
User Adaptive Music Similarity with an
Application to Playlist Generation

Diplomarbeit

by

Daniel Gärtner

ITI Waibel

Universität Karlsruhe (TH), Germany

Carnegie Mellon University, Pittsburgh, PA, USA

Advisors:

Dr.-Ing. Thomas Schaaf

Dipl.-Inform. Florian Kraft

Prof. Dr.rer.nat. Alexander Waibel

July 2006

Declaration

Hiermit versichere ich die vorliegende Diplomarbeit
selbständig und ohne unzulässige Hilfsmittel

verfasst zu haben. Alle verwendeten Quellen sind
im Literaturverzeichnis angegeben.

Karlsruhe, den 31.07.2006, ...

Abstract

This thesis is about the generation of playlists for music. The distances
between songs are calculated based on spectral shape features. Minimal
user feedback (approval or rejection of proposed songs) is used besides song
distances to generate playlists. Automatic feature selection is used to better
fit the user’s needs. There are 4 different contributions to the current state
of art:

• The comparison of different distance measures and statistical models
in the context of playlist generation.

• A new way of using spectral shape features, extracting them in mul-
tiple dimensions and modelling them independently from each other
instead of putting all spectral features together and just estimating
one probability density function.

• Introduction of additional song selection strategies for playlist genera-
tion.

• Adaptive automatic feature selection in the context of playlist genera-
tion.

The results of research work indicate that using a likelihood ratio hypothesis
test distance using single Gaussians returns results comparable to the results
of the more complicated distances operating on Gaussian mixture models.
Furthermore, results show that more-sophisticated selection strategies are
capable of handling feature spaces including less important features. The
quality of the playlists can be further improved by means of user-adaptive
automatic feature selection.

Acknowledgments

First of all I would like to thank my advisors, Thomas Schaaf and Florian
Kraft. Without Thomas Schaaf’s encouragement it would not have been at
all possible for me to do research in the very absorbing field of music informa-
tion retrieval. My discussions with him about my research were the source
of many interesting ideas. In the course of compiling my work, Florian Kraft
gave me valuable assistance and the support necessary to finish this thesis.

I also wish to warmly thank Alex Waibel and interACT for giving me the
opportunity to visit the Carnegie Mellon University in Pittsburgh. My stay
in the United States was a great experience which positively influenced my
work.

In addition, I would like to thank Roger Dannenberg and Tom Cortina for
making it possible for me to participate in the computer music seminar at
CMU. The discussions at the seminar proved to be very useful.

Thanks also go to all the people at the interactive systems labs at CMU
and the ITI Waibel at Universität Karlsruhe for their helpful discussions and
advice.

Further thanks go to George Tzanetakis for making the training data for
his genre classification system available to me.

Finally, I want to thank my family for their support. They helped me at
all times and made it easier for me to concentrate wholeheartedly on my
thesis.

2

Contents

1 Introduction 6
1.1 Music information retrieval . 6
1.2 Motivation and overview of the proposed system 7

1.2.1 Motivation . 7
1.2.2 Overview . 8
1.2.3 Objectives . 9
1.2.4 Structure . 10

1.3 Related work . 11
1.3.1 Research . 11
1.3.2 Products . 14
1.3.3 Conclusion . 16

2 Features 18
2.1 Feature space transformation / LDA 19
2.2 Basic features . 20

2.2.1 MFCCs . 20
2.2.2 MFLCs . 21
2.2.3 Basic feature parameters 22

2.3 Side features . 22
2.3.1 Side feature dimensionality 24
2.3.2 Central spectral moments 25
2.3.3 MPEG7 low level audio descriptors 30
2.3.4 Entropies . 32
2.3.5 Spectral flux . 35

2.4 Summary . 35

3 Models 39
3.1 Introduction . 39

3.1.1 K-means . 39
3.1.2 Gaussian distributions 40
3.1.3 Gaussian mixture models 40

3

3.1.4 Hidden Markov models 40
3.2 Gaussian distributions . 41
3.3 Gaussian mixture models . 41

3.3.1 Expectation maximisation algorithm 42
3.3.2 Number of Gaussians 43
3.3.3 kMEANS training . 43
3.3.4 MAS training . 44
3.3.5 Problems during modelling 44

3.4 Summary . 45

4 Distances 46
4.1 Introduction . 46

4.1.1 Distances between representative vectors 46
4.1.2 Distances between single Gaussians 47
4.1.3 Distances between GMMs 47

4.2 Distances on single Gaussians 48
4.2.1 Euclidean distance . 48
4.2.2 Kullback-Leibler distance 48
4.2.3 Likelihood ratio hypothesis test 50

4.3 Distances on Gaussian mixture models 51
4.3.1 Log-likelihood distance 51
4.3.2 kNN distances . 51
4.3.3 Earth mover’s distance 53

4.4 Summary . 54

5 Song selection and automatic feature selection 56
5.1 Introduction to classification 57

5.1.1 Closest neighbour . 57
5.1.2 K-nearest neighbours 57
5.1.3 Distance function and song selection strategies 58
5.1.4 Statistical classifiers 58
5.1.5 Linear discriminant analysis 58
5.1.6 Artificial neural networks 59
5.1.7 Support vector machines 59
5.1.8 Discussion of the classifiers 59

5.2 The global distance function 60
5.3 Song selection strategies . 61

5.3.1 Using only the seed-song: S0 63
5.3.2 Using the last accepted song: S1 63
5.3.3 Using information from all accepted songs: S2 64

4

5.3.4 Using information from all accepted and rejected songs:
S3 . 65

5.3.5 Using the most promising accepted song: S4 65
5.3.6 Using ranklists with accepted and rejected songs: kNN

selections . 66
5.4 Automatic feature selection 69
5.5 Summary . 72

6 Experiments 73
6.1 Introduction . 74

6.1.1 Ground truth . 74
6.1.2 Dataset for testing . 75
6.1.3 Evaluation setup and criteria 76
6.1.4 Janus Recognition Toolkit 78

6.2 Preliminary experiments . 78
6.2.1 Choice of genres . 78
6.2.2 MAS vs. kMEANS . 79
6.2.3 Basic configuration . 80

6.3 Distances . 81
6.3.1 kNN distance: choice of k 81
6.3.2 Comparison of distances 82

6.4 Enlargement of the feature space 85
6.4.1 Basic feature + a single side feature 85
6.4.2 Manually chosen subsets 86

6.5 Selection Strategies . 87
6.5.1 Choice of k in the kNN selection 88
6.5.2 Comparison of selection strategies 89

6.6 Automatic feature selection 90
6.6.1 Different weighting configurations 91
6.6.2 Choice of adaptation interval 95

6.7 Summary . 96

7 Conclusion and outlook 97
7.1 Conclusion . 97
7.2 Outlook . 99

A Tables 101

5

Chapter 1

Introduction

Every human being is musical. With its melodies, rhythms and timbres music
affects mental sensation. Music offers pleasure and relaxation, and enables
communication overriding language borders.

This chapter introduces the theme of music information retrieval and ex-
plains why it is necessary. This is followed by a literature review section
giving an overview of the work that has already been done concerning auto-
matic playlist generation. The chapter ends with a motivation of the used
system and a short overview of how the system works.

1.1 Music information retrieval

Music information retrieval is a rather new field of computer science (the basic
music information retrieval conference ISMIR [ISM] only exists since 2000).
In a few years almost every musical piece that has ever been recorded will be
digitally available. This fact, in combination with the triumphal procession
of MP3 which has made it possible to distribute music over the internet,
means that research on that topic has now become essential. Methods need
to be developed that make this large amount of data manageable. Nowadays
topics include:

• Transcription of audio files, e.g. writing scores to a given audio piece.
This includes extraction of high level features like melody.

• Extraction of other high level features like tempo, rhythm, harmony.

• Sound classification. Extracting, for example, the instrumentation of a
classical piece.

6

• Genre extraction. Genre is an attribute that is correlated to musical
taste and often used for automatic playlist generation.

• Music recommendation. Systems able to recommend less-known artists
and songs, given some music somebody likes.

• Music retrieval. What is the name of the song and who the performing
artist of the music I’m currently listening to in a bar ?

1.2 Motivation and overview of the proposed

system

This thesis addresses the generation of music playlists with as little user
feedback as possible.

1.2.1 Motivation

Nowadays, MP3 players can store ten thousands of songs and it is almost im-
possible to manually create playlists without spending more time for playlist
creation than for music listening. Generating playlists manually is a very
time-consuming process and requires good knowledge of the data collection.
Furthermore, playlist generation is made difficult by the limited controls
which tiny MP3 players provide. The goal of automatic playlist generation
is to generate playlists in a way the user would have done himself, leading to
hours and hours of enjoyment without spending much time creating playlists.
The decision which songs to play and which songs to miss out is made by
the MP3 player itself.

Even if a personal MP3 player were to only contain songs liked by its user,
playlist generation would still be essential. There will always be songs that
will be rejected by the user, depending, for example, on his current mood.
Somebody might not really be interested in listening to ”their song” im-
mediately after breaking up their relationship. Furthermore, online services
like Napster1 are starting to offer music flatrate services where members can
download as much music as they want to and only pay a fixed amount of
money, independent of the number of songs they download. Considering that
and the capacity of MP3 players nowadays it is not unusual that MP3 col-
lections on portable devices are very diverse.

1http://www.napster.com

7

To generate playlists, the generation system needs information about the
songs. This information can be provided by meta data. As will be soon seen
in the literature review, generating playlists using meta data information al-
lows the playlist generation algorithms to incorporate as many attributes as
the meta data provides. A major drawback of relying on meta data, how-
ever, is the fact that meta data is required whereby the meta data is hard
to acquire. Labelling MP3 files is very time-consuming, and tags already
included in MP3 files cannot always be trusted. This not only relates to
promotional MP3 files provided by unknown local bands. Even commercial
meta data databases like Gracenote do not have a perfect genre taxonomy,
simply because there is no perfect genre taxonomy. A system has to collect
the similarity information itself if it should not rely on meta data.

The system as described in this thesis employs a number of concepts which
are similar to the system described in [PPW05a]. The only information
needed to generate a playlist is a song, the so called seed-song. The songs
included in the playlist should be similar to the chosen song. A skip button
is the only control element. If the skip button is pressed, the system stops
playing the current song and proposes the next one. The main advantages
of a system like this are:

• No need of meta data.

• No sophisticated controls needed, one button is enough.

• No large user interaction needed, the user simply has to press the skip
button, which is easy to do while on the move and without the need to
change the focus over to the playlist generation process.

1.2.2 Overview

In Figure 1.1, the used components can be seen. Firstly, different spectral
features are extracted from the audio signal. Then, statistical models are
estimated to represent the distribution of the spectral frames. Based on the
models, distances between songs on a certain feature space can be computed.
The global distance function is a binary weighted sum of all the different dis-
tances. During the playlist generation process, the song selection component
uses the global distance function and knowledge about the already classi-
fied songs (+rated and -rated) to select the next song that will be played.
As soon as this song is played, the user can disagree with the selection by
explicitly pressing the skip button, or he agrees implicitly with the choice

8

Figure 1.1: The components of the proposed system.

by just listening to the song. Depending on this user feedback, the song
is either put from the candidate song set to the +rated song set or to the
-rated song set. The next song selection step is then performed with the
already updated song sets. Occasionally, an adaptation step is performed.
In that adaptation step, automatic feature selection is performed, where the
binary feature weighting of the global distance function is updated using an
algorithm which was developed in this thesis, analysing the already classified
songs. The adaptation step searches for a feature subset that best models
the user’s musical taste.

1.2.3 Objectives

The objectives of this thesis are to build an adaptive playlist generation sys-
tem based on audio similarity. Within the scope of this process, acoustic
similarity measurements and adaptation techniques are investigated.

Playlist standpoints like variation are not investigated. During the evalu-

9

ation the user’s needs are deliberately assumed to be simple. It is assumed
that the user accepts songs from a certain genre and rejects songs from all
the other genres, and that the user does not change the genre during the
creation of a certain playlist. Time and and memory constraints were not
explicitly made.

1.2.4 Structure

The structure of this thesis is as follows:

• Chapter 1: This introduction, including a related work section about
playlist generation. Related work about certain components is included
in the appropriate chapter.

• Chapter 2: Explanation of the extracted features. It is shown how each
feature is computed. Examples are given of which features were used
together with which music information retrieval task. Each feature is
illustrated for 3 pieces of different genres.

• Chapter 3: Overview of the used statistical models. These are single
Gaussians and Gaussian mixture models.

• Chapter 4: Explanation of the used distances. An introduction of how
distances between songs which are represented by statistical models
can be computed is given. Distances operating on single Gaussians
and Gaussian mixture models are explained extensively.

• Chapter 5: The used classification scheme is explained. The algo-
rithms which are used to select the next song are explained (selection
strategies). Furthermore, an approach for automatic feature selection
is investigated. For each section an introduction including literature
review is given.

• Chapter 6: This is the experiments chapter. Models and distances are
compared in the context of playlist generation. The selection strategies
are compared and the influence of the automatic feature selection is
investigated.

• Chapter 7: Conclusions are drawn and an outlook is provided.

10

1.3 Related work

In this section, an overview about the work already done to-date in playlist
generation research is provided. In the second part some products are intro-
duced which are already available.

1.3.1 Research

A distinction is made between two different approaches for playlist genera-
tion. The first approach assumes access to large meta data to find similar
songs, while the second one relies on the quality of its audio similarity mea-
surement. Since nowadays audio similarity measurements are still far away
from the quality of descriptions given by humans, playlist generation based
on audio similarity are usually evaluated under only one constraint - their
coherency concerning audio similarity. Relying on the meta data attributes,
playlists can be generated using numerous constraints. Some of them can
be explicitly defined by the user, others are implicitly made. For instance,
variation is important to enable a better listening experience over a long
time.

Playlist generation for multiple users

[HF01] proposes an algorithm that can be used to generate a playlist for an
online radio with several listeners, using collaborative filtering. According
to request histories from different users, all artists are rated, predictions for
non-requested artists are made for each listener, popular artists among the
listening audience are determined, and artists similar to the current playing
artists are ascertained. Then a song is chosen which is both popular among
the listening audience and similar to the previously played song.

There is a big difference between the described scenario and the scenario
from this thesis. In this thesis, the playlist only has to satisfy one user.
Nevertheless, there are at least two elements that can be compared.

• User rating. In contrast to the system of this thesis, the user rating
is performed in advance. User ratings are calculated from the number
of songs that are requested from an artist. In this thesis, the only
information that has to be provided is the seed-song.

• Similarity measurement. The publication suggests to use an artist sim-
ilarity rating, that is gained gained from the song requests. In this
thesis, a song similarity measurement is used. This is more reasonable

11

since although the songs are from the same artist they can nevertheless
be very different.

Playlist generation satisfying given constraints

[AT00, AT01] express constraints like ”songs which are characterised by fast
tempos”, ”at least 20% male singer”, ”at most 40% country pop” ”one song
by Susan Vega”, ”successive songs should differ at most by two style as-
pects”, ”at least 4 titles from universal” and ”at least two new tracks” as a
minimisation problem in a linear program that can be solved using a branch
and bound algorithm.

In [Auc02] a given constraint like ”a 10 title playlist” with ”all different”,
increasing tempo, two cardinality constraints on genre (50% folk, 50% rock),
genre continuity from item to item and genre distribution (items of the same
genre should be as separated as possible from one another) is realised with
automatic playlist generation. All the used attributes are given as meta data.
Playlist generation is done by introducing a cost function for each constraint
that represents how inefficiently the constraint is satisfied. A randomly-
generated initial playlist is then optimised by minimising the cost functions.

Users can give a very detailed description of what they want the playlist
to be like which is a big benefit of systems that satisfy user constraints. But
this is also a major drawback, since that also requires that the user knows
what he wants the playlist to be like. This is on one hand difficult to archieve,
since musical tastes sometimes can be hard to convert into constraints. On
the other hand, it would require more sophisticated controls to enter con-
straints while in this thesis playlists can be generated by only pressing a
button from time to time, having defined a seed-song. Last but not least,
meta data is required which can be hard to gain if attributes like tempo or
gender of the artist are required which exceed common attributes like artist
and genre.

Playlist generation based on meta data similarity

In [PE02] a meta data based similarity measurement is used to generate
playlists depending on the similarity to a given song. Distances using differ-
ent attributes are put together in a normalised weighted sum. During the
playlist generation process, the proposed songs are rated by the user to pro-
vide information about his compilation strategy. The songs move in a two
dimensional Euclidean space and form time dependent clusters. At a given

12

time, the cluster including the given song is presented as a playlist. In a user
evaluation, it has been shown that playlists generated in this way both con-
tain more preferred songs and are rated higher by users. It is also reported
that the learning of the compilation strategy leads to more preferred songs,
but not to increasingly higher rated playlists.

This approach has very much in common with the one described in this
thesis. Playlists are generated under the constraint that songs in the playlist
should be similar to a seed-song. Furthermore, a user rating is used to learn
about the compilation strategy and improve further playlists. In contrast to
this thesis, where songs are rated positive or negative immediately, only com-
plete playlists are judged with a score from 0 to 10 in [PE02]. A subtle rating
like this requires more attention by the user than only accepting or rejecting
a song. Beyond that, immediate feedback can be used immediately for the
generation of the further playlist, and in addition every song is scored, not
only a set. But of course, meta data provides more information than acoustic
measurements probably ever will accomplish, and if meta data has been at
one time assiduously collected it can always be trusted.

Playlist generation based on audio data similarity

In [PPW05b] the whole music collection is ordered by an acoustic similarity
measurement using a travelling salesman algorithm. An input wheel is pro-
vided for scrolling through the whole collection, quickly finding a song that
is preferred. From that song on, acoustically similar songs are played.

The system described in this thesis merely requires a single seed-song, which
represents a major advantage over all the other approaches. Furthermore, a
seed-song can be found quickly, but scrolling through 10,000 songs may also
take some time. On the other hand, finding the seed-song is not addressed
in any of the publications that require a seed-song. The similarity measure
is fixed and the system does not adapt to the user at all, which is a major
drawback of this approach. Furthermore, the order of the songs is always the
same, which basically means that variation in a playlist only can be achieved
by adding files to the collection.

The most important publication for this thesis is [PPW05a], since this thesis
employs a number of concepts described in that publication. Given a seed-
song, acoustically similar songs are played by the system. Proposed songs
can be skipped by the user to signalise the rejection of a chosen song while
listening to a song is seen as approval. Besides the ”acoustic” distance, the

13

song selection algorithm also incorporates information about the approved
and declined songs.

As in the previous approach, the similarity measurement is fixed in this
approach, too. This is a drawback, since a similarity measurement can be
independent of the criteria the user uses to differentiate between good from
bad songs. For example, if a user only wants to listen to slow songs, a tim-
bre similarity measurement is not very useful. This thesis is basically an
advancement of that publication. Among other things, it adds an adaptive
similarity measurement to the proposed system, which is trying to learn the
criteria that the user is using for his decisions.

Results of a user evaluation of a new interactive playlist generation con-
cept merging meta data similarity and audio data similarity are reported
in [PvdW05]. The ”SatisFly” system allows a user to create a playlist by
selecting songs one by one. The user can request additional ”similar (au-
dio)” songs based on a reference song and specify additional requirements
like the number of songs, the duration of a playlist, the variety in genres,
the artists, the albums, the tempo and the period of release of the songs.
Song attributes like song title, artist, album, genre, duration, year of release
and tempo are given for each song. The algorithm for playlist generation
uses constraint propagation, construction, and backtracking. The reported
results show that without any decrease in quality of the playlists, they could
be created in less time and fewer actions.

This approach combines the diverse information that can be gained from
meta data with an audio similarity measurement. Although it cannot be di-
rectly compared to the task described in this thesis, the conclusion is promis-
ing for this task, too. Similarity measurements which are derived from meta
data or acoustic data can help a user to generate playlists of the same quality
in less time and with fewer actions. This has been proven with a user test
which is a great advantage over all the other approaches that merely use a
ground truth that can be derived from meta data.

1.3.2 Products

This is a short overview of some systems already available which provide
automatic playlist generation based on music similarity.

14

Last.fm

Last.fm2 offers personalised radio streams. If a band or artist is defined,
the personalised radio stream plays songs that are supposed to be liked by
somebody who likes the seed artist. This information is gathered from audio-
scrobbler3, a tool which collects playlist information from millions of users.
Using an MP3 player with audioscrobbler support software on a computer,
every song played by this software is disclosed to audioscrobbler. Collabora-
tive filtering is used to build profiles by finding relationships between artists.
Requesting a radio station with seed artist A, last.fm plays songs that fre-
quently occur in playlists from audioscrobbler users that include A as well.

