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Abstract

In this work the theoretical concepts of unsupervised acoustic model train-
ing and the application and evaluation of unsupervised training schemes are
described. Experiments aiming at speaker adaptation via unsupervised train-
ing are conducted on the KIT lecture translator system. Evaluation takes
place with respect to training e�ciency and overall system performance in
dependency of the available training data. Domain adaptation experiments
are conducted on a system trained for European parliament plenary session
speeches with help of unsupervised iterative batch training. Major focus is on
transcription pre-processing methods and confidence measure based weighting
and thresholding on word level for data selection. The objective is to lay the
foundation for an unsupervised adaptation framework based on acoustic model
training for use in KIT’s simultaneous speech-to-speech lecture translation sys-
tem.

Experimental results show, that it is of advantage to let the Viterbi algorithm
during training decide which pronunciations to use and where to insert which
noise words, instead of fixating these informations in the transcriptions. With
weighting and thresholding it is possible to improve unsupervised training in all
test cases. Tests of iterative incremental approaches show that potential per-
formance gains strongly correlate to the performance of the baseline systems.
Considerable performance gains are observable after only one iteration of un-
supervised batch training with applied transcription pre-processing, weighting
and thresholding.
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1. Introduction

The scientific field of automatic speech recognition has it’s origins in a time where personal
computers were not even in the minds of the researchers working at the frontiers of infor-
mation technology. Since more than fifty years, automatic speech recognition systems play
a distinctive role in the field of human-machine-interaction. Moreover, automatic language
processing technologies have seen large improvements in terms of performance, use and
acceptance in recent years. Speech recognition and speech-to-speech translation systems
manifest themselves in a large variety of applications used in daily life scenarios, be they
of private nature or part of the business environment. In a globalizing world and grow-
ing multi-cultural societies one of the most important requirements to spoken language
technology is the ability to cope with language in a robust and natural fashion. Inherent
to a human being, this poses a complex task for machines, demanding the development
of technologies that enable artificial systems to process, interpret and synthesize speech
signals in way which makes this high-level human-machine interaction acceptable by the
vast majority of the audience. Today’s smart systems are capable of multi-lingual and
simultaneous speech processing and translation, but usually high-performance systems are
tailored to a specific field of application. Usually, high-quality training data resembling
the target domain is required to build systems for accuracy-critical scenarios such as the
automatic transcription of parliament speeches or scientific lectures. The latter domain is
addressed by the simultaneous lecture translation system developed at KIT and started
its operation in a real life scenario recently. In the summer of 2012 the KIT lecture trans-
lator went on duty recording and simultaneously translating lectures of selected courses
[CFH+12].

In the past decades a vivid interest grew in improving the acoustic model training of such
systems with help of well-established speech processing and machine learning technologies.
The bottleneck of those training techniques generally is the lack of high-quality transcrip-
tions of potential training data. Whereas the amount of freely available audio recordings
at least for the major languages of the world grew beyond countability especially due to
the rapid growth and extensive use of multimedia web platforms for informational and
scientific purposes as well as commercial and pop-cultural usage, most data lacks the re-
spective transcriptions needed for a supervised training. Additional textual information
may give some insight into the content of the respective recordings in general, but do not
su�ce for the common methods of model training. The scientific field of machine learning
knows techniques for training models without transcriptions at hand, known as unsuper-
vised learning. The associated field of research within the scope of training the acoustic
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2 1. Introduction

models of speech processing systems is referred to as unsupervised acoustic model train-
ing. Moreover, techniques for lightly supervised training are capable of utilizing associated
textual data such as annotations, closed captions or textual summaries for establishing
certain degrees of supervision during model training. The main idea of those techniques
is to exploit the vast amount of unannotated and partly annotated audio media that is
publicly available and potentially utilizable for training and improving speech processing
systems with the help of automatically generated transcriptions for this data, and mak-
ing use of these erroneous data sets instead of relying on fully supervised material only.
The advantages are clearly visible: With the ability to benefit from a merely unlimited
source of audio recordings in form of the multimedia contents found in the world wide
web, building new speech processing systems and improving existing applications may be
rendered a constant process, not bound to the need of detailed transcriptions, which are
expensive in terms of production costs and time. The challenge in developing an e�cient
way of unsupervised training is the exploration of methods for filtering and processing
the generically obtained and thus erroneous transcriptions and maximizing the gains of
utilizing possibly available, yet inaccurate and coarse textual information.

1.1 Automatic Speech Recognition

The task of automatic speech recognition (ASR) is the machine made transformation of
a spoken utterance, embodied by sound waves transmitted through air, with previously
unknown content into it’s textual representation. The acoustic speech signal needs to
be transformed into a parametric representation for further processing. The digitalization
results in a representation of the time domain based continuous wave form as time discrete,
quantized digital signal. Further pre-processing results in a stream of multi-dimensional
feature vectors over time. Today’s state-of-the-art systems almost exclusively follow the
principle of statistical pattern recognition, modelling and decoding speech by means of
statistics [ST95, You96]. The statistical approach describes automatic speech recognition
as decoding process which aims at transferring an encoded message stream, i.e., a sequence
W of words w1, · · · , wn

into a respective stream X of real valued feature vectors x1, · · · , xm
following the maximum-likelihood criterion [ST95]. It is the task of the decoder to find the
most likely sequence of words W ⇤, given the representation X of the original sequence of
words W . With help of mathematical formulation it is possible to decompose this task into
several sub-problems. Identifying a sequence of words W ⇤ upon a pool W of all possible
sequences can be formulated and transformed by the Bayes formula as follows:

W ⇤ = argmax
W2W

P (W |X) = argmax
W2W

P (X|W ) · P (W )

P (X)
= argmax

W2W
P (X|W ) (1.1)

which models the probability of X being observed when W is the voiced sequence of words.
X is the acoustic observation according to the processed signal, P (W |X) is the probability
of W being observed, given X. P (X) is the a priori probability of observing X. As the
decoder varies W trying to maximize it, P (X) is constant for the classification decision
and thus negligible [Jel76]. The probability P (W ) and the probability density function
P (X|W ) are known as language model and acoustic model, respectively. The former mod-
els the probability of observing W , independently of the sequence of observations X, the
latter is the probability that a stream of feature vectors X is observed, given the input
sequence W of voiced words. This formulation is commonly known as the fundamental
equation of speech recognition. Provided that the acoustic model and language model along
with the respective dictionary are known, the Bayes formula delivers the optimal decoding
principle according to [Nie90]. However, it is crucial to find the probability distribu-
tions occurring in Equation 1.1 beforehand, rendering the computation of approximations,
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1.2. Acoustic Modeling 3

which are preferably as accurately as possible, a major task in the development process of
automatic speech recognition systems.

1.2 Acoustic Modeling

One of the sub-tasks mentioned above is the acoustic modelling, described as P (X|W ) in
Equation 1.1. In fact, we do not have the exact knowledge of the underlying parameters.
Instead, we model them by estimating emission probabilities P (X|�) of Markov models,
likely to give a good approximation of the real articulatory event. Today, almost exclu-
sively hidden Markov models (HMMs) are the concept of choice for estimating the defined
elementary sound units, utilizing annotated training samples of voiced utterances. HMMs
are especially useful for modelling dynamic processes that are structured in discrete states
and respective probabilities of state switches. In principal it is su�cient to define a feature
space of observable events and establishing an assignment of HMM states to specific units
of sound in order to define an HMM for modelling speech [Rog05].

The basic principle of statistical speech recognition using HMMs is to approximate P (X|W )
by the concatenation of word models �(w1), · · · ,�(wn

) for W = w1, · · · , wn

following
the maximum-likelihood criterion. The training algorithms of choice, Viterbi and Baum-
Welch, demand representative, exact utterance samples of all elements w

l

in the search
dictionary W

d

ict for iteratively optimizing the word models �(w
l

), which themselves are
compounds of phonemes. The phoneme based modelling approach, compared to a higher-
level modelling scheme, has several crucial advantages:

Precision: The sound unit is specific to it’s articulation, i.e each element of the sound
inventory is clearly distinguishable of every other, given appropriate approximations.

Robustness: Crucial to the above criterion is the quality as well as quantity of applied
training samples. Further, the application of appropriate approximation algorithms
and interpolation of models aiming at enhanced robustness is a factor.

Modularity: Representing words by means of smaller sub-units implicits a finite inventory
of models. Ideally, all acts of speech are derivable by proper concatenation of selected
units [ST95]. This representation implicits scalability.

Transferability: It is possible to synthesize new high-level models by falling back to ele-
mental units such as phonemes.

In order to establish a sound inventory fulfilling the above criteria, some conceptual design
is demanded regarding it’s definition phase.

The sum of all structural and parametric knowledge regarding the sound units we want
to model is known as the acoustic model (AM) of a speech recognition system. Word
models are usually a compound of smaller sound units, e.g., phonemes, which themselves
are further decomposable into sub-phonemes. The ideal elementary sub-unit should be
defined in a way that it is estimable acoustically precise and statistically robust [ST95].
In order to approximate the variabilities of voiced sound units such as phonemes in form
of co-articulatory e↵ects, acoustic model training makes use of context-dependent model
training of allophonic sound units, commonly known as polyphones.

