the Music Information Retrieval

3

1.1. Acoustic music

Evaluation eXchange (MIREX). Music transcription within this scope is defined as MIREX
multiple-F0 task where each estimated note contains information of the appropriate fre-
quency and the time information. The temporal information is divided in the note on-
and the note offset.

To understand the underlying approach different specialised terminology resp. relation-
ships need to be introduced. In the following a briefly introduction into acoustic music
(section 1.1) and the musical notaion (section 1.2) as well as the MIDI standard (sec-
tion 1.3) will be given. Also a mathematical tool (section 1.5) to analyse an inference of
different instruments playing together (section 1.4) is explained. Furthermore in the lat-
ter section the already in the title mentioned sequence to sequence approach is presented
(section 1.6) jointly by outlining important modules of neural networks.

1.1 Acoustic music

Acoustic music is a vibration resp. oscillation which is propagated in a medium, e. g. the
air. Physically this can be described as a longitudinal wave y at position x and time t
where y0 is the amplitude, f the frequency and λ the wave length of the oscillation

y(x, t) = y0 cos
(

2π
(
f · t− x

λ

))
, x, t, y0, f, λ ∈ R. (1.1)

The bigger the frequency gets the higher the acoustic music is recognised and a bigger
amplitude results in a louder acoustical signal. In the following the wave is consider to be
observed at a fix position. Assuming x := 0 we get a simpler equation denoted as

y(t) = y0 cos (2πft) , t, y0, f ∈ R. (1.2)

In fig. 1.2 three exemplary waves with different frequencies f1 := 1, f2 := 3, f3 := 5 and
amplitudes y01

:= 1/2, y02
:= 3/4, y03

:= 1 can be examined.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−1

−0.5

0

0.5

1

t

y
(t

)

Figure 1.2: Waves with frequency f1 = 1, f2 = 3 and f3 = 5 and different amplitudes.

4

1. Introduction

1.2 Musical note and sheet music

Each musical note consists of two information namely the pitch and the duration. The
pitch of a note itself is denoted as a 3-tuple (p, o, a) ∈ P × O × A of pitch class P, a
number for the octave O and accidentals A. The combination of pitch class, octave and
accidental correspond to a specific frequency of the note and is measured in Hertz (Hz).
There exist different naming convections (e. g. Solfège1 or Indian Sanskrit letters) for the
pitch classes. In the following the pitch classes

P := [A,B,C,D,E, F,G] (1.3)

which are common in most English-speaking regions are used. A pitch class describes
notes with similar sound which physically means that the frequencies w.l.o.g. f1 and f2 of
the notes of a same pitch class have a ratio specified as

f1 = 2i · f2, i ∈ Z (1.4)

Also for the already mentioned octave number O different conventions exist. In this thesis
the Scientific pitch notation (SPN) will be used which means that all notes in a pitch class
are numbered from 0 to 9. For example the third pitch class C contains ten different notes
namely [C0, C1, C2, . . . , C9]. Each combination of pitch class and number can be visualized
as a dot on five lines which are called staff as depicted in fig. 1.3.

G C4ˇ C4]4̌ D4ˇ D4]4̌ E4ˇ F4ˇ F4]4̌ G4ˇ G4]4̌ A4ˇ A4]4̌ B4ˇ C5ˇ
Figure 1.3: Quarter semitone notes on a staff ranging one octave from C4 to C5 (SPN)

The accidental A of a note can be a sharp] or flat sign [. The] increases the note by a
semitone which is a frequency ratio of 12

√
2 ≈ 1.0595. Similarly the [decreases a note by

the same ratio.

The smallest step in the twelve-tone equal temperament2 is a semitone and thus the
accidental creates ambiguous names for exactly one note, e. g. C4] = D4[. If the natural
note without increase or decrease is meant the accidental will be left of or the \ symbol is
used. One above mentioned octave covers 12 semitones which also explains the name of
the musical temperament.

Also for the mapping from notes to frequencies several standards exist. The most popular
tuning is called Concert pitch and assigns A4 := 440 Hz.

A note can have different discrete durations. In fig. 1.3 all notes are quarters. Commonly
used durations are sixteenth, eighth, quarter, half or whole (c. f. table 1.1). All this
notations refer to the current tempo of the music piece which is given in beats per minute
(bpm). This tempo could be assign to different note durations. Assumed in the beginning
of a music piece the tempo is assigned to a quarter, e. g. ˇ “ = 120 means that one quarter
note takes 0.5 s and thus e. g. a whole takes 2 s.

1used in Italy, Spain, France, . . . PSolfège := [Do,Re,Mi,Fa, Sol,La,Si]
2The twelve-tone equal temperament is the today’s most common musical temperament.

5

1.3. Musical Instrument Digital Interface

Notation Name Durationˇ “) Sixteenth 1/16ˇ “(Eighth 1/8ˇ “ Quarter 1/4˘ “ Half 1/2¯ Whole 1

Table 1.1: Some discrete duration of musical notes

Using all this conventions the so called sheet music which is the most common musical
notations can be understood. In fig. 1.4 a excerpt of the sheet music of Mozart’s sonata
in C-major can be observed. Whereas the two staffs in the figure over each other are two
note sequences which are played in parallel.ăGG 4

4

4
4

ˇ ˇ ˇ ˇ
ˇ “ = 120˘

ˇ ˇ ˇ ˇ
ˇ ˇ

ˇ ˇ ˇ
ˇ`

ˇ
ˇŐŐŐŐ̌

ˇ ˇ ˇ ˇ
˘

Figure 1.4: Excerpt of the sheet music of Mozart’s sonata in C-major

1.3 Musical Instrument Digital Interface

Another way of describing music is the Musical Instrument Digital Interface (MIDI) stan-
dard which has been incorporated in 1983. It is commonly used for communication between
different electronic music devices, e. g. keyboards and personal computers. In this stan-
dard all the above mentioned notes are numbered with integer numbers ranging from 0 to
127. Taking the context of section 1.2 the relationship between the frequency f of a note
and the MIDI number nMIDI can be described as

f(nMIDI) =
(

12
√

2
)70−nMIDI · 440 Hz, nMIDI ∈ [0, 127]. (1.5)

The A4 gets the MIDI number 69 and is marked in fig. 1.5 with a blue triangle.

The equivalent to sheet music is realised by a sequence of different events called MIDI
messages. Indicating a note to be played, e. g. if a piano key is pressed a NOTE_ON message
is sent as described in the MIDI 1.0 standard. If the note stops resp. the piano key
is released a NOTE_OFF message is sent. In the MIDI standard there exists 16 different
channels which can for example be used for different instruments. As depicted in fig. 1.6

6

1. Introduction

20 30 40 50 60 70 80 90 100 110

0

1

2

3

4

nMIDI

f
(n

M
ID

I)
[k

H
z]

Figure 1.5: Relation between note frequency and the midi number

NOTE_OFF 0x80 - 0x8F
Note number Velocity

NOTE_ON 0x90 - 0x9F

Figure 1.6: 3 bytes of two MIDI 1.0 messages

in column two to four these two events contain three bytes: the event number and an offset
for the channel, the note number and the velocity of the on- resp. off-set.

If the events of NOTE_ON and NOTE_OFF are sent at discrete points of time a sequence of
notes which could be sheet music can be graphically visualised as a piano roll (c. f. fig. 1.7).

12 14 16 18 20 22 24 26
time [s]

40

50

60

70

80

90

100

N
ot

e
[M

ID
I]

Figure 1.7: Piano roll

1.4 Instruments and inference

If two waves resonante simultaneously both are mathematically added resp. physically an
inference of these waves happens, resulting in one new wave. If the waves from fig. 1.2
are played simultaneously the inferred wave in fig. 1.8 will be the result. This occurs in

7

1.5. Fourier analysis

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

−2

−1

0

1

2

t

y
(t

)

Figure 1.8: Plotted inference of waves from fig. 1.2.

monophonic music as well as in polyphonic music. If more than one note is played at a
time the music is called polyphonic3 otherwise monophonic.

Assuming an instrument is playing one note not exactly one frequency will resonate. A
note can be seen as a combination of different waves called partials. The in section 1.2
assigned frequencies to notes are more precisely described as fundamental frequencies f0
which are one frequency of the whole frequency mixture. The partials of the most pitched
acoustic instruments can be described as harmonics which are defined as

Fharmonics := {f0 · i | i ∈ N>0} (1.6)

which means that the harmonic are integer multiples of the fundamental frequency.

1.5 Fourier analysis

A mathematical tool to analyse the frequency occurring in a inferred wave mixture as
in fig. 1.8 (which could be seen as a visualised audio file) is the Fourier analysis. There
exist different variants of the Fourier analysis. Assuming an audio file which is time
discretely stored on a storage medium the Discrete Fourier transform (DFT) is adequate.
In the following the signal is represented as a sequence (xN) with length N . For a Fourier
analysis the signal is considered to be periodically which is not the case if we analyse for
example a succession of notes or a music recording.

Thus the Short-Time-Fourier-Transformation (STFT) is used instead. This transforma-
tion additionally involves a window which zero-fills values of the sequence which are not
of interest to analysis for occurring frequencies. Furthermore the observed part of the
sequence is assumed periodic. For n ∈ [0, N] where N states the length of the window
(also called window size) in the following three common windows are listed. The simple
rectangular window wR also known as Dirichlet window is defined as

wR[n] := 1, (1.7)

3Polyphonic music does not imply that there have to be more instruments involved, e. g. a piano, viola
or guitar can produce polyphonic music.

8

1. Introduction

whereas the Hann window wH is is calculated by

wH [n] := 0.5

[
1− cos

(
2πn

N

)]
(1.8)

and the Blackman-Harris window wBH denoted as4

wBH [n] := a0 − a1 cos

(
2πn

N

)
+ a2 cos

(
4πn

N

)
− a3 cos

(
6πn

N

)
. (1.9)

In fig. 1.9 the above defined windows wR, wH and wBH can be examined in a plotted
version.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

0.2

0.4

0.6

0.8

1

n

w
[n

]

Figure 1.9: Hann, Blackman-Harris and Rectangular window for N = 2

Finally the STFT over the sequence (xN) can be defined as

STFT{(xN)}[η, ω] :=

N−1∑

n=0

x[n] · w[n− η] · e−i·ω·n/N , η ∈ N, ω ∈ R+

where η stands for the time and ω is the angular frequency which is dependent as ω = 2πf
to the frequency f which is analysed. By only using natural numbers in a specific distance
for η the hop_size of the STFT is introduced in the context of η ∈ {k ·hop_size | k ∈ N}.
The STFT is a complex-valued function. Taken Euler’s formula5 it can be seen that
the imaginary part corresponds to a frequency shifted by a phase of −π

2 . Since humans’
perception does not recognise the phase of a wave this information is omitted by taking
the absolute value of the STFT. Plotting these magnitude (and additionally squared)
amplitudes coded as different colours a 2D image results which is called a spectrogram
SPEC which is formally is defined as

SPEC{(xN)}[η, ω] := |STFT{(xN)}[η, ω]|2 .