Last.fm uses neither meta data (at least only indirectly) nor an acoustic
similarity measurement to create playlists. Collaborative filtering is used to
create personal similarities between artists. The quality of collaborative fil-
tering techniques strongly depends on the profiles the collaborative filtering
algorithm has access to. Since the profiles of Last.fm are based on songs
played by a user with a software MP3 player on a computer, there are, for
example, more likely to be profiles of computer science students listening to
heavy metal than profiles of 70 year old senior citizens listening to folk music.

The Music Genome Project

Since January 2000, a team of about thirty analysts have been listening to
music and analysing each of the songs for close to 400 attributes describing
melody, harmony, instrumentation, rhythm, vocals, lyrics and more for the
Music Genome Project4. Given a seed-song or seed artist, Pandora offers an
online radio stream playing songs similar to the given seed. Starting with
the Beatles’s song ”Yellow Submarine”, pandora firstly recommends the song
”Children” by ”Family”, featuring ”mellow rock instrumentation”, ”folk in-
fluences”, ”acoustic sonority”, ”major key tonality” and ”acoustic rhythm
guitar”. The next recommendation is ”Itsy Bitsy Teenie Weenie Yellow
Polka Dot Bikini” from ”Brian Hyland”, having ”mellow rock instrumen-
tation”, ”acoustic sonority”, ”major key tonality”, acoustic rhythm guitars”
and ”humorous lyrics” in common with the previously played song. Both
Last.fm and the Music Genome Project provide a rating system to judge
recommendations provided by the respective systems.

2http://www.last.fm/
3http://www.audioscrobbler.net/
4http://www.pandora.com

15

A meta data database of that size and in that diversity offers lots of possibili-
ties to playlist generation systems. Since all the attributes for each song have
been analysed by experts, they can be trusted to a certain extent. On the
other hand, since experts are needed to add songs to the database to ensure
consistency, it is unlikely that the database will ever contain, for example,
lots of German underground rap songs. From this point of view an audio
based similarity measurement cannot be beaten by anything else.

Gracenote playlist / Gracenote playlist plus

Gracenote’s products Playlist5 and Playlist Plus6 use probably the largest
available music meta data database (the former CDDB) to generate playlists
which, for example, fit the current mood of the user. Having millions of songs
categorised in about 1,500 genres, relationships between songs can be drawn
using additional information like the era of the recording artist, the release
date or the geographic origin of the music. Another major application using
this meta data database retrieves meta data information for a given CD for
the labels and tags of MP3 files extracted from the CD in music organisa-
tion software like iTunes. Gracenote playlist plus is said to already work on
certain portable devices.

The size of the database according to the number of songs is the basic ad-
vantage in comparison to the Music Genome Project, which on the other
hand has other advantages as it uses a multiple of attributes. For all the
introduced products, no information about how the playlists are generated
exactly, based on the used similarity measure, is known to the author.

Portable MP3 players

Strategies that are already available on portable devices besides random
playlist generation include playing choosing songs randomly from a given
artist, a given genre or a given epoch. Furthermore, it is, for example, pos-
sible to play the top 25 most frequently played songs.

1.3.3 Conclusion

The general conditions of the proposed systems are rather different, each of
them has advantages and drawbacks. Is one user to be satisfied or are many
users to be satisfied? How exactly does the user know what he wants to listen

5http://www.gracenote.com/gn products/playlist.html
6http://www.gracenote.com/gn products/playlist plus.html

16

to? Is access granted to meta data? Can the meta data be trusted? Are the
systems adaptive? If so, do they adapt during the playlist generation process
or only when a playlist is finished?

Obviously, the best system would unify access to large meta data, collab-
orative filtering techniques and millions of diverse profiles, adaptive audio
similarity measurements, rating systems, and so on. In addition, compo-
nents would be required which have the ability to decide which is the best
scenario for a certain user.

By contrast, systems that are already available have rather simple playlist
generation algorithms implemented so far. There is a large gap between on-
going research and available solutions. It is likely that adding only a few parts
of the explained all-in-one solution would make playlist generation systems
on portable devices seem much more intelligent.

17

Chapter 2

Features

In this chapter, an overview is given of the features calculated based on the
audio signal data. Features are only used which characterise the spectral
shape of the waveform. Features that describe rhythm, key, or melody are
not addressed in this thesis. An extensive overview of the features used in
music information retrieval can be found in [Poh05, Pee04].

In this thesis three pieces of music are used to visualise all of the features :

• Lara St. John - BWV 1043 II Largo, the first 5 seconds contain a string
theme of a solo violin, accompanied by other strings as representative
for the classical genre.

• DJ Markitos - Interplanetary Travel, a 5 second excerpt containing
synthesised sounds, accompanied by bass, bass drum and hi-hats as
representative for the electronic genre.

• Roots of Rebellion - Shift, 5 seconds of heavily distorted guitars with
drums as representative for the rock genre.

All of the features are computed based on the power spectrum which can
be derived from the audio signal by chopping it in overlapping segments,
smoothing the borders with a hamming window, application of an FFT and
squaring the coefficients. The imaginary part of these complex coefficients
which stores the phase information is disregarded.
Let A denote song A, from which samples are extracted. 30 secs. from the
middle of A are cut from the 16kHz ADC1 files. Using 16 msec. Hamming
windows with a shift of 10 msecs. leads to 3,000 power spectrum observation-
vectors called frames FPOW

A (t), each with 128 coefficients FPOW
A (t, x), where

x denotes the number of the coefficient.
1raw audio files with a linear encoding of 16 bit

18

2.1 Feature space transformation / LDA

Features that are extracted from the power spectrum can be highly cor-
related and it is probable that effects which occur in a frequency band also
occur in the neighbouring frequency bands. Therefore, not all the coefficients
are necessary to separate different classes (songs) from each other. With the
help of linear discriminant analysis (LDA, [Fuk90]) one can perform a feature
space transformation that puts samples from the same class closer together
while samples from different classes are put further apart from each other. In
addition, the transformed coefficients are sorted by their importance in the
classification task, hence the dimension of the feature space can be reduced
by omitting higher coefficients without losing much separability.

Assuming k songs, we have k classes. Let x
(i)
j be the samples which are

feature frames from class i, ni the number of samples from class i, µi the
mean of all samples from class i, n the number of all samples, µ the mean of
all samples, Wi the within scatter matrix of class i, and T the total scatter
matrix.

Wi =
1

ni

ni∑
j=1

(x
(i)
j − µi)(x(i)

j − µi)>

T =
1

n

n∑
j=1

(xj − µ)(xj − µ)>

W is the average within the scatter matrix, the mean of all Wi weighted with
their class size ni.

W =
k∑
i=1

ni
n
Wi

The goal is to find a linear transformation A that maximises the total scatter
and minimises the average within scatter.

argmax
A

=
|TA|
|WA| = argmax

A
|TAW−1

A |,

where TA is the total scatter matrix and WA is the average within scatter
matrix after applying transformation A. This problem can be solved with
simultaneous diagonalisation - searching for a matrix A that simultaneously
diagonalises W and T [Fuk90].

AWA> = I, ATA> = Λ,Λ = (θ1θ2 . . . θd),

where θi is the i-th eigen value of TW−1 and d is the dimensionality of the
feature space. The new feature vectors can then be computed with y = Ax,

19

and the dimensionality can be reduced by omitting the coefficients of A, those
with the smallest eigen values.

Remark: We use an LDA with k classes, where k is the number of songs. For
genre classification it would be advisable to perform an LDA with l classes,
where l is the number of genres, and compute the within scatter matrices
based on the samples of all the tracks from a genre. The resulting subspace
would have a dimensionality of l− 1. Although the system of this thesis will
be evaluated assuming a genre ground truth, transforming the features with
a genre class LDA transformation would be cheating since in a real playlist
generation process the clustering intention of the user is not known in ad-
vance. Nevertheless, applying a genre class LDA transformation to the data
and evaluating the system with real users is an interesting investigation.

2.2 Basic features

MFCCs are the most-used feature in music similarity tasks. Their rele-
vance for music modelling has been extensively examined in [Log00]. We
use MFCCs and MFLCs respectively as the two basic features. Then we try
to add side features to improve the performance.

2.2.1 MFCCs

Mel-frequency cepstral coefficients (MFCCs) are currently the most common
features used in speech recognition. The following steps have to be per-
formed to obtain Mel-frequency cepstral coefficients from power spectrum
coefficients:

power spectrum → melscale → logarithm → cosine transform → MFCCs

1. Melscale
The mel-frequency scale was originally developed in phonetics to help
model the non-linear nature of the human auditory system. A mel
filterbank groups power spectrum frequency bins in new bins, follow-
ing a model based on what we know from human pitch perception.
Mel-frequency bins overlap which results in a smoothing of the signal.
[Log00] showed that mel cepstral features performed significantly bet-
ter in a speech / music classification task than linear cepstral features,
but they do not answer the question of whether these results are due
to a better modelling of only speech or of both, speech and music.

20

2. Logarithm
Since humans perceive loudness logarithmically, a logarithm function
is applied to the mel scale coefficients.

3. Cosine transformation
The features obtained after applying a mel filter are highly correlated.
A cosine-transform is applied to de-correlate the features, which is an
approximation of a principal component analysis [Log00]. Choosing
only the first n coefficients reduces the dimensionality of the feature
space to n without losing much of the required information - it is basi-
cally a smoothing of the spectral envelope. [Pam06] calls this smoothing
”a side effect [..] which can be interpreted as a simple approximation
of the spectral masking in the human auditory system”.
[AP04a] reported best performance in a timbre similarity task for around
the first 20 coefficients. They also say that further coefficients are un-
wanted, since they are correlated, e.g. with pitch, and in a timbre sim-
ilarity system, similar timbres with different pitch should nevertheless
be matched. [LS01b] reports increase of performance when omitting
the first coefficient, which coheres with the signal’s energy.

MFCCs are widely used in the field of music information retrieval. [LT03],
[TEC01] use MFCCs for musical genre classification, [AHH+03] do finger-
printing with MFCCs, MFCCs are used for music summarisation and seg-
mentation in [TC99] and [LC00] and for music similarity research in [AP04b],
[HAE03], [LST04], [AP02], [Foo97], [BLEW03], [Pye00], and [LO04], which
also addresses emotion detection. [TTK05] analyse mood-based navigation
through musical data with MFCC features.

2.2.2 MFLCs

MFLCs (mel-frequency LDA coefficients) can be similarly derived from the
power spectrum as the MFCCs, except the cosine transformation step for
de-correlation is replaced with an LDA [EHUL96]:

power spectrum → melscale → logarithm → LDA → MFLCs

40 mel scale coefficients are used and LDA-transformed to a 20 dimension
feature vector FMFLC

A (t). Figure 2.2 shows the three excerpts in MFLCs.

Remark: Properties of MFCCs like the coherency between the first coeffi-
cient and the signal’s energy or the correlation between pitch and coefficients
larger than 20 do not apply for MFLCs.

21

100 200 300 400 500
 1

 20

 1

 20

 1

 20

−5.34

14

Figure 2.1: MFCCs (x samples, y coefficients). The top illustration shows
the frames from the classical piece, the illustration in the middle shows the
frames of the electronic piece, and the illustration on the bottom shows the
frames of the rock piece. The bar on the right side shows the scale, valid for
all 3 pieces.

2.2.3 Basic feature parameters

As already mentioned, a power spectrum is computed on 30 secs. of audio
data from the middle of each piece, leading to 3,000 frames with 128 power
spectrum coefficients each. A mel-filterbank with 40 bins is applied and all
the values are logarithmised. From those 40 coefficients the first 21 MFCCs
are extracted and the first one is omitted, leading to a 20-dimensional feature
vector FMFCC

A (t). MLFCs are also computed from those 40 coefficients. The
first 20 MFLC coefficients are taken.

2.3 Side features

In addition to MFCCs/MFLCs, side features are used to improve the perfor-
mance of the music similarity system. It is a common approach to extract

22

100 200 300 400 500
 1

 20

 1

 20

 1

 20

−6.59

5.94

Figure 2.2: MFLCs (x samples, y coefficients).

side features over the whole frequency range, obtaining one coefficient for
each side feature and each frame. All the side feature coefficients and the
MFCCs are then merged in a ”spectral similarity feature”. In [HAH01], spec-
tral flatness and spectral crest factor (see the corresponding sections later in
this chapter) are extracted in sub-bands ”since the desired characteristics [..]
are attributed to specific frequency bands rather than the entire spectrum”.
This thesis investigates the possibility of extracting all side features in lin-
early spaced sub-bands and modelling each of the side features separately
with a statistical model. The sub-band n used for one dimension of a side
feature is defined by the lowest power spectrum coefficient nl and the highest
power spectrum coefficient nu, used for this sub-band.

Remark: The used sub-bands, from which side features are extracted, are
linearly spaced and non-overlapping. Having 128 power spectrum coeffi-
cients, a 16 sub-band side feature would use power spectrum coefficients 1 to
16 for the computation of the first side feature coefficient, power spectrum
coefficients 17 to 32 for the computation of the second side feature coeffi-
cient, and so on. A promising approach from other publications, motivated

23

by the human auditory system, is to use log-spaced frequency sub-bands
for the computation of the side features (e.g. [HAH01, RK]. On the other
hand, spectral power coefficients are linearly spaced. Having 128 coefficients
for each frame, a very low number of coefficients would be assigned to the
lower sub-bands in a logarithmically spaced spectrum. The question of which
side features are better computed on linearly spaced bands and which side
features are better computed on logarithmic spaced bands requires further
investigation.

2.3.1 Side feature dimensionality

The following approach is used to determine the dimensionality of a side
feature:

• Each side feature is initially extracted in 16 sub-bands from the 128
power spectrum coefficients.

• Λ, the vector of eigen values of the LDA transformation is computed.

• Determine r, the number of the last eigen value θr larger than τ .

• Transform the feature space from 16 dimensions in an r-dimensional
space using LDA. The resulting feature will be referred to as the LDA
side feature.

• Extract the side feature again from the power spectrum in r sub-bands.
The resulting feature will be referred to as the side feature.

Figure 2.3 shows the 16 eigen values of each of the side features, table 2.1
the according θr and r. In the experiments chapter (6), the performance of
side features and LDA - side features is compared.

Remark: 1.1 has been empirically determined to be a reasonable value for τ .
τ = 1.1 has been used for all side features. Table 2.2 shows the eigen values
of kurtosis, extracted in 2, 4, 8, and 16 sub-bands. Using our approach in
determining the dimensionality of a side feature, initial extraction of kurto-
sis in 4 or 8 sub-bands would lead to a three dimensional kurtosis instead of
only one dimension when extracting it initially in 16 sub-bands. This needs
further investigation which has not been performed in this thesis.

24

Side feature θr r

Centroid 1.10 10
Bandwidth 1.10 4
Skewness 1.10 5
Kurtosis 1.20 1
Flatness 1.15 4

Crest factor 1.10 4
Shannon entropy 1.11 6

Renyi entropy 1.10 13
Flux 1.36 1

Table 2.1: θr and r, the number of sub-bands, a side feature is eventually
extracted in.

#sub-bands θ1 θ2 θ3 θ4 θ5

2 1.39 1.10
4 1.41 1.16 1.13 1.08
8 1.34 1.17 1.12 1.07 1.06
16 1.2 1.07 1.04 1.04 1.03

Table 2.2: first 5 eigen values θi of Kurtosis, extracted in different dimensions.

2.3.2 Central spectral moments

In statistics, the kth central moment of a random variable X is the quantity

E[(X − E[X])k],

where E is the expectation operator. The first 4 central spectral moments
have been examined, spectral centroid, spectral bandwidth, spectral skewness
and spectral kurtosis. They all provide information about the distribution
of the coefficients of a spectral sub-band frame.

Spectral centroid

In [Pee04], spectral centroid which is the first central moment of a distribution
is defined as:

FCENT
A (t, n) =

∑nu
k=nl

(k − nl + 1) ∗ FPOW
A (t, k)∑nu

k=nl
FPOW
A (t, k)

Spectral centroid is the centre of the power spectrum of a sub-band. Centroid
is a measure of the brightness of a sub-band. When the greater part of

25

 1 6 11 16

1

1.6 SHANNON

 1 6 11 16

1.1

3.6 RENYI

 1 6 11 16

1

1.4 FLUX

1

1.2 KURTOSIS

1

1.7 FLATNESS

1

1.5 CREST FACTOR

1.1

2.3 CENTROID

1

1.3 BANDWIDTH

1

1.5 SKEWNESS

Figure 2.3: The 16 eigen values of each of the side features. The last eigen
value before the graph crosses the 1.1 - line is taken as the dimension for this
side feature. Renyi entropy crosses this line late, flux and kurtosis cross this
line between the first and the second eigen value.

the sub-band energy is located in the lower coefficients of the sub-band,
the centroid value is correspondingly lower. Figure 2.4 shows the centroid
extracted in 10 sub-bands from our three sample excerpts, Figure 2.5 shows
the 10 dimensional LDA centroid. Spectral centroid is used for automatic
genre classification in [LT03, TEC01, BL03], for music similarity modelling
in [LST04, LO04], for mood-based similarity modelling in [TTK05], for audio
fingerprinting in [RK] and for audio segmentation in [TC99].

26

100 200 300 400 500
 1

10

 1

10

 1

10

1.31

15.73

Figure 2.4: Spectral centroid (x time in frames, y coefficients), extracted in
10 sub-bands.

Spectral bandwidth

Spectral bandwidth is the second central moment of a distribution. In [Pee04]
it is defined as:

FBAND
A (t, n) =

∑nu
k=nl

((k − nl + 1)−FCENT
A (t, n))2 ∗ FPOW

A (t, k)∑nu
k=nl
FPOW
A (t, k)

Spectral bandwidth provides information about the scatter of the distribu-
tion. It is the normalised weighted sum over the squares of the distances
between the coefficients and the arithmetic mean of the coefficients. The
bandwidth gets larger if the coefficients are scattered to a greater extent,
having many coefficients much larger and much smaller than the centroid
of the sub-band. Figure 2.6 shows the bandwidth extracted in 4 sub-bands
from our three sample excerpts, Figure 2.7 shows the 4 dimensional LDA
bandwidth. Spectral bandwidth is used for fingerprinting in [RK]

27

100 200 300 400 500
 1

10

 1

10

 1

10

−7.56

9.55

Figure 2.5: Spectral centroid (x time in frames, y coefficients), extracted in
16 sub-bands, LDA transformed to 10 sub-bands.

Spectral skewness

Spectral Skewness is the third central moment of a distribution. Following
definition is given in [Pee04]:

FSKEW
A (t, n) =

∑nu
k=nl

((k − nl + 1)−FCENT
A (t, n))3 ∗ FPOW

A (t, k)

FBAND
A (t, n)

3
2

∑nu
k=nl
FPOW
A (t, k)

The skewness gives a measure of the asymmetry of a distribution around
its mean value. A skewness of 0 in a sub-band indicates that the bins of
the power spectrum’s sub-band are symmetrically distributed, whereby a
skewness below 0 indicates that the tail of the left side of the distribution
is longer than the tail of the right side of the distribution and vice versa.
Figure 2.8 shows the skewness extracted in 5 sub-bands from our three sample
excerpts, Figure 2.9 shows the 5 dimensional LDA skewness.

Spectral kurtosis

Spectral kurtosis, the fourth central moment is another measure of the dis-
tribution of a feature vector sample. A normal distribution has a kurtosis of
3. Distributions with a kurtosis of 3 are called mesokurtic, distributions with

28

100 200 300 400 500
 1

 4
 1

 4
 1

 4

0.31

148.74

Figure 2.6: Spectral bandwidth (x time in frames, y coefficients), extracted
in 4 sub-bands.

100 200 300 400 500
 1

 4
 1

 4
 1

 4

−9.4

4.25

Figure 2.7: Spectral bandwidth (x time in frames, y coefficients), extracted
in 16 sub-bands, LDA transformed to 4 sub-bands.

a kurtosis larger then 3 are called leptokurtic, distributions with a kurtosis
smaller then 3 are called platykurtic. In [Pee04] the following definition is
given:

FKURT
A (t, n) =

∑nu
k=nl

((k − nl + 1)−FCENT
A (t, n))4 ∗ FPOW

A (t, k)

FBAND
A (t, n)2

∑nu
k=nl
FPOW
A (t, k)

In this thesis an offset of -3 is added to all kurtosis values. This is a com-
mon principle because the normal distributions then have a kurtosis of 0.
A leptokurtic distribution has a more acute peak in the region very close
around the centroid of the signal compared to a normal distribution. In
addition, such a distribution has ”fat tails” which means that samples far
away from the mean are more likely to occur. In contrast to this, platykurtic
distributions have thin tails and a relatively flat middle. Compared with a
normal distribution, a larger fraction of its observations are clustered within
two standard deviations of the mean. Figure 2.10 shows the kurtosis ex-

29

100 200 300 400 500
 1

 5

 1

 5

 1

 5

−15.12

18.71

Figure 2.8: Spectral skewness (x time in frames, y coefficients), extracted in
5 sub-bands.

tracted in 1 sub-band from our three sample excerpts, Figure 2.11 shows the
1 dimensional LDA - kurtosis.