Sample recordings ordinarily contain not only the relevant acoustic representation of a
word, but also silence or various noises and co-articulatory distortions especially at word
boundaries. To compensate for those e↵ects, the HMM corresponding to the word of
interest will be altered, instead of the sample data [ST95]. By following this approach of
acoustic modelling, besides the textual representation of each recorded training sample no
further annotation of the data is necessary [ST95].

3



4 1. Introduction

1.2.1 Unsupervised Acoustic Model Training

In the previous section it was stated that acoustic model training is in need of textual
representations of audio training samples. The field of machine learning is aware of unsu-
pervised training techniques. Training schemes belonging to this class of algorithms can
utilize material without the knowledge of a ground truth. For acoustic modelling that
implies the possibility of performing training without a priori available transcriptions. In
other words, by making use of appropriate training techniques it is possible to incorporate
huge amounts of audio data into acoustic model training, without manual transcriptions
at hand. The core idea of all unsupervised acoustic model training schemes is to run
an existing, presumably mediocre automatic text-to-speech (TTS) system on audio data
to automatically generate transcripts. Countering the significant amount of errors kept
in these transcriptions, various e↵orts are indispensable. In general, two approaches are
distinguishable, namely adaptation to the domain and acoustics of the training data, and
utilising confidence annotations for training, the latter being computed during automatic
transcription generation [Rog05]. Confidence scores depict a certain probability that the
recognizer is correct or wrong with producing a particular hypothesis or parts of. Au-
tomatic scores can be applied as weighting factors c

t

, multiplied with �
t

(i) for all time
steps t before performing the Baum-Welch training steps. A second way of employing
confidence scores is by thresholding. Particular sectors within the training data, whose
automatic confidence is below a pre-defined or automatically calibrated threshold will be
skipped, and thus excluded from training. The general assumption is, that the repetition
of iterative transcription runs followed by the training of an expectably improved text-
to-speech system using that very data converges to a system being capable of producing
competitive recognition results. As a consequence of the necessity of multiple iterations,
and given the fact that confidences merely correlate with veritable probabilities, suggest-
ing a certain wariness of the errors in the data, a significantly larger amount of training
material is needed compared to a training on supervised data [Rog05]. [KW99] reports,
that approximately twice the amount of initially untranscribed data is needed for training
in order to achieve a comparable performance as with supervised training on manually
transcribed data. It is worth mentioning that this is but a scarce estimate, as the ef-
fectiveness of unsupervised AM training heavily depends on the baseline system used for
automatic transcription generation, and the target training data. Exemplarily, [LGA02]
demonstrates the e↵ectiveness of unsupervised training: A system trained system on 140
hours of unsupervised data resulted in a system performance of 23.4% WER, compared to
a system supervisedly trained on 50 hours of manually annotated data yielding a perfor-
mance of 20.7%, thus verifying the assertion of [KW99].

Besides training acoustic models in a supervised or unsupervised manner, one can think
of a training scheme in between. Any textual information related to the recorded training
samples may be utilised in place of eventually missing manual transcriptions. Automat-
ically generated annotations may be filtered based on available textual information of a
certain degree of detail and accuracy, e.g., closed captions, utilising confidence measures
or skipping non-matching parts in both annotations. Closed captions may also be used
for training directly, with the constraint that missing information such as non-annotated
noise, unknown speaker identities or non-speech segments have to be produced automati-
cally. Moreover, the alignment of text and audio must allow for transcription errors such as
insertions, deletions or substitutions [LGA02]. It is also conceivable to use related textual
information for dictionary adaptation and language model training, which introduces the
option to generate the most likely strings of words given the presumably more suitable
models. The latter approaches are known as lightly supervised acoustic model training
[LGA02].
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1.3. The JANUS Recognition Toolkit 5

1.3 The JANUS Recognition Toolkit

The speech decoding modules of the systems used and described in this work are realized
with the JANUS Recognition Toolkit (JRTk), which has been developed at the Karlsruhe
Institute of Technology and Carnegie Mellon University as a part of the JANUS speech-
to-speech translations system [FGH+97, LWL+97]. The toolkit provides an easy-to-use
Tcl/Tk script based programming environment which gives researchers the possibility to
implement state-of-the-art speech processing systems, especially allowing them to develop
new methods and easily perform new experiments. JANUS follows an object oriented
approach, forming a programmable shell. For this thesis, JRTk Version 5 was applied,
which features the IBIS decoder. IBIS is a one-pass decoder, thus being advantageous
with respect to real-time requirements of today’s ASR and other language processing
applications [SMFW01].

1.4 The KIT Lecture Translator

Lectures at universities around the world are often given in the o�cial language of the
respective university’s location. At the Karlsruhe Institute of Technology (KIT), for in-
stance, most lectures are held in German language. Often, this poses a significant obstacle
for students from abroad that wish to study at KIT, as they need to learn German first. In
order to be able to truly follow the often complex academic lectures, the level of proficiency
in German that the foreign students need to reach is quite high.

While in principal simultaneous translations by human interpreters might be a solution
to bridge language barriers in such a case, this approach is too expensive in practice.
Instead, technology in the form of spoken language translation (SLT) systems can provide
a solution, making translations of lectures available in many languages at a↵ordable costs.
Therefore, one of KIT’s current research focuses is the automatic translation of university
lectures [FWK07, F0̈8], with the aim to aid foreign students by bringing simultaneous
speech translation technology into KIT’s lecture halls.

The simultaneous lecture translation system that is used for this purpose is a combination
of an automatic speech recognition (ASR) and a statistical machine translation (SMT)
system. For the performance of such an SLT system the word error rate of the ASR system
is critical, as it has an approx. linear influence on the overall translation performance
[SPK+07].

Automatic speech recognition for university lectures is rather challenging. In order to
obtain the best possible ASR performance, the recognition system’s models, including
acoustic model and language model, need to be tailored as closely as possible to the
lecturer’s speech and the topic of the lecture.

The speaker independent system that is used in the experiments described in Chapter 4
of this study was taken from the inauguration of the lecture translation system at KIT
on June 11th 2012 [CFH+12]. For the inauguration, first a speaker-independent acoustic
model system was trained on all available training data from the KIT lecture corpus for
Speech Translation [SKM+12], and then adapted to the individual lecturers.

1.5 Objective of This Work

This thesis addresses the theoretical concepts of unsupervised acoustic model training and
describes the application and evaluation of unsupervised training schemes. Starting with
a speaker independent version of the KIT lecture translator system, experiments aiming
at speaker adaptation via unsupervised training are conducted. Iterative as well as in-
cremental training approaches are evaluated and compared with respect to the training

5



6 1. Introduction

e�ciency in terms of minimal amount of training data needed to observe improvements,
and overall recognition performance after training. Having a large amount of unsupervised
out-of-domain data at hand, a system trained for appliance to European Parliament Ple-
nary Session (EPPS) speeches is intended to be re-trained to a new domain by an iterative
batch training approach. Given these two experimental scenarios, it is a major objective
to investigate the impact of various transcription pre-processing methods, as well as the
e↵ectiveness of confidence measure based data filtering methods applied during acoustic
model training, in the form of confidence measure based weighting and thresholding on
word level. The objective is to lay the foundation for an unsupervised adaptation frame-
work based on acoustic model training for use in KIT’s simultaneous speech-to-speech
lecture translation system [F0̈8].

This thesis is organized as follows: Chapter 2 outlines the basic principles of acoustic
model training. An insight into the standard training procedure along with a probabilistic
formulation will be given, as well as an overview of the various levels of supervision that are
applicable during model training. Chapter 3 provides a detailed insight into unsupervised
acoustic model training approaches. A major focus is on various design decisions that
have to be made when establishing a training scheme given the available resources. The
chapter concludes with a view on related work. The designs of the training frameworks
for the KIT lecture translator system is explicated in chapter 4. Chapter 5 elaborates
the applied strategies given the EPPS system as starting point. Both chapters begin with
an introduction of the respective dataset being worked on, followed by a detailed account
of the baseline system. Following the explanation of the strategies for decoding, training
and testing is a detailed presentation of the experimental results, which comprises the
evaluation of various applied transcription pre-processing and data filtering techniques, as
well as variations of iterative training schemes. Each of the chapters is concluded by an
Analysis of the results. Chapter 6 summarizes this study and gives an outlook on future
work.
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2. Acoustic Model Training

In speech recognition as well as for pattern classification tasks in general, main principles
are fragmentation of large problems into smaller problems, whose solutions are optimally
separately realizable [Rog05]. ASR systems most commonly model acoustics and linguistics
separately in the form of acoustic model and language model. Training of the acoustic
models is the main topic of this chapter.

The purpose of the acoustic model is to provide a method of computing the likelihood
of any sequence of feature vectors, given a specific sequence of words [You96]. As it is
impractical for large vocabulary speech recognition systems to model words as a single
entity, the actually modelled sound units are further split into single phones, where each
phone is represented by a particular hidden Markov model (HMM). The core concepts
used during training of HMM-based acoustic models are the Baum-Welch rules and the
Expectation-Maximization algorithm (EM algoritm). The general training process can
be divided into three steps, the initialization step, the iterative optimization and the
evaluation step [Rog05].