In the spectrogram in fig. 1.10 brighter pixels represent the frequencies which occur the
most at this point of time.

4a0 := 0.35875, a1 := 0.48829, a2 := 0.14128 and a4 := 0.01168
5eix = cos(x) + i · sin(x)

9

1.6. Sequence to sequence learning

0 200 400 600 800
t [ms]

0

50

100

150

200

250

300

350

ST
FT

Figure 1.10: Exemplary spectrogram

Another feature which can be extracted from wave mixtures resp. audio signals is the
cepstrum. For the calculation on a first step the inverse fourier transformation is applied
on the logarithmised spectrogram SPEC. And finally as for the spectrum the magnitude
and square of the result is taken.

The spectrogram as well as the cepstrum can be further preprocessed by applying filters.
A example for a linear filter is a high-pass or low-pass filter where only high resp. low
frequencies are passed. These filters are used to ignore frequencies which are not in the
range of the analisis interest.

Based on the the perception of the pitch of a specific frequency the mel scale has been
introduced. In this logarithmic scale the frequency f = 1 kHz correspond to Z = 1000 mel
and

Z = 2595 · log10

(
1 +

f

700

)
. (1.10)

Using this scale a triangular filterbank with mel spaced filters can be applied to reduce
the frequency bins. Each filter in the filterbank is shifted equidistantly corresponding to
the mel scale. To get the value of a filter as implied by the name a triangular function is
applied to the signal which should be preprocessed.

1.6 Sequence to sequence learning

Sequence to sequence (S2S) learning is understood as learning a mapping from an source
sequences to a target sequences. In fig. 1.11 the exemplary mapping of the source sequence
[A,B,C,D] to the target sequence [1, 2, 3] is visualised. Furthermore it can be seen that
a source as well as a target sequence can have arbitrary length.

In 2014 Sutskever et. al [SVL14] introduced a method which transferred this technique to
Neuronal Networks based on the Long Short-Term Memory (LSTM). In the following this
Neural Network is described.

10

1. Introduction

[A, B, C, D] [1, 2, 3]

Figure 1.11: Sequence to sequence learning – learning a mapping

1.6.1 LSTM based S2S learning

A LSTM is a recurrent neural network (RNN) which means that the calculated output at
time t is again feeded in the network to contribute to the result of the calculation at time
t+ 1.

Coming to Stutskever et. als [SVL14] idea a multilayered LSTM is used to encode the
source sequence to a fixed length internal representation. This process of encoding is
done until an symbol indicating the end of a sequence EOS is propagated. Then a second
multilayered LSTM is used to incrementally decode this representation and emit the target
sequence. Whereby the emitted token is used as input to calculate the next token of the
target sequence. The propagation ends if an EOS token leaves the decoder or if a maximal
length of the target sequence is reached.

In fig. 1.12 three layers of a LSTM are used as an encoder and a decoder. The same
sequences as in the abstracted visualisation in fig. 1.11 are taken. In the first time step
the token A is propagated through LSTM1, LSTM2 and LSTM3. Just as the EOS token
appears the vector of fixed dimensionality after the encoder stack results as an embedding
for the source sequence. Subsequently the decoding process starts which means that in the
first decoding step the decoder stack (LSTM4 to LSTM6) consuming the input embedding
is emitting the first target token. Iteratively each outputted token (e. g. 1 and 2) is

taken as input for the decoder stack until the EOS appears. For the input as well as for

the target sequence this token in fig. 1.12 is represented by] .

11

1.6. Sequence to sequence learning

A

LSTMLSTM3

LSTM2

LSTM1

LSTM4

LSTM5

LSTM6

LSTMLSTM3

LSTM2

LSTM1

LSTM4

LSTM5

LSTM6

LSTMLSTM3

LSTM2

LSTM1

LSTM4

LSTM5

LSTM6

LSTMLSTM3

LSTM2

LSTM1

LSTM4

LSTM5

LSTM6

[A, [A, B, C, D] [1,

[1, 2, [1, 2, 3,[A, B, C, D]

] 1

2 3

. . .

[A, B, C, D]

. . .

1 2

t0 t3

t4 t5

Encoder Decoder

Input sequence Input sequence

Encoder Decoder

Output sequence

Encoder Decoder

Input sequence Output sequence Input sequence Output sequence

Encoder Decoder

Figure 1.12: Step by step propagation of an Encoder-Decoder LSTM stack

12

2. Related work

One of the first work about AMT has been published in 1977 by Moorer [Moo77]. As an
input two pieces of a synthesised violin resp. guitar duet have been used. The pieces were
synthesised to prevent recording noise.

From that year on different publications in this field have been made. In the following re-
cent approaches for music transcription are summarised in a structured way. Furthermore
links to other related tasks in a different research field are drawn.

2.1 Music transcription

Recently music transcription is mainly realised by data-driven approaches. Which means
that the underlying data is analysed instead of musical knowledge is used to design an
algorithm. This data driven algorithms can be divided in two families namely non-negative
matrix factorization (NMF) and neural networks (NN). In the following the NMF approach
and extensions of it (section 2.1.1) and different NN based approaches (section 2.1.2) are
introduced.

2.1.1 Non-negative matrix factorization

The NMF is a set of mathematical techniques where a positive matrix X ∈ Rm×n≥0 is

approximately factorized into two also positive matrices W ∈ Rm×r≥0 and H ∈ Rr×n≥0 with
r ≤ m and m,n, r ∈ N>0. The approximation is evaluated by the error of reconstruction
which is calculated by a const function C defined as

C = ‖X−W ·H‖ , (2.1)

where ‖·‖ is often a norm based on the Frobenius norm or on the Kulback-Leibler diver-
gence.

Taking a spectrogram as X as by Smaragdis et Brown [SB03] a exemplary NMF for
r = 2 results in a decomposition describing the timely change of frequency bins H and a
dictionary of occurring frequencies W (c. f. fig. 2.1). In this publication isolated as well

13

2.1. Music transcription

Figure 2.1: NMF for AMT by Smaragdis et Brown [SB03]

as coinciding notes are analysed. The isolate notes have been introduced as monophonic
music and the coincident notes as polyphonic in section 1.4.

The NMF can be extended differently: Abdallah and Pumbley [AP06] for example intro-
duced an unsupervised NMF approach with an additional restriction for H to be sparse1.
Which as described results in cleaner transcription results for noisy polyphonic record-
ings. Considering supervised NMF the dictionary W is estimated by previously analysing
additional training material containing e. g. recordings of single notes. Since this results
in a overfitting to note dictionary limited to a single instruments Vincent et. al [VBB09]
introduced a sub-dictionary representation. In their article a dictionary itself is built as a
weighted combination of sub-dictionaries which are representing narrow-bands.

2.1.2 Neural networks

One of the first NN based AMT systems [Mar04] uses Waibel et al.’s time-delay neural net-
works (TDNN) [WHH+89] to recognise notes. The whole system consists of five modules
namely a onset detection, a tracking of partials, a note recognition, a detection of repeated
note lengths as well as a loudness estimation. As an feature they use a time-frequency
representation preprocessed by 200 filters and furthermore logarithmically spaced.

1If more than 50 % of the values of a matrix are zero it is considered to be sparse.

14

2. Related work

Also recent NN based systems rely on time-frequency representations as a feature. An
overview of the information contained in the features, the number of used filters of an
applied filterbank and the number of music pieces involved in the training can be examined
in table 2.1.

Feature # Filters # Music pieces

[Mar04] Frequency-representation 200 5

[HES+17] Spectrogram 229 238

[WCS19b] Spectrogram and Cepstrum 352 238 resp. 330

Table 2.1: Coarse comparison of different NN based approaches

On of the recent models has been introduced by Hawthorne et al. [HES+17]. As it can be
seen in fig. 2.2 two stacks of layers are involved in their onset and frames architecture. In a
first step the right part of the architecture is detecting note onset events of a frame. This
information is then in a second step used in the left stack to predict the notes per frame.
The prediction result is done by a final fully connected sigmoid layer with 88 outputs
corresponding to the number of piano keys. As a RNN both stack contain multi-layered
Bi-LSTMs.

Figure 2.2: Onsets and frames [HES+17] architecture

15

2.1. Music transcription

As an input for their deep convolutional and recurrent network they use a log mel scaled
spectrogram. This feature is calculated on 16 kHz audio samples with a FFT window of
2048 and a hop length of 512. Furthermore the data is preprocessed by applying 229
logarithmically-spaced filters and a mel-scale.

In fig. 2.3 an exemplary plotted feature can be examined in the first row. The second row
displays the most probable notes calculated by the lower part of the left stack as well as
the next row displays probable note onsets events (resp. the output of the right stack). In
the last row the fused estimated onsets of the overall network are shown.

Figure 2.3: Feature and evaluation of the two parts from [HES+17]

As training dataset synthesised as well as real piano recordings are used from the MAPS
dataset which will be later introduced in section 2.2.2. A recording of a music piece is cut
into 20 s parts to be propagated into the network. Furthermore they also try to cut at
points where a small number of notes are active.

16

2. Related work

The current state of the art paper [WCS19b] is based on the fully convolutional DeepLabV3
network [CPSA17] which is used for semantic segmentation2. In semantic segmentation the
width and height of an input image equal to the output width and height of a segmentation
network. Only a third dimension is added as an output depth where each layer represents
a class and a single pixel the possibility a class label assignment. For the AMT task the
width of an input image corresponds to the time axis T of a spectrogram and the height
represents the frequency bins F as depicted on the left in fig. 2.4. The identical output
width and height straightly represents a piano roll with the played notes where the third
dimesion represents the different note classes. Formally one pixel p[t, f] represents the
probability of a specific note f occurring at a specific point of time t. In addition to it the
output layer has been extended by an additional dimension N +1 representing N different
instrument classes as well as silence. To overcome the class imbalance problem caused by
an overrepresented silence an adopted focal loss [LGG+17] is used as a loss function.