2.3.3 MPEG7 low level audio descriptors

Spectral flatness measure and spectral crest factor are part of the MPEG7
low level audio description framework for standardised handling of files with
audio and multimedia [mpe].

Spectral flatness measure

FFLAT
A (t, n) =

(
∏nu

k=nl
FPOW
A (t, k))

1
nu−nl+1

1
nu−nl+1

∑nu
k=nk
FPOW
A (t, k)

Spectral flatness [JN84] is the geometric mean divided by the arithmetic mean
of a sub-band. A flatness close to 1 means that the frequency components are
very similar, which indicates a noise-like sound. By contrast, a flatness close
to 0 indicates tonal-like signal. Spectral flatness is used for music similarity
modelling in [RK, AHH+01] and for music recommendation in [HJ04]. Figure
2.12 shows the spectral flatness extracted in 4 sub-bands from our three
sample excerpts, Figure 2.13 shows the 4 dimensional LDA flatness.

30

100 200 300 400 500
 1

 5

 1

 5

 1

 5

−3.9

3.28

Figure 2.9: Spectral skewness (x time in frames, y coefficients), extracted in
16 sub-bands, LDA transformed to 5 sub-bands.

0 100 200 300 400 500
−0.58

8.56
−0.58

8.56
−0.58

8.56

Figure 2.10: Spectral kurtosis (x time in frames, y kurtosis, scaled with
log(2 + FKURT

A (t, n))). Values below log(2) = 0.69 indicate a platykurtic
distribution of the coefficients in the sub-band frame.

Spectral crest factor

FCREST
A (t, n) =

maxk(FPOW
A (t, k))

1
nu−nl+1

∑nu
k=nk
FPOW
A (t, k)

Spectral crest factor (e.g. [HAH01]) is the maximum spectral power in a sub-
band divided by the arithmetic mean of the spectral power coefficients in the
sub-band. Like spectral flatness, spectral crest factor is also an indication
of whether an audio signal is noisy or tonal. Having the same energy in all
sub-band coefficients leads to a Crest factor of 1, having almost no energy in
all sub-band coefficients but one coefficient with a large power value makes
crest factor become large as well. Figure 2.14 shows the spectral crest factor
extracted in 4 sub-bands from our three sample excerpts, Figure 2.15 shows

31

0 100 200 300 400 500

−0.57

3.07

−0.57

3.07

−0.57

3.07

Figure 2.11: Kurtosis (x time in frames, y kurtosis), extracted in 16 sub-
bands, LDA transformed to 1 dimension.

100 200 300 400 500
 1

 4
 1

 4
 1

 4

0

1

Figure 2.12: Spectral flatness (x time in frames, y coefficients), extracted in
4 sub-bands.

the 4 dimensional LDA crest factor. Spectral crest factor is used for music
similarity modelling in [RK, AHH+01]

2.3.4 Entropies

Entropies are a measure of the uncertainty of a distribution.

Shannon entropy

In information theory Shannon entropy is used to estimate the number of
bits that are needed to encode a sequence of symbols. In [RK] it is defined
as

FSHAN
A (t, n) =

nu∑

k=nl

FPOW
A (t, k) ∗ log2(FPOW

A (t, k)).

32

100 200 300 400 500
 1

 4
 1

 4
 1

 4

−8.8

6.41

Figure 2.13: Spectral flatness (x time in frames, y coefficients), extracted in
16 sub-bands, LDA transformed to 4 sub-bands.

100 200 300 400 500
 1

 4
 1

 4
 1

 4

1.11

25.47

Figure 2.14: Crest factor (x time in frames, y coefficients), extracted in 4
sub-bands.

Figure 2.16 shows the Shannon entropy extracted in 6 sub-bands from our
three sample excerpts, Figure 2.17 shows the 6 dimensional LDA Shannon
entropy. Shannon Entropy is used for fingerprinting in [RK].

Renyi entropy

The Renyi entropy is a generalisation of the Shannon entropy, defined in
[RK] to be

FREN
A (t, n) =

1

1− r log(
nu∑

k=nl

FPOW
A (t, k)

r
).

For lim
r→1

Renyi entropy is the Shannon entropy. Renyi entropy is used with

r=2 [RK], which is also known as correlation entropy. Figure 2.18 shows the
Renyi entropy extracted in 13 sub-bands from our three sample excerpts,
Figure 2.19 shows the 13 dimensional LDA Renyi entropy. Renyi entropy is

33

100 200 300 400 500
 1

 4
 1

 4
 1

 4

−6.26

11.92

Figure 2.15: Crest factor (x time in frames, y coefficients), extracted in 16
sub-bands, LDA transformed to 4 sub-bands.

100 200 300 400 500
 1

 6
 1

 6
 1

 6

−1.6

13.77

Figure 2.16: Shannon entropy (x time in frames, y coefficients), extracted in
6 sub-bands, scaled with log(11 + FSHAN

A (t, n)) for visualisation.

used for fingerprinting in [RK].

Remark: In the original definition of Shannon entropy [SW59], the result
of Shannon entropy is multiplicated with -1. Furthermore, probabilities are
used instead of power spectrum coefficients, and probabilities of all possible
observations sum up to 1. Values of the original entropy can range from 0
to 1. Equally distributed probabilities lead to an entropy of 1 whereas not
equally distributed probabilities lead to an entropy smaller than 1. Using
the definition of [RK], which is an audio fingerprinting task related to music
similarity, a low shannon entropy value for a sub-band frame could be caused
by all power spectrum coefficients having similar values (noisy signal), but
it is also affected by the signals energy itself. Therefore, the original sense
of the entropies cannot be directly transferred. This could be solved by nor-

34

100 200 300 400 500
 1

 6
 1

 6
 1

 6

−7.05

8.45

Figure 2.17: Shannon entropy (x time in frames, y coefficients), extracted in
16 sub-bands, LDA transformed to 6 sub-bands.

malising the power spectrum sub-band frames in a way that they sum up to
1.

2.3.5 Spectral flux

The squared difference between two spectral sub-band distributions of suc-
cessive frames is called spectral flux.

FFLUX
A (t, n) =

N∑

k=1

(FPOW
A (t, k)−FPOW

A (t− 1, k))2

Figure 2.20 shows the spectral flux extracted in 1 sub-band from our three
sample excerpts, Figure 2.21 shows the 1 dimensional LDA flux. If two
consecutive sub-band frames are similar, the flux value is 0, if they are dis-
similar, the flux value is large. Spectral flux is used for genre classification in
[TEC01, BL03], for music similarity modelling in [LST04, LO04], for music
segmentation in [TC99] and for mood-based music retrieval in [TTK05].

2.4 Summary

This chapter shows how the different features are extracted from the audio
signal. The following features are extracted from A:

• Basic features

– Mel-frequency cepstral coefficients FMFCC
A (t, n)

35

100 200 300 400 500
 1

13

 1

13

 1

13

−21.13

21.8

Figure 2.18: Renyi entropy (x time in frames, y coefficients), extracted in 13
sub-bands.

– Mel-frequency LDA coefficients FMFLC
A (t, n)

• Side features

– Spectral centroid FCENT
A (t, n)

– Spectral bandwidth FBAND
A (t, n)

– Spectral skewness FSKEW
A (t, n)

– Spectral kurtosis FKURT
A (t, n)

– Spectral flatness FFLAT
A (t, n)

– Spectral crest factor FCREST
A (t, n)

– Shannon entropy FSHAN
A (t, n)

– Renyi entropy FREN
A (t, n)

– Spectral flux FFLUX
A (t, n)

The side features are extracted both correlated and de-correlated with LDA.

36

100 200 300 400 500
 1

13

 1

13

 1

13

−7.49

7.74

Figure 2.19: Renyi entropy (x time in frames, y coefficients), extracted in 16
sub-bands, LDA transformed in 13 sub-bands.

0 100 200 300 400 500
0

0.86

0

0.86

0

0.86

Figure 2.20: Spectral flux (x time in frames, y flux), extracted in 1 sub-
band. For the classical piece, flux is moving constantly in the lower quarter.
The electronic and the rock piece have more distinctive peaks. In the case
of the excerpts, the flux of the rock piece seems to flutter more than the
electronic piece. This is something that probably cannot be represented in
the statistical models that are used since the ordering of the frames is not
taken into account. Additional ∆flux coefficients could solve this.

37

0 100 200 300 400 500
0.38

7.48
0.38

7.48
0.38

7.48

Figure 2.21: Spectral flux (x time in frames, y flux), extracted in 16 sub-
bands, LDA transformed in 1 sub-band.

38

Chapter 3

Models

This chapter addresses the question of how feature vectors can be summarised
in a model that can be used to compute distances between pieces of music.
Direct comparisson of features of piece A with features of piece B would
likely fail due to lack of knowledge of which feature frames from piece A
should be compared with which feature frames from piece B. The problem
is solved by estimating time-invariant statistical models using the sample
frames. The statistical models usually consist of one or several normally
distributed clusters. Distances between songs can then be computed by cal-
culating the distances between the estimated statistical models of the two
songs.

3.1 Introduction

In this introductory section, several different ways to model distributions are
introduced, along with literature references from music information retrieval.

3.1.1 K-means

K-means [HW79] assigns given feature frames in k clusters, represented by
their centroids. The initial cluster centroids can be chosen randomly from
the given samples. The quality of the clusters is then iteratively improved in
two steps :

• Each sample is assigned to the nearest of the centroids.

• After all samples have been assigned to centroids, new centroids are
calculated from all the samples that belong to the cluster.

39

Usually, the number of iterations is a fixed number, provided by experience.
A generalisation of k-means is the neural gas algorithm [MS91], where sam-
ples can be pro-rated to several clusters. The new centroids are then com-
puted as the weighted mean of the assigned samples. K-means clustering is
used, e.g. for music recommendation in [Log04].

3.1.2 Gaussian distributions

Instead of representing clusters only by their means, Gaussian distributions
have the capacity to carry information about the correlation of the coeffi-
cients. The data is assumed to be normally distributed. The mean and the
covariances then can be directly computed from the given samples. In [ME05]
Gaussian distributions are used for modelling songs for music classification.

3.1.3 Gaussian mixture models

Single Gaussian distributions have the drawback that they assume only one
centroid and that the samples are normally distributed around it. The
weighted sum of single Gaussian distributions is called the Gaussian mix-
ture model (GMM). They can be estimated iteratively with the expectation
maximisation algorithm. Using a GMM with unlimited number of Gaussians
can approximate any meaningful distribution as accurately as is required.
GMMs are used, for example, in [PPW05b] for music similarity.

3.1.4 Hidden Markov models

A major drawback of the already introduced models is the lack of modelling
time progression. As well as only estimating probability density functions,
hidden Markov models (HMMs) involve moving from clusters to different
clusters during the song.

In this thesis, the estimation of the distribution of the feature frames of a
given song is achieved with a multivariate Gaussian distribution (single Gaus-
sian, SG) or with a GMM, depending on the used distance. HMMs have not
been investigated since [AP04a] reports no improvements in a timbre simi-
larity task by replacing static GMMs with dynamic HMMs. However, they
provide a useful tool in other music information retrieval tasks, e.g. music
segmentation [GML03].

40

3.2 Gaussian distributions

A common way to estimate a distribution is to assume the data is normally
distributed and then estimate a Gaussian distribution. An observation is a
d-dimensional vector xi = (xi1, xi2, . . . , xid)

> ∈ FA(t). Given T observations
from song A, the distribution parameters can be estimated by:

µ =
1

T

T∑
t=1

xt

and

Σ =
1

T

T∑
t=1

(xt − µ)(xt − µ)>.

µ is the d-dimensional mean of the distribution and Σ is the d×d-dimensional
covariance matrix. The probability density function of a normal distribution
with mean µ and covariance Σ is given by:

Nµ,Σ =
1√

(2π)d|Σ|e
− 1

2
(x−µ)>Σ−1(x−µ).

A single Gaussian model, being the maximum likelihood estimate of A with
the given frames FA(t) will be denoted by ΦA. The order of the sample frames
does not have any influence on the model parameters. Characteristics such as
attack and decay of a sound which are very important for human perception
of sound are not modelled at all. A song played backwards would lead to
almost the same probability density function as the song played from front
to back.

3.3 Gaussian mixture models

A Gaussian mixture model (GMM) is the weighted sum of single Gaussians.
The probability density function of class j, where each class is a song, is
defined by :

Nj(x) =

kj∑
i=1

cjiNµjiΣji =

kj∑
i=1

cji
1√

(2π)d|Σ|e
− 1

2
(x−µji)>Σ−1

ji (x−µji),

where µji is the mean of the i-th Gaussian of class j, Σji is the covariance
matrix of the i-th Gaussian of class j, kj is the number of Gaussians of class j,
cji is the distribution weight from Gaussian i in class j, and d the dimension

41

of the feature space. It can be proven that any meaningful distribution
can be approximated as accurately as is reqired with a GMM (using many
components), but on the other hand, the number of components is obviously
limited by the amount of training samples. For GMMs, diagonal covariance
matrices have been used in this thesis.

3.3.1 Expectation maximisation algorithm

There is no analytical method to estimate the parameters of a GMM. Using
a maximum likelihood estimation to improve the log-likelihood of generating
the given training samples with the model would require the information of
which samples belong to which Gaussian, and this information is not given.
On the other hand, the information of which sample belongs to which Gaus-
sian cannot be acquired without the parameters of the Gaussian distribution.
A simultaneous optimisation of Gaussian parameters and training samples
to Gaussian assignment is not possible. The expectation maximisation al-
gorithm (EM, e.g. [DLR77]) is an iterative algorithm, where both steps are
performed in alternation, always using the information from the previous
iteration. There is no guarantee that the EM algorithm converges to the
global maximum. EM can also stop in a local maximum. Therefore, the EM
algorithm is basically no maximum likelihood estimator.

Expectation step

In the expectation step, the expectation value of an sample frame xt belong-
ing to class k which is the current model ΦK is computed:

γtk := E[xt ∈ k] =
ckNk(xt)∑
j cjNj(xt)

The cj and Nj are given by the previous maximisation step.

Maximisation step

In the maximisation step, the parameters of the GMM are updated.

c̄k =
1

T

T∑
t=1

γtk

µ̄k =
1∑T

t=1 γtk

T∑
t=1

γtkxt

42

Σ̄k =
1∑T

t=1 γtk

T∑
t=1

γtk(xt − µk)(xt − µk)>

γtk is given by the previous expectation step, the model parameters ck, µk
and Σk are given by the previous maximisation step.

The maximum likelihood estimate given feature frames FA using a GMM
is denoted ΘA, including the means µ, the variances Σ and the distribution
weights c. The set of Gaussians in ΘA is denoted Γ(ΘA).

There are different ways to train a GMM. One is to initially estimate k
clusters with K-means algorithm and then perform some EM - iterations to
improve the parameters of the cluster (kMEANS). Another strategy is to
start with one cluster and then alternately split clusters into subclusters, do
EM-training, and then merge starving clusters. Starving clusters are clusters
that do not get assigned enough samples in the expectation step (merge and
split, MAS).

3.3.2 Number of Gaussians

MAS and kMEANS training both require the number of Gaussian compo-
nents in advance. In this work, several values of k have been investigated. K
is given and a probability density function is estimated. If the model contains
Gaussians with a variance below 1.0E-19 or at least one distribution weight
has a value of ”not a number” due to numerical complications, the model
is retrained with an initial cluster number of k-1. This is repeated until the
GMM meets the given requirements.

Remark: There are several other methods to estimate the number of clus-
ters. One that could be used in combination with the kMEANS training is
to replace the k-means initialisation step with x-means [PM00], where also
the number of clusters is estimated by splitting up certain clusters, using the
Bayesian information criterion (BIC) for the splitting decision. BIC could
also be used directly in all of the algorithms.

3.3.3 kMEANS training

Algorithm 1 shows how kMEANS training is performed. kMEANS training
leads to a slightly different probability density function every time a model
is trained, since the initial samples for the k-means initialisation are chosen

43

randomly, and the EM algorithm converges in a local maximum that does
not have to be the global maximum.

Algorithm 1 GMM EM-training with k-means initialisation.

Choose k samples randomly from training samples
Form k clusters with k-means
Improve cluster parameters with d EM iterations

3.3.4 MAS training

Algorithm 2 shows how merge and split training is performed. Starting with
one Gaussian component, components are split up into more components
meanwhile components can also be merged together (e.g. [KFN98]).

Algorithm 2 GMM merge and split training.

Train single Gaussian with all the training samples
for log2(k) times do

Split Gaussians
Improve cluster parameters with d EM iterations
Merge Gaussians

end for
Improve cluster parameters with d EM iterations

In the split step, Gaussians that have been assigned more than 2t samples
in the previous step are split into two Gaussians, with their means slightly
different from the originally mean.
In the merge step, each Gaussians that has been assigned less than t samples
in the previous step, is merged with the one of the other Gaussians where
the log-likelihood is least compromised.
t is set to 70, d is set to 5.

3.3.5 Problems during modelling

Sometimes the last track of an album contains some minutes of artificial
silence between the last track and a hidden track, which is put into the same
file. It may transpire that during training one Gaussian cluster is only used
for all the frames of this artificial silence. The result is a Gaussian with
almost zero variance depending on how equal those frames are. This can
lead to numerical problems. To avoid such effects, regions from the power

44

spectrum are removed where the sum over the Euclidean distance of at least
100 neighbouring frames is below 10.

3.4 Summary

In this chapter different methods for statistical modeling of feature frames
have been proposed. In the further course of this thesis, the following statis-
tical models will be used (modelling A):

• Single Gaussians, denoted ΦA

• Gaussian mixture models, denoted ΘA

Two different training methods for Gaussian mixture models with k Gaussian
components are introduced:

• kMEANS, where k initial clusters are formed using the k-means algo-
rithm. These initial clusters are then re-estimated with EM iterations.

• MAS, where one initial cluster is alternately split and merged following
certain guidelines.

45

Chapter 4

Distances

In the features chapter, features were extracted to form multidimensional
feature vectors. In the model chapter, probability density functions were
estimated based on the feature frames of each song. This chapter is about the
question of how distances can be computed between the probability density
functions of two songs in the same feature space.

4.1 Introduction

The choice of the distance mainly depends on the underlying model. If each
song is represented by only one vector, a simple Euclidean distance might
work. For single Gaussians, one might suggest choosing, e.g. relative en-
tropy (Kullback-Leibler divergence) to compute distances between models.
For GMMs, there is no closed form of the relative entropy. Therefore, for ex-
ample, it is necessary to find a mapping between single Gaussian components
in order to then compute a distance based on that mapping and the space
between the pairs of Gaussian components which the mapping suggests.

4.1.1 Distances between representative vectors

In [LO04], each song is represented by a 35-dimensional feature vector con-
sisting of MFCCs, centroid, flux and some more features, which are com-
puted from a 30 secs piece from each track. Distances between feature vec-
tors, which are mean-subtracted and standard deviation normalised are then
computed with the Euclidean distance.

46

4.1.2 Distances between single Gaussians

Kullback-Leibler divergence

[ME05] extracts MFCCs from songs and models the distribution of a song
with a single Gaussian. Then, distances between probability density func-
tions are calculated using Kullback-Leibler divergence. Those distances are
then used to carry out artist identification with support vector machines.

Likelihood ratio hypothesis test

[TTK05] use a likelihood ratio hypothesis test to decide whether an obser-
vation was rather produced by a certain mood model (happy, melancholic,
aggressive) or not. This is used for mood-based navigation through music
collections.

4.1.3 Distances between GMMs

Log-likelihood distance

The log-likelihood distance can be used for all kinds of probability density
functions, where the log-likelihood that the feature frames from A were gen-
erated by the model from B is computed. In [AP02], this distance is used in
a timbre similarity task. Instead of using the original samples from A, the
model from A is used to generate samples.

kNN distances

In the kNN distances, distances between single Gaussians of two GMMs are
known. Using the sum of the distances between each Gaussian ΦA ∈ Γ(ΘA)
to the k nearest neighbour Gaussians from ΘB is a distance based on a simple
mapping between Gaussians of two probability density functions.