2.1 Probabilistic Formulation

A hidden Markov model is a five-tuple (S,A,B,⇡,V), where

• S = s1, · · · , sn is the set of all states of the HMM

• A = (a
i,j

) is the state transition matrix, a
i,j

being the probability of a transition
from s

i

to s
j

• B = b1, · · · , bn is the set of emission probabilities for a discrete V , or emission
densities for a continuous V , where b

i

(x) is the probability of observing x when
being in state s

i

• ⇡ is the probability distribution of the start states, where ⇡(i) is the probability of
s
i

being the initial state

• V is the feature space of b
i

, where in the discrete case V = v1, v2, · · · ) b
i

is a
probability, and in the continuous case V = (R)n ) b

i

is a density

For mathematical correctness the following stochastic constraints must be satisfied:

7



8 2. Acoustic Model Training

Start probabilities

It must be
P

n

i=1 ⇡(i) = 1. A common set-up in practice is ⇡(0) = 1 and ⇡(i) =
08i > 0

Transition probabilities

It must be a
i,j

� 0 8i, j and
P

n

j=1 ai,j = 1, i.e., all outgoing transitions of a state s
i

have to be 1.

Furthermore, for the special case of a discrete first order Markov chain as it is used for the
purpose of acoustic modelling, it is

P (q
t

= s
i

|q
t�1 = s

j

, q
t�2 = s

k

, · · · ) = P (q
t

= s
i

|q
t�1 = s

j

) (2.1)

and

a
i,j

= P (q
t

= s
j

|q
t�1 = s

i

) , 1  i, j  N (2.2)

because only these processes are considered where the right hand side of Equation 2.1 is
independent of time [You96].

An HMM can be interpreted as a finite state machine that serves as a generator of vector
sequences, where a state q

t

= s
i

is changed to q
t+1 = s

j

once for a particular point t in
time, and a feature vector v

t

is output with an emission probability b
j

(v
t

) [You96]. Thus,
the joint probability of a produced sequence of feature vectors X and the sequence of
visited states S given the HMM � is calculated as

p(X,S|�) = a0,1

TY

t=1

b
t

(x
t

)a
t,t+1 (2.3)

The three fundamental problems of HMMs are known as the evaluation problem, the
decoding problem and the optimization problem [Rab89]. Given an existing HMM and
an observation, the evaluation problem addresses the computation of the probability of
how likely the HMM emits the observation. The decoding problem describes how to
compute the most probable sequence of visited states for generating the observation. The
optimization problem is also known as learning problem and addresses the task of re-
computing a new HMM that emits the given observation with a higher probability than
the initial HMM. Consequently, the core of acoustic model training for HMM-based models
is the optimization problem of HMMs.

2.2 Optimization Problem

The optimization problem raises the question, how to adjust the HMM model parameters
S,A,B,⇡, V so that P (O|�) will be maximized [Rab89]. hidden Markov models are opti-
mized iteratively in a way that for every point i in time Q(�

i+1) > Q(�
i

), where Q is a
pre-defined optimization function. The predominant training scheme in the field is follow-
ing the maximum-likelihood criterion by trying to maximize the observation probability
of the training data, which corresponds with the evaluation problem for HMMs [Rog05].
Thus, after running through a training sequence a model should be capable of describing
a given observation better than before.

Formally, the optimization problem is to find a �0 with

p(X|�0) > p(X|�) ,with given �, X = x1, · · · , xT (2.4)
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2.2. Optimization Problem 9

There is no known way to analytically solve this training problem of maximizing the prob-
ability of outputting a given observation [Rab89]. Given any finite observation sequence
as training data, there is no optimal way of estimating the model parameters. However, it
is possible to choose model parameters so as to locally maximize the probabilities. With
the Baum-Welch rules and the EM algorithm at hand there exist methods of iteratively
optimizing all relevant model parameters.

The primary task of the training algorithm is to optimize all parameters of a state s
i

. For
that, it has to have knowledge about the probability of being in a particular state s

i

at
time t when making the observation x1, · · · , xT . This probability is defined as

�
t

(i) = P (q
t

= i|X,�) (2.5)

By applying the Bayes rule and subsequent decomposition �
t

(i) can be described as

�
t

(i) =
P (q

t

= i,X|�)
P (X|�) (2.6)

The numerator of this term is computed by the Forward-Backward algorithm, which is
used to solve the evaluation problem. The probability of being in state s

i

at time t and
making the full observation X can be described as

P (q
t

= i,X|�) = P (q
t

= i, x1, · · · , xt|�) · P (x
t+1, · · · , xT |qt = i,�) = ↵

t

(i) · �
t

(i) (2.7)

where ↵
t

(i) is the probability of being in state s
i

after having seen the partial observation
x1, · · · , xt, and �

t

(i) is the probability of being in state s
i

and making the future partial
observation x

t+1, · · · , xT [Rab89]. That implies that

�
t

(i) =
P (q

t

= i,X|�)
P (X|�) =

↵
t

(i) · �
t

(i)P
j

↵
t

(i) · �
t

(i)
(2.8)

Given this formulation it is su�cient for the training algorithm to know the observation
X = x1, · · · , xT and the corresponding �

t

(i) for optimizing the emission probabilities of
an HMM [Rog05].

The probability of a transition from s
i

to s
j

when observing X is defined as

⇠
t

(i, j) = P (q
t

= i, q
t+1 = j|X,�) (2.9)

By applying the Bayes rule and decomposition by utilization of the ↵ and � terms, this
probability can be expressed as

⇠
t

(i, j) =
P (q

t

= i, q
t+1 = j,X|�)

P (X|�) =
↵
t

(i)a
ij

b
j

(x
t

+ 1)�
t+1(j)P

l

↵
t

(l)�
t

(l)
(2.10)

By having ↵, �, � and ⇠ at hand, the Baum-Welch rules can be applied for HMM parameter
optimization:

a0
i,j

=

P
T

t=1 ⇠t(i, j)

�
t

(i)
(2.11)
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10 2. Acoustic Model Training

is the updated probability for a transition from s
i

to s
j

, and

⇡0(i) = �1(i) (2.12)

is the updated probability of s
i

being the initial state of the HMM.

The update step of the emission probabilities for each state depend on the nature of the
emission probability models. In the continuous case, i.e., when using Gaussian mixture
models as models for emission probabilities, the EM algorithm is applied for parameter
updating. In the discrete case, the Baum-Welch rule

b0
i

(v
k

) =

P
T

t=1 �t(i)�(xt, vk)P
T

t=1 �t(i)
,with �(x

t

, v
k

) =

(
0 for x

t

6= v
k

1 for x
t

= v
k

(2.13)

is applicable. In the case of emission probabilities modelled by neural nets one might
utilize the Back-Propagation algorithm for training.

2.3 Initialization

Several strategies exist for initializing acoustic model training, depending on the available
resources. The three common basic approaches are random initialization, initialization by
utilizing labelled data, and initialization by parameter transfer.

2.3.1 Random Initialization

Following the theoretical formulation of the Baum-Welch rules and the EM algorithm there
is no demand of an initialization of training parameters with a particular set of values. By
definition, HMM training converges to a local optimum with every optimization step, in
strict accordance with mathematical correctness [Rog05]. Nevertheless it is recommended
to choose start values that represent an advantageous starting point for parameter op-
timization. There are mainly two reasons for the potential benefit by doing so: Firstly,
applying the Baum-Welch update rules only guarantee the convergence to a local optimum.
Secondly, an unfavourable parameter initialization may lead to very long optimization cy-
cles. Thus, a pre-defined starting point may lead to a better local optimum than a mere
random initialization, as well as sped-up training runs.

2.3.2 Utilization of labelled data

Labels are assignments of feature vectors to sound models. There exists a variety of
options for gathering labels, beginning with the almost entirely manual production of
observation-to-model assignments to fully automatic label generation techniques. Usually,
the most reliable labels are labels based on man-made assignments of single sounds to
audio segments, but naturally this is the most expensive way of obtaining labels, in both
time and cost. Today, automatic label generation is commonly achieved by utilizing word
based transcriptions that match the audio data intended for use as training data. These
transcriptions usually hold a certain level of detail by covering not only the audible words,
but also perceptible noises of articulatory (smacking, breathing, etc.) as well as linguistic
(incomplete words, repetitions, etc.) and environmental (background noise, etc.) nature.
With the help of this type of data, labels are generated by applying the Forward-Backward
or Viterbi algorithm on the transcribed training data. For this, however, an already
existent recognizer is indispensable. The resulting labels are usually significantly flawed,
but still usable for initializing a new recognizer. Initialization of the HMM parameters is
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2.4. Iterative Optimization 11

done straightforwardly with help of the Baum-Welch rules. Initialization of the Gaussian
mixture models for modelling emission probabilities is commonly done by using the k-
means algorithm. Here, the labels determine which feature vector belongs to which sound
model. Initial “codebooks”, i.e., models for distinct sound units are then computed by the
k-means algorithm on a full vector-to-model assignment.

2.3.3 Initialization by parameter transfer

Another applicable method for parameter initialization is a parameter transfer from an
existing system to the new ASR framework. The complexity of a transfer depends on the
divergence between the source and target system. If the architectures are similar or equal,
a simple transfer by copying can be conducted. If both systems significantly di↵er, certain
parameters have to be discarded, or modified to fit to the new models, if possible.