Figure 2.4: AMT using sematic segmentation [WCS19b]

The encoder-decoder architecture of the DeepLabV3 network is fully convolutional3. The
encoder is connected with the decoder by a Atrous Spatial Pyramid Pooling (ASPP) which
calculates scale-invariant features without a loss of resolution.

The aforementioned broadly referred spectrogram in detail is a more complex feature. The
representation is introduced as ZCFP resp. ZHCFP which both are multi-channel features.
The idea of this feature has been introduced by Wu et. al [WCS18] and is described as
CFP (combined frequency and periodicity). The ZCFP gernerally speaking contains one
channel of a processed magnitude of the STFT as well as one channel of a preprocessed
cepstrum. The preprocessing consists of a high-pass filtering FH , power scaling by a
nonlinear activation function |·|γ and a triangular filterbank F352 with 352 filters4. Taking

2Semantic segmentation describes a neural segmentation algorithm where a class label is assigned to each
pixel of an image. For example for autonomous driving regions in camera images are pixelwise labeled
as a car, a street or a pedestrian

3In contrast to the encoder and decoder layer of the transformer model.
4The filters are ranging from 27.5 Hz (A0) to 4,487.0 Hz (C8).

17

2.2. Datasets

this definitions the feature is calculated by

ZCFP := [Z|STFT|, ZCEP] (2.2)

Zi := F i352 ·
∣∣F iH ·Xi

∣∣γi , i ∈ {|STFT| ,CEP} (2.3)

where the cepstrum XCEP itself is calculated by applying the inverse STFT on Z|STFT|.

Additionally harmonic information is extracted coming to ZHCFP. The idea is to pitch shift
the time-frequency representations in a way that harmonic peaks are aligned. This should
utilize local convolutional operations to cover harmonic information. Z|STFT| as well as
ZCEP are shifted 11 times which results in a 12 channel representation called ZHCFP.

In fig. 2.5 an exemplary piano roll of the transcription calculated by this paper is shown.
The blue lines visualise true positives, green lines false positives and red lines false negatives
corresponding to the labels.

Figure 2.5: Exemplary piano roll evaluation from [WCS19b]

2.2 Datasets

The first publications in MIR were evaluated on small and synthesised datasets. The
increase of use of deep neural networks also in music research required a large number
of publicly available data which also leads to comparable results. In the following two
recently used datasets are presented.

2.2.1 MusicNet

The dataset has been introduced by Thikstun et al. [THK16] in 2016 and contains 34 hours
of labled classical music. The set contains 330 freely-licensed music recordings by different
chamber music performances. As depicted in table 2.2 the dataset contains music of
different instruments and composers. The labels are done by dynamic time warping and
a post-verification by trained musicians.

2.2.2 MAPS

The MIDI Aligned Piano Sounds (MAPS) dataset contains 65 hours of piano audio record-
ings. In total approximately 238 Piano solo pieces of classical and traditional music are

18

2. Related work

Instrument Minutes

Piano 1,346
Violin 874
Viola 621
Cello 800
Clarinet 173
Bassoon 102
Horn 132
Oboe 66
Flute 69
String Bass 38
Harpsichord 16

(a) Instruments

Composer Minutes

Beethoven 1,085
Schubert 253
Brahms 192
Mozart 156
Bach 184
Dvorak 56
Cambini 43
Faure 33
Ravel 27
Haydn 15

(b) Composers

Table 2.2: Statistics about the MusicNet dataset

included. The notes of this music pieces were extracted from MIDI files which are available5

under Creative Commons license. The dataset has been introduced by Emiya working at
Telecom ParisTech in 2008. In table 2.3 groups of the recordings are listed corresponding
to the instruments and recording conditions as described by Emiya et. al [EBDB10]. All
recordings but ENSTDkAm and ENSTDkAm which are recorded with a Disklavier are synthe-
sised audio files.

Instrument resp. software synthesiser Recording condition

AkPnBcht Bechstein D 280 Concert hall
AkPnBsdf Boesendorfer 290 Imperial Church
AkPnCGdD Conert Grand D Studio
AkPnStgb Steingraeber 130 Jazz club

ENSTDkAm Disklavier: Yamaha Mark III Ambient
ENSTDkCl Disklavier: Yamaha Mark III Close

SptkBGAm The Black Grand: Steinway D Ambient
SptkBGCl The Black Grand: Steinway D Close
StbgTGd2 The Grand 2 (Steinberg) Software default

Table 2.3: MAPS dataset

2.3 Natural Language Processing

The field of Natural Language Processing (NLP) describes how natural language can be
analysed and processed by computers. In 2018 Devlin et al. [DCLT18] introduced the lan-
guage representation model BERT which outperformed state-of-the-art systems on eleven
different NLP tasks. The tasks range from binary descissions if questions are semantically
equivalent (GLUE MNLI) to question answering tasks where the network is answering a
question by getting content information from a wikipedia article (SQuAD). As it can be

5Uploaded by Krueger on http://www.piano-midi.de.

19

http://www.piano-midi.de

2.4. Music modelling

seen the systems which is based on a S2S neural network called Transformer performed
pretty well.

The Transformer has originally been developed by Vaswani et al. [VSP+17] for the ma-
chine translation task where sentences sequences from one language are mapped to the
translation in a target language. The model out-performed state-of-the-art systems on the
WMT 2014 English-to-German as well as English-to-Frensh translation task.

“Don’t panic.”
”
Keine Panik.“

Figure 2.6: Machine translation task

Also in the field of Automatic speech recognition (ASR) the transformer model is used
[NSNW19] and is achieving state-of-the-art performance for example for the Switchboard
or Fish data. ASR describes the task of analysing spoken text and artificially transcribing
it to a text. In fact the ASR task is very similar to AMT where instead of spoken words
played notes are used as a source sequence. The target sequence which is a text is replaced
by musical notation of the played notes. That similarity conjectures that the transformer

�Pas de panique.�

Figure 2.7: Automatic speech recognition task

which already performed well for a variety of tasks could also perform well for the AMT
task and is thus introduced in section 3.2.2.

2.4 Music modelling

Another related field of research is music modelling. The aim is to understand musical
structure and to artificially rebuild resp. continue music pieces with motifs and phrases.
Also in this field the aforementioned transformer has successfully been used by Huan et
al. [HVU+18].

In contrary to AMT the task comparable to maschine translation is asking for a map-
ping between two musical notations resp. textual representations as depicted in fig. 2.8.
Furthermore in their work they also deal with a sequential musical textual representation.ăGG ˇ ˇ ˇ

ˇ`
ˇ
ˇŐŐŐŐ̌

ˇ ˇ ˇ ˇ
˘ăGG 4

4

4
4

ˇ ˇ ˇ ˇ
ˇ “ = 120˘

ˇ ˇ ˇ ˇ
ˇ ˇ

Figure 2.8: Music modelling task

20

2. Related work

In fig. 2.9 on the top left the initial piano roll of a music piece is shown. Broadly speaking
the task for a model is it to continue the initial music piece and in the best case using
different structures occurring in the initial piece. The other two plots in the first row
are generated by their adapted version of the transformer. And it could be superficially
seen that structures of the initial piece are emulated for a longer period of time by the
transformer.

Figure 2.9: Long term structures in music from [HVU+18]

21

3. Methods

In the following the methods of the thesis are explained. The structure of the chapter
can be seen in fig. 3.1. Two used models are introduced in the beginning of this chapter,
whereby both models are based on an attention mechanism1 and thus this mechanism is
explained in the very first section. After that the training procedure for the models is
explained. In the forth section the features which are propagated through the models are
presented. Another essential part of S2S learning are the sequential labels which generation
will be explained in a separate section. Also a data augmentation technique and a proof
of concept dataset is explained in the end of this chapter.

Feature

Model

LabelsTrainingAttention

(section 3.4) (section 3.1) (section 3.3) (section 3.5)

(section 3.2)

Figure 3.1: Structure of the methods chapter

3.1 Attention mechanism

An attention mechanism is widely used in neural networks in different domains of appli-
cation, for example for text understanding [HKG+15] or image captioning [XBK+15]. In

1The visualisation of the attention and of the transformer are partly inspired by Jay Alammars post which
can be found at http://jalammar.github.io/illustrated-transformer.

23

http://jalammar.github.io/illustrated-transformer

3.1. Attention mechanism

the following the multi-head attention is used. This attention mechanism is more precisely
called Multi-Head Scaled Dot-Product Attention and has been introduced by Vaswani et
al. [VSP+17] resulting in a neuronal network architecture called Tranformer.

In the following the mechanism is introduced for two input values v1,v2 ∈ Rdk . For
the attention there exists two additional vectors, first a query vector q1 ∈ Rdk which
can exemplary be interpreted as asking for the first output. Secondly the key vectors
k1,k2 ∈ Rdk which are representing each of the input values. As depicted in fig. 3.2 the
dot product between the key vectors and the query vector is calculated. The resulting
values are scaled by 1√

dk
as well as the softmax function is applied to finally take the result

and multiply it with the values. The weighted values are then summed to calculate the
final representation o1 of the input for query vector q1.

1√
dk

k1 k2

v1

q1

· ·softmax()

︸ ︷︷ ︸ ︸ ︷︷ ︸

︸ ︷︷ ︸

1√
dk
· ·softmax()

··

+

v2

o>1

Figure 3.2: Attention for values vi calculated by query qi and key vectors ki for i ∈ {1, 2}

Abstracted to more than one query vector and the two key vectors this can be written as a
matrix calculation. The different vectors are stacked row-wise to get the matrices Q,K, V
as well as resulting in a stacked final representation O as depicted in fig. 3.3.

√
dk

Q

·
·softmax()

K>

V

=

O

Figure 3.3: Matrix formulation of the Scaled Dot-Product Attention

This mechanism is further extended to not only comprising one triplet of Q,K, V matrices
but h, which is also referred as number of heads n_heads. All the final representations

24

3. Methods

calculated by the Multi-Head attention are finally stacked column-wise and fused by a
multiplication with a weight matrix W 0.

3.2 Models

For the problem of automatic music transcription two different models for a S2S approach
of ASR introduced by Nguyen et al. [NSNW19] are adapted. Namely a model which is
based on LSTMs (section 3.2.1) and the already mentioned Transformer (section 3.2.2).
Both models are working with the attention mechanism which has been explained in sec-
tion 3.1. The models are implemented in Python 3 with the deep learning framework
PyTorch.