Earth mover’s distance

A more complex mapping, derrived from the solution of a transportation
problem, is used in the earth mover’s distance, used in [LS01b] to compute
distances between GMMs, trained with MFCC feature frames which are later
used to generate playlists.

47

4.2 Distances on single Gaussians

ΦA is given by its mean µA and its covariance matrix ΣA. Based on those
parameters, distances between single Gaussians can be computed.

4.2.1 Euclidean distance

Considering only the means of two distributions and disregarding the scatter,
a reasonable distance is the Euclidean distance:

DEUCL(ΦA,ΦB) =
√

(µA − µB)′(µA − µB)

Since we disregard the scatters, very different distributions can still be very
close as long as their means are close.

4.2.2 Kullback-Leibler distance

Let p and q be two probability distributions. The Kullback-Leibler divergence
between p and q is defined as

D(p‖q) =

∫ ∞
x=−∞

p(x)log
p(x)

q(x)
.

It is a measure of the inefficiency of assuming that the distribution is q when
the true distribution is p. D(p‖q) = 0 if p = q. The Kullback-Leibler
divergence is not symmetrical. As the distance is required between ΦA and
ΦB be the same than the distance between ΦB and ΦA, we have to define a
modified Kullback-Leibler divergence

DKL(ΦA,ΦB) = D(ΦA‖ΦB) +D(ΦB‖ΦA).

The modified Kullback-Leibler distance will be called the Kullback-Leibler
distance (KL). However, the KL distance is no metric, since the triangle in-
equality generally fails.

The following equation applies for multivariate Gaussian distributions [Kul59]:

DKL(ΦA‖ΦB) =
1

2
log
|ΣB|
|ΣA| +

1

2
trΣA(Σ−1

B −Σ−1
A)+

1

2
trΣ−1

B (µA−µB)(µA−µB)′

48

If the coefficients are statistically independent and we can use diagonal co-
variances, the relative entropy can be reduced to an equation which allows a
simpler computation of the KL distance:

D(ΦA‖ΦB) +D(ΦB‖ΦA) =
1

2
log
|ΣB|
|ΣA| +

1

2
log
|ΣA|
|ΣB|︸ ︷︷ ︸

(1)

+
1

2
tr(ΣA(Σ−1

B − Σ−1
A)) +

1

2
tr(ΣB(Σ−1

A − Σ−1
B))

︸ ︷︷ ︸
(2)

+
1

2
tr(Σ−1

B (µ1 − µ2)(µ1 − µ2)′) +
1

2
tr(Σ−1

A (µ2 − µ1)(µ2 − µ1)′)
︸ ︷︷ ︸

(3)

1.) 1
2

log |ΣB ||ΣA| + 1
2

log |ΣA||ΣB | = 1
2
(log |ΣB| − log |ΣA|+ log |ΣA| − log |ΣB|) = 0

2.) 1
2
trΣA(Σ−1

B − Σ−1
A) + 1

2
trΣB(Σ−1

A − Σ−1
B)

= 1
2

∑dim
i=1 σ

2
Ai(

1
σ2
Bi
− 1

σ2
Ai

) + 1
2

∑dim
i=1 σ

2
Bi(

1
σ2
Ai
− 1

σ2
Bi

) = 1
2

∑dim
i=1(

σ2
Ai

σ2
Bi

+
σ2
Bi

σ2
Ai
− 2)

3.) 1
2
tr(Σ−1

B (µA − µB)(µA − µB)′) + 1
2
tr(Σ−1

A (µA − µB)(µA − µB)′)
= 1

2

∑dim
i=1(1

σ2
Bi

(µAi − µBi)2 + 1
σ2
Ai

(µAi − µBi)2)

= 1
2

∑dim
i=1((1

σ2
Bi

+ 1
σ2
Ai

)(µAi − µBi)2),

where dim is the dimension of the feature space. Putting everything together
leads to the KL distance for models with diagonal covariance matrices:

Ddiag
KL (ΦA,ΦB) = D(ΦA‖ΦB) +D(ΦB‖ΦA) =

1

2

dim∑
i=1

(
σ2
Ai

σ2
Bi

+
σ2
Bi

σ2
Ai

− 2 +
(µAi − µBi)2

σ2
Bi

+
(µAi − µBi)2

σ2
Ai

) =

1

2

dim∑
i=1

(
σ2
Ai

σ2
Bi

+
σ2
Bi

σ2
Ai

− 2 + (
1

σ2
Bi

+
1

σ2
Ai

)(µAi − µBi)2),

the symmetric Kullback-Leibler distance between two multivariate normal
distributions of A and B, where µAi, µBi are the mean values of dimension i
and σ2

Ai, σ
2
Bi are the variances of dimension i.

49

4.2.3 Likelihood ratio hypothesis test

[GSR91] used a likelihood ratio hypothesis test (LRHT) to segregate speech
from different speakers. The whole audio file is segregated in small seg-
ments which are then re-grouped, according to the distances between two
neighbouring segments. Using the likelihood ration hypothesis test did not
require any prior knowledge of the speakers.
Let LA = L(x; ΦA) be the likelihood that feature vector sequence x was gener-
ated by ΦA, and LB = L(y; ΦB) be the likelihood that feature vector sequence
y was generated by ΦB. Then the null hypothesis is L0 = L(x ∪ y; Φ), the
likelihood that both feature vector sequences were generated by the same
model Φ and the alternate hypothesis is L1 = LALB = L(x; ΦA)L(y; ΦB),
the likelihood that both feature vector sequences were generated by different
models. In this scenario, where x = FA, and y = FB:

λ =
L0

L1

=
L(FA ∪ FB; ΦA∪B)

L(FA,ΦA)L(FB,ΦB)

is the likelihood ratio, where ΦA∪B is the maximum likelihood estimate given
the samples FA ∪ FB. If we use the probability density functions of the
distributions, we obtain that λ can be written as:

λ = λµλΣ.

In this equation, λµ is the likelihood ratio that tests the hypothesis that the
two segments were generated by the same Gaussian model with the same
covariance matrix with no assumption being made about the equality of the
means and λΣ is the likelihood ratio that tests the hypothesis that the two
segments are from the same Gaussian model with the same means disregard-
ing the covariance matrices. [GSR91] only to used λΣ which can be expressed
as:

DLR(ΦA,ΦB) = λΣ =

(
|ΣA|α|ΣB|1−α

|αΣA + (1− α)ΣB|

)N

,

where NA and NB are the number of feature frames used for estimating ΦA
and ΦB respectively, N = NA +NB, and α = NA

N
.

Remark: In this thesis, only λΣ was used, according to what [GSR91] sug-
gests, where similar results where obtained for λµ and λΣ, but λΣ is preferred
since it is invariant to the time-invariant filter of the speech. It is possible
that

λµ =
(

1 +
NANB

N2
(µB − µB)′W−1(µA − µB)

)−N
2

50

or a combination of λΣ or λµ work better for this music model similarity
task. This requires further investigation.

4.3 Distances on Gaussian mixture models

The distances operating on GMMs are introduced in this section. They can
be computed using the parameters of a GMM from e.g. A, ΦA which are the
means muA〉, the covariance matrices ΣA〉 and the distribution weights cA〉.

4.3.1 Log-likelihood distance

The probability of a given feature frame x generated by ΘB is L(x; ΘB),
which is equal to NB(x), since ΘB is a Gaussian mixture model. The prob-
ability of a feature frame sequence X = (x1, x2, . . . , xn) generated by ΘB is∏n

k=1 L(xk; ΘB). Using the log-likelihood instead leads to:

LL(X; ΘB) = log
n∏

k=1

L(xk; ΘB) =
n∑

k=1

logL(xk; ΘB) =
n∑

k=1

logNB(x)

Having two songs A and B, feature frames from both songs FA and FB,
and maximum likelihood estimates ΘA and ΘB, a symmetric log-likelihood
distance [AP02] between both probability density functions can be expressed
with:

DLL(ΘA,ΘB) = LL(FA; ΘA) + LL(FB; ΘB)− LL(FA; ΘB)− LL(FB; ΘA)

The self similarities LL(FA; ΘA) and LL(FB; ΘB) have been added for nor-
malisation purpose. [AP02] is saying, that this is the most precise and logical
way to compute a distance. A major drawback on the other hand is that the
feature frames from both songs are needed every time a distance is computed.
This requires either an extraction or storing of the frames, which is either
very time-consuming or requires a lot more storage compared to only storing
the model parameters of the probability density functions. They suggest not
using the original frames, but randomly sampling generic frames from the
appropriate model.

4.3.2 kNN distances

The distances used for single Gaussians cannot be easily adapted to work
with GMMs. This means there is no closed form for the relative entropy be-
tween GMMs. The distance between single Gaussian components from ΘA

51

Figure 4.1: The sum of all paired distances between the mean of one light
Gaussian component to all the means of the dark Gaussian components is
almost the same for both cases with two close distributions on the left and
two distant distributions on the right.

and ΘB can be computed, using e.g. Euclidean Distance or Kullback-Leibler
Distance, what is missing is a mapping between components from ΘA to ΘB.

Let Γ(ΘA) be the set of Gaussians of ΘA, and Φx ∈ Γ(ΘB) a certain Gaus-
sian from ΘB. Then kNN(k,Φx,Γ(ΘB), D) denotes the set of the k nearest
Gaussians to Φx in ΘB, using distance D, which can be either the Euclidean
distance or Kullback-Leibler distance.

A very simple distance is to sum over all paired distances between all Φx ∈
Γ(ΘA) and Φy ∈ Γ(ΘB), but cases where the distance between two very close
models and two models more apart from each other would yield to compara-
ble distances are easy to generate (Figure 4.1).

Another idea is adding up the distances between each Φx ∈ Γ(ΘA) to its
nearest Gaussian Φy ∈ Γ(ΘB). A drawback of this approach is, that outly-
ing Gaussians from the destination distribution are unlikely to be considered
(Figure 4.2, left). Using a symmetric approach, this could be solved (Figure
4.2, left and right).

DKL
kNN(ΘA,ΘB) is the kNN distance with Kullback-Leibler distance between

52

Figure 4.2: The left side shows the distances to the closest neighbour of each
light Gaussian, the right side shows the distances to the closest neighbour
of each dark Gaussian. Using both, each Gaussian is taken into account at
least once.

Gaussian components:

DKL
kNN(ΘA,ΘB) =

∑
Φx∈X

∑

Φy∈Y K
DKL(Φx,Φy) +

∑
Φy∈Y

∑

Φx∈XK

DKL(Φy,Φx)

and DEUCL
kNN (ΘA,ΘB) is the kNN distance with Euclidean distance between

Gaussian components:

DEUCL
kNN (ΘA,ΘB) =

∑
Φx∈X

∑

Φy∈Y K
DEUCL(Φx,Φy) +

∑
Φy∈Y

∑

Φx∈XK

DEUCL(Φy,Φx)

where X = Γ(ΘA) are the Gaussians of ΘA, Y K = kNN(k,Φx,Γ(ΘB), D) are
the k nearest Gaussians to Φx in ΘB, Y = Γ(ΘB) are the Gaussians of ΘB,
XK = kNN(k,Φy,Γ(ΘA), D) are the k nearest Gaussians to Φy in ΘA, and
D is DKL and DEUCL respectively.

4.3.3 Earth mover’s distance

In [RTG98] the Earth Mover’s Distance (EMD) is introduced to compute
distances between signatures. Applied to our task, computing distances be-

53

Figure 4.3: Earth mover’s distance: earth (probability mass) from the sup-
plying Gaussians has to be moved to the consuming Gaussians.

tween GMMs, the earth mover’s distance can be defined the following way:

Dp
EM(ΘA,ΘB) =

∑
Φx∈X

∑
Φy∈Y

Dp(Φx,Φy)F (Φx,Φy),

where X = Γ(ΘA), Y = Γ(ΘB), Dp is DKL or DEUCL, and F is the flow from
ΦA to ΦB. The flows can be gained from the solution of a transportation
problem [AMO93], where the suppliers are the Gaussians of ΘA with their
distribution weights cAi as supply, the consumers are the Gaussians of ΘB
with the capacity of their distribution weights cBi, and the cost of shipping
supply from Φx to Φy is Dp(Φx,Φy).

Remark: In the original description of the earth mover’s distance, the dis-
tance is normalised by the sum of all flows which is equal to the sum of the
capacities of the consumers. Using earth mover’s distance for distributions,
this sum equals 1. Furthermore, since the overall supply and the overall ca-
pacity is 1, the feasibility condition that the total demand never exceeds the
total supply is always met.

4.4 Summary

In this chapter, several ways to compute distances between probability den-
sity functions from A and B are introduced.

54

• Based on single Gaussians

– Euclidean distance DEUCL(ΦA,ΦB)

– Kullback-leibler distance DKL(ΦA,ΦB)

– Likelihood ratio hypothesis test DLR(ΦA,ΦB)

• Based on Gaussian mixture models

– Log-likelihood distance DLL(ΘAΘB)

– kNN distance Dp
kNN(ΘAΘB)

– Earth mover’s distance Dp
EMD(ΘAΘB),

where p is the distance on the single Gaussians, which can be the
Euclidean distance or the Kullback-Leibler distance.

55

Chapter 5

Song selection and automatic
feature selection

In the previous chapters it has been shown how features can be extracted,
statistical models can be estimated, and distances on statistical models can
be computed. To create a playlist, songs have to be selected. This chapter is
about creating playlist, using song selection strategies and a distance func-
tion, and about adapting the distance function to the user.

At a certain point during the playlist generation process, the songs in the
dataset can be divided into 3 groups.

• Positive rated songs (+rated, P). This group contains all the songs
that have been already proposed by the system and the user agreed
with the choice by listening to the songs.

• Negative rated songs (-rated, N). This group contains all the songs
that have been already proposed by the system and the user disagreed
with the choice by skipping the songs.

• Candidate songs C. This group contains all the songs that have not yet
been proposed by the system.

The task of the song selection is to choose a song from C. Ideally, the chosen
song is accepted by the user, and he enjoys listening to it. So basically, the
goal of the song selection is to choose a song that is predicted to be accepted
by the user. Predictions can be made by incorporating P and N .

The described song selection is basically a classification task. The songs
in C have to be divided into 2 classes. Songs the user is supposed to accept

56

and songs the user is supposed to reject. For a classification task, a distance
function is needed. Depending on the classification approach, this distance
function is explicitly or implicitly used. Besides the song selection and the
distance function used for song selection, this chapter is about adapting the
distance function to the user. An automatic feature selection algorithm is
used to customise the distance function to only work on a feature subset, the
one that is supposed to work best for the user.

This chapter is divided into the following parts. In the introduction section,
work related to classification in music information retrieval is introduced.
The second section is about the used distance function, where distances on
different feature spaces like they were introduced in the previous chapter
are combined. The used song selection approach is introduced in the third
section, the final section is about automatic feature selection.

5.1 Introduction to classification

This chapter offers an introduction to classification approaches used in music
information retrieval. For each approach, an example is given of how this
machine learning method could be used to perform song selection. Further-
more, the used approach is introduced in more detail.

As already mentioned, P and N are used to divide C into two classes, those
songs that are predicted to be accepted by the user and those songs that
are predicted to be rejected by the user. From the class of songs that are
predicted to be accepted by the user, one song has to be chosen. Since it can-
not be assumed that the classification approach perfectly separates the songs
into those two classes, it is useful to choose a song with a high prediction to
be accepted by the user.

5.1.1 Closest neighbour

In [LO04], the most similar song to a given song is the song which has the
smallest distance to the given song. For playlist generation, one could use
the closest song to any of the songs from P to be the next recommendation.

5.1.2 K-nearest neighbours

Having different classes, k-nearest neighbours (kNN) assigns any given c ∈ C
to the class which most of its k nearest neighbours belong to. In [TC02]

57

kNN is used to perform genre classification. Playlists could be generated
by defining two classes P and N and then assigning each candidate song to
the class which has more nearest neighbours of the k neighbours. One of
the candidate songs with the most nearest neighbours in P could then be
recommended.

5.1.3 Distance function and song selection strategies

[PPW05a] uses a distance function and song selection strategies to generate
playlists. Knowing P and N , the song selection strategies compute distances
between candidate songs and already classified songs and then recommend
one of the candidate songs.

5.1.4 Statistical classifiers

Statistical classifiers perform classification in assigning a given observation x
to the class with the highest likelihood. Likelihoods that a given observation
x belongs to class j can be gained from the prior probability of the observation
p(x), the probability of the observation given the class model p(x|Θj), and
the probability of the class p(Θj) with Bayes rule:

p(Θj|x) =
p(x|Θj)p(Θj)

p(x)
,

where Θj is the maximum likelihood estimate for the observations of class j.
The class with the highest likelihood is then chosen.

argmax
j

p(Θj|x) = argmax
j

p(x|Θj)p(Θj)

p(x)
= argmax

j
p(x|Θj)p(Θj)

[Pee02] classifies sounds in that way. Playlist generation could be performed
by building maximum likelihood estimations ΘP and ΘN , and then choosing
a song that has a high likelihood for class P and a low likelihood for class
N .

5.1.5 Linear discriminant analysis

Linear discriminant analysis (LDA) is used to perform a feature space trans-
formation having information about the class affiliation of the feature sam-
ples. In the transformed feature space, features from different classes can be
better discriminated. This is used in [LT03] for genre classification. Using
two classes for playlist generation, the feature space would be reduced to one
dimension, and, for instance, the song would be chosen that is close to the
songs of P and far away from the songs of N .

58

5.1.6 Artificial neural networks

Artificial neural networks (ANN) are able to approximate any non-linear
function. [SSWW98] represents each song by one feature vector. An ANN is
trained with the vectors from the training data. This ANN is then used to
perform genre classification. Having an ANN with a binary output trained
with the samples from P returning 1 and with the samples from N returning
0, the ANN could be used as a predictor given a song c ∈ C returning 1 if
the user is supposed to like it or 0 if not.

5.1.7 Support vector machines

Support vector machines (SVM) try to learn the course of a border between
two classes in an implicitly transformed feature space while also maximising
the distance from all observations to the border. In [SM05], SVMs are used to
classify audio files into genres. Playlist generation could be done by training
a SVM with the already classified samples from P and N and then picking
a c ∈ C from the right side of the border.

5.1.8 Discussion of the classifiers

The ”distance function and song selection strategies” approach is used in this
thesis.

Based on a distance function, which will be further explained in 5.2, the
song selection strategies compute distances from candidate songs to already
classified songs to select one of the candidate songs and add it to the playlist.
The song selection strategies are explained in 5.3 in more detail.

The used song selection strategies combine abilities of the closest neighbour
classifier and the k-nearest neighbours classifier. It is a rather simple ap-
proach, but of course the simplicity strongly depends on the chosen selection
strategy. A drawback of some of the other proposed classifiers is that the
training of these classifiers is computationally more intensive, and, since user
feedback should be incorporated, the training cannot be done in advance.
An advantage of the used approach is that this classifier is able to perform
reasonable classification with only little training data. If, for example, ANNs
or SVMs have been trained once, the classification process is quicker than
computing distances between models. But the distances between songs on a
certain feature space can be pre-computed and stored somewhere, and then
easily accessed when required.

59

Remark: It is not claimed that the chosen classifier is the best way to
perform playlist generation. A comparative study on classifiers for playlist
generation would be an interesting investigation. Furthermore, classifiers
could be combined. An LDA transformation trained on 2 classes (P and N)
could be used to transform the feature space to a one-dimensional space on
which another classifier could then be used.

5.2 The global distance function

Distances between observations are the basic tool in a classification task. For
some classifiers like kNN, a distance function is explicitly used, classifiers like
ANNs oder SVMs use distances implicitly for their classification task.

The distance function used in this thesis combines the distances between
two songs on different feature spaces. Therefore, and in analogy to [Pam06],
a weighted distance function has been chosen to combine different features.

Feature extraction, statistical modelling and the computation of all paired
distances can be done in advance. Using m features and n songs, this results
in m symmetrical n× n matrices M , each storing all the paired distances on
a certain feature space. Since all the distances are known before the actual
playlist generation starts, each of the distance matrices can be variance nor-
malised. In variance normalisation, all paired distances on a certain feature
space and a certain distance are normalised so that the distribution of all
paired distances has zero mean and a variance of 1. Variance normalisation
is required since the distances on models operating on different features have
different ranges. This is due to the features having different ranges. While
flatness is always between 0 and 1, other features, e.g. the used unnormalised
Shannon entropy, can reach much larger values. This could be also rectified
by normalising the feature ranges, but then the resulting distances would
not be so robust for outliers caused by the modelling stage. To summarise,
variance normalisation rescales the distributions of the distances in such a
way that their mean is 0 and variance is 1, which means that most of the
observations should be between -1 and 1.