2.4 Iterative Optimization

Training schemes that follow the approach of iterative optimization have in common that
one of the core principles is repeated, subsequent training and testing. The training step
may either be another iteration of Baum-Welch or EM based model updating, or changing
to a higher level of system complexity, e.g., by increasing the amount or size of GMMs or
introducing more a more fine-grained parameter-typing [Rog05]. The test phases are tools
for monitoring process and verifying the correctness of the training pipeline. Decisions
regarding the finalization of training or modification of training steps can be made by
reference to regular feedback through evaluation.

With the help of the Forward-Backward algorithm the probabilities �
t

(i) = P (q
t

= i|X,�)
used during training can be computed. Conducting training this way allows for a training
sample, i.e., a particular feature vector to be assigned to various models at the same
time, but with di↵ering probabilities. As a consequence, single samples extracted from
the training data contribute to the parameter update of multiple models. One drawback
of using the Forward-Backward algorithm therefore is the increased complexity of the
parameter update step, which usually leads to considerable run-times when training on
large amounts of data.

Thus, it is a common practice in the field to use the Viterbi algorithm instead. As opposed
to the Forward-Backward algorithm, Viterbi computes the most probable sequence of
visited states:

Q = q1, · · · , qT = argmax
Q

P (Q|X,�) (2.14)

Consequently, the probabilities �
t

(i) used for training are approximated by

�
t

(i) =

(
0 for i 6= q

t

1 for i = q
t

(2.15)

The derivation of EM training for HMM parameter optimization is known as Viterbi
training and utilizes the Baum-Welch rules with the constraints [ST95]:

�
t

(i) = �(q
t

, s
i

) and ⇠
t

(i, j) = �(q
t

, s
i

)�(q
t+1, sj) (2.16)

With increasing T both algorithms result in an almost equally e↵ective training set-up
[Rog05]. One major advantage of Viterbi training is a significantly decreased training run-
time due to the lower amount and complexity of computations, as well as easier application
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12 2. Acoustic Model Training

of search space restrictions. An even higher speed-up is attainable by training along labels.
Similar to parameter initialization by labels, the Baum-Welch rules can be applied on pre-
computed alignments for parameter updating. In order to achieve a training e↵ect, multiple
training steps along labels are followed by a re-computation of labels, so that assignments
of sample vectors to models may change. This training scheme is iterated multiple times.

2.5 Evaluation

The quality of an automatic speech recognition system can be measured by means of a
recognition error. Usually, a recognition error is computed on word level, which leads to a
word error rate, given a set of test utterances and their reference transcriptions. The word
error rate on a test set REF = ref1, · · · , refn and hypotheses HY P = hyp1, · · · , hypn is
defined as

WER(HY P,REF ) =
nX

i=1

N sub

i

+N ins

i

+Ndel

i

N
i

(2.17)

where N
i

is the total amount of words in reference ref
i

. N sub

i

, N ins

i

and Ndel

i

count the
substitutions, insertions and deletions of words in the hypothesis in comparison to the
respective reference ref

i

.

Computation of the WER may be done during system development for progress moni-
toring, or as decision aid for modifications on the training framework. Ultimately, the
WER may be used as basis of assessment during final evaluation runs. Usually, prior
to an evaluation on a separate data set, parameter tuning by minimizing the WER on
a development set is conducted. JANUS, which is used for all experiments during this
project, is equipped with a hypothesis scoring, whose parameters have a direct impact on
the structure of generated hypotheses. Derived from the following formula:

P (W |X) =
p(X|W ) · P (W )lz · lp|W |

p(X)
(2.18)

the IBIS decoder used by JANUS scores the hypothesis related to an input utterance as
follows:

score(W |X) = logP (X|W ) + logP (W ) · lz + lp · |W | (2.19)

The lz parameter constitutes a language model weight, i.e., it determines the impact of the
language model on the decoding process relative to the acoustic model. The parameter lp
is a hypothesis length penalty or more precisely a word transition penalty, whose proper
adjustment helps to normalize the length of sequences of words [SMFW01]. Fine-tuning
the lz,lp value pair aims at minimizing the word error rate of the development set so that
the final system is optimized to the previously unseen target evaluation data.

2.6 Levels of Supervision

As is the case for training of classifiers in general, it is particularly common for acoustic
model training to utilize data of various levels of supervision, depending on the available
amount of training data, as well as the objective target of system development. The fol-
lowing sections attempt to give an overview of the common levels of supervision in acoustic
model training. It is noteworthy, however, that in practice terms have been used with a
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2.6. Levels of Supervision 13

certain inconsistency over time so that one might eventually encounter overlapping defi-
nitions when reading about unsupervised, semi-supervised and lightly supervised acoustic
model training. In fact, the transitions between the approaches are fluent, and not un-
commonly it might be di�cult to strictly assign a particular approach a specific category
of supervision.

2.6.1 Supervised training

Model training is performed on labelled data, i.e., audio data that comes with textual
references of what was said serves as training data. In other words, the assignment of
training samples to models is fully known and is intended to be learned by the system
for generalization on previously unseen data. A training data set is comprised of training
examples, where each example is a pair of audio recording and the desired ASR output,
or ground truth. The goal of supervised training is to maximize the probability that the
system’s models hypothesize the a priori known reference.

2.6.2 Semi-supervised training

In a semi-supervised training framework, references are only available for a subset of the
full set of training data, and the remainder of the data is without references. Often,
the portion of unsupervised data is many times larger than the supervised subset. The
process of gathering references for training samples is usually expensive, whereas unlabelled
data may be available in much higher quantities. In the context of acoustic models,
semi-supervised learning may be considered inductive learning: First, models that were
trained on the supervised training subset are used to infer transcriptions of previously
untranscribed data in order to include the latter into system development. Then, the
objective is to produce an optimal prediction of what was voiced in one or more test
utterances. This particular approach, which is also known as self-training [CSZ10].

2.6.3 Lightly-supervised training

In general, any kind of related linguistic information to the audio data intended for training
can be used for supervision. Various ways of utilization are conceivable, e.g., by substitut-
ing missing detailed transcriptions, with application of proper matching strategies such as
flexible transcription alignment [FW97]. Another way of exploiting textual data that is
loosely coupled to the audio material is the use as training corpus for a language model,
along with dictionary adaptation, which both can subsequently be applied for automati-
cally generating more accurate transcriptions for model training. The advantage is that
related textual data is commonly available on a comparatively larger scale than detailed
transcriptions. Moreover, loose transcriptions such as closed captions as they are used for
television broadcasting are producible with significantly less e↵ort [LGA02]. A third way
one can think of utilizing available textual data is as reference text, which for instance
enables data filtering by comparison, e.g., with the help of distance measures or majority
votes.

2.6.4 Unsupervised training

Unsupervised training is performed without any labelled data at hand. The core principle
is to find the hidden structure in the labelled data so that it might become utilizable
for training classifiers or models. Within the frame of acoustic model training the main
task is to automatically find transcriptions for the unsupervised data in a way that they
resemble the optimal solution as good as possible. The main issue is that there exist
no intuitive measures of error or correctness that can be used to evaluate the proposed
transcriptions, since no reference data is available. However, there exist several techniques
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14 2. Acoustic Model Training

based on automatic confidence measures to pre-process and filter data. Similar to the semi-
supervised approach, an existing system is commonly used for automatic transcription.
The applied system, however, may show only poor performance on the target data. Thus,
it has to be ensured that erroneous data is exempt from training. Again, this can be
achieved by confidence based pre-processing and filtering. Another applicable strategy is
adapting the transcription system to the target data in order to reduce the amount of
emerging errors [Rog05]. With the now transcribed data, a full acoustic model training
can be performed.

14



3. Unsupervised Acoustic Model Training

One of the major challenges in training of ASR systems, in particular the acoustic model
training is the reduction of development costs. Here, a major cost factor is the production
of detailed transcriptions or labels for acoustic model training data. Estimations of e↵orts
to produce high-quality transcriptions for audio data are in double figures of real-time
[LGA02]. Thus, usually a huge quantity of working hours, as well as high costs of personnel
expenses is needed. Moreover, there is need of professional, trained transcriptors, and the
search of experts may pose another issue in system development plannings. Further on, not
only for full system training, but also for the task of adaptation there is need of accurate
transcriptions, depending on the applied method.

On the other hand, the amount of available audio data that is untranscribed, but freely
accessible is nearly unlimited. May it be web services such as youtube1, with a very broad
– if not to say boundless – spectrum of topics, TED2 with multiple pre-defined thematic
priorities, broadcasting services or specialized podcasts, all of them embody valuable data
resources which are potentially utilizable for automatic speech processing in general. Today
several approved unsupervised acoustic model training techniques are capable to e�ciently
use such untranscribed data for model training and model adaptation. The basic idea of
these techniques is to use a speech recognizer system, which may have been into existence
before, or that has been trained for this specific purpose, to transcribe this raw audio
material. The resulting transcriptions, that usually are approximate and only partially
correct, are then used for the ultimate acoustic model training. A key role plays the pre-
processing and filtering of this error-prone data, as only this allows for e�cient training
after all.