3.2.1 LSTM-based S2S

The model can be structured into an encoder, a decoder and an attention block. As
shown in fig. 3.4 the source sequence is propagated through the encoder. The decoder is
consuming the already available target sequence which in the beginning will be an empty
sequence, because the model has not yet calculated an overall output. As a final step the
before mentioned Multi-Head Scaled Dot-Product Attention mechanism Att is applied
using the output of the encoder as key k as well as value v and the decoder output as the
query q. The tensor calculated by the attention module is finally added to the output of
the decoder to calculate the final result. Both blocks contain LSTM resp. BiLSTM layers

Encoder Decoder

Attention

Att

+

k

v

q

source sequence target sequence

Figure 3.4: Coarse structure of the LSTM-based S2S

which internal features size is controlled by the d_model parameter. In the following the
two building blocks are explained in detail.

The encoder block consists of an (optional) preprocessing layer (see section 3.2.3) and n-

enc BiLSTM layers. A BiLSTM written-out Bidirectional LSTM is the combination of two
LSTMs where in one of the two LSTMs the sequence is reversely feeded. An output at each

25

3.2. Models

point in time is then concatenatsed shaping the output of the BiLSTM. All but the last
BiLSTM layers are as depicted in fig. 3.5 followed by a dropout layer. The dropout rate

BiLSTMn-enc

Dropout1

BiLSTM1

Encoder

Preprocessing

Dropout2

BiLSTM2

Figure 3.5: Encoder block of the LSTM-based S2S

can be specified by the dropout parameter implying the percentage of randomly selected
neurons which values are ignored during a propagation.

Another block of the LSTM-based S2S model is the decoder which is shown in fig. 3.6
and consisting of an embedding layer and n-dec stacked (unidirectional) LSTM layers.
As for the encoder all but the last LSTM layer are followed by a dropout layer. The
embedding layer calculates a vectorial representation for each target token and is followed
by a embedding dropout layer.

LSTMn-dec

Dropout1

LSTM1

Decoder

Embedding

Dropout2

LSTM2

Dropoutemb

Figure 3.6: Decoder block of the LSTM-based S2S

3.2.2 Transformer

The transformer model as introduced by Pham et al. [PNN+19] for ASR also has an
Encoder-Decoder structure (cf. fig. 3.7). The encoder resp. decoder consists of several
stacked layers which are introduced in the following.

Since all sequence tokens are propagated simultaneously (in contrary to RNNs) the infor-
mation of chronological order is lost. Thus the positional embedding layer adds values of
a cosine and sinus function with different frequencies to the embedding which uniquely
marks each embedded token with the temporal information. In the following pos is de-
scribing the position of the token in the sequence and i the position in the embedding
dimension of total size d_model in the positional embedding Pe as

Pe(pos, i) =

{
sin (pos/100000i/d_model), i = 2 · k, k ∈ N
cos (pos/100000i/d_model), else

, pos, i ∈ N0 (3.1)

26

3. Methods

Encoder layern encEncoder layer1

Embedding Dropout

Positional encoding

Embedding

Preprocessing

Decoder layern dec

Embedding Dropout

Positional encodingEmbedding Decoder layer1

source sequence

target sequence

Encoder

Decoder
Source attention

Projection layer

Figure 3.7: Coarse structure of the transformer model

The aforementioned attention mechanism is integrated in three different ways: First as a
self attention mechanism in the encoder resp. secondly in the decoder layers. Thirdly a
encoder-decoder attention also called source attention which is applied in every decoder
layer. In the following the attention mechanism will be explained for all its occurrences.

The stacked layers in the encoder are preceded by an (optional) preprocessing, an embed-
ding, a positional encoding and a embedding dropout layer. One encoder layer is itself a

Dropout

Self-attention

Encoder layer

Layer normalisation Feed forward layer

Dropout

Figure 3.8: Encoder layer of the Transformer

stack of a layer normalization, self-attention, dropout and a feed forward layer. The ear-
lier mentioned self-attention only needs the output of the previous encoder layer resp. for
the first layer the positional embedding of the source sequence (both called enc_output

in the following). The enc_output is directly used as a query tensor Q as well as key
tensor K. The value tensor V is calculated by an application of a learnable linear layer on
enc_output.

The modules contained in a decoder layer are the same as in the encoder as you can see in
fig. 3.9. The self attention is similar to the attention in the encoder but Q, K and V are

27

3.2. Models

calculated with the previous decoder layer output resp. the result of the embedding in the
decoder (both called dec_output). But furthermore the decoder additionally contains a
source attention. The source attention mechanism allows to decide on which proportion a
time step of the encoding is incorporated into the final output. Formally the dec_output

is used as a query tensor Q and enc_output serves as a key tensor K of the attention
mechanism Att. As for the self-attention the value vector V is calculated with a linear
layer on dec_output.

Dropout

Self-Attention

Decoder layer

Layer normalisation

Layer normalisation

Source-Attention

Dropout

Layer normalisation

Feed forward layer

Figure 3.9: Decoder layer of the Transformer

3.2.3 Preprocessing layers

Both introduced models can optionally be augmented by adding a preprocessing layer in
front of the embedding layer of the encoder. In the following tree different preprocessing
layers have been used: A convolutional layer Prepconv, an Atrous Spatial Pyramid Pooling
layer Prepatr and a convolutional filtering layer Prepcf.

The Prepconv is a CNN with two 2D convolution layers which are adapted by the parameter
freq_kn and freq_std. As depicted in fig. 3.10 each of the layers contains 32 filters. The
height of a filter kernel is statically set to 3 and the width is adapted by the freq_kn

parameter. During convolution the kernel is moved 2 pixels in vertical axis and as specified
by parameter freq_std in horizontal axis.

3

freq kn

freq std

2

32

Figure 3.10: CNN kernel used in transformer encoder

The Prepatr is based on Atrous Spatial Pyramid Pooling (ASSP) which has already been
used for AMT by Wu et al. [WCS19b]. Originally ASSP has been introduced by Chen et

28

3. Methods

al. [CPSA17] to extract multi scale feature of a tensor for semantic image segmentation.
The Prepatr preprocessing layer is in the here underlying model then further propagated
to calculate the source sequence embedding. The convolution used for the feature is
called atrous convolution or dilated convolution2 with a parameter dilation. As depicted
in fig. 3.11 dilation changes the distance between the pixels which are taken for the
convolution and multiplied with the kernel. A value of dilation := 1 results in a standard
convolution. The dilation of a dilated convolution increases the receptive field of a filter
by using an identical number of parameters.

dilation

Figure 3.11: Dilated convolution with dilation := 2

In contrary to a succession of layers four dilated convolutions and a 2D average pooling are
calculated in parallel forming a Spatial Pyramid Pooling. Each of the dilated convolutions
uses a different dilation parameter to extract feature of different scale. As shown in

Average pooling

Dilated convolutionDilated convolutionDilated convolutionDilated convolution

dilation := 1 dilation := 6 dilation := 12 dilation := 18

Layer normalisation

Layer normalisation

Convolution

Convolution

Figure 3.12: Prepatr resp. Prepatrm preprocessing layer

2Dilated convolution is the name as it has firstly been introduction by Fisher et al. [YK15] in 2015.

29

3.3. Training

fig. 3.12 the dilation parameters are 1, 6, 12 and 18 whereby each convolution is using
16 filters. The thereby extracted 64 channels (16·4) are fused by two successive convolutions
resulting in an one channel feature tensor. The dashed boxes in fig. 3.12 symbolise an
optional batch normalisation layer which is applied after the average pooling as well as the
last fusing 2D convolution. The ASSP preprocessing layer with the batch normalisation is
referred as Prepatrn.

The convolutional filtering Prepcf is expecting unfiltered audio data. This preprocessing
layer is replacing the manually applied filter banks which are often applied after the STFT
calculation.

d input

t

t

Figure 3.13: Convolutional filtering Prepcf

It is realised by a single convolution layer with a kernel size of 1×d_input (see a exemplary
convolution of one filter in fig. 3.13). The parameter d_input is the number of frequency
values resulting in the STFT. The number of the originally used filters in the filter bank
and convolution filters which is 352 is equal. Thus all results of this layers stacked together
is resulting (dependent on the learnt kernel values) in a representation comparable to a
filter bank calculation.

3.3 Training

For the training the stochastic optimisation algorithm Adaptive Moment Estimation (Adam)
is used. The set of parameters at time point t is in the following called θt. These param-
eters are updated as suggested by Kingma et al. [KB14] by

θt+1 = θt −
η√
v̂t + ε

· m̂t .

30

3. Methods

In that formula η is the learning rate, m̂t the normalised first momentum (mean) and v̂t
the second momentum (uncentered variance). Both momenta are calculated as followed

m̂t =
mt

1− βt1
, mt = β1 ·mt−1 + (1− β1) · gt,

v̂t =
vt

1− βt2
, vt = β2 · vt−1 + (1− β2) · g2t

where gt is the gradient of time step t and αi, βi with i ∈ {1, 2} are constant scalars.

Alo a warmum of the learning rate η is applied which means that the learning rate behaves
differently in a specific phase at the beginning of the training. More precise η is linearly
increasing untill warmup_steps steps. This can be formally written as an dependence on t

η(t) = d_model−0.5 ·min{t−0.5, t · warmup_steps−1.5} .

Figure 3.14 is showing the value of η for exemplary values of the constant warmup_steps.
Experimentally a value of warmup_steps := 8.000 gained the best result in the training
and is used in the following.

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0 5000 10000 15000 20000
t

η

warmup_steps

10.000

8.600

7.200

Figure 3.14: Learning rate η(t) with d_model := 512

3.4 Features

In following four feature are described which are used for the training. The raw audio files of
the MAPS and Musicnet dataset are available in a sampling rate of 44.1 kHz. To reduce the
amount of data as performed in many publications [WCS19b, ZLL+19, WCS19a, HES+17]
the audio files are resampled to 16 kHz. In table 2.1 an overview of the different features
which are calculated on the resampled audio files can be examined. Also the corresponding
dimension is shown. In the following these features are explained in detail.