Using n songs and a n × n matrix Mq, containing all paired distances, this
normalisation is performed in the following way:

M ′
q(i, j) =

Mq(i, j)− µq
σ2
q

,

60

where q is the current feature space (MFCC, CENT, BAND, SKEW, KURT,
FLAT, CREST, SHAN, REN, FLUX), µq is the mean of all matrix entries
and σ2

q is the variance of all matrix entries in this feature space. Let M ′
q

be the variance normalised distance matrix of feature space q using the best
distance for that feature space. All the different distance matrices are now
combined by adding them onto each other with binary weights, the final
matrix is again variance normalised:

MG
ω = f(

∑
q∈Q

ω(q)M ′
q),

where ω(q) is a binary weight that denotes whether feature q is used in the
global distance function or not, f is the variance normalisation function, and
ω ∈ Ω, where Ω is the set of all possible combinations of feature spaces. Using
binary weights reduces the weighted distance function to a distance function
combining distances of a subset of the complete feature space. Using more
than just 0 and 1 as values for the weights would be preferable but could not
be realised since the approach to find appropriate weights (see section 5.4)
is a brute force approach which would require too much time. Without the
second variance normalisation stage, distances on different feature subsets
would not be comparable. Having 10 different feature spaces, |Ω| equals
210 − 1. The choice of the best ω is performed by the automatic feature
selection that will be explained later in 5.4.

5.3 Song selection strategies

The task of the song selection is to select a song r from the candidate songs
C. r is the song that is presented next to the user, and is then rated by the
user by either being listened to or skipped. The best choice of r is the song
with the highest prediction to be accepted by the user.

All the experiments start with a given seed-song s, a song defined by the
user whereby the system is supposed to play songs similar to the seed-song.

[LS01a], recommends playing the n closest songs to a given seed-song. This
strategy will be used in this thesis and will be denoted by S0.

[Log02] uses automatic relevance feedback. The m closest songs to each
of the n closest songs to a given seed-song are computed. Each song is scored
and then all the scores are combined to create a final playlist. Compared to
just playing the n closest songs (S0), it is reported that the performance is

61

slightly worse.

In [Log04] several approaches for finding a song similar to a given song set are
compared. They either choose the song that has the lowest average distance
to the songs in the song set, the song that has the lowest median distance
to the songs in the song set, or the song that has the lowest distance to its
closest song in the song set. They report that the average distance performs
worst and the choice of the candidate song with its closest song set neigh-
bour performs best. The choice of the candidate song with its closest song
set neighbour (where in this thesis the song set will be P) will be investigated
in this thesis and be denoted selection strategy S2.

[PPW05a] suggests two more song selection strategies. One is to play the
song that is the closest neighbour to the song that was accepted last. This
one will be referred as S1 in this thesis. The one that will be referred as
S3 selects the candidate song that has the closest +rated neighbour from a
subset of the candidate songs. This subset includes all candidate songs that
have a closer +rated neighbour than their closest -rated neighbour. Their
closest neighbour among the already classified songs was accepted by the
user. If none of the candidate songs satisfies that requirement, the candidate
song with the best ratio of the distances to the closest +rated and -rated
neighbour is chosen. In [PPW05a], S1 and S3 are further compared with S0
and S2, the order is S0, S1, S2, S3, where S3 performs best.

Besides the selection strategies S0 to S3, two additional types of selection
strategies have been developed and evaluated, S4 and the kNN selection
strategies.

Several definitions are needed for the explanation of the song selection strate-
gies:

Let P be the accepted songs and N be the rejected songs, C the candi-
date songs set, and p, n and c be representatives respectively.

s is the given seed-song, r the song that is recommended by the system.
U(+) are the songs the user listens to and U(−) are the songs the user skips.
U(+) and U(−) are only used for the evaluation and not known to the sys-
tem. STOP is the stop condition, that will be P reaching 20 songs in the
experiments later.

1NN(p, C) returns the nearest neighbour in the current feature space (de-

62

pending on the global distance function) to p in C and 1NN(P , C) returns c
from C that has the nearest neighbour in P .

d(p, c) denotes the distance between p and c. score(p) denotes the score
of song p. The distance will always be the global distance function MG

ω ,
where ω is either the initial feature weights configuration or the last feature
weights configuration determined by the feature selection.

In the initial situation, P contains only the seed-song s, N is empty, and
C contains all songs from the database except s. The following song selection
strategies are used:

• S0: The nearest neighbours to the seed-song are played.

• S1: The nearest neighbour to the last song that has been accepted is
played.

• S2: The nearest neighbour to any of the accepted songs is played.

• S3: The nearest neighbour to any of the songs that have a closer +rated
neighbour than their closest -rated neighbour is played.

• S4: The nearest neighbour to the songs with the best score is played.

• kNN: The candidate song with the best ranklist score is played.

5.3.1 Using only the seed-song: S0

Song selection S0 (see Algorithm 3) only uses the global distance function
to generate a playlist, and does not involve the already-classified songs in
the decision. S0 simply plays songs sorted according to their similarity to
the seed-song. When a song is skipped, the system continues playing songs
similar to the initial seed-song.

5.3.2 Using the last accepted song: S1

Song selection S1 (see Algorithm 4) for selection of the next song from all the
candidate songs in C is easy, too. It proposes the closest neighbour to the
last song, that has been classified positive. This selection approach is very
vulnerable to songs which are accepted by the user although they are similar
to many songs the user dislikes. This songs are called ”bad positives”.

63

Algorithm 3 Selection 0

play s
while !STOP do
r ← 1NN(s, C)
play r
if r ∈ U(+) then
P ← P ∪ r

else
N ← N ∪ r

end if
C ← C \ r

end while

Algorithm 4 Selection 1

play s
r ← s
while !STOP do
r ← 1NN(r, C)
play r
if r ∈ U(+) then
P ← P ∪ r

else
N ← N ∪ r

end if
C ← C \ r

end while

5.3.3 Using information from all accepted songs: S2

Selection S2 (see Algorithm 5) is similar to selection S1. The only differ-
ence is it does not return the closest neighbour of the last positive example
but the closest neighbour to any of the positive examples. This selection is
still vulnerable to ”bad positives”, since N is not regarded while choosing
r. Nevertheless, better performance is expected as not only the last positive
song is regarded while choosing r, but P in complete.

Remark: In later experiments, it is hypothesised that the user does not
change his musical preference during a playlist generation process. For users
that change their musical preference while they are listening to music recom-
mended by the system, selection S1 could work better than S2.

64

Algorithm 5 Selection 2

play s
r ← s
while !STOP do
r ← 1NN(P , C)
play r
if r ∈ U(+) then
P ← P ∪ r

else
N ← N ∪ r

end if
C ← C \ r

end while

5.3.4 Using information from all accepted and rejected
songs: S3

Selections S1 and S2 only regard positive examples. Selection 3 (see Algo-
rithm 6) regards P as well asN while selecting r. It is a two-stage process. In
the first stage, those candidate songs with their nearest neighbour in N are
disregarded. From all remaining candidate songs C ′ the one with the nearest
neighbour in P is chosen. If C ′ = ∅, from all candidate songs C the one is cho-
sen that has the best ratio of distance to the nearest positive neighbour and
distance to the nearest negative neighbour. This happens more frequently
than expected, which is an indication of the deficiency of the distance mea-
surement. Since our distances are variance normalised, negative distances
are likely to occur. Before computing the ratios, an offset is added to all
distances that are used while ratios are computed. The value of the offset is
chosen so that the smallest distance used for ratio computation is 1.

5.3.5 Using the most promising accepted song: S4

In the selection strategies S1 - S3, a song from P is chosen to lead to the
next song which the system then plays. None of those strategies considers
the information as to whether a song has led to more positive or negative
songs. But this is additional information which the immediate user feedback
provides and it might be useful. Selection strategy S4 (see Algorithm 7) uses
solely this information. As soon as a song is put into P , an initial score of
0 assigned to it. This score is increased by 1 every time the song leads to
another positive song. Every time the songs leads to a negative song the

65

Algorithm 6 Selection 3

play s
r ← s
while !STOP do
C ′ ← ∅
for all c ∈ C do

if d(c, 1NN(P , C)) < d(c, 1NN(N , C)) then
C ′ ← C ′ ∪ c

end if
end for
if C ′ 6= ∅ then
r ← 1NN(P , C ′)

else
r ← argminc∈C

d(c,1NN(P,C))
d(c,1NN(N ,C))

end if
play r
if r ∈ U(+) then
P ← P ∪ r

else
N ← N ∪ r

end if
C ← C \ r

end while

score is decreased by 1. In each selection step the nearest candidate song to
the song with the highest score is played.

Just regarding how many accepted and rejected suggestions a song from
P leads to, the song with the highest score is the most promising to lead to
another accepted song.

5.3.6 Using ranklists with accepted and rejected songs:
kNN selections

Unlike strategies S1 to S3, the kNN selections (algorithm 8) not only consider
the nearest +/- neighbour for the decision about which song to propose next.
The kNN selections take a look at the ranking positions of their k nearest
positive or negative neighbours depending on the scoring function sc(x). An-
other difference between kNN selection and selections S0 to S4 is that S0 to
S4 run completely deterministically. In contrast kNN selection chooses one

66

Algorithm 7 Selection 4

play s
score(s) = 0
while !STOP do
x = argmaxp∈P score(p)
r ← 1NN(x, C)
play r
if r ∈ U(+) then
P ← P ∪ r
score(x) = score(x) + 1

else
N ← N ∪ r
score(x) = score(x)− 1

end if
score(r) = 0
C ← C \ r

end while

song from a class of songs by random from the class of candidate songs that
have the best score which is likely to contain more than one song.

Ranklist(c,P) is a function that returns a list L containing the elements
of P ordered by their distance to c and sc(x) is the score assigned to a given
ranklist x. random(C) is a function that picks a random song from the song
set C.

The algorithm uses two parameters. One is the function that gives the score
of a candidate song, the other one is k which is a parameter of the scoring
function. 4 different scoring functions are used:

• knpn : the score function returns the position of the kth positive classi-
fied element in L, the k nearest positive neighbour (knpn). An example
list L = (p, n, p, p, n, n, n, n, p, p, n) would be scored 4 for k = 3 and 9
for k = 4.

• knpnS : the only difference between knpnS and knpn is that the sum is
added over the positions of the positive neighbours. For instance, list
L = (p, n, p, p, n, n, n, n, p, p, n) would be scored 8 for k = 3 and 17 for
k = 4.

• knnn : the score function returns the position of the kth negative clas-
sified element in L, the k-nearest negative neighbour (knnn). For the

67

Algorithm 8 kNN Selections

play s
r ← s
while !STOP do

for all c ∈ C do
score(c) = sc(ranklist(c,P))

end for
x← argmaxc∈C score(c)
y = score(x)
C ′ = ∅
for all c ∈ C do

if score(c) = y then
C ′ ← C ′ ∪ c

end if
end for
r ← random(C ′)
play r
if r ∈ U(+) then
P ← P ∪ r

else
N ← N ∪ r

end if
C ← C \ r

end while

example list L = (p, n, p, p, n, n, n, n, p, p, n) the score would be 6 for
k = 3 and 7 for k = 4.

• knnnS : like for knpn and knpnS, the only difference between knnn and
knnnS is that the score from knnnS is the sum over the positions of
the k nearest negative neighbours of our candidate song. The scores of
L = (p, n, p, p, n, n, n, n, p, p, n) would be 13 for k = 3 and 20 for k = 4.

For both knpn and knpnS, lower scores are better. For knnn and knnnS,
higher scores are better. Therefore, knnn and knnnS scores are inverted. As
a result, the best choice is always from the class with the candidate songs
that get the lowest score assigned.

Table 5.1 shows an example, where each of the four strategies leads to a
different result for k = 3. 3npn would choose c1 or c2 as next song, 3npnS
would chose c1 as next song, 3nnn would chose c4 as next song and 3nnnS

68

would chose c1 or c4 as next song. In contrast to the sum-strategies, knpn

candidate L(c) 3npn 3npnS 3nnn 3nnnS

c1 (p,p,n,p,n,n,p) 4 7 6 14
c2 (p,n,p,p,n,n,p) 4 8 6 13
c3 (p,n,p,n,p,n,p) 5 9 6 12
c4 (p,p,n,n,p,p,n) 5 8 7 14

Table 5.1: Comparison of of the 4 strategies for 4 different lists, the best
scores are marked bold.

and knnn only regard the position of the kth element, whereas knpnS and
knnnS favour those lists where the closer neighbours of the searched kind
(positive or negative) are closer, too. knpnS and knnnS return k times the
arithmetic mean of the first k positions, knpn and knnn return the median
position of the 2k − 1 - closest elements.

knpn and knpnS lead to suggestions r which are close to those songs that
have already been classified positive, whereas knnn and knnnS return candi-
dates which are far away from those songs that have already been classified
negative.

5.4 Automatic feature selection

So far, distances are computed using the global distance function MG
ω . This

section is about the choice of ω which is assumed to make the global distance
function incorporate the subset of the complete feature space that leads to
playlists generated with least skips for a user with certain demands to the
playlist. ω is chosen automatically. This is done in a brute force approach,
where each ω ∈ Ω is scored, incorporating the songs already rated and the ω
with the best score is further used.

[LST04] hypothesises ”that there might exist certain subsets from the orig-
inal feature vector that could be more salient for a certain individual as he
valuates the perceived similarity of two music pieces”. Using musical surface
features and the extracted tempo of a song, resulting in a 43 dimensions,
M different radial basis function networks (RBFN) are trained, each using a
different subset of the feature set. Each RBFN then returns the most similar
song to a given song, and the user rates the returned songs. According to the
user rating, the RBFN parameters are updated. At the end of the training
stage, the RBFN and the corresponding feature subset that exhibited the

69

most effective performance is chosen. It is reported, that this implemen-
tation verifies the initial hypothesis and exhibits significant improvement in
perceived music similarity. This consolidates the assumtion that the distance
function used for playlist generation should be user-adaptive.

[MF04] extracts 109 different features from midi files to perform genre clas-
sification. In a multiple stage process, genetic algorithms are used amongst
others to reduce the feature space and to find feature weights. Genetic algo-
rithms could be used in this thesis to considerably speed up the automatic
feature selection. The resulting ω will not necessarily be the best, but still a
good approximation.

[Pee02] uses discriminant analysis to reduce the 81 initial features to 27
and mutual information to reduce the 81 initial features to 20. Applied in
a sound classification task, mutual information worked slightly better than
discriminant analysis, but they both work slightly worse than using all 81
descriptors. That on the other hand is compensated by a 75% reduction
of space dimensionality and an equivalent gain of computation-time. This
essentially indicates that it is possible to reduce the feature space dimension-
ality a lot while the quality of the feature space concerning a certain task
stays almost the same. It is assumed that adding features to the feature set
which describe song characteristics that are not covered by the other features
would lead to better playlists for those of the users who use those character-
istics for separating accepted songs from rejected songs. Adding more and
more features would make the dimensionality of the feature space eventually
too large to be processed in a reasonable amount of time. A reduction of
the dimensionality without loosing much of the quality of the features for a
certain user therefore might be very useful for playlist generation.

As already mentioned, in this thesis a brute force approach is used to find
a subset of features on which the +rated songs and the -rated songs can
be separated best. Each feature combination described by ω ∈ Ω is scored,
using the already classified songs and the best feature combination is chosen.
Three aspects are investigated in an automatic feature selection step, the
compactness of P , the compactness of N and the space between P and N .
The detailed procedure of automatic feature selection can be seen in Algo-
rithm 9 which uses the following variables:

s+ is the sum over all distances from each positive song p to its closest
neighbour in P . Low values indicate that class P is compact under the dis-
tance measurement from the subset which is described by ω.

70

Algorithm 9 Automatic feature selection

for all ω ∈ Ω do
set global distance function to MG

ω

s+ ← 0
s± ← 0
for all p ∈ P do
s+ ← s+ + d(p, 1NN(p,P \ p))
s± ← s± + d(p, 1NN(p,N))

end for
s− ← 0
s∓ ← 0
for all n ∈ N do
s− ← s− + d(n, 1NN(n,N \ n))
s∓ ← s∓ + d(n, 1NN(n,P))

end for
score(ω) = wps

+ + wns
− − wpn

2
(s± + s∓)

end for
return ω with smallest score(ω)

s− is the sum over all distances from each negative song n to its closest
neighbour in N . Low values indicate that class N is compact under the
distance measurement from the subset which is described by ω.

s± is the sum over all distances from each positive song p to its closest
neighbour in N , s∓ is the sum over all distances from each negative song n
to its closest neighbour in P . High values indicate that class N and P are
far apart from each other.

The feature selection is characterised by the feature selection vector

< wp, wn, wpn, v >,

where wp, wn and wpn are the adaptation weights and v denotes the number
of skips that are needed until the next automatic feature selection step is
performed.

The adaptation weights wp, wn and wpn are used to weight each of the former
mentioned three aspects in the score. For example, only regarding that all
songs P should be close to each other would require wp = 1, wn = 0, wpn = 0.
An intuitive approach would be to ignore the scatter of N . Furthermore, it

71

should then be important that P has a small scatter. The distance between
P and N should be large, but with less preference than the small scatter of
P . This configuration could be realised with wp = 2, wn = 0, wpn = 1. The
configuration weights are not adapted during playlist generation. They are
defined at the beginning of the generation process.

Remark: There are a lot of other possibilities to score a feature combi-
nation ω. The one used is related to S3 and it is not hard to think of a
scoring approach related to, for example, the kNN selections.

5.5 Summary

This chapter introduces a number of classification methods used in music
information retrieval and how each of them could be used for playlist gener-
ation. The global distance function that is used to combine the distances on
the several feature spaces is introduced. The song selection strategies which
are used for selection the song from C that is played next are explained.
Furthermore, automatic feature selection is introduced. In a brute force ap-
proach each feature combination is scored and the one with the best score is
chosen. Using certain configurations, automatic feature selection is related
to S2 (< 1, 0, 0, v >) or S3 (< 1, 0, 1, v >).

72

Chapter 6

Experiments

This section provides answers to the following questions:

• 1. What is the influence of different distances on the quality of the
playlist? Is it reasonable to use computationally more intensive GMMs
and an appropriate distance instead of using computationally less in-
tensive single Gaussians and an appropriate distance?

• 2. Is it possible to increase the performance of the playlist generation
system by using more features than just MFCCs or MFLCs, although
they basically all describe the spectral shape?

• 3. Can playlist generation solely based on the distance measure be
outperformed by incorporating user feedback? Which is the best way
to incorporate user feedback?

• 4. Is it reasonable to use a distance measurement that is user-adaptive?
Is enough training data for an adaptation provided during a playlist
generation process?

To answer point 1, the distances are compared to each other, based on their
performance on the basic features. After that, the performance for one basic
feature and an additional side feature respectively is evaluated. According
to their performance on certain genres, feature subsets are defined. The per-
formance of the feature subsets is compared to the performance of a single
basic feature to answer point 2. Thereafter, the different selection strategies
are investigated to answer point 3. Automatic feature selection for adapting
the distance function to the user is analysed at the end.

73

6.1 Introduction

In this introductory section, the remaining information that is needed to
perform experiments is provided. This is ground truth, what the user’s mu-
sical taste is expected to be like, the used evaluation scheme and the used
measures to rate playlists, the database and the used framework.

6.1.1 Ground truth

For an evaluation of a playlist generation system, an appropriate ground
truth has to be defined. User tests were out of the scope of this thesis since
their setup and realisation would have been too time-consuming. Therefore,
a ground truth has to be created, based on what users are assumed to like
or dislike.

The question for an appropriate ground truth is not easy to answer. Music
similarity is a very subjective sensation. For instance, songs could be rated
as similar because they have the same instrumentation, on the other hand
two songs could be rated similar because they both are about love. Ground
truth suggestions from other music similarity publications hypothesise

• songs from the same album

• songs from the same artist

• songs from the same genre

or combinations to be similar [LO04, AP04a, LS01a]. In user tests accord-
ing to music similarity, genre has been shown to be a reasonable ground
truth [Pam06, BLEW03]. In [PPW05a], where a similar system is described,
also genre information is used. A different ground truth scheme is used in
[AHH+03], where the known counterpart of several pieces have to be found re-
spectively in a large set amongst many other pieces. The known counterpart
to a piece is known to be similar according to timbre. In [BLEW03], different
subjective similarity measures are evaluated. Music similarity information is
gained from experts (artist similarity information, based on analysing artists
by experts is taken from allmusic1), surveys and playlist co-occurrence. For
playlists generated under given constraints, like they were described in the
introduction chapter (1.3.1), the evaluation criteria is simple - how good were
the constraints be realised.