3.1 Unsupervised Training

In the following a standard scheme for unsupervised training shall be elaborated. The
minimal requirements for conducting unsupervised training is the availability of certain
amounts of audio material that is in a condition to serve as training data. Also, one needs
at least a minimal system to start with. This system may either be an existent ASR
framework or a bootstrapped variant, or it may be a system that was just trained on a
minimal set of data. In the former case the system may be an outdated or an intermediate
version of a former development process. Typically the models used by these systems

1
http://www.youtube.com

2
http://www.ted.com
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16 3. Unsupervised Acoustic Model Training

are less complex, and there might be a considerable mismatch between the source and
target domains as well as significant di↵erences in the channel properties. However, the
utilized system might perform well enough to produce acceptable transcriptions for further
processing. As opposed to this, the system used for transcription could also be optimized
to the target data already, and possibly even be a baseline system with the objective to
get further adapted and fine-tuned to this type of data.


 












  
















 











Figure 3.1: General unsupervised acoustic model training set-up. Unannotated audio data
(UA) is transcribed by a system that was trained on initial audio (IA, IT ).
The automatic transcriptions (AT ) are pre-processed for training in a data
selection step. The re-trained recognizer may also be trained on the initial
supervised data.

If there is no ASR system available for a straightforward application as automatic tran-
scription system, one might derive a new system from old models by bootstrapping. Ex-
periments have shown that already very small amounts of manually transcribed data can
be used for training a minimal system that can be used for automatic transcription of an
untranscribed portion of the training data [LlGA02]. Thus, in practice it became popular
to manually transcribe a small portion of the large amounts of available training data and
using this subset for supervised training of a minimal ASR, that subsequently serves as
transcription engine. Here, the initial system blends seamlessly in the whole development
process as a mismatch between channels and/or domains can be avoided.

Following the acquisition of an initial system that can serve as generator for automatic
transcriptions, the actual transcription of the unsupervised training data takes place. The
transcription system decodes the target data and stores the textual representations in an
appropriate way. There might be di↵erences in the decoding strategy, depending on the
steps that will follow, or the kind of training that shall be applied. If rapid gain of addi-
tional training data is the goal, decoding might be performed with a one-pass decoder and
without lattice re-scoring, whereas for the acquisition of higher-quality transcriptions the
latter may be applied, along with other multi-pass strategies, or even system combination
approaches.

The automatic transcription is followed by a data selection phase. In principal, this phase
is borne by two actions, transcription pre-processing and transcription filtering. Transcrip-
tion pre-processing – the term relates to a processing step prior to an actual acoustic model
training – comprises textual processing methods and does not necessarily include any ac-
tive rejection of data in larger quantities, e.g., the dismissal of whole sentences, although
that might be the case under certain circumstances. In general, the pre-processing that
is applied aims at filtering the textual data. Decoder outputs may still include non-word
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tokens tagging occurrences of noise or articulatory artifacts or the voicing of filler words.
It can be desirable to free the automatic transcriptions of such additional annotations,
which for instance may depend on the expectation regarding the accuracy of the utilized
decoder. If it is expected that the decoder’s hints regarding occurrences of non-speech
events are error-prone it may be of advantage to let the actual training decide where to
suspect non-speech. The data filtering step actively exempts parts of the data from the
subsequent training. This is commonly done by applying confidence measure techniques.
Upon the most prominent methods is the utilization of lattice-based posterior probabil-
ities for confidence measurement [KW99]. Many variants are conceivable, regarding the
granularity of sound units to observe, ranging from (sub)phone level to sentence or even
document level. Common is the operation on word level. The possibility of obtaining
confidence scores is manifold. Confidence measures may be taken into consideration on a
1-best hypothesis only. It may also be operated on a word lattice or confusion networks
so as to include more informations into the decision process.

Data can e↵ectively be exempt from training by defining a confidence threshold. If a
word or whole parts of the transcribed data fall below a particular confidence score, the
respective data will be ignored during training. Another possibility of filtering is the
application of weighting according to confidences. This way, no data is completely thrown
away, but it slips into the training with weights adjusted to the confidence of the respective
parts, thus limiting the damage potentially erroneous data may evoke.

The data selection phase results in a cleaned and filtered set of automatically transcribed
training data. However, there is no guarantee that the data set is free of errors. On
this pre-processed set the actual acoustic model training is performed. Depending on the
availability of supervised data that has been used for training the transcription system,
as well as the nature of that data – it may be that there is a mismatch between the
supervised and unsupervised data in terms of domain or channel characteristics – it is to
decide whether or not to include this data into the subsequent system training. In case of
inclusion one might also speak of a semi-supervised training framework [LZM12].

Figure 3.1 schematizes a typical framework for unsupervised acoustic model training, which
follows the approach of automatic transcription with the help of an initial system followed
by model parameter updating. What has not yet been taken into consideration in the
above outlines is the option of light supervision by utilizing additional textual data such as
closed captions. With the automatically generated transcriptions and the partial references
at hand, data selection may also be conducted by several techniques such as dynamic
programming, application of confusion networks or simple word based majority votes. This
approach is known as lightly supervised training [LGA02]. The optional light supervision
via language modelling has no graphical representation in the figure, however it should
be mentioned herewith for the sake of completeness. The graphic also illustrates the
previously described decision whether or not a priori available supervised data is included
in the actual system training.

3.2 Design decisions

Depending on the availability and condition of potential training data, as well as the ob-
jective target of the system training there are various design decisions to make, regarding:

• the pre-processing of data

• the filtering for training

• the training paradigm

• the application of additional supervision
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18 3. Unsupervised Acoustic Model Training

Although any additional supervision leads to a training scheme that is not fully unsu-
pervised anymore, it shall be included in the list of design decisions, as in practice there
usually is no clear and absolute distinction between fully unsupervised training or essen-
tially unsupervised training with a certain degree of supervision.

3.2.1 Amount of Acoustic Training Data

The amount of data that will be actually used for model training has a direct impact on
the maximal complexity of the acoustic models. With more data being usable for training,
models can represent the feature space in a more fine-grained way, allowing for smaller
sound units such as context-dependent phonemes instead of context-independent ones, or
generalized polyphones instead of tri-phones, for instance. More data also allows for a less
generalized parameter coupling. Another important factor remains the quality of the data,
as a more fine-grained model set is more prone to erroneous data and outliers. Obviously,
with more data at hand, systems can also potentially improve more from training as with
less data, as long as the applied techniques allow for further improvement.

3.2.2 Pre-processing of Acoustic Training Data

The results from automatic transcription runs are raw decoder outputs. As such, the
textual representation of what was said – according to the used decoder – is still annotated
with non-word tokens that may mark occurrences of noise of various kinds, as well as
silence or other artifacts that are irrelevant for a final hypothesis if the decoding were
a standard ASR task. For unsupervised training, both detailed decoder outputs as well
as cleaned transcriptions are applicable. It is primarily the quality of the decoder which
decides whether it is useful to use the estimates of noise and filler occurrences or not. The
presence of additional information about the audio data provides a higher flexibility during
training and may also lead to a more e�cient training due to the increased detail about
the data. On the other hand, the same circumstance poses a risk of leading the models
into a wrong direction, if the data is heavily error-prone or simply not reliable enough in
general. In the latter case, it might be beneficial to let the training algorithm decide how
to handle non-speech parts in the training data.

3.2.3 Filtering of Acoustic Training Data

The most common methods for processing unreliable, erroneous transcriptions in unsu-
pervised acoustic model training are based on lattice confidence measures at word or state
level [FSGL11]. [Kea97] has shown that the word lattice output of a ASR system contains
useful informations that can be used to estimate the likelihood of each word that has been
hypothesized by the decoder. The general idea is that the existence of a high number of
word hypotheses with a similar likelihood in a specific time span implies a higher risk of
confusion, or error in general. In contrast to that, if for a specific word hypothesis in a
specific time segment the probability is significantly higher than the probability of other
words, this implies a rather low risk of error.

Confidences can be applied in several ways, where the most prominent are:

Weighting factor During training, the data is weighted by posteriori probabilities that
have been computed on the lattice informations. For instance, the weighting may be
conducted by adjusting the �-probabilities during Viterbi training according to the
confidence score of the respective part of the training data.

Threshold By setting a threshold value, e.g., a lower bound for confidence scores, parts
of the training data that fall below this specific confidence limit will be exempt from

18



3.3. Related Work 19

training. The strictness of the threshold value is essential for a positive training
e↵ect: If the threshold is too lax, more incorrect data tends to slip in the training,
whereas a too strict threshold leads to the increased dismissal of actually reliable
word hypotheses.

These attempts of error filtering and error avoidance are not free of making errors either, as
the confidences are but estimates with limited reliability. Thus, further fine-tuning during
development might be necessary in order to benefit the most from these techniques.

3.2.4 Training Paradigms

Basically three major training paradigms are applicable for unsupervised training, namely
batch training, iterative training and incremental training. One can also think of combi-
nations of these individual set-ups. The term batch training describes a single iteration of
unsupervised training. This approach is the most simple solution for the training problem
given unannotated data. Batch training is applicable for all amounts of training data. If
only a very limited amount of audio material is available, a single iteration of automatic
transcription followed by model training may already su�ce for adapting an existent sys-
tem to new conditions.