The X|STFT|, Z|STFT| and ZCFP feature is taken from the best performing competitor
[WCS19b]. Z|STFT| are filtered and power scaled STFT amplitudes and ZCFP is a combined

31

3.4. Features

Feature Dimension (feature × time)

X|STFT| STFT amplitudes 8000× 999

Z|STFT| Filterend and scaled X|STFT| 352× 999

ZCFP Cepstrum concatenated with Z|STFT| 704× 999

ZCQT Constant-Q transform 253× 626

Table 3.1: Features and dimension (for a sample with 20 seconds length)

feature containing STFT information and the cepstrum. In fig. 3.15 an exemplary plot of
the combined feature calculated on a 20 seconds MAPS excerpt can be examined. Each
column of the plot is representing one step in time. The upper part is the Z|STFT| feature
and the concatenated lower 2D tensor is visualising the cepstrum. For the training of the
model with a Prepconv layer a separate configuration of the dataset of the Z|STFT| feature
without the application of the manual filtering is provided as X|STFT|. For a more precise
description of these features see section 2.1.2.

Figure 3.15: Exemplary ZCFP calculated on a 20 seconds MAPS excerpt

Furthermore an own feature Z|CQT|,Crg based on the Constant-Q transform (CQT) is
introduced. The stacked feature

Z|CQT|,Crg := [Z|CQT|, ZCrg] (3.2)

consists of the logarithmically scaled amplitude spectrum of the CQT denoted as Z|CQT|
and a chromagram ZCrg. Similar to the STFT the CQT transform of a discrete time-

32

3. Methods

domain sequence (cN) is defined in the following. But instead of ω the analysed frequency
is written as ω = fk := f1 · 2k−1/B where f1 is the frequency of the lowest frequency
bin and B the number of bins per octave. Using that and fs for the sampling rate the
transformation can be written as

CQT{(xN)}[η, fk] :=

η+bNk/2c∑

n=η−bNk/2c

x[n] · a∗k(n− η +
Nk

2
), η ∈ Z,

ak(m) :=
1

Nk
· w[

m

Nk
] · e−2πi·m·fk/fs , k ∈ N>0 .

It can be seen that compared to the STFT in the CQT the window length is not fixed
during the transformation but dependent on Nk. Whereby the value of Nk is dependent on
k namely Nk ∝ 1/k. Regarding the window length this can be interpreted as a higher time
resolution as well as a lower frequency resolution for higher frequencies. In the context of
musical notes a lower frequency resolution for higher notes is useful in fact the frequency
distance of two successive notes is increasing for higher notes as described in section 1.3.

To extract the CQT feature XCQT a Hann window (see section 1.5) is used as w and moved
by 512 sample to get successive features. For this feature the CQT uses 229 frequency
bins with a minimal frequency fmin = 32.7 Hz (C1) up to 7 octaves. As described above
the amplitude value of XCQT is logarithmic scaled to finally get

Z|CQT| = 10 · log10

(
|XCQT|2

)
. (3.3)

Figure 3.16: Exemplary Z|CQT|,Crg calculated on a 20 seconds MAPS excerpt

The chromagram ZCrg is a representation which is related to the pitch classes introduced in
section 1.2. Using the idea of Wu et al. [WCS18] of integrating an harmonic information of
played music in the feature a chromagram is used. Each of the twelve pitch classes gets two
chromagram bins which results in a total number of 24 bins. A Blackmanharris window
function (see section 1.5) with window size of 2 is used during the calculation which is
performed with the LibROSA python library3. Figure 3.16 is showing an exemplary plot

3More precicely the librosa.feature.chroma_cqt function was used to calculate ZCrg.

33

3.5. Labels

of the Z|CQT|,Crg feature where also each column is representing one time step. The lower
part is the 24 pixel sized chromagram ZCrg and the upper part is the logarithmically scaled
CQT Z|CQT|.

3.5 Labels

In this thesis the MAPS and Musicnet dataset (introduced in section 2.2) are used to
train the models. The labels are available as a CSV-file per audio file. Each file contains
columns with the labeled note (midi number), onset time and duration (cf. fig. 3.17a).
Musicnet also contains an instrument number indicating the instrument playing the note.

The labels can be visualised as a piano roll as in fig. 3.17b.

Note Onset Duration
[MIDI] [ms] [ms]

55 0 250

30 450 430

35 650 200

35 500 250

40 1000 200

80 1000 200

(a) CSV excerpt

0 200 400 600 800 1000 1200
20

40

60

80

100

120

(b) Piano roll

Figure 3.17: Exemplary visualised labels of MAPS resp. Musicnet

3.5.1 Sequencing

Both S2S models expect a sequence as a target mapping and thus the labels need to
be processed which can be divided in two steps: On the one hand the segmentation
meaning cutting a longer sequence in shorter sub parts. And on the other hand the
textual representation which involves the process of finding a mapping between the timely
information and a sequential textual representation.

The segmentation is done with two different strategies: One strategy is to alternately cut
the audio files into 2000 ms, 2500 ms and 3000 ms parts. The more complex strategy is to
cut the files into parts ranging from 2000 ms to 3000 ms by simultaneously minimising the
number of fragmented ongoing notes (cf. fig. 3.18). The area shaded in green is searched
for a point in time tp where the number ongoing notes is minimal. If there is more than
one possible tp as in fig. 3.18 the points tp1 , tp2 and tp3 the point absolutely laying closer
to 2500 ms which in that case is tp3 . Additionally for both segmentation strategies if

34

3. Methods

1000 2000 3000

note [MIDI]

t [ms]

tp1 tp2 tp3

2500

Figure 3.18: Segmentation considering minimal fragmented ongoing notes

the number of labels of a part is exceeding the maximum label length of 500 the part is
excluded.

In the following three different textual representations used in this project are introduced:
Oore et al. [OSD+18] refer to a representation (in the following called RepTsh) where a
succession of note-on and note-of tokens is used to describe an onset resp. offset of
a musical note. Each MIDI-note has its own note-on and note-of event resulting in
254 tokens (= 2 × 127). If two notes start or end at the same point in time the onsets
are ascendingly sorted corresponding to their MIDI-number. Realising the chronological
information after describing the current time step a time-shift token is used to start
the description of a new point in time. 100 different time-shift s describing a shift in
time from 10 ms up to 1000 ms are used. This representation (comprising 254 + 100 =
354 tokens) is used by Magentas music transformer[SO17] which has been mentioned in
section 2.4. The sequence matching fig. 3.17 in the RepTsh representation can be seen in

note_on_55 time_shift_0250 note_off_55 time_shift_0250 note_on_30

time_shift_0100 note_on_35 time_shift_0050 note_off_35

time_shift_0050 note_on_35 time_shift_0050 note_off_30 time_shift_0150

note_off_35 time_shift_0100 note_on_80 note_on_40 time_shift_0200

note_off_80 note_off_40

Figure 3.19: Sequence representation RepTsh for data from fig. 3.17

fig. 3.19.

The RepDis representation is based on Huang et al.s convention [HVU+18] as described
for the J. S. Bach chorales dataset. They discretise the time and visually cut horizontal
slices from the piano-roll. The notes are then from the top to the botton put together
sequentially. Different from the Bach chorales in the underlying datasets of this thesis the
number of notes played at a time is not fixed4. Thus a next-time-slice token in the

4For a Bach chorale it is four (called soprano, alto, tenor and bass).

35

3.5. Labels

following also symbolised as is introduced indicating the end of a timely slice.

This idea is further extended by a modified subword tokenizer based on the byte-pair
encoding (BPE) which has been described by Kudo and Richardson [KR18] as part of
the SentencePiece neural text processing. The subword segmentation algorithm BPE
iteratively fuses two tokens t1 and t2 (which could for example be characters) if this

specific succession (t1 , t2) appears the most in all successions in the dataset. In each

iteration an additional fused token t(1,2) is added to the dictionary and replaced at all

occurrences in the dataset. Also this new tokens can be multiply grouped together, e. g.
t(1,2) and t3 to t(1,2,3) . Similarly to the mentioned BPE a succession of tokens in RepDis

between two (in the following called time slice Ts) can also be fused. The resulting

new tokens can be seen as chord which persists of single notes. Different from words resp.
characters the order of tokens of Ts is arbitrary relating to the resulting sound. Thus

tokens of a time slice are mathematically interpreted as a set induced by a union rather
than a succession. Hence finding the most common succession is now a search for the most
frequent subset in the union. Just as in BPE only two tokens are fused also the subset
check is performed only for two sets of the unions of Ts .

In fig. 3.20 BPE is exemplary run on a character and a note sequence. As it can be seen
the H and e are fused to a He token. Comparable the sets of notes {31} and {42} of
one Ts are fused to {31}. Please note that the written order of the notes in one Ts

is irrelevant and it is difficult for an humans to identify a pair occurring in two Ts s. In

Character based Note based

Hello world. {20} ∪ {31} ∪ {43} ∪ {31} {20} ∪ {31} ∪ {2} ∪ {12} ∪ {43}
He llo world. {31, 43} ∪ {20} ∪ {31} {31, 43} ∪ {20} ∪ {2}

Figure 3.20: BPE for characters and notes

the following this representation is called RepDis-bpe.

3.5.2 Label furnishing

Before the token sequences described above are fed into the models the sequences are
scanned and all occurring tokens are added to a dictionary. All tokens which occur at
minimum five times are kept for the training while the others are replaced by the unknown
token unk . Also later sequences are padded by a pad token videlicet as many as needed
to form batches of same length. Eventually each sequence is prefixed by a beginning of
sequence token bos and suffixed by an end of sequence token eos . These tokens are
needed to indicate the model the start resp. end of the propagating sequence.

3.5.3 Training

The extracted features as explained in section 3.4 are stored in several ark-files. To effi-
ciently feed the data and labels into the model the parameter b_input which adjusts the
number of inputs for one batch and needs to be adjusted according to the available storage
of the GPU.

36

3. Methods

Before these ark-files files can be fed in the models the labels consisting of a sequence
of tokens need to be converted to be used for the loss calculation. Thus the tokens are
converted to a vectorial representation using the one-hot encoding. As depicted in fig. 3.21

{30}{2, 4}{21}

(1, 0, 0, 0)> (0, 1, 0, 0)> (0, 0, 1, 0)> (0, 0, 0, 1)>

Figure 3.21: Exemplary one-hot encoding for RepDis-bpe

where the dictionary contains four entries namely {21} , {2, 4} , {30} and the one-hot
vector dimension equals the dictionary size resp. the number of classes n_classes.