1http://www.allmusic.com

74

Genre information is used in this work, too. It is hypothesised that songs
sound similar exactly if they belong to the same genre, although this is not
without controversy. In [AP03] it is stated that timbre is a poor genre classi-
fier. They say that ”many pop and rock songs use the same instrumentation.
This suggests that timbre is not necessarily a good criterion to re-build an
arbitrary genre taxonomy”. A poor correlation between genre and their tim-
bre similarity measure is reported. So even though a genre ground truth is
not perfect for the task of this thesis, using it is nevertheless reasonable.

The task the system of this thesis has to perform is to find songs similar
according to their genre information. Furthermore, it is assumed that users
do not change the genre they want to listen to while a playlist is created.

6.1.2 Dataset for testing

The used dataset was presented as the training dataset for the genre clas-
sification contest of the 5th International Conference on Music Information
Retrieval (ISMIR)2. It consists of 729 songs taken from magnatune3, licensed
as creative commons. The included genres are distributed the following way
(where, for example, CL denotes the set of songs with genre classical):

• classical: 320 songs, cl1 to cl320 ∈ CL

• electronic: 115 songs, el1 to el115 ∈ EL

• jazz blues: 26 songs, jb1 to jb26 ∈ JB

• metal punk: 45 songs, mp1 to mp45 ∈ MP

• rock pop: 101 songs, rp1 to rp101 ∈ RP

• world: 122 songs, wo1 to wo122 ∈WO

The genres are not equally distributed. A database with equally distributed
genres would be preferable, since the a priori probabilities of picking a song
of a certain genre would not be genre-dependent. Conclusions about how
the used features perform separating songs from a certain genre from all the
other songs could be directly drawn. But experiments with a smaller dataset,
consisting of 25 randomly chosen songs of each genre did not bring meaning-
ful results with the evaluation measures that will be explained later, since

2http://ismir2004.ismir.net/genre contest/index.htm
3http://www.magnatune.com

75

the evaluation task requires more than 25 songs of a genre to make the eval-
uation sufficiently insusceptible to noise which is caused by outliers. Since
the dataset contains only 26 songs from the jazz blues genre, the number of
songs of each genre in an equally distributed dataset could not be substan-
tially increased. Outliers, which are songs that are dissimilar to other songs
from their genre according to the distance measurement, could be caused by,
for example, problems during the modelling stage or a timbre dissimilarity.

Only one dataset is used. Even though it would be preferable to evaluate
the found parameters on another set with unseen data, this is not necessarily
required. Unlike genre classification, no genre models are pre-estimated. The
songs rated by the user build the training data. Each evaluation run contains
its own training stage implicitly.

6.1.3 Evaluation setup and criteria

To generate a playlist, a seed-song has to be given. Then another 19 songs
having the same genre than the seed-songs have to be found, which leads
to a playlist with 20 songs which is about the number of songs that fit
onto a CD. The system starts recommending songs. A virtual user, hav-
ing knowledge about the genre of each song either is rating a song positive
(which means that a real user would listen to a proposed song) or negative
(skipping it), depending on whether the genre of the proposed song matches
the genre of the seed-song or not. A single run is finished as soon as the
playlist reaches 20 songs that were rated positive by the user (including the
seed-song). Meanwhile the number of skips is counted. The performance
of generating a playlist given a certain seed-song can be measured with the
number of skips that were required to generate it.

Evaluation run

In a complete evaluation run, all the songs from the genres CL, EL, MP,
RP and WO are taken as seed-song once. Songs from JB were not taken as
seed-songs (but remained in the database), which is justified in 6.2.1. For
each seed-song s, a playlist Ps can be obtained. Ss denotes the number of
skips that are needed to complete Ps so that it contains 20 +rated songs.
For each configuration of the system, two evaluation measures which have
been developed for this task can be computed. A complete evaluation run
includes the creation of 703 playlists. The two evaluation measures are called
average skip measure and median skip measure.

76

Average skip measure: For each genre, the arithmetic mean of the skips
of all playlists generated by taking each song of a genre as seed-song once is
computed. The average skip measure (ASM) is the arithmetic mean of those
arithmetic means.

ASM :=
1

|genres|
∑

G∈genres

(
1

|G|
|G|∑

k=1

SGk
)
,

where SGk denotes the number of skips of the playlist that was generated
with the kth song from genre G. This two-stage arithmetic mean is used to
make the genres equally important. The genres are not equally distributed
and improvements for a highly represented genre should not have a larger in-
fluence in the score of a configuration than improvements by the same factor
in a smaller represented genre.

Median skip measure: For each genre, the median of the skips of all playlists
generated by taking each song of a genre as seed-songs once is computed.
The median skip measure (MSM) is the arithmetic mean of those medians.

MSM :=
1

|genres|
∑

G∈genres

median(Sg, g ∈ G)

MSM will be stated sometimes to give an impression how much ASM is in-
fluenced by outliers. Decisions are always made as a result of ASM.

ASM specifies how often the skip button has to be pushed on average to reach
a playlist including the seed-song and 19 additional desired songs. MSM spec-
ifies how often the skip button has to be pushed at most to reach a playlist
including those 20 desired songs in half of all attempts. Picking a seed-song
and then skipping every second song would lead to 18 or 19 skips, depend-
ing on whether the first proposed song is accepted or rejected. An ASM of
16 means that the probability that the user will like the next proposed song
is 54%, 19

19+16
= 0.54. A lower ASM (MSM) always indicates a better playlist.

Giving a seed-song and using a song selection strategy that randomly picks
songs from the candidate songs would lead to an average ASM of 144. This
has been empirically determined by doing this eperiment 100 times for each
of the seed-songs.

Remark: The question of how the seed-song is chosen is beyond of the
scope of this thesis. To find an eligible seed-song, the approach of [PPW05b]

77

could be used where the whole music collection is ordered by timbre similarity
using a travelling salesman algorithm. Songs can then quickly be retrieved
with the help of an input wheel.
The ASM of randomly picking songs from the dataset until the song has the
favoured genre is 7.36, which was empirically determined by doing 10,000
runs for each genre. Adding 7.36 to the ASMs that will be reported later in
this chapter would be an upper limit for a task where instead of a seed-song
only a genre is given. It is assumed that the effective ASM for a task like
that will be lower. When a ”seed-song” is randomly found, and the actual
playlist generation task is starting, there are on average already 6.36 (7.36
minus the one that is rated positive) songs rated negative, which is additional
information that can be used by the selection strategies.

6.1.4 Janus Recognition Toolkit

All the work has been done with the help of the Janus Recognition Toolkit
(JRTk), an automatic speech recognition toolkit developed at the Interactive
System Labs in Karlsruhe, Germany (Universität Karlsruhe) and Pittsburgh,
PA, USA (Carnegie Mellon University). It is implemented in C code, with
an interface in Tcl/Tk, having an object-oriented look and feel. MFCCs
and statistical modelling were already included. The side features and some
of the distances (earth mover’s distance, log-likelihood distance) have been
implemented on C level. The other distances, the song selection strategies
and the automatic feature selection have been implemented in Tcl.

6.2 Preliminary experiments

Besides the experiments that are required to answer the questions posed
in the introduction of this chapter, there are two more experiments that
need to be investigated. Firstly, work is done to analyse whether all genres
can be used to generate playlists. Furthermore, an investigation is made to
determine whether kMEANS or MAS training should be used to estimate
the GMMs.

6.2.1 Choice of genres

As already mentioned, the database contains 6 different genres. No playlists
have been generated with seed-songs from the jazz blues genre. Every genre
can contain some songs that are dissimilar to the other songs from the genre.
Thus, having only 26 songs from a genre, picking one as a seed-song and

78

then allowing the system find the additional 19 of the remaining 25 is a very
demanding task if, for example, there are more than 6 outliers among those
25 remaining tracks. It is likely that the system will recommend many songs
of the 703 songs from other genres before picking one of the outliers ”by
chance”.

 2 4 8 16 HTLR
0

20

40

60

80

A
S

M

+jb
−jb

 2 4 8 16 HTLR
0

20

40

60

80

M
S

M

+jb
−jb

Figure 6.1: ASM and MSM for the dataset, using the MFCC feature, modeled
in GMMs with 2, 4, 8 and 16 Gaussians using earth mover’s distance and a
single Gaussian using LRHT distance, comparing results for all seed-songs
with results for all seed-songs without those from jazz blues genre.

In Figure 6.1, the results of some runs are shown comparing the performance
on the set generating playlist from all 729 seed-songs to the performance
on the set generating playlist from only 703 seed-songs, omitting seed-songs
from the jazz blues genre. Using earth mover’s distance on GMMs with
4 Gaussians to GMMs with 8 Gaussians, an improvement from 66.0 skips
to 48.7 skips in ASM is shown which is mostly caused by an improvement
from average 290.5 skips to 189.1 skips for playlists with jazz blues seed-
songs which is absolutely unreasonable to that great extent. As seen, the
completely unstable jazz blues results can affect the overall ASM and MSM
very much, and the only possibility to draw reasonable conclusions from
ASM and MSM for different system configurations was to omit seed-songs
from jazz blues genre. However, jazz blues songs remain in the database and
can be proposed during a playlist generation process.

6.2.2 MAS vs. kMEANS

It is asumed that MAS training leads to better models. The quality of
a model trained with kMEANS depends strongly on the initialisation, for

79

which k-means clustering is used in this thesis, while the initial single Gaus-
sian needed for MAS training can be analytically estimated. Using a bad
initialisation, kMEANS finds the model with the local maximum of the like-
lihood next to the initialisation. MAS training and kMEANS training have
been compared to see whether MAS-trained models are a better estimate
of given data then kMEANS-trained models. It can be seen in Figure 6.2
that the log-likelihood for the MAS-trained models is higher than the log-
likelihood for the kMEANS-trained models. However, for playlist generation
both training methods lead to comparable ASMs, no advantage for one of
the two techniques in comparison to the other can be reported. In all of the
following experiments, MAS training was used to train GMMs.

2 4 8 16 24 32 40 50
−30

−28

−26

−24

−22

−20

−18

−16

Gaussians

lo
g−

lik
el

ih
oo

d

MAS
kMEANS

Figure 6.2: The log-likelihoods of GMMs with different numbers of Gaussians
given the training samples. GMMs were trained either with kMEANS or
MAS.

6.2.3 Basic configuration

The following applies for all the experiments: if not stated differently, they
are done with selection S3 and without automatic feature selection. MAS
training is used to train the GMMs. Songs from the jazz blues genre are
omitted when a seed-song is selected.

80

6.3 Distances

The influence of different distances on the quality of the playlists has been
investigated, mainly to ascertain how distances operating on GMMs perform
in comparisson to distances operating on single Gaussians. It is assumed that
distances on GMMs lead to better playlists, since, for example, the number
of parameters of the model, which has an influence on the accuracy of the
estimation of the data, not only depends on the dimensionality of the feature
but can be separately adjusted by the number of used Gaussians. Firstly,
different distances for the basic features MFCC and MFLC are compared.

6.3.1 kNN distance: choice of k

Figure 6.3 shows how the choice of k affects the performance of the two kNN-
Distances DKL

kNN and DEUCL
kNN on MFCC. k is set to all odd numbers from 1 to

2 4 6 8 10 12 14
15

20

25

30

35

40

45

k

A
S

M
 /

M
S

M

EUKL ASM
EUKL MSM
KL ASM
KL MSM

Figure 6.3: Performance of the kNN distances, applied to MAS-trained
GMMs with 16 Gaussian components.

15 inclusive. A trend can be seen that the quality of the playlists is decreasing

81

when k is increased. This is by no means surprising. Having k larger than
one, the distance of a GMM to itself would result in large distances for GMMs
with a large scatter of Gaussian components. The distances would not only
be computed between belonging Gaussians but also between additional pairs
(that have large distances when the Gaussians are far away from each other).
Furthermore, it would be possible that a GMM has a smaller distance to
another GMM than to itself when using a k larger than one. Earth mover’s
distance solves this problem. In the future experiments, the kNN distances
will be restricted to k = 1.

6.3.2 Comparison of distances

In Figure 6.4, the performance of different distances on MFCCs is illustrated.
The different distances are DKL

EMD (EKL), DEUCL
EMD (EEC), DKL

1NN (KL1), DEUCL
1NN

(EC1), DLL (LLD), DLR (LR) and DKL (KL), where the tokens in brackets
denote the labels in the illustrations.

EKL EEC KL1 EC1 LLD LR
10

12

14

16

18

20

22

A
S

M

EKL EEC KL1 EC1 LLD LR
10

12

14

16

18

20

22

M
S

M

Figure 6.4: Performance of different distances on MFCCs.

The GMM-based distances have been calculated based on GMMs with 2, 4, 8
and 16 Gaussian components. The dark bars on top of the light bars denote
the difference between the best performing GMM and the worst performing
GMM.

82

It was assumed that each GMM distance has an optimum of Gaussian com-
ponents to work on. Actually having insufficient Gaussian components makes
the GMM not exact enough, while having too many Gaussian components
leads to either overtraining or the GMMs cannot be sufficiently trained due
to the lack of training frames, which are limited to 3,000 in this thesis. The
optimum should be somewhere in-between. But a trend whether it is better
to use more or less Gaussians or a minimum for each of the GMM-based
distances operating on GMMs cannot be reported. In other music similarity
tasks, very different information for the best number of Gaussian compo-
nents is reported, ranging from 3 (e.g. [AP02]) up to 64 (e.g. [BLEW03]).
In [AP04a] the best number of Gaussians in a GMM modelling 20 MFCCs
was found to be 50 as a result of an exhaustive search. Although they are
using a dataset that has been refined by hand to form timbre consistent clus-
ters (same artist/same album ground truth), and the disregarding of non-
homogeneous songs according to timbre, they are unable to report only one
maximum for a fixed number of MFCCs and variable number of Gaussians.
Hence it is not surprising that no conclusion can be drawn according to the
best number of Gaussians in a task that from a timbre point of view has a
lot more inconsistent clusters. The detailed results for the different GMMs
can be seen in the Tables A.2, A.3, A.4, and A.5. In addition, in this thesis
a scoring measure is used that is much more vulnerable to noise since other
components besides the distance measurement are involved in creating the
playlist.

A very good example for this vulnerability is the large difference (between
ASM and MSM for the LRHT - distance) of 5.66 between 16.86 ASM and
11.20 MSM (details in Table A.1 in the appendix). While the other genres
have differences between around 0.2 and 1.5 (ASM to MSM), there are two
outlier genres, MP and RP. MP has a difference of 11.31 (19.31 ASM down
to 8.00 MSM) and RP even has a difference of 15.69 (17.69 ASM down to
2.00 MSM). For RP, over the half of the playlist have 2 or less skips, but
a few outliers produce playlists with extremely high skips of up to 219 that
cause such a high ASM.

Several conclusions can be made based on MFCCs. For the earth mover’s
distance and the 1NN distance, the Kullback-Leibler versions worked better
than the Euclidean versions (remember, both earth mover’s distance and 1NN
distance need an additional distance to compute distances between Gaussian
components). This is reasonable since the Kullback-Leibler distance is more
exact and also incorporates the covariance matrices, while two Gaussians
would be close to each other if only their means are close using the Eu-

83

EKL EEC KL1 EC1 LLD LR KL
10

12

14

16

18

20

22

A
S

M

EKL EEC KL1 EC1 LLD LR KL
10

12

14

16

18

20

22

M
S

M

Figure 6.5: Performance of different distances on MFLCs.

clidean distance. The earth mover’s distance works worse in comparison to
the appropriate 1NN distance respectively. A reason for that could be that
the used dataset in combination with the used ground truth requires the dis-
tances to be more robust for outliers, and the distances are not required to
be too exact, which is actually the opposite of what was shown before and
which was not expected to be observed. LL distance leads to the best results
from those distances operating on GMMs. This is not a surprise, since com-
puting a distance with the same criteria that was used to estimate the model
is a very reasonable procedure. LL distance is followed by LRHT distance,
which outperformed all the other distances operating on GMMs.

For MFLCs (Figure 6.5), again LL distance archieved the best results followed
by 1NN with KL and LRHT distance. In opposite to MFCCs, earth mover’s
distance with Kullback-Leibler distance works worse than earth mover’s dis-
tance with Euclidean distance on MFLCs. Altogether, there is no indication
that one of the distances should be preferred to the other distances based on
the results which are vulnerable to outliers.

Although LL distance returns the best ASM results, it is not used for further
experiments as it has the large drawback that the feature frames are needed
every time a distance is computed. This either costs a lot of time or a lot

84

of space, and, since LRHT is only a little bit worse (which as seen is also
caused by some outliers), LRHT is chosen. Since LRHT performs slightly
better using MFLCs, MFLCs are favoured to MFCCs. A big advantage of
LRHT is that it uses single Gaussians instead of GMMs which leads to lot of
time savings during the training stage. Also, the computation of the distance
is computationally less intensive than the computation of those distances op-
erating on GMMs.

There is no result reported for KL distance on MFCCs. The computation
of the KL distance leads to numerical problems in approximately 5% of all
paired distances. For MFLCs, which are better de-correlated, no numerical
problems occurred.

LRHT distance has also been chosen for all the side features as it turned
out that the LRHT distance on single Gaussians leads to comparable results
for MFCCs / MFLCs in comparisson to distances operating on GMMs. Nev-
ertheless, it is possible that other distances might work better for certain side
features. This requires further investigation.

6.4 Enlargement of the feature space

So far, only the basic features, MFCCs or MFLCs, have been used to generate
playlists. The following section investigates whether adding more features
can improve the performance of the automatic playlist generation system.

6.4.1 Basic feature + a single side feature

In the first step of this section, MFLCs as basic features are used and com-
bined with one side feature respectively. Automatic feature selection with
the adaptation vector < 1, 0, 0, 5 > is used to let the system decide whether it
wants only to use MFLCs, only the side feature, or both together. Figure 6.6
shows the ASM results for using MFLCs + 1 additional side feature. It can
be seen that the only ASM improvements are obtained by adding centroid,
centroid LDA, Renyi, or Renyi LDA. Actually, adding side features should
not decrease the performance provided the adaptation is working properly.
Performing an adaptation step after 5 skips for the first time could be one
reason for a deterioration. Until the first 5 skips are reached, MFLCs and the
side feature are used together which can cause the performance to go down
if the side feature is really bad. Having bad adaptation weights could be
another cause. How the adaptation weights are set reasonably is discussed

85

 MFLC BAND CENT SKEW KURT FLAT CREST SHA REN FLUX
10

12

14

16

18

20

22

24

26

A
S

M

SF
SF LDA

Figure 6.6: Adding one side feature to MFLCs, ASM.

later. Comparing LDA and non-LDA versions of the side features, the LDA
versions seem to work better for most of the features. Although there are
features that yield better results in their non-LDA versions, LDA is preferred
since it is desirable that the side features are as uncorrelated as possible. Fur-
thermore, even if it was not investigated, the dimensionality can be reduced
with LDA. For all the following experiments, if not stated differently, LDA
side features will be used. These results should not be used to compare the
quality of the used side features in general since it is assumed, for example,
that the number of coefficients each side feature is extracted in might be well
estimated for a certain subset while it might be estimated worse for another
subset.

6.4.2 Manually chosen subsets

Adding one side feature only in a few cases leads to improvement of the over-
all ASM. The performance of best side features for a certain genre can be
seen in Figure 6.7. Selecting a particular side feature, the performance for at
least one genre can be improved. Renyi LDA performed best for classical and
world music (from 1.27 to 0.43 and from 22.98 to 19.25 respectively), Renyi
performed best for electronic (19.77 to 17.01), skewness performed best for
metal punk (23.58 to 15.16) and centroid improved rock pop (from 13.88 to
11.86). The results for all side features and all LDA side features for all gen-
res can be seen in Table A.6. This underlines the assumption that different

86

CL EL MP RP WO
0

5

10

15

20

25

30

R
E

N
Y

I L
D

A

R
E

N
Y

I

S
K

E
W

C
E

N
T

R
E

N
Y

I L
D

A

A
S

M

genre

MFLC
MFLC+SF

Figure 6.7: MFLCs + the best single side feature combination for each genre.

feature subsets should be used for different genres.