There exists a large variety of works describing the iterative and incremental approaches.
The latter scheme is comprised by multiple iterations of automatically transcribing data
and subsequently training a new system, where for each iteration the by this point best
system is used for decoding. The incremental approach also performs training in an itera-
tive fashion, but operates on a growing set of training data. In practical terms this means
that each iteration a certain portion of previously unseen unannotated data is added to
the training set. A common approach is to double the data for each subsequent iteration.
Also, the decision can be made whether or not to use the data from previous iterations
during model training.

3.2.5 Additional Supervision

Although any form of additional supervision leads to a training that is not fully “unsu-
pervised” anymore, one common practice may be mentioned briefly for the sake of com-
pleteness and in order to do justice to in-the-field practices. The application of language
models that are tailored to the domain of the data intended to use for training is quite
common. The reason is the relatively simple generation of such models. With a su�-
cient amount of related textual data at hand, it is straightforward to adapt an existing
background language model to the target domain, thus enhancing the decoding process
easily by long approved methods. In fact, many studies regarding unsupervised acoustic
model training apply this method of very light supervision without refraining from the
terminology “unsupervised” [LlGA02, GHSN07, FSGL11].

3.3 Related Work

Using untranscribed audio data for unsupervised acoustic model training is in the focus of
research since more than 15 years, beginning with studies like [ZaTCB98] and [KW99], both
already including the utilization of confidence measures. In recent years, also large-scale
experiments have been conducted by several research groups, e.g., [LGA02], [FSGL11] and
[MMKS06], the latter utilizing more than 1900 hours of unnanotated data for unsupervised
training.

[ZaTCB98] raised the question, what amount of unannotated training data would su�ce,
and how adding automatically transcribed data to the training set compares with adding
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20 3. Unsupervised Acoustic Model Training

manually transcribed material. Their bootstrapped initial system was trained on 3 hours of
manually transcribed data and subsequently used for automatically transcribing 25 hours
of unannotated data, using confidence estimation via score fusion and thresholding for data
selection. The newly transcribed data was then added to the manually annotated portion
and subsequently used for re-training the acoustic models. The observed improvements
were bigger for new data from speakers already seen during training, than for data from
new speakers. The discussion already proposed an iterative approach to unsupervised
training.

The lattice-based confidence measure introduced in [Kea97] was applied in [KW99]. For
automatic transcription, a bootstrapped version of the view4you [KGS+98] speech rec-
ognizer was trained on 30 minutes of manually transcribed data. The training followed
an incremental approach by training intermediate systems, which in turn were used for
subsequent decoding runs on previously unseen training data. System combination was
further applied via ROVER [Fis97]. The study showed that comparable performance can
be achieved by using at least twice as much untranscribed data as transcribed data.

Also following an incremental approach was [LlGA02], but the focus was on minimizing
the e↵orts of bootstrapping a system for automatic transcription. A system trained on
10 minutes of manually annotated data served as basis to start from. A major focus
was also on data pre-processing by deleting and rejecting non-speech parts via iterative
maximum-likelihood segmentation and clustering on speech segments. The study observed
three start conditions for unsupervised training: Training with removed story boundary
filtering, training on a very small amount of manually annotated data, and decoding with
language models that have been trained on substantially less data. Training was performed
with six iterations, each time doubling the amount of data. The study was able to show
that manual transcriptions are no necessary requirement for successful acoustic model
training.

Carrying on with the latter studies, the focus of [LGA02] was on light supervision via
utilization of closed captions (CCs). Automatic transcripts that have been generated by a
bootstrapped system were matched against CCs with the help of dynamic programming.
Furthermore, CCs were used for training a language model that has then been interpolated
with a background model. Training was performed incrementally on data that added up
to 550 hours, split into chunks that have been only used once in one single iteration each.
The study concluded in addition to previous results that filtering for erroneous data is
helpful but not required.

[CLG04] used a strongly biased language model that has been trained on solely on CCs.
Also, hypothesis lattices of the decoded unannotated data were aligned with CCs via a
consensus network. All segments for which the words in the CC were found on a path
through the network were kept. According to the conclusions, this approach led to a higher
yield of training data, when compared to [LGA02].

An alternative to word based confidence measures was considered in [WN05]. The obser-
vation that the phoneme error rate on the training data was only roughly half as high
as the word error rate backed the hypothesis that the recognition results from automatic
transcription runs may be rather similar to what was spoken, despite a high word error
rate. [GHSN07] further observed data selection methods on state level using word based
confidence scores and allophone state based confidence scores.

A lattice-based approach working on word level was examined in [FSGL11]. The hypothesis
selection took place in the word lattice by rejecting segments for which the posterior
probabilities are below a certain threshold. Paths through the lattice were pruned away,
if they fell below a limit for the likelihood of a path.
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[LZM12] introduced a confirmation based self learning algorithm for an incremental train-
ing framework. Data selection was conducted with a two-stage approach resembling a
voting method. Filtering by confidence measures was conducted on sentence level. Fur-
ther, data selection was performed on word level by a confirmation criterion. The study
further showed that adding data with lower-scored transcriptions to the training data
fosters the generalization capabilities of the resulting system.

3.4 Conclusion

Similar to [LlGA02] the first part of this study working with the KIT lecture translator
system intends to evaluate the possible improvements of a system by unsupervised acoustic
model training in dependency of the amount of training data. The same same basic
conditions, that no closely related texts are available for any kind of supervision, are
shared. The overall training conditions can be compared to [ZaTCB98] where new data
for retraining come from the same speaker, channel and related conversation topics.

Like [GHSN07], the second part of this study utilizes a system trained on EPPS data as
starting point and investigates the impact of di↵erent confidence score thresholds. Further,
the e↵ects of multiple iterations of batch training are observed, similar to [WN05].

Similar to [GHSN07, KW99], use of state confidence scores on word level is made. As a
pre-processing step to unsupervised training, automatic transcriptions are filtered by using
word posterior confidence scores for thresholding. Following the implications of [LZM12],
data scored with low confidences is added to the training, but unlike in other work, word-
based weighting is applied in order to compensate for errors, as it was done by [GB08] for
acoustic model adaptation. The assumption is that erroneous data is helpful to improve
system generalization. Unlike other work, e.g., [FSGL11], it has been refrained from a
lattice-based approach.
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4. Iterative Incremental Training for
Speaker Adaptation

The iterative unsupervised training runs as described in the following experimental set-up
were done in an incremental fashion, that means during each training iteration step, new
and previously unseen data was added to the pool of training samples. The purpose of these
experiments was to find out, in which way an incremental unsupervised training approach
could improve the performance of a given system. The baseline system used for the initial
transcription runs and re-training is trained speaker-independently. The unsupervised
training data is in-domain, i.e., the existing system already performs reasonably well, yet
too poor for generating reliable hypotheses for potential end-users demanding a certain
accuracy given the fields of application such as real-time subtitling. The initially speaker-
independent system will be pushed towards a speaker dependent recognizer by re-training
on unsupervised training data of a single speaker, thus a final system ought to perform
best for data of the same source. In order to adapt to the previously unseen, speaker
dependent data, we adapted the models by a single Viterbi training iteration using the
data of a training samples chunk of pre-defined size. It was the goal in particular to
evaluate the minimal amount of training samples necessary for observing an increase in
performance after unsupervised training. Further, it was an objective to investigate the
e↵ectiveness of re-transcribing the training data for a subsequent training iteration by
utilizing the currently most actual system, instead of using the un-adapted baseline for all
transcription runs.

4.1 Databases

The experiments described in this chapter were conducted with the help of the KIT Lecture
Corpus for Speech Translation [SKM+12]. The corpus consists of recorded scientific lec-
tures that were held at the Karlsruhe Institute of Technology (KIT) in German language.
All available data, that means the data for the supervised training of a baseline system, the
data chunks for adaptive Viterbi re-training, as well as the test data for the evaluation of
all experiments belong to the same general domain. The utilized lecture recordings almost
exclusively cover topics from the information technology domain, with categories such as
“cognitive systems”, “speech processing”, “machine translation”, “systems architecture” or
“formal systems”. They are completed by a small amount of o↵-topic lectures and some
recordings of ceremonial talks. All audio recordings were conducted in a six-year period
from 2006 to 2012.
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24 4. Iterative Incremental Training for Speaker Adaptation

The recordings were conducted by trained student part timers [SKM+12]. After storing
each channel at 48 kHz and a resolution of 24 bit, each lecture was post-processed by
normalizing and down-sampling the signal to 16 kHz with a resolution of 16 bit, which
conforms the standard input for all utilized speech recognition systems. Additional in-
formation such as speaker identity, time stamps and characteristics of the lecture were
documented and stored.

All of the data has been transcribed manually. The transcriptions were again created by
students which received linguistic training. The transcribers followed the transcription
guidelines as explicated in [Bur97, SKM+12]. The transcription process as a whole is
performed in three stages: Stage one delivers a segmentation and initial transcriptions.
Stage two, performed by a second transcriber, enhances the transcriptions. Stage three is
a spell and sanity check of the output of stage two. Each transcription of a recording is
organized in turns, whereas a new turn begins at the beginning of a new sentence or after
a position in the audio signal which encompasses more than 300 ms of silence.