The output of the models which is calculated by a softmax-layer can also bee seen as such
an encoding. To calculate the loss for a propagation the cross entropy loss is used. The
cross entropy HCe for two discrete probability distributions p,q ∈ Rd≥0 is calculated by

HCe(p,q) = −
n_classes∑

i=0

pi log (qi) .

As for the one-hot vectors also n_classes specifies the dimension of the output of the last
softmax-layer resp. the dimension of the one-hot vetors. For the training task p describes
the target labels and q the actual prediction of the model.

{30}{2, 4}{21}

(0.9, 0.1, 0.1, 0.1)> (0.1, 0.9, 0.1, 0.1)> (0.1, 0.1, 0.9, 0.1)> (0.1, 0.1, 0.1, 0.9)>

Figure 3.22: Exemplary smoothed (ε := 0.1) one-hot encoding for RepDis-bpe

Also label smoothing is applied which means that negative target values (pi = 0) are set
to a small ε and positive target labels (pi = 1) are set to (1 − ε) (c.f. fig. 3.22). In the
training of this project the smoothing factor is set to ε := 0.1. This strategy is resulting
in a smoother gradient and has shown its effectiveness in recent publications.

37

3.6. Data augmentation

3.6 Data augmentation

To overcome the problem of overfitting several data augmentation techniques exists. For
the training SpecAugment which has been introduced by Park et. al [PCZ+19] is used.
It was originally applied in the domain of ASR. The spectrograms can be manipulated in
three ways: First the time axis of a spectrogram will be warped. Secondly some frequency
are masked out as well as thirdly some time steps are dropped.

In the training procedure the two last techniques were applied which are exemplary plotted
in fig. 3.23. Two pairs of the Z|STFT| feature are plotted where on each right plot the
random frequency and time step masking is applied. In the implementation used for this
training on default settings n = 2 drops for the frequency axis as well as for the time
axis are applied. The dropped out values are uniformly random selected for each drop.
Whereat the maximal dropped time values is set to 20 % and 15 % for the frequencies
with default settings.

Figure 3.23: Exemplary masked out frequency and time values on Z|STFT| of MAPS

3.7 Synthetic Bach dataset

As a proof of concept a self created monophonic dataset of 150 bach music pieces has
been created (c.f. fig. 3.24). The bach music pieces are shipped with the python library

150 bach music pieces 8000 sequences

music21

16 kHz audio files

FluidSynth

Figure 3.24: Synthetic Bach dataset generation

music215. Polyphonic parts of a piece are extracted as separate part books resulting
in approximately 8.000 sequences. The open source software synthesiser FluidSynth6 is
applied to export the synthetic 16 kHz audio files which can then be used to calculate the
above mention features.

5https://web.mit.edu/music21
6http://www.fluidsynth.org

38

https://web.mit.edu/music21
http://www.fluidsynth.org

3. Methods

For the purpose of testing the whole pipeline the Z|STFT| features were extracted from the
bach sound files. An exemplary plot of the feature and the corresponding labeled notes
can be examined in fig. 3.25. Also the harmonics of a note in the Z|STFT| which results in

0 20 40 60 80 100 120
time

0

50

100

150

200

250

300

350

fe
at

ur
e

va
lu

es

0 500 1000 1500 2000 2500
time

20

40

60

80

100

120

no
te

s

Figure 3.25: Exemplary Z|STFT| feature of the synthetic bach dataset and labels

more than one active frequency per time step in the plot can be seen.

Furthermore this data is then taken to train a transformer7 and a LSTM-based S2S8 model
for 40 epochs. As it can be seen in fig. 3.26 the ppl is vastly dropping in both models to
a value close to one. The upper plot is showing the ppl on the validation subset and the
lower plot the ppl on the trainind subset. The fast drop of the ppl to a value close to one
implies that the model is able to learn the mapping from the features to a monophonic
note sequence.

1.0

10.0

2.0

3.0
4.0
5.0

Va
lid

at
io

n
[p

pl
]

s2s
tf

5 10 15 20 25 30 35 40
Epoch

1.0

10.0

2.0

3.0
4.0
5.0

Tr
ai

ni
ng

 [p
pl

]

Figure 3.26: Training with the synthetic bach dataset

7Tranformer with 4 encoder and decoder layers
8LSTM-based S2S model with 4 encoder and decoder layers

39

4. Evaluation and results

4.1 Experimental settings

For the evaluation the standardised framework for MIR tasks mir eval which has been
introduced by Raffel et al. [RMH+14] is used. The appropriate evaluation function from
the framework is used to evaluate the results of the multiple-F0 estimation and tracking
task which can also more generally be called automatic music transcription. The token
predictions are reinterpreted as a piano roll as well as the target labels. The time axis is
then discretised with a 0.02 s resolution which corresponds exactly to the 128 pixel output
of Wu et al.’s model [WCS19b] for 2.56 s test samples.

Using the function from mir_eval.multipitch with default parameters the number of
true positives TP(s), false negatives FN(s), false positives FP(s) and true negatives TN(s)

are calculated per sample s.

With these values precision P(s), recall R(s) and thereof the F
(s)
1 -score for each segment s

is calculated by

P(s) =
TP(s)

TP(s) + FP(s)
, R(s) =

TP(s)

TP(s) + FN(s)
and F

(s)
1 =

2 · P(s) · R(s)

P(s) +R(s)
. (4.1)

Finally the F1-score of each segment s is averaged by the arithmetic mean to get the overall
score F1 of all n segments as well as the precision resp. the recall with

F1 =
1

n
·
n∑

s=1

F
(s)
1 , P =

1

n
·
n∑

s=1

P(s), R =
1

n
·
n∑

s=1

R(s) . (4.2)

4.1.1 Data

The models are trained on different processed versions of the MusicNet and MAPS dataset
which are explained in the following. Both datasets were introduced in section 2.2. For the
evaluation of the different versions dedicated evaluation subsets are used for the MAPS
dataset which are also explained in the following.

41

4.1. Experimental settings

MAPS

As suggested in [WCS19b] the recordings of the real pianos (60 pieces) are hold out for
testing resp. calculating the F1 score of a model. The other synthesised recordings are
used for training (180 pieces) and validation (30 pieces). This train-test-validation-split
can in detail be seen in table table 4.1 where each row corresponds to 30 music pieces.

Subset

AkPnBcht Train

AkPnBsdf Train

AkPnCGdD Train

AkPnStgb Train

ENSTDkAm Test

ENSTDkCl Test

SptkBGAm Train

SptkBGCl Train

StbgTGd2 Validation

Table 4.1: MAPS dataset train-test-validation split subsets

The model is trained with the train subset and overfitting is checked on the validation
subset during training as well as optimisation of other hyperparameters. There exist seven
different versions of the train and validation subset which are are calculated by processing
the raw 16 kHz audio files and text labels files of MAPS. The described versions are summed
up in table 4.2. For six versions the audio files are evenly cut into 2 second, 2.5 second
and 3 second ({2, 2.5, 3}) utterances by the same label segmentation strategy. The feature
of three of this versions is Z|STFT| from [WCS19b]. On one of these versions the labels
are calculated by the REPTsh convention resulting in the version data|STFT|,Tsh. Similar
to this data|STFT|,Dis and data|STFT|,Dis-bpe corresponds to the RepDis resp. RepDis-bpe

as a textual label representation. In dataCFP,Tsh also the cepstrum is integrated using
the feature ZCFP. For the model which has a layer to learn the filtering which is done
in preprocessing for example for Z|STFT| a version without the filtering in preprocessing
data|stft|,Tsh is provided. Another version data|CQT |,Tsh is based on the self crafted feature
Z|CQT |. And the seventh version data|STFT|,Tsh,min is using another label segmentation
strategy where the number of ongoing notes on a cut is minimised.

Feature Segmentation Textual representation # utterances

data|STFT|,Tsh Z|STFT| {2, 2.5, 3} REPTsh 16.429

data|STFT|,Tsh Z|STFT| {2, 2.5, 3} REPDis 15.622

data|STFT|,Tsh Z|STFT| {2, 2.5, 3} REPDis-bpe 15.622

dataCFP,Tsh ZCFP {2, 2.5, 3} REPTsh 16.429

data|stft|,Tsh X|STFT| {2, 2.5, 3} REPTsh 16.429

data|CQT |,Tsh Z|CQT | {2, 2.5, 3} REPTsh 16.429

data|STFT|,Tsh,min Z|STFT| min REPTsh 16.554

Table 4.2: MAPS dataset versions

42

4. Evaluation and results

For the final evaluation the test set is split into fixed sized utterances of 2.56 seconds which
results in 6.111 utterances. This strategy is exactly the same as done in the evaluation
by Wo et. al [WCS19b]. Four versions for the evaluation subset of the different features
ZCFP, ZHCFP, Z|STFT | and Z|CQT | are calculated.

MusicNet

The MusicNet dataset is split into train and test subset as suggested by [WCS19b]. The
train subset contains 320 music pieces and the test subset contains 10 music pieces.

As the dataCFP,Tsh version of the MAPS dataset the train subset of MusicNet are evenly
cut into {2, 2.5, 3} seconds utterances. As a textual representation REPTsh is used and
ZCFP is the calculated feature on this set. This results in total in 48.175 utterances.

This dataset is also evaluated with the above mentioned test subset where fixed size ut-
terances of 2.56 seconds are extracted.

4.2 Results

In the following the results of different models are presented. In next section architectures
of the models are compared. Following that a technique for overfitting is reviewed and
the different preprocessing layers are evaluated. Also the different labels and features are
compared and finally the best performing model is presented.

If not otherwise specified for the following evaluation results all different models are trained
until epoch 100. Each epoch a checkpoint which contains the current weights of the
different layers of a model is stored. After the training the checkpoints of the epoch with
the lowest validation perplexity until epoch 100 is selected. The perplexity (ppl) is a value
which is related to the loss which is calculated at the end of each epoch for backpropagation.
The selected checkpoint is then used to load the model of that epoch and start a decoding
on the test subset which has been described in section 4.1.1. The outputted sequence is
then evaluated with the MIR multipitch evaluation and the resulting averaged precision
P, recall R and F1 score can be obtained in the following tables.

4.2.1 Architecture

In the following the performance of the LSTM based S2S model (in the table called S2S)
and the transformer model which have both been presented in section 3.2 are compared.
Also the number of encoder resp. decoder layers have been varied as depicted in table 4.3.
The presented results in the table were calculated on the MAPS dataset with configuration
data|STFT|,Tsh. It can be seen that the LSTM based S2S model is performing clearly worse
than the transformer. For the transformer an increase of the layers from 8 to 16 results in
a better result. For for the LSTM based S2S model however the F1 score by changing the
layers from 8 to 16 gets even worse.