Having these results so far, 3 feature sets are manually chosen:

• MFLCs

• MFLCs+4SF: MFLCs, Renyi, Renyi-LDA, skewness and centroid

• MFLCs+8SF: MFLCs, centroid LDA, bandwidth LDA, skewness LDA,
kurtosis LDA, flatness LDA, crest factor LDA, Shannon LDA, and
Renyi LDA. Flux-LDA had to be disregarded for reasons of memory
constraints. This set represents the the full feature set.

6.5 Selection Strategies

This section compares the different song selection strategies. They decide
which song is proposed next, depending on the already-classified songs and
the distance function.

87

6.5.1 Choice of k in the kNN selection

Before the different strategies can be compared to each other, an investi-
gation is made as to which values k should be set and which of the four
scoring functions leads to the best results. This experiment is done with the
MFLCs+4SF set.

Figure 6.8 shows something rather interesting: while kNN selections perform
worse for increasing k and 3 out of 4 scoring functions, the knnnS scoring
function makes kNN selection maintain its performance with increasing k.

 knpn knpnS knnn knnnS
10

15

20

25

30

35

40

45

50

kNN score function

A
S

M

k = 1
k = 2
k = 3
k = 4
k = 5

Figure 6.8: Comparison of kNN selection strategies on MFLCs+4SF.

For knnn and knpn this is easy to understand. Only regarding the position
of the kth +rated or -rated neighbour, and therefore disregarding the first
+rated or -rated neighbour is not meaningful. The fact that knnnS performs
better than knpnS indicates that searching far away from -rated songs is
better than searching close to +rated songs when regarding 2 or more pos-
itive/negative neighbours. This is interesting, since knnnS and knpnS are
correlated. Knowing that the position of the first nearest negative neighbour
of a candidate song is 4, implies also that the 3 nearest neighbours are pos-
itive. Nevertheless, cases can be constructed where each of the 4 different
kNN selections for different values of k leads to a different subset of possible
candidate songs, from which one is randomly chosen. 2nnnS leads to the best

88

performance.

6.5.2 Comparison of selection strategies

Comparing 2nnnS with the other selection strategies introduced in the se-
lection strategy chapter (5) illustrates that S3 selection works best for all 3
feature sets (Figure 6.9), followed by 2nnnS selection.

 S0 S1 S2 S3 S4 2nnnS
10

15

20

25

30

35

40

45

50

55

selection strategy

A
S

M

MFLC
MFLC+4SF
MFLC+8SF

Figure 6.9: Comparison of different selection strategies on the 3 feature sets,
ASM.

The fact that also considering the distance to -rated songs leads to increas-
ing performance indicates that the used feature / distance combinations are
not able to separate the two classes sufficiently. It is interesting that 2nnnS
can almost compete with S3 although it needs at least 2 skips for each seed
song until the selection strategy switches from random to 2nnnS (there are
at least 2 skips needed to compute the position of the second nearest nega-
tive neighbour). Initially starting with another selection strategy until the
requirements of 2nnnS are satisfied might be useful, but has not been in-
vestigated. Furthermore, it can be assumed that that playlists generated
with 2nnnS are more interesting, since 2nnnS selection is not deterministic,
unlike S0 - S4, that generate exactly the same playlist when the user feed-
back is the same for the proposed songs. Another point worthy of note is
that 2nnnS gathers all its information from the ranklists. The real distance

89

is only needed to compute the ranklist, and the candidate songs are chosen
only from the positions of the examined neighbours, while, for eample, S3
knows by how much for example the nearest neighbour in P was closer than
the nearest neighbour in N .

S2 (choice of the candidate song with the nearest neighbour in P) and S4
(choise of the most promising p ∈ P to lead to the next recommendation) lead
to comparable results. While S2 achieves better results for MFLCs+4SF, S4
gets better results for MFLCs+8SF. This basically reflects what is already
known from those two sets. MFLCs+4SF consists of manually chosen fea-
tures that are assumed to well separate the two classes +rated and -rated and
S2 can profit from that, since only the +rated songs are taken into account
when the next song has to be chosen. MFLCs+8SF also includes features
that could be counter-productive so the two classes have more overlap (see
Table A.6 for which features perform really bad for a certain genre). Since S4
has the ability to learn which already classified songs lead to bad suggestions
(since they are probably located in an overlapping region) it can better han-
dle these circumstances. It is not surprising that S0 and S1 selection perform
worse. Whilst S0 does not use information of the user rating at all, S1 only
uses very little of it. Comparing S0 to all the other selection strategies, it
can be seen that user feedback can considerably improve the quality of the
generated playlists.

Selection S3 is able to improve the ASM on the MFLCs+8SF set in com-
parison to the MFLCs+4SF set. This states that S3 is robust enough to
handle feature spaces that also include useless or even counter-productive
features. Taking a look at the MSM (Figure 6.10), one finds that S4 and
2nnnS might have the same ability. Basically this is an eligible ability for
scenarios where many different features are used and no manual or automatic
feature selection can be performed.

6.6 Automatic feature selection

This last section from the experiments chapter further investigates the auto-
matic feature selection (AFS) used for feature space adaptation to the user’s
needs. AFS has already been used in the experiments where the influence
of the side features is investigated. An experiment is carried out according
to how the AFS weights should be set. Another one is done according to
the AFS interval v, denoting the number of times the skip button has to be
pressed until the next AFS is performed.

90

 S0 S1 S2 S3 S4 2nnnS
10

15

20

25

30

35

40

45

50

55

selection strategy

M
S

M

MFLC
MFLC+4SF
MFLC+8SF

Figure 6.10: Comparison of different selection strategies on the 3 sets, MSM.

6.6.1 Different weighting configurations

Figure 6.11 (6.12) shows the ASM (MSM) for adapting with different AFS
weights. The following weighting combinations are used:

• < 1, 0, 0, v >: it is important that each +rated song has a close +rated
neighbour.

• < 1, 0, 1, v >: it is important that each +rated song has a close +rated
neighbour and that it’s closest -rated neighbour is far away.

• < 1, 1, 1, v >: it is important that each +rated song has a close +rated
neighbour, that each -rated song has a close -rated neighbour, and that
the closest neighbour from -rated to each +rated song is far away.

• < 2, 0, 1, v >: it is important that each +rated song’s closest -rated
neighbour is far away, but it is more important that each +rated song
has a close +rated neighbour. This is the most intuitive approach.

For this experiment, v was set to 5 which is a trade-off between adapting very
often (low values of v) and incorporating more training data (high values of
v). An experiment where different values for v are investigated is discussed
subsequently. It turns out that using the adaptation vector < 1, 1, 1, 5 >

91

no adapt. <1,0,0,5> <1,0,1,5> <1,1,1,5> <2,0,1,5>
9

10

11

12

13

14

15

16

17

18

adaptation

A
S

M

MFLC
MFLC+4SF
MFLC+8SF

Figure 6.11: ASM for different AFS weights.

no adapt. <1,0,0,5> <1,0,1,5> <1,1,1,5> <2,0,1,5>
9

10

11

12

13

14

15

16

17

18

adaptation

M
S

M

MFLC
MFLC+4SF
MFLC+8SF

Figure 6.12: MSM for different AFS weights.

92

leads to the best results. Contrary to the assumption that the compact-
ness of the -rated songs is unimportant, the AFS with all weights set equal
performs best. If only s+, and s±, s∓ are regarded, songs from -rated can
still be close to songs from +rated, since they can be compensated by -rated
songs that are very far away from the +rated songs. This is more unlikely
to happen if the -rated songs have to be close to each other, too. In actual
fact, the gain from AFS was not as high as expected. The only improve-
ments in ASM can be reported for an adaptation vector of < 1, 1, 1, 5 > on
MFLCs+8SF. Taking a look at the MSM shows that for almost every weight
combination and used set the performance can be increased. For ASM this is
not the case. What basically happens is that caused by the adaptation good
playlists are improved a little bit, but bad ones become much worse. Since
bad playlists can be caused by outliers, and there are usually noticeable less
than 50% outliers in a complete evaluation run, MSM is affected positively
by adaptation and ASM is affected negatively.

There is only a slight gain for using AFS in combination with S3 (MFLCs+8SF).
Figure 6.13 shows the ASM results for AFS with the weighting vector <
1, 1, 1, 5 > on the selection strategies S1 to 2nnnS. It can be seen that the

 S1 S2 S3 S4 2nnnS S1 S2 S3 S4 2nnnS
0

5

10

15

20

25

30

35

MFLC+4SF MFLC+8SF

A
S

M

no adaptation
<1,1,1,5> adaptation

Figure 6.13: Automatic feature selection and different song selection strate-
gies.

results can also get worse when doing AFS on the MFLC+4SF set. This is

93

due to the limited number of feature combinations. Having only 5 features
reduces the possible combinations to 31. Beyond that, the performance for
MFLC+4SF is already a lot better than MFLC due to the manual preselec-
tion of features, where only side features are used that improve the perfor-
mance on a certain genre most when using them with MFLCs. MFLC+8SF is
performing worse without AFS, since also useless features might be included
in MFLC+8SF. But when using automatic feature selection, performance is
increased for each of the selection strategies except the kNN representative.
The gain for S1 is small. AFS cannot fix the major drawback of S1, that only
the last +rated song is taken as reference. The highest gain is observed for
S2. This indicates that automatic feature selection is able to transform the
feature space in a way that -rated songs are moved away from the +rated
songs. S2 only regards the nearest positive neighbour of a candidate song
and therefore can profit from that feature space transformation.

It is interesting to see that even for the MFLC+8SF set, the performance of
2nnnS decreases when using automatic feature selection while all the other
selection strategies improve their performance. This is due to the fact that
ASM uses the distance to the nearest +rated neighbour and the distance to
the nearest -rated neighbour of each already rated song to score a feature
combination, disregarding the k nearest neighbours for k > 1. One can as-
sume that the performance of 2nnnS could be increased by applying an AFS
where the scoring function is related to 2nnnS. AFS could be customised
towards 2nnnS by returning the feature combination that performed best in
the following task. For each +rated song, the ranklist of all already classified
songs is computed. The scores, using 2nnnS on those ranklists are added.
The feature combination with the largest sum is chosen.

A considerably higher increase in performance due to automatic feature se-
lection is assumed to be observed when using more diverse features. All the
used features essentially describe the same, they are almost all computed on
single power spectrum frames. Using only those features, the system will
never be able to separate slow songs from fast songs. If there is a tempo
feature and a user who only wants to listen to slow songs, it is assumed that
the automatic feature selection would detect that a feature combination only
using the tempo feature would separate the +rated songs from the -rated
songs best. Although the performance of AFS is limited due to the type and
number of used features, the best result reported in this thesis uses AFS.

94

1 2 3 4 5 6 7 8 9 10 11 12
8

10

12

14

A
S

M

Adaptation after each x skips

MFLCs+4SF
MFLCs+8SF

1 2 3 4 5 6 7 8 9 10 11 12
8

10

12

14

M
S

M

Adaptation after each x skips

MFLCs+4SF
MFLCs+8SF

Figure 6.14: Comparison of different adaption intervals. An adaption step is
performed after each x times pressing the skip button. S3 is used.

6.6.2 Choice of adaptation interval

The number of skips that need to be done by the user to perform an adap-
tation step should be an important issue. Doing adaptation too early and
too frequently on one hand might lead to wrong adaptation results due to
insufficient training data. Doing adaptation too seldom could lead to bad
results since it could take too long till unimportant features are excluded.
Figure 6.14 shows that no conclusion can be drawn from the experiments
on set MFLCs+4SF, using selection strategy S3. This is because adaptation
generally results only in negligible differences due to the reduced number of
features, so that the choice of the adaption interval does not play an impor-
tant role. The trend of the MLFCs+8SF feature set is however reasonable.
For small values of v, the performance is bad, since there is not enough
training data available to perform automatic feature selection. It is further
assumed that the increase for v > 10 is caused by the fact that automatic
feature selection and thus the exclusion of the useless or counter-productive
features is performed too late. The best results are obtained for performing
automatic feature selection after each v = 10 skips. An ASM of 11.4 is ob-
tained, which is also the best result that can be reported in this whole thesis.

95

6.7 Summary

In this chapter, the evaluation criteria and the database are explained. Two
measures to measure the quality of playlists are introduced, ASM and MSM.
Information about the database and the framework is provided. Different ex-
periments have shown that it is reasonable to use single Gaussians and LRHT
distance instead of GMMs and GMM based distances, since the estimation
of the models and the computation of the distances are computationally less
intensive, and produce comparable results by all means. Adding side fea-
tures can improve the performance, but the performance change depends
very much on the selection strategy. S3 selection is the best, followed by
2nnnS. 2nnnS outperforms all the other kNN selections. When examining
more than 1 neighbour, it is more important to search the new track far away
from the -rated tracks than to search it close to the +rated tracks. Simple
binary user feedback improves the performance a lot. Depending on the set
and the selection strategie, adaptation of the distance function using AFS
can result in improvements. The overall best performance reported in this
thesis is an ASM of 11.4 for the MFLCs+8SF feature set, using song selection
strategie S3 and AFS with the adaptation vector < 1, 1, 1, 10 >. Randomly
selecting songs would obtain an ASM of 144.

96

Chapter 7

Conclusion and outlook

7.1 Conclusion

A system generating playlists consisting of songs similar to a given seed-song
was developed and investigated. Similarity in the used evaluation meant
that two songs are similar exactly if and only if they belong to the same
genre. Immediate binary user feedback was gained during the playlist gener-
ation process, containing information of whether a song was accepted (same
genre than the seed-song) or rejected (different genre than the seed-song) by
the user. Besides the used basic features MFCCs (de-correlated with cosine
transform) and MFLCs (de-correlated with LDA), different side features have
been used to capture additional characteristics of the spectral frames. Song
selection strategies incorporating a user-adaptive distance function have been
used for the playlist generation process.

Different distances operating on single Gaussians or Gaussian mixture models
(GMMs) have been evaluated in the context of playlist generation. Although
Gaussian mixture models are better able to approximate the distribution of
the feature frames, distances on GMMs did not lead to results that justi-
fied preferring distances working on GMMs to distances working on single
Gaussians. For all the different distances that have been examined, only one
(log-likelihood distance) outperformed the LRHT distance (likelihood ratio
hypothesis test). For LRHT it further turned out that MFLCs work better
than MFCCs. Based on that, single Gaussians and LRHT distance have been
used for the side features, too.

Adding a single additional side feature to the basic feature, the performance
over all genres could only seldomly and only slightly be improved (centroid,

97

centroid LDA, renyi, renyi LDA), but the performance for each genre could
be increased a lot by adding a certain side feature. MFLCs and the four side
features that performed best for at least one certain genre (renyi, renyi LDA,
skewness, and centroid) form the MFLC+4SF feature subset. MFLCs and
each of the LDA side features except flux LDA, which was excluded due to
memory constraints form the MFLC+8SF feature subset. Except for S2 se-
lection strategy on the MFLC+8SF set, the performance could be increased
by adding side features to the basic MFLC feature. The additional charac-
teristics of the spectral frames, captured by the side features hence are useful
for playlist generation.

Different selection strategies have been evaluated in the context of playlist
generation. The best selection strategy uses the distance to the nearest pos-
itive neighbour and the nearest negative neighbour of each candidate song
for decision (S3), followed by 2nnnS which is the best kNN selection strat-
egy. kNN selection strategies make their decision which song to propose next
based on the ranklist of each candidate song. The ranklist of a candidate
song consists of the already classified songs, sorted by their distance to the
candidate song. It turned out that if more than only the first nearest neigh-
bour is included in the decision, it is more likely that a user will like the
next recommendation if it is far away from the negative rated songs than if
it is close to the positive rated songs. All the other selection strategies S1
(using the last accepted song), S2 (using all the accepted songs), and S4 (us-
ing the most promising accepted song) lead to better results than S0, where
playlist are generated only regarding the initial seed-song, without incorpo-
rating user feedback. This indicates that immediate user-feedback is very
useful for playlist generation.

Results were further improved by adapting the feature space to the user,
using automatic feature selection. It turned out that for selecting the best
feature subset, the compactness of the +rated songs and the compactness of
the -rated songs are important. It is further important that the two classes
+rated and -rated are far away from each other. The gain of automatic fea-
ture selection depends strongly on the chosen feature set and the selection
strategy. Allowing more features leads to larger improvements. On the com-
plete feature set for the best selection strategy (S3), the gain was lowest. The
overall best result was archived with the complete feature set, using selection
strategy S3 and automatic feature selection. In this experiment, the eval-
uation measure ASM could be reduced from 144 (random) to 11.4 (which
represents the average number of times the skip button has to be pressed
to find 19 songs similar to a given seed-song, which represents the musical

98

taste of a user). The results for 2nnnS selection could not be improved by
adapting the distance function to the user, it is assumed that an automatic
feature selection algorithm which is adjusted to the 2nnnS selection strategy
could correct that.

For genre classification, spectral similarity is not sufficient since songs from
different genres sometimes have similar sound textures. For certain genres
(e.g. world), lots of outliers which are songs that have a large distance to the
other songs from their genre, can cause bad playlists. Those large distances
can be caused, for example, by timbre dissimilarity or problems during the
modelling stage. The evaluation using the current evaluation criteria and
the current distance measures is vulnerable to outliers. This is also due to
the size of the dataset. Furthermore, a genre ground truth is not perfectly
suitable for a playlist generation task. User tests for gaining a ground truth
are needed.

7.2 Outlook

The song selection strategies could be further improved by adding charac-
teristics of S4 (consider, whether already rated songs lead to good or bad
proposals) and kNN selections (consider more than only 1 neighbour) to S3.

In addition there might be better (and primarily faster) ways than perform-
ing feature selection with a brute force approach (see e.g. 5.4), and there are
lots of additional ways to score a feature combination.

Having shown that automatic feature selection can handle large feature spaces,
more features are required to further improve the system. These could be
features related to e.g. rhythm (e.g. [GD05]), tempo (e.g. [ARD04]), melody
(e.g. [GKM03]), or keys (e.g. [ZZM04]). Mood-related features might be very
useful. A more diverse feature space should on one hand improve the overall
results for at least S3. On the other hand, it is expected that automatic
feature selection will have a larger positive impact on the results.

User tests are required to generate a ground truth that could be used in-
stead of genre. Even tough musical taste and genre are correlated, not every
subjective playlist generation criteria can be modelled with genre affiliation.
Furthermore a large database is needed, having labels that follow this ground
truth to make the system more insusceptible to noise.

99

Several steps in the feature extraction process could be further improved:

• Selection of the most relevant segment of a musical piece (e.g. chorus)
for the extraction of the feature frames (e.g. [ANS+05]

• Use of variable window size and in particular window shift size related
to the tempo of a song (e.g. [WC05])

The assumption that users do not change their musical preference at least
slightly while they listen to music is likely to be wrong. The evaluation of
different use cases, for example, those mentioned in [PPW05a], is required.
In that context it could be useful to remove songs from the +rated and -
rated sets after a certain time, or to incorporate songs from those two sets
differently strong, depending on the point of time they were added to the
sets respectively.

Nowadays portable MP3 players are not able to perform the proposed al-
gorithms in a reasonable amount of time. But components like feature ex-
traction, statistical modelling and distance computation as well as automatic
feature selection could be performed offline or by a more powerful processor
while, for example, synchronising music with the computer. So although the
used similary measure is far from being perfect, the achieved results are much
better than random selection, and portable MP3 players implementing the
algorithms are already forseeable in the near future.

100

Appendix A

Tables

genre mean median

CL 2.58 3
EL 18.51 17
MP 19.31 8
RP 17.69 2
WO 26.20 26

Table A.1: Detailed results for LHRT distance on MFCCs.

distance 2 4 8 16 single Gaussian

DKL
EMD(EKL) 19.97 21.15 20.67 19.80

DEUCL
EMD (EEC) 20.72 21.13 21.43 20.15
DKL

1NN(KL1) 17.60 18.23 17.86 18.61
DEUCL

1NN (EC1) 20.10 19.47 21.08 21.32
DLL(LLD) 17.35 16.39 15.82 15.59
DLR(LR) 16.86

Table A.2: Different distances on MFCCs, ASM, values lower than the LR
value are marked bold.