4.1.1 Training Data

Table 4.1 lists the details of the training sample database. From the full amount of data,
about 7.6% remained unused during training by applying a skip list of utterances not to
be used due to overlap with the evaluation set or too poor quality of audio or transcription
material. Each database entry basically consists of an utterance ID, a generic speaker ID,
the time span in the original audio signal, an audio file path and file ID as well as the
manually created transcription of what was spoken.

Data #files #spk (real) #spk (gen.) #utt dur dur/utt

Scientific 123 23 788 109165 87.5 h 2.89 s
O↵-topic 16 5 81 11008 10 h 3.27 s
Ceremonial 8 1 31 3950 2.5 h 2.31 s

Sum 147 29 900 124123 100 h 2.91 s
Sum w/o skips - - - 115842 94 h 2.92 s

Table 4.1: Statistics of the speech data used for the baseline acoustic model training, in-
cluding the total number of recordings (#files), the amount of distinctive real
speakers (#spk (real)) and generic speakers (#spk (gen.)), the total number
of utterances (#utt), the overall speech duration (dur), and average speech
duration per utterance (dur/utt).

The training data was constrained to two distinct speakers, in order to compare the ex-
perimental results given two pre-defined sets of available unsupervised training recordings.
The total amount of data is 23 hours, corresponding to 26991 utterances. Both data sets
are stored in a separate database for reason of convenience, being of the same structure as
explicated above. Major di↵erences concern the transcriptions provided to each training
utterance: Here, the transcriptions are generated automatically, and additionally com-
prise word-based confidence scores, i.e., word posterior probabilities being generated by
the decoder that was utilized for computing the initial transcriptions.

Due to the limited amount of available material for the adaptive Viterbi training runs it
has been decided to split up both sets of recordings into smaller data chunks, resulting in
five chunks for speaker

A

and seven chunks for speaker
W

.

It may be noteworthy that data of both speakers is already contained in the training set for
the speaker-independent baseline system. However, the data disjointedness is maintained.
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4.2. KIT Lecture Translator Baseline System 25

Data #files #utt dur dur/utt

speaker
A

11 5193 7 h 4.76 s
speaker

W

19 21798 16 h 2.64 s

Table 4.2: Statistics of the speech data used for re-training the speaker-independent base-
line system, including the total number of recordings (#files), the total number
of utterances (#utt), the overall speech duration (dur) and average speech du-
ration per utterance (dur/utt).

4.1.2 Test Data

For the intended experiments two distinct test sets were generated by using held-out data
of both speakers, whose data is used for the adaptive Viterbi re-training. Where for
speaker

W

a su�cient amount of data was available, it was only a minimal amount of no
more than 0.5 hours of test material accessible for speaker

A

.

Data #files #utt dur dur/utt

speaker
A

1 78 28 min 22.19 s
speaker

W

4 324 125 min 23.25 s

Table 4.3: Statistics of the speech data used for testing the recognizer performances, in-
cluding the total number of recordings (#files), the total number of utterances
(#utt), the overall speech duration (dur) and average speech duration per ut-
terance (dur/utt).

4.2 KIT Lecture Translator Baseline System

The baseline system used for the following experiments is derived from an intermediate lec-
ture translator system, developed at KIT. The speaker-independent system was taken from
the inauguration of the lecture translation system at KIT on June 11th 2012 [CFH+12].
It was trained on all available training data from the KIT lectures corpus and has been
adapted to the individual lecturers. Acoustic models are fully continuous and were trained
in a supervised fashion. These models are combined with a language model specifically
tailored to the lecture domain.

4.2.1 Feature Extraction

The pre-processor is a variation of the ones used in [SKN11] by the KIT systems partici-
pating in the Quaero1 2010 speech-to-text evaluation campaign.

The feature extraction is based on the warped minimum variance distortion-less response
(MVDR). It has been shown that Mel frequency cepstral coe�cients (MFCC) or per-
ceptual linear prediction (PLP) coe�cients are outperformed by warped MVDR cepstral
coe�cients [WM05a] in noisy conditions, which replaces the traditional computation of
Fourier transformation by a warped MVDR spectral envelope [WM05b]. The latter is a
time domain technique to estimate an all-pole model using a warped short time frequency
axis such as the Mel scale. The use of the MVDR eliminates the overemphasis of harmonic
peaks typically seen in medium and high pitched voiced speech when spectral estimation

1
http://www.quaero.org
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26 4. Iterative Incremental Training for Speaker Adaptation

is based on linear prediction. During training and decoding, spectral features are obtained
every 10 ms. A model order of 22 without any filter-bank is used, as the warped MVDR al-
ready provides the properties of the Mel-filter-bank, in detail warping to the Mel-frequency
and smoothing. The advantage of this approach over the use of a higher model order and a
linear-filter-bank for dimensionality reduction is an increase in resolution in low frequency
regions which cannot be attained with traditionally used Mel-filter-banks. Furthermore,
with the MVDR we apply an unequal modelling of spectral peaks and valleys that im-
proves noise robustness, due to the fact that noise is mainly present in low energy regions.
Further, vocal tract length normalization (VTLN) [ZW97] is applied, in the MVDR case
this is done in the warped frequency domain.

The front-end selects the 20 lowest cepstral coe�cients as features. The mean and variance
of the cepstral coe�cients are normalized on a per-utterance basis [SKN11]. For the
incorporation of temporal information seven adjacent frames are combined into one single
300 dimensional feature vector via frame stacking. A linear discriminant analysis (LDA)
reduces the vectors to 40 dimensions and maximizes the discrimination of the classes.

4.2.2 Acoustic Modelling

In order to simplify the training process and moreover to speed up, it has been made use
of already existing labels – or fixed state alignments – that were written with an earlier
system. The context-dependent models were generated with the help of an entropy-based
clustering technique. First, mixture weights for all polyphone models were trained. After-
wards, a classification-and-regression-tree (CART) based top-down clustering was applied
by deploying phoneme based questions regarding context and position. The polyphone
models were split up gradually until the pre-defined amount of 4000 context-dependent
models was reached. All models are context-dependent quinphones with a standard three-
state left-to-right HMM topology with self loops, but without skip states. The model for
silence poses an exception, as it is comprised of four states. All transition probabilities
remain fixed throughout the whole training process.

After clustering the models use 4000 distributions over 4000 codebooks. This fully contin-
uous system was further trained by using an incremental splitting of Gaussians training
(MAS) [KFN98], followed by optimal feature space training (OFS) which is a variant of
semi-tied covariance (STC) [Gal99] training using one global transformation matrix. Each
model then has a variable amount of Gaussians, up to 128. The models are further re-
fined by 2 iterations of Viterbi training. The Viterbi training is performed in order to
compensate for eventually misaligned labels. The phoneme set consists of 39 phonemes,
completed by 9 additional tags for noises such as fillers, breath, laughter, general human
and non-human noise, and silence. All noise phonemes are modelled context independently,
in contrast to the genuine phonemes.

The full training cycle looks as follows:

1. Label writing

2. Linear discriminant analysis (LDA)

3. Sample extraction

4. Merge and split (MAS) training (incremental growing of Gaussians)

5. Optimal feature space training (OFS)

6. Viterbi training (2 Iterations)
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4.2. KIT Lecture Translator Baseline System 27

4.2.3 Dictionary & Language Model

Depending on the purpose of decoding – testing or automatic transcription of training
data – di↵erent dictionaries were applied. For automatic transcription a slightly modified
version of the training dictionary was used, where noise tags were added to the vocabulary
as pronunciation variants of the optional word $. This has been done due to the use
of several transcription pre-processing techniques, which are described in the following
sections. This speaker non-specific dictionary contains 283197 unique words, and an overall
inventory of 452438 elements by taking into account all pronunciation variants. For running
the evaluation runs on the test sets, two distinct dictionaries, each oriented to one of the
test speaker’s expected lecture topics were used.

Word counts
Dictionaries

dict
SI

dict
A

dict
W

unique 283197 293494 194774
+ variants 452438 388571 271738

Table 4.4: Statistics of the dictionaries used for all decoding tasks, including the total num-
ber of unique words (#words (unique)) and total number of all words (#words
(+ variants)). dict

SI

is used for the automatic transcription runs, dict
A

and
dict

W

are utilized for the test runs.

The same distinctions have to be made for the language models. For automatic transcrip-
tion, a speaker non-specific 4-gram language model, which was combined with the baseline
system in previous experiments was used. It has been trained on texts from various sources
like web dumps, newspapers and acoustic transcripts of sources such as broadcast news,
talks and speeches. In total, 28 text corpora were used, which range in size from about 5
MByte to over 6 GByte [CFH+12].

For evaluation purposes with regard to real-life applications of the trained systems us-
ing the experimental approach, test runs were performed by making use of two specific
language models, each particularly tailored to one of the two target speaker’s expected
lecture topics. The idea is to simulate an in-the-field usage of these techniques and thus to
obtain approximative estimates for feasible performance gains. In order to achieve these
language models, a background LM was mixed with exactly one other model, trained on
specific text sources that were crawled from the web and whose contents are close to the
expected topics of the lectures the respective speaker holds. For speaker

A

, the main lan-
guage model was mixed with a model trained on a text sources comprising topics such as
computer engineering, whereas for speaker

W

the additional model for mixing was built on
a corpus comprising subjects such as “cognitive systems” and “anthropomatics”2.