In fig. 4.1 the ppl during the training of the different architectures can be examined. The
upper plot shows the ppl during training on the validation subset and the lower plot the
ppl on the training subset which is also used to calculate the gradient to backpropagate.

43

4.2. Results

Architecture Encoder layers Decoder layers P R F1

Transformer 6 6

Transformer 8 8 51.24 55.89 53.46

Transformer 16 16 66.22 52.32 58.46

S2S 6 2

S2S 6 2 17.76 19.03 18.37

S2S 8 8 20.63 23.14 21.81

S2S 16 16 14.83 22.96 18.02

Table 4.3: MIR multipitch evaluation for different architectures

10.0

100.0

2.0

3.0
4.0
5.0

20.0

40.0

60.0

200.0

Va
lid

at
io

n
[p

pl
]

s2s-e16d16
s2s-e6d2
s2s-e8d8
tf-e16d16
tf-e8d8

10 20 30 40 50 60 70 80
Epoch

10.0

100.0

2.0

3.0
4.0
5.0

20.0

40.0

60.0

200.0

Tr
ai

ni
ng

 [p
pl

]

Figure 4.1: Training with different architectures

As it can be seen a lower ppl in the validation plot in that case implies that the model is
more probable to perform better. It can also be seen that the 16 layer big LSTM based
S2S model is converging slowly compared to the transformer with 16 layers.

Because the transformer with 16 layers performs clearly better than the LSTM based
S2S architecture the following evaluation is restricted on a 16 layer encoder and decoder
transformer model.

4.2.2 MusicNet

As it can be examined in fig. 4.2 for a transformer with 16 encoder and decoder layers a
training procedure on the MusicNet dataset only reaches a ppl of about 4 at the validation
subset. From about epoch 70 even the training ppl is only slightly dropping. Also the
LSTM based S2S architecture and variations with different number of layers had a similar
convergence in different experiments.

44

4. Evaluation and results

10.0

4.0

5.0

20.0

Va
lid

at
io

n
[p

pl
]

tf-e16d16

10 20 30 40 50 60 70 80
Epoch

10.0

5.0

20.0

40.0

60.0

Tr
ai

ni
ng

 [p
pl

]

Figure 4.2: Training with MusicNet dataset

A decoding process with a ppl in this order of magnitude is ineffectual. Of course a detailed
review of the dataset is complicated but accidentally found labeling problems suspect that
the convergence of the training could be influenced by that. One labeling problem which
has been found is that triplet eighth as well as triplet sixteenth are both labeled as triplet.
Musically the duration of a triplet sixteenth is the half of a triplet eighth. Furthermore
accidentally found last note which has been annotated in 2383.csv is wrong annotated.
This can be checked by manually listing to the recording where no note is played in the
end of the corresponding file at all.

Thus in the following all analysis and comparison are only applied on the MAPS dataset.

4.2.3 Overfitting

To evaluate the effectiveness of the applied strategy against overfitting the training pro-
cedure of a transformer model is analysed. The transformer has 16 encoder and decoder
layers as well as Prepconv as a preprocessing layer. This model is in the following called
Original. The training has been run on the MAPS data|STFT|,Tsh configuration.

As described in the previous section a plot of the ppl during the training of the above
described model and the same model with SpecAugment data augmentation technique
used during training is shown in fig. 4.3. The cross (×) in the validation curve marks the
position of the lowest ppl. It can be seen that the validation ppl of the Original model is
not further decreasing from epoch 61 on. Whereas the validation ppl of the model with the
applied data augmentation technique (SpecAugment) is further decreasing. That proves
the technique to be effective for this training.

45

4.2. Results

10.0

100.0

2.0
3.0
4.0
5.0

20.0

40.0
60.0

Va
lid

at
io

n
[p

pl
]

Original
SpecAugment

10 20 30 40 50 60 70 80
Epoch

10.0

100.0

2.0
3.0
4.0
5.0

20.0

40.0
60.0

Tr
ai

ni
ng

 [p
pl

]

Figure 4.3: Reduce overfitting in training with SpecAugment

4.2.4 Preprocessing layers

To evaluate the preprocessing layers five transformer (16 encoder and decoder layers) are
trained with enabled SpecAugment technique. Each of the transformers has a different
preprocessing layer Prepconv, Prepatr, Prepatrn and Prepcf. The training is run on the
data|STFT|,Tsh configuration for the transformer with Prepconv, Prepatr and Prepatrn.
The Prepcf layer should learn the triangular filtering which has already been applied on
th data in the data|STFT|,Tsh configuration and thus the data|stft|,Tsh configuration is used
instead for this training.

As it can be examined in table 4.4 all preprocessing layers but the convolutional filtering
Prepcf improve the overall F1 score compared to the model without a preprocessing layer
(none). It can be seen that the batch normalisation of the atrous convolution layer of
Prepatrn is slightly improving the F1 score compared to Prepatr. The convolution layer
Prepconv is also slights improving the F1 compared with no preprocessing layer. Maybe
this can be explained by the fact that the the atrous preprocessing is directly reducing the
feature by multiple convolution layers whereby for the Prepconv the feature size is at first
increased. In Prepconv as recently as the embedding layer is calculated the size is reduced
by a linear layer.

Maybe a joint training of the Prepcf layer and the actual AMT task is causing the worse
F1 score of 49.93. Another explanation could be the fact that the training with a feature
size of 8000 which corresponds to the STFT bins used in data|stft|,Tsh is more difficult to
learn from compared to the compact feature size of 352 from data|STFT|,Tsh.

Nevertheless in fig. 4.4 the Prepcf preprocessing layer seems to learn a convolutional map-
ping as far as it can be interpreted in the following. In the plot monophonic chromatically
played quarters are imputed to the transformer with the convolutional filtering preprocess-
ing layer Prepcf as a sound file. The upper plot shows a small part of the X|stft| feature

46

4. Evaluation and results

Preprocessing layer P R F1

none 61.84 54.16 57.74

Prepconv 63.43 54.95 58.88

Prepatr 63.70 55.99 59.60

Prepatrn 63.82 57.62 60.56

Prepcf 53.51 46.80 49.93

Table 4.4: MIR multipitch evaluation for different preprocessing layers

calculated on the file of the chromatic notes which in total would contain as mentioned
8000 STFT bins. The result after applying the convolutional filtering is fully plotted with
its 352 bins in the lower plot1. On a careful examination activations of different convolu-
tional bins can be seen. Furthermore the activation changes correspond to the frequency
changes which can be observed in the upper plot.

0 50 100 150 200 250 300
t [ms]

0

200

400

600

800

1000

ST
FT

 b
in

0 50 100 150 200 250 300
t [ms]

0

50

100

150

200

250

300

350

C
on

vo
lu

tio
na

l b
in

Figure 4.4: Excerpt of X|stft| and Prepcf application on chromatic notes

It might be useful to pretrain this preprocessing layer Prepcf on another dataset and
finally fix the weights of the layer for a training on the actual AMT dataset MAPS.

1Only a softmax function per column is applied to better visualise the activations.

47

4.2. Results

4.2.5 Labels

In this section both steps of the label sequencing namely the segmentation and the textual
representation are evaluated. The even cutting into {2, 2.5, 3} seconds utterances and the
cutting by minimising the number of ongoing notes is compared. For the {2, 2.5, 3} sec-
onds cuts the textual representations RepTsh, RepDis, RepDis-bpe are contrasted. In the
following a transformer with 16 encoder and decoder layers as well as with the Prepconv
preprocessing layer is used.

In table 4.5 is shown that a fixed cutting into utterances data|STFT|,Tsh is performing clearly
better than a cutting sensitive to note onsets dataCFP,Tsh,min. This could be explained by
the fact that also the evaluation data is not cut in utterances with minimised ongoing notes.
Also the RepDis representation even with the different BPEs RepDis-bpe performs worse
than the RepTsh representation. The number after bpe in the table is stating the number
of iterations of token substitutions which are performed. Maybe the worse performance
can be explained by the smaller sequence length of the RepTsh representation.

Dataset configuration P R F1

data|STFT|,Tsh

data|STFT|,Tsh,min 46.34 44.98 45.65

data|STFT|,Dis-bpe-12

data|STFT|,Dis-bpe-45

data|STFT|,Dis-bpe-90

Table 4.5: MIR multipitch evaluation for different labels

4.2.6 Features

The three different feature which have been introduced in section 3.4 are compared on
another training procedure with the transformer. This model contains the Prepconv pre-
processing layer as in the sections before and the labels are generated corresponding to
the RepTsh convention.

Table 4.6 shows that the Z|STFT| feature which is only based on the spectrum information

is performing best. The concatenated cepstrum ZCFP however reaches a better F1 score
than the feature based on the CQT Z|CQT |.

Dataset configuration P R F1

data|STFT|,Tsh

dataCFP,Tsh 40.90 47.03 43.75

data|CQT |,Tsh 29.11 39.16 33.39

Table 4.6: MIR multipitch evaluation for different features

Maybe another preprocessing step is need to reduce the size of the concatenated feature
ZCFP which is the double of the size of Z|STFT|.

48

4. Evaluation and results

4.2.7 Overall performance

The best performing own model considering the above mentioned evaluation for the MAPS
dataset is the transformer with a Prepatrn preprocessing layer which is trained on the
dataset with data|STFT|,Tsh configuration. Also the data augmentation strategy SpecAug-
ment has been used during training. Used dropout and details about the fine tuned model
are in detail printed in table 4.7.

Parameter Value Parameter Value

b input 8000 b update 8000

d model 512 spec drop True

dropout 0.2 emb drop 0.1

freq kn 3 freq std 2

grad norm True lr 2.5

mean sub True n dec 16

n enc 16 n head 1

n warmup 8000 shared emb True

shuffle True smooth 0.1

Table 4.7: Parameters of the best performing transformer model on MAPS

In table 4.8 the best performing own model is compared to the state of the art model from
Wu et al. [WCS19b]. As it can be seen the sequence to sequence learning approach in
this thesis seems not as effective as the convolutional network which bases on semantic
segmentation.