101

distance 2 4 8 16 single Gaussian

DKL
EMD(EKL) 17.00 19.20 18.20 16.00

DEUCL
EMD (EEC) 18.60 20.00 18.20 18.20
DKL

1NN(KL1) 15.60 15.20 13.60 15.20
DEUCL

1NN (EC1) 17.60 17.00 19.60 20.00
DLL(LLD) 12.60 14.00 13.00 12.60
DLR(LR) 11.20

Table A.3: Different distances on MFCCs, MSM, no values are lower than
the LR value.

distance 2 4 8 16 single Gaussian

DKL
EMD(EKL) 20.80 19.93 20.48 21.48

DEUCL
EMD (EEC) 20.01 18.54 17.22 16.67
DKL

1NN(KL1) 18.00 17.83 15.68 18.93
DEUCL

1NN (EC1) 18.37 19.32 19.76 17.97
DLL(LLD) 15.40 17.34 17.56 16.80
DLR(LR) 16.29
DKL(KL) 16.74

Table A.4: Different distances on MFLCs, ASM, values lower than the LR
value are marked bold.

distance 2 4 8 16 single Gaussian

DKL
EMD(EKL) 16.40 15.00 14.60 15.60

DEUCL
EMD (EEC) 19.00 17.20 13.60 13.80
DKL

1NN(KL1) 15.60 14.00 13.20 18.40
DEUCL

1NN (EC1) 16.20 18.40 16.40 16.60
DLL(LLD) 13.20 13.40 14.40 13.80
DLR(LR) 11.40
DKL(KL) 12.00

Table A.5: Different distances on MFLCs, MSM, no values are lower than
the LR value.

102

CL EL MP RP WO ASM

MFLCs 1.27 19.77 23.58 13.88 22.98 16.29
+centroid 1.31 19.80 22.49 11.86 24.50 15.99
+centroid LDA 1.26 24.23 15.22 12.56 25.86 15.83
+bandwidth 1.30 21.61 30.98 17.01 28.70 19.92
+bandwidth LDA 1.45 23.89 24.56 15.07 27.01 18.39
+skewness 2.23 27.23 38.53 19.05 29.49 23.31
+skewness LDA 3.41 30.31 15.16 14.14 30.67 18.74
+kurtosis 1.27 27.97 44.84 15.41 35.53 25.01
+kurtosis LDA 1.51 27.09 35.69 16.24 32.02 22.51
+flatness 1.34 21.48 24.11 14.44 27.18 17.71
+flatness LDA 1.54 22.90 21.38 13.70 37.92 17.49
+crest factor 1.56 21.32 22.82 14.99 26.80 17.50
+crest factor LDA 1.42 22.03 22.36 12.33 30.41 17.71
+Shannon entropy 2.74 22.19 29.40 16.99 25.66 19.40
+Shannon entropy LDA 3.69 20.10 37.89 17.97 31.50 22.23
+Renyi entropy 0.55 17.01 20.00 20.50 23.25 16.25
+Renyi entropy LDA 0.43 23.87 19.96 17.17 19.25 16.14
+flux 1.31 28.57 28.00 13.80 41.20 22.58
+flux LDA 1.32 25.03 41.44 18.57 38.57 24.99

Table A.6: The performance of MFLCs + a single side feature. The bold
marked values are lower than the MFLC baseline values.

103

List of Figures

1.1 The components of the proposed system. 9

2.1 MFCCs (x samples, y coefficients). The top illustration shows
the frames from the classical piece, the illustration in the mid-
dle shows the frames of the electronic piece, and the illustra-
tion on the bottom shows the frames of the rock piece. The
bar on the right side shows the scale, valid for all 3 pieces. . . 22

2.2 MFLCs (x samples, y coefficients). 23
2.3 The 16 eigen values of each of the side features. The last

eigen value before the graph crosses the 1.1 - line is taken as
the dimension for this side feature. Renyi entropy crosses this
line late, flux and kurtosis cross this line between the first and
the second eigen value. 26

2.4 Spectral centroid (x time in frames, y coefficients), extracted
in 10 sub-bands. 27

2.5 Spectral centroid (x time in frames, y coefficients), extracted
in 16 sub-bands, LDA transformed to 10 sub-bands. 28

2.6 Spectral bandwidth (x time in frames, y coefficients), extracted
in 4 sub-bands. 29

2.7 Spectral bandwidth (x time in frames, y coefficients), extracted
in 16 sub-bands, LDA transformed to 4 sub-bands. 29

2.8 Spectral skewness (x time in frames, y coefficients), extracted
in 5 sub-bands. 30

2.9 Spectral skewness (x time in frames, y coefficients), extracted
in 16 sub-bands, LDA transformed to 5 sub-bands. 31

2.10 Spectral kurtosis (x time in frames, y kurtosis, scaled with
log(2 + FKURT

A (t, n))). Values below log(2) = 0.69 indicate a
platykurtic distribution of the coefficients in the sub-band frame. 31

2.11 Kurtosis (x time in frames, y kurtosis), extracted in 16 sub-
bands, LDA transformed to 1 dimension. 32

2.12 Spectral flatness (x time in frames, y coefficients), extracted
in 4 sub-bands. 32

104

2.13 Spectral flatness (x time in frames, y coefficients), extracted
in 16 sub-bands, LDA transformed to 4 sub-bands. 33

2.14 Crest factor (x time in frames, y coefficients), extracted in 4
sub-bands. 33

2.15 Crest factor (x time in frames, y coefficients), extracted in 16
sub-bands, LDA transformed to 4 sub-bands. 34

2.16 Shannon entropy (x time in frames, y coefficients), extracted in
6 sub-bands, scaled with log(11 +FSHAN

A (t, n)) for visualisation. 34
2.17 Shannon entropy (x time in frames, y coefficients), extracted

in 16 sub-bands, LDA transformed to 6 sub-bands. 35
2.18 Renyi entropy (x time in frames, y coefficients), extracted in

13 sub-bands. 36
2.19 Renyi entropy (x time in frames, y coefficients), extracted in

16 sub-bands, LDA transformed in 13 sub-bands. 37
2.20 Spectral flux (x time in frames, y flux), extracted in 1 sub-

band. For the classical piece, flux is moving constantly in
the lower quarter. The electronic and the rock piece have
more distinctive peaks. In the case of the excerpts, the flux
of the rock piece seems to flutter more than the electronic
piece. This is something that probably cannot be represented
in the statistical models that are used since the ordering of the
frames is not taken into account. Additional ∆flux coefficients
could solve this. 37

2.21 Spectral flux (x time in frames, y flux), extracted in 16 sub-
bands, LDA transformed in 1 sub-band. 38

4.1 The sum of all paired distances between the mean of one light
Gaussian component to all the means of the dark Gaussian
components is almost the same for both cases with two close
distributions on the left and two distant distributions on the
right. 52

4.2 The left side shows the distances to the closest neighbour of
each light Gaussian, the right side shows the distances to the
closest neighbour of each dark Gaussian. Using both, each
Gaussian is taken into account at least once. 53

4.3 Earth mover’s distance: earth (probability mass) from the sup-
plying Gaussians has to be moved to the consuming Gaussians. 54

105

6.1 ASM and MSM for the dataset, using the MFCC feature,
modeled in GMMs with 2, 4, 8 and 16 Gaussians using earth
mover’s distance and a single Gaussian using LRHT distance,
comparing results for all seed-songs with results for all seed-
songs without those from jazz blues genre. 79

6.2 The log-likelihoods of GMMs with different numbers of Gaus-
sians given the training samples. GMMs were trained either
with kMEANS or MAS. 80

6.3 Performance of the kNN distances, applied to MAS-trained
GMMs with 16 Gaussian components. 81

6.4 Performance of different distances on MFCCs. 82
6.5 Performance of different distances on MFLCs. 84
6.6 Adding one side feature to MFLCs, ASM. 86
6.7 MFLCs + the best single side feature combination for each

genre. 87
6.8 Comparison of kNN selection strategies on MFLCs+4SF. . . . 88
6.9 Comparison of different selection strategies on the 3 feature

sets, ASM. 89
6.10 Comparison of different selection strategies on the 3 sets, MSM. 91
6.11 ASM for different AFS weights. 92
6.12 MSM for different AFS weights. 92
6.13 Automatic feature selection and different song selection strate-

gies. 93
6.14 Comparison of different adaption intervals. An adaption step

is performed after each x times pressing the skip button. S3
is used. 95

106

List of Tables

2.1 θr and r, the number of sub-bands, a side feature is eventually
extracted in. 25

2.2 first 5 eigen values θi of Kurtosis, extracted in different dimen-
sions. 25

5.1 Comparison of of the 4 strategies for 4 different lists, the best
scores are marked bold. 69

A.1 Detailed results for LHRT distance on MFCCs. 101
A.2 Different distances on MFCCs, ASM, values lower than the

LR value are marked bold. 101
A.3 Different distances on MFCCs, MSM, no values are lower than

the LR value. 102
A.4 Different distances on MFLCs, ASM, values lower than the

LR value are marked bold. 102
A.5 Different distances on MFLCs, MSM, no values are lower than

the LR value. 102
A.6 The performance of MFLCs + a single side feature. The bold

marked values are lower than the MFLC baseline values. . . . 103

107

Bibliography

[AHH+01] E. Allamanche, J. Herre, O. Helmuth, B. Fröba, T. Kastner, and
M. Cremer. Content-based identification of audio material using
mpeg-7 low level description. In Proceedings of the 2nd Inter-
national Symposium of Music Information Retrieval (ISMIR),
2001.

[AHH+03] E. Allamanche, J. Herre, O. Hellmuth, T. Kastner, and C. Er-
tel. A multiple feature model for musical similarity retrieval. In
Proceedings of the 4th International Conference on Music Infor-
mation Retrieval (ISMIR), 2003.

[AMO93] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows.
Prentice Hall, 1993.

[ANS+05] S. A. Abdallah, K. Noland, M. Sandler, M. Casey, and
C. Rhodes. Theory and evaluation of a bayesian music structure
extractor. In Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR), pages 420–425, 2005.

[AP02] J.-J. Aucouturier and F. Pachet. Music similarity measures:
What’s the use? In Proceedings of the 3rd International Confer-
ence on Music Information Retrieval (ISMIR), 2002.

[AP03] J.-J. Aucouturier and F. Pachet. Representing musical genre: A
state of the art. Journal of New Music Research, 32(1), 2003.

[AP04a] J.-J. Aucouturier and F. Pachet. Improving timbre similarity:
How high is the sky? Journal of Negative Results in Speech and
Audio Sciences, 1(1), 2004.

[AP04b] J.-J. Aucouturier and F. Pachet. Tools and architecture for the
evaluation of similarity measures : Case study of timbre similar-
ity. In Proceedings of the 5th International Conference on Music
Information Retrieval (ISMIR), 2004.

108

[ARD04] M. Alonso, G. Richard, and B. David. Tempo and beat estima-
tion of musical signals. In Proceedings of the 5th International
Conference on Music Information Retrieval (ISMIR), 2004.

[AT00] M. Alghoneimy and A. Tewfik. Personalized music distribution.
In Proceedings of the IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2000.

[AT01] M. Alghoniemy and A. Tewfik. A network flow model for playlist
generation. In Proceedings of the IEEE International Conference
on Multimedia and Expo (ICME), 2001.

[Auc02] J.-J. Aucouturier. Scaling up music playlist generation. In Pro-
ceedings of the IEEE International Conference on Multimedia
and Expo (ICME), 2002.

[BL03] J. J. Burred and A. Lerch. A hierarchical approach to automatic
musical genre classification. In Proceedings of the 6th Interna-
tional Conference on Digital Audio Effects (DAFX), 2003.

[BLEW03] A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-
scale evaluation of acoustic and subjective music similarity mea-
sures. In Proceedings of the 4th International Conference on Mu-
sic Information Retrieval (ISMIR), 2003.

[DLR77] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the em algorithm. J. Roy. Statistal Society
B, 39:1–38, 1977.

[EHUL96] T. Eisele, R. Haeb-Umbach, and D. Langmann. A comparative
study of linear feature transformation techniques for automatic
speech recognition. In Proceedings of the International Confer-
ence on Spoken Language Processing (ICSLP), volume 1, pages
252–255, Philadelphia, PA, 1996.

[Foo97] J. Foote. Content-based retrieval of music and audio. In Pro-
ceedings of SPIE Multimedia Storage and Archiving Systems II,
volume 3229, pages 138–147, 1997.

[Fuk90] K. Fukunaga. Introduction to statistical pattern recognition.
Acad. Pr., 2. ed. edition, 1990.

[GD05] F. Gouyon and S. Dixon. A review of automatic rhythm descrip-
tion systems. Computer Music Journal, 29(1):34–54, 2005.

109

[GKM03] E. Gomez, A. Klapuri, and B. Meudic. Melody description and
extraction in the context of music content processing. Journal of
New Music Research, 32:23–40, 2003.

[GML03] S. Gao, N. C. Maddage, and C. H. Lee. A hidden markov model
based approach to music segmentation and identification. In Pro-
ceedings of the 4th IEEE Pacific-Rim Conference On Multimedia
(PCM), 2003.

[GSR91] H. Gish, H-H Siu, and R. Rohlicek. Segregation of speakers for
speech recognition and speaker identification. In Proceedings of
the International Conference on Acoustics, Speech, and Signal
Processing (ICASSP), 1991.

[HAE03] J. Herre, E. Allamanche, and C. Ertel. How similar do songs
sound? towards modeling human perception of musical simi-
larity. In Proceedings of IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (WASPAA), Mohonk, NY
(USA), 2003.

[HAH01] J. Herre, E. Allamanche, and O. Helmuth. Robust matching
of audio signals using spectral flatness features. In Proceedings
of the IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, 2001.

[HF01] D. B. Hauver and J. C. French. Flycasting: Using collaborative
filtering to generate a playlist for online radio. In Proceedings
of the International Conference on Web Delivery of Music, Flo-
rence, Italy, October 05 2001.

[HJ04] Y.-C. Huang and S.-K. Jenor. An audio recommendation system
based on audio signature description scheme in MPEG-7 audio.
Proceedings of the IEEE International Conference. on. Multime-
dia and Expo (ICME), pages 639–642, 2004.

[HW79] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm.
Applied Statistics, 28:100–108, 1979.

[ISM] International conference on music information retrieval (ISMIR)
http://www.ismir.net.

[JN84] N. S. Jayant and P. Noll. Digital coding of waveforms. Prentice-
Hall Intern., 1984.

110

[KFN98] T. Kaukoranta, P. Fränti, and O. Nevalainen. Iterative split-and-
merge algorithm for vq codebook generation. Optical Engineer-
ing, 37(10):2726–2732, 1998.

[Kul59] S. Kullback. Information theory and statistics. Wiley, 1959.

[LC00] B. Logan and S. Chu. Music summarization using key phrases. In
Proceedings of the International Conference on Acoustics, Speech
and Signal Processing (ICASSP), September 12 2000.

[LO04] T. Li and M. Ogihara. Content-based music similarity search
and emotion detection. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing
(ICASSP), 2004.

[Log00] B. Logan. Mel frequency cepstral coefficients for music mod-
eling. In Proceedings of the International Symposium of Music
Information Retrieval (ISMIR), 2000.

[Log02] B. Logan. Content-based playlist generation: Exploratory ex-
periments. In Proceedings of the 3rd International Conference
on Music Information Retrieval (ISMIR), 2002.

[Log04] B. Logan. Music recommendation from song sets. In Proceed-
ings of the 5th International Conference on Music Information
Retrieval (ISMIR), 2004.

[LS01a] B. Logan and A. Salomon. A content-based music similarity func-
tion. Technical report, Compaq Cambridge Research Laboratory,
2001.

[LS01b] B. Logan and A. Salomon. A music similarity function based on
signal analysis. In Proceedings of the IEEE International Con-
ference on Multimedia and Expo (ICME), 2001.

[LST04] A. S. Lampropoulos, D. N. Sotiropoulos, and G. A. Tsihrintzis.
Individualization of music similarity perception via feature sub-
set selection. In Proceedings of the IEEE International Con-
ference on Systems, Man & Cybernetics, pages 552–556. IEEE,
2004.

[LT03] T. Li and G. Tzanetakis. Factors in automatic musical genre
classification of audio signals. In Proceedings of the IEEE Work-
shop on Applications of Signal Processing to Audio and Acoustics
(WASPAA), 2003.

111

[ME05] M. Mandel and D. Ellis. Song-level features and support vector
machines for music classification. In Proceedings of the 6th In-
ternational Conference on Music Information Retrieval (ISMIR),
pages 594–599, 2005.

[MF04] C. McKay and I. Fujinaga. Automatic genre classification using
large high-level musical feature sets. In Proceedings of the 5th In-
ternational Conference on Music Information Retrieval (ISMIR),
pages 525–530, 2004.

[mpe] Information technology - multimedia content description inter-
face - part 4: Audio. ISO/IEC 15938-4:2002.

[MS91] T. Martinetz and K. Schulten. A ”neural-gas” network learns
topologies. In Proceedings of the International Conference on
Artificial Neural Networks, 1991.

[Pam06] E. Pampalk. Computational Models of Music Similarity and their
Application in Music Information Retrieval. PhD thesis, Tech-
nische Universität Wien, Fakultät für Informatik, 2006.

[PE02] S. Pauws and B. Eggen. Pats: Realization and user evaluation of
an automatic playlist generator. In Proceedings of the 3rd Inter-
national Conference on Music Information Retrieval (ISMIR),
2002.

[Pee02] G. Peeters. Automatically selecting signal descriptors for sound
classification. In Proceedings of the 2002 International Computer
Music Conference (ICMC), 2002.

[Pee04] G. Peeters. A large set of audio features for sound description
(similarity and classification) in the cuidado project. Technical
report, IRCAM, Paris, France, 2004.

[PM00] D. Pelleg and A. Moore. X-means: Extending k-means with
efficient estimation of the number of clusters. In Proceedings of
the 17th International Conference on Machine Learning, 2000.

[Poh05] T. Pohle. Extraction of audio descriptors and their evaluation in
music classifiction tasks. Master’s thesis, Technische Universität
Kaiserslautern, Fachbereich Informatik, 2005.

[PPW05a] E. Pampalk, T. Pohle, and G. Widmer. Dynamic playlist gen-
eration based on skipping behavior. In Proceedings of the 6th

112

International Conference on Music Information Retrieval (IS-
MIR), pages 634–637, 2005.

[PPW05b] T. Pohle, E. Pampalk, and G. Widmer. Generating similarity-
based playlists using traveling salesman algorithms. In Pro-
ceedings of the 8th Int. Conference on Digital Audio Effects
(DAFx’05), September 2005.

[PvdW05] S. Pauws and S. van der Wijdeven. User evaluation of a new
interactive playlist generation concept. In Proceedings of the 6th
International Conference on Music Information Retrieval (IS-
MIR), pages 638–643, 2005.

[Pye00] D. Pye. Content-based methods for the management of digital
music. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), 2000.

[RK] A. Ramalingam and S. Krishnan. Gaussian mixture modeling
using short time fourier transform features for audio fingerprint-
ing.

[RTG98] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distri-
butions with applications to image databases. In Proceedings of
the IEEE International Conference on Computer Vision, pages
59–66, 1998.

[SM05] N. Scaringella and D. Mlynek. A mixture of support vector ma-
chines for audio classification. In 1st music information retrieval
evaluation exchange (MIREX), 2005.

[SSWW98] H. Soltau, T. Schultz, M. Westphal, and A. Waibel. Recognition
of music types. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP),
1998.

[SW59] C. E. Shannon and W. Weaver. The mathematical theory of
communication. Univ. of Illinois Press, 8. print. edition, 1959.

[TC99] G. Tzanetakis and P. Cook. Multifeature audio segmentation for
browsing and annotation. IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, pages 103–106, 1999.

[TC02] G. Tzanetakis and P. Cook. Musical genre classification of au-
dio signals. In Proceedings of IEEE Transactions on Speech and
Audio Processing, 2002.

113

[TEC01] G. Tzanetakis, G. Essl, and P. Cook. Automatic musical genre
classification of audio signals. In Proceedings of the International
Symposium of Music Information Retrieval (ISMIR), Novem-
ber 09 2001.

[TTK05] M. Tolos, R. Tato, and T. Kemp. Mood-based navigation
through large collections of musical data. In IEEE Consumer
Communications and Networking Conference (CCNC), January
2005.

[WC05] K. West and S. Cox. Finding an optimal segmentation for audio
genre classification. In Proceedings of the 6th International Con-
ference on Music Information Retrieval (ISMIR), pages 680–685,
2005.

[ZZM04] G. Zoia, R. Zhou, and D. Mlynek. A multi-timbre
chord/harmony analyzer based on signal processing and neural
networks. In Proceedings of the IEEE International Workshop
on Multimedia Signal Processing, 2004.

114