Model Configuration P R F1

DeepLabV3+ based [WCS19b] - 87.48 86.29 86.73

Transformer (e16d16) with Prepatr data|STFT|,Tsh 63.82 57.62 60.56

Table 4.8: Overall MIR multipitch evaluation

49

5. Conclusion

Currently this is the first S2S network used for automatic music transcription. In the thesis
audio signals are preprocessed to a feature and sequentially feeded into a S2S network as
a source sequence. The network learns a mapping between the source sequence and the
target sequence which is a sequential musical representation.

In the part of the preprocessing different features integrating frequency, cepstrum and
harmonic information have been introduced and evaluated on the model. The evaluation
showed that features based on the STFT (Z|STFT|) rather than the CQT (ZCQT) perform
better.

Furthermore two different techniques in cutting audio files in smaller utterances have been
applied. The more complex cutting at a point in time where the number of ongoing notes
is minimal surprisingly showed a worse F1 score of n points than a alternating length
cutting strategy. This could be explained by the fact that also the evaluation data is cut
in fixed length instead of a checking for the number of ongoing notes.

Also in this thesis different approaches for creating a sequential textual representation
of the musical notation have been observed. The textual representation resulting in the
shortest target sequences measured by the number of tokens outperforms the other. The
short token length is achieved by intelligently (RepTsh) using tokens to describe that a
musical setting is staying unchanged for a specific time.

In addition to that the evaluation showed the effectiveness of a preprocessing layer which
is added in front of the embedding layer. This increases the computational ability of the
model in the feature extraction and finally results in a better F1 score.

Another essential component during the training is data augmentation. Which also for
the automatic music transcription tasks evidentially reduces the overfitting to the training
data. Thus also the ability of the model to generalise is increased.

Prospect

The number of utterances of the MAPS dataset can be approximately be specified as
16.500. If this is compared to the number of 4.5 million used sentence pairs in the WMT

51

2014 English-German machine translation task dataset [VSP+17] it can bee seen that the
for this training less than 1% of data is used. As in other data driven approaches it can be
assumed that a bigger number of training data could result in better performing systems.
Even the type of collected music should be extended apart from classical music to also
covering pop music. But the labeling could be hard for this kind of music as current music
pieces are not freely available concerning the music recordings as well as sheet music.

The data augmentation strategy which has been applied to the training has not specifically
been developed for the field of MIR. The results of the trained model could be improved
by applying a data augmentation strategy which has been developed for musical data.
Random label-preserving and pitch-shift transformations additionally changes the pitch of
notes as described in [THFK18]. This enabled their model to be more robust to tuning
variations in the audio files.

Another idea to improve the performance could be to integrate the time information of the
labels in the training procedure more directly. For example could the attention be lead to
the part where the frequencies of the token which is outputted are located. This could be
done by introducing a second loss which expects the attention values where not frequency
values of interest to be zero. Alternatively it could be thought of completely excluding the
exact time information from the emitted tokens and deriving the exact time information
from the (source) attention values.

The performance of automatic music transcription systems is increasing with current net-
works and improved feature extraction. This attempt showed that different subsystems
and steps can be optimised which results in a better overall performance. An easy to use
application based on that system can help musicians to convert played music to a written
form. Furthermore the converted sound files can autonomously be analysed and improve
humans musical understanding of musical recordings without the need of sheet music.

52

Bibliography

[AP06] S. A. Abdallah and M. D. Plumbley, “Unsupervised analysis of polyphonic
music by sparse coding,” IEEE Transactions on neural Networks, vol. 17, no. 1,
pp. 179–196, 2006.

[CPSA17] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous con-
volution for semantic image segmentation,” arXiv preprint arXiv:1706.05587,
2017.

[DCLT18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[EBDB10] V. Emiya, N. Bertin, B. David, and R. Badeau, “Maps-a piano database for
multipitch estimation and automatic transcription of music,” 2010.

[HES+17] C. Hawthorne, E. Elsen, J. Song, A. Roberts, I. Simon, C. Raffel, J. Engel,
S. Oore, and D. Eck, “Onsets and frames: Dual-objective piano transcription,”
arXiv preprint arXiv:1710.11153, 2017.

[HKG+15] K. M. Hermann, T. Kocisky, E. Grefenstette, L. Espeholt, W. Kay, M. Su-
leyman, and P. Blunsom, “Teaching machines to read and comprehend,” in
Advances in neural information processing systems, 2015, pp. 1693–1701.

[HVU+18] C.-Z. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne, N. Shazeer,
A. M. Dai, M. D. Hoffman, M. Dinculescu, and D. Eck, “Music transformer:
Generating music with long-term structure,” 2018.

[KB14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv
preprint arXiv:1412.6980, 2014.

[KR18] T. Kudo and J. Richardson, “Sentencepiece: A simple and language inde-
pendent subword tokenizer and detokenizer for neural text processing,” arXiv
preprint arXiv:1808.06226, 2018.

[LGG+17] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in Proceedings of the IEEE international conference on com-
puter vision, 2017, pp. 2980–2988.

[Mar04] M. Marolt,“A connectionist approach to automatic transcription of polyphonic
piano music,” IEEE Transactions on Multimedia, vol. 6, no. 3, pp. 439–449,
2004.

53

Bibliography

[Moo77] J. A. Moorer, “On the transcription of musical sound by computer,” Computer
Music Journal, pp. 32–38, 1977.

[NSNW19] T.-S. Nguyen, S. Stueker, J. Niehues, and A. Waibel, “Improving sequence-
to-sequence speech recognition training with on-the-fly data augmentation,”
arXiv preprint arXiv:1910.13296, 2019.

[OSD+18] S. Oore, I. Simon, S. Dieleman, D. Eck, and K. Simonyan, “This time with
feeling: learning expressive musical performance,” Neural Computing and Ap-
plications, pp. 1–13, 2018.

[PCZ+19] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk, and Q. V.
Le, “Specaugment: A simple data augmentation method for automatic speech
recognition,” arXiv preprint arXiv:1904.08779, 2019.

[PNN+19] N.-Q. Pham, T.-S. Nguyen, J. Niehues, M. Muller, and A. Waibel, “Very
deep self-attention networks for end-to-end speech recognition,” arXiv preprint
arXiv:1904.13377, 2019.

[RMH+14] C. Raffel, B. Mcfee, E. J. Humphrey, J. Salamon, O. Nieto, D. Liang, D. P. W.
Ellis, C. C. Raffel, B. Mcfee, and E. J. Humphrey, “mir eval: a transparent
implementation of common mir metrics,” in In Proceedings of the 15th Inter-
national Society for Music Information Retrieval Conference, ISMIR, 2014.

[SB03] P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for poly-
phonic music transcription,” in 2003 IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics (IEEE Cat. No. 03TH8684). IEEE, 2003,
pp. 177–180.

[SO17] I. Simon and S. Oore, “Performance rnn: Generating music with expres-
sive timing and dynamics,” https://magenta.tensorflow.org/performance-rnn,
2017.

[SVL14] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning with
neural networks,” in Advances in neural information processing systems, 2014,
pp. 3104–3112.

[THFK18] J. Thickstun, Z. Harchaoui, D. P. Foster, and S. M. Kakade, “Invariances and
data augmentation for supervised music transcription,” in 2018 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2018, pp. 2241–2245.

[THK16] J. Thickstun, Z. Harchaoui, and S. Kakade, “Learning features of music from
scratch,” arXiv preprint arXiv:1611.09827, 2016.

[VBB09] E. Vincent, N. Bertin, and R. Badeau, “Adaptive harmonic spectral decom-
position for multiple pitch estimation,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 18, no. 3, pp. 528–537, 2009.

[VSP+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
 L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural
information processing systems, 2017, pp. 5998–6008.

54

https://magenta.tensorflow.org/performance-rnn

Bibliography

[WCS18] Y.-T. Wu, B. Chen, and L. Su, “Automatic music transcription leveraging
generalized cepstral features and deep learning,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2018, pp. 401–405.

[WCS19a] M. Won, S. Chun, and X. Serra, “Toward interpretable music tagging with
self-attention,” arXiv preprint arXiv:1906.04972, 2019.

[WCS19b] Y.-T. Wu, B. Chen, and L. Su, “Polyphonic music transcription with seman-
tic segmentation,” in ICASSP 2019-2019 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 166–170.

[WHH+89] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano, and K. J. Lang, “Phoneme
recognition using time-delay neural networks,” IEEE transactions on acoustics,
speech, and signal processing, vol. 37, no. 3, pp. 328–339, 1989.

[XBK+15] K. Xu, J. Ba, R. Kiros, K. Cho, A. Courville, R. Salakhudinov, R. Zemel,
and Y. Bengio, “Show, attend and tell: Neural image caption generation with
visual attention,” in International conference on machine learning, 2015, pp.
2048–2057.

[YK15] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” arXiv preprint arXiv:1511.07122, 2015.

[ZLL+19] J.-X. Zhang, Z.-H. Ling, L.-J. Liu, Y. Jiang, and L.-R. Dai, “Sequence-to-
sequence acoustic modeling for voice conversion,” IEEE/ACM Transactions
on Audio, Speech and Language Processing (TASLP), vol. 27, no. 3, pp. 631–
644, 2019.

55

	Title
	Contents
	1 Introduction
	1.1 Acoustic music
	1.2 Musical note and sheet music
	1.3 Musical Instrument Digital Interface
	1.4 Instruments and inference
	1.5 Fourier analysis
	1.6 Sequence to sequence learning
	1.6.1 LSTM based S2S learning

	2 Related work
	2.1 Music transcription
	2.1.1 Non-negative matrix factorization
	2.1.2 Neural networks

	2.2 Datasets
	2.2.1 MusicNet
	2.2.2 MAPS

	2.3 Natural Language Processing
	2.4 Music modelling

	3 Methods
	3.1 Attention mechanism
	3.2 Models
	3.2.1 LSTM-based S2S
	3.2.2 Transformer
	3.2.3 Preprocessing layers

	3.3 Training
	3.4 Features
	3.5 Labels
	3.5.1 Sequencing
	3.5.2 Label furnishing
	3.5.3 Training

	3.6 Data augmentation
	3.7 Synthetic Bach dataset

	4 Evaluation and results
	4.1 Experimental settings
	4.1.1 Data

	4.2 Results
	4.2.1 Architecture
	4.2.2 MusicNet
	4.2.3 Overfitting
	4.2.4 Preprocessing layers
	4.2.5 Labels
	4.2.6 Features
	4.2.7 Overall performance

	5 Conclusion
	Bibliography