All applied language models are N-gram LMs with highest N = 4 and were built using
the SRI Language Modelling Toolkit [Sto02]. Besides the application of Good-Turing
discounting, for N < 4 Chen and Goodman’s modified Kneser-Ney discounting is applied,
and for N = 4 Witten-Bell discounting is used.

2
The term“anthropomatics”was coined by a Karlsruhe informatics professor ten years ago as the science of

symbiosis between human and humanoid and refers to a research field, which focuses on human-centred

environments, with an aim to researching and developing people-friendly systems using informatics

[KIT].
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28 4. Iterative Incremental Training for Speaker Adaptation

N-grams
Language Models

LM
SI

LM
A

LM
W

1-grams 293181 296382 296382
2-grams 75823147 85846441 81549098
3-grams 121886615 137806193 132400531
4-grams 190019036 216648814 206998851

Table 4.5: Statistics of the language models applied during decoding, including the n-
gram counts for n-grams 1 to 4 (n-grams). LM

SI

is used for the automatic
transcription runs, LM

A

and LM
W

are utilized for the test runs.

4.3 Decoding

Classification, i.e., recognition is done on scores produced by the decoder, which likewise
incorporate an acoustic score and a language model score, given an utterance to get de-
coded. The standard procedure to achieve the most likely word sequence as hypothesis to
a test utterance during the decoding step is to tune the parameters of the decoder that
regulate the impact of the language model on the tokenization process (see 2.5).

For reason of comparability of the experimental systems built during the complete devel-
opment phase the decision was made to refrain from decoder parameter tuning. Thus, the
application of the baseline recognizer for automatic transcription runs on the unsupervised
training data listed in Table 4.1 is done by straightforwardly using given parameters, which
were used by the speaker-independent baseline acoustic models in combination with the
general language model LM

SI

during another project.

4.4 Training

The standard unsupervised training cycle applied during these experiments consists of four
concrete steps: First, the unsupervised training data must be transcribed by the baseline
system. The transcriptions consist of a 1-best hypothesis per training utterance, and
corresponding word-based confidence scores which are – to be more precise – posterior word
probabilities: With the help of word lattices, very word in a transcription is annotated
with a posterior probability, which serves as a measure of confidence. Next, a training
database is built, combining the a priori available informations about the audio material
such as the segmentation, and the newly produced transcriptions along with the confidence
scores. Each word of the transcription is followed by it’s corresponding score, so that a
single database entry would look as follows:

{TEXT {Der 0.367924} {Multiplexer 0.753735} {hatte 0.822427} {einen
0.44854} {Ausgang 0.867014} {und 0.913126} {und 0.681813} {mehrere
0.901334} {Eingänge 0.954381} {hier 0.828877} {haben 0.979821} {wir 1} {nur
0.984496} {einen 0.963042} {Eingang 0.999559} {und 0.937915} {mehrere 1}
{Ausgänge 1.00002}}

Table 4.6: Exemplary excerpt of a database entry without the utterance details. The
TEXT field features word based and confidence annotated transcriptions.

As can be seen, posterior probabilities score(w
i

) from time to time can be score(w
i

) > 1.
However, before processing the scores during training, they are capped at a maximum
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of 1. Third step of the training procedure is to compute a Viterbi alignment for every
training utterance, and store them as labels. This is done because of the fact, that upon
one training data set a multitude of systems is trained with modifications such as varying
amounts of data. This way, a Viterbi alignment has to be undergone only once for each
database and as a consequence can be used for multiple system trainings, leading to a
saving of time by doing a training along labels, instead of computing Viterbi alignments
on-the-fly for every training run. The last step is the training itself, which is performed
along the previously stored labels.

4.5 Testing

Performance measurement is done on the two speaker specific development sets as expli-
cated in Table 4.3. Given this data and already existing language models, each adapted
to one of the speakers, decoding for evaluation purposes of the experimental systems is
performed in a speaker-dependent fashion. For performance measurement, a simple word
error rate (WER) was calculated for each utterance hypothesis and reference pair (see
Section 2.5 of Chapter 2). For the scoring of the automatically generated hypotheses a
number of normalization steps are undergone in order to match the decoder output to the
references. The decoding of the test set was done with an o↵-line set-up that is similar to
the way decoding is performed in the lecture translation system, i.e., without any lattice
re-scoring, in real time, and with incremental VTLN and feature space constrained MLLR
[Gal97].

4.6 Experimental Results

The goal of the experiments is to simulate, how an ASR system would work when be-
ing used in the simultaneous lecture translation system deployed in KIT’s lecture halls.
When the system is initially applied to a new lecturer, only a generic, speaker-independent
acoustic model will be available. With every new lecture, new audio data will become
available, but without any manual transcriptions. Utilizing the new audio material by an
unsupervised training framework aims at incrementally transforming the initially speaker-
independent acoustic model into a speaker-dependent model tailored to a specific lecturer.

For comparison, the baseline system was adapted to both target speakers by applying a
Viterbi training iteration each, given the respective speaker-dependent training data and
the manually produced transcriptions. These results serve as expected upper bound for
the proposed approach of unsupervised training. Besides the performance of the system
adapted this way, Table 4.7 shows the WER of the unmodified baseline, applied on both
test sets, giving A lower limit for the performance of the speaker-dependent models that
were trained on unsupervised data. As can be seen, there is a significant gap between the
performance of both speakers. The system is able to produce much better hypotheses on
the data of speaker

W

. This seems natural, as the share of data of this particular speaker
adds up to approximately 17% in terms of overall duration and 19% of all utterances
respectively, whereas data of speaker

A

sums up to about 7% in length and 4% of the set
of utterances.

In order to adapt the speaker-independent acoustic models AM
SI

to one of the test speak-
ers each, iterative incremental training was applied on the baseline system. Unsupervised
training data was automatically transcribed with help of the baseline recognizer using the
aforementioned acoustic models combined with a general, speaker non-specific language
model LM

SI

and pre-set, non-optimized decoder parameters. All available speaker-specific
data was transcribed at once, that means the training iterations were run on data solely
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WER in %

System Transcription Test

speaker
A

speaker
W

speaker
A

speaker
W

baseline 23.2 19.6 19.7 16.4

+ sup - - 17.3 15.6

Table 4.7: Performance of the baseline system (baseline) and two supervisedly re-trained
reference systems (+ sup) in word error rate (WER), evaluated on test sets for
speaker

A

and speaker
W

.

Training Duration WER Training Duration WER

speaker
A

speaker
W

speaker independent 94h 19.7% speaker independent 94h 16.4%

+ unsup

2.29h 22.1%

+ unsup

2.28h 18.5%
3.05h 21.3% 4.57h 18.2%
3.81h 20.1% 6.86h 17.8%
4.57h 18.9% 9.15h 17.5%
6.87h 18.7% 11.44h 17.4%

13.73h 17.4%
16.02h 17.3%

+ sup 6.87h 17.3% + sup 16.02h 15.6%

Table 4.8: Performance of the re-trained intermediate systems (+ unsup), plotted in de-
pendency of the amount of unsupervised training data and measured in terms of
word error rate (WER). The development systems are compared to the speaker
independent baseline and two supervisedly re-trained reference systems (+ sup).
All systems were evaluated on separate test sets for speaker

A

and speaker
W

,
respectively.
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transcribed using AM
SI

. No other acoustic models from intermediate states after various
iterations of unsupervised training were used for re-transcribing the training material.

The intention was to evaluate the amount of training data to be needed for getting an actual
improvement in recognizer performance, as well as a direct comparison of supervised and
unsupervised training on the exact same training data. We therefore divided our training
data for speaker

A

into five chunks (2.29h, 3.05h, 3.81h, 4.57h, 6.87h) and for speaker
W

into
seven chunks (2.28h, 4.57h, 6.86h, 9.15h, 11.44h, 13.73h, 16.02h), and trained models for
increasing amounts of training data. The intermediate systems display the improvements
in dependency of the amount of data used. Table 4.8 displays the results of developing
both speaker adapted systems by straightforward incremental training.

It is noteworthy that with using only little data for re-training the recognition accuracy
decreases so that the resulting system performs worse than the unmodified baseline. More-
over, although there is improvement observable when using an increasing amount of ad-
ditional training data, speaker

W

is not able to recover from this deterioration, whereas
for speaker

A

an amount of approximately 4 hours of newly transcribed data is already
su�cient to beat the baseline. If using all available data of this speaker, a 1% absolute im-
provement to the starting point is achievable, albeit the increase obtainable by supervised
training with 2.4% absolute remains unmatched. One reason for the harmfulness of unsu-
pervised training for the second speaker might be the fact that the baseline did already
see a significant amount of speaker specific in-domain data, which narrows the beneficial
outcomes of further adaptive training. Especially imperfect or even erroneous training
data is potentially malicious to the resulting system. This assumption is underpinned
by the observations made for this particular experiment on speaker

W

: Where it is still
possible to fairly improve the system performance by supervised training with manually
and carefully annotated training data, the automatically transcribed material apparently
holds too few informations that could lead to a beneficial training and on the contrary
seem to be defective in a manner that leads to deteriorated systems.

4.6.1 Transcription pre-processing

A first set of experiments aimed at examining how to treat pronunciation variants and
noise models in training in order to potentially improve the performance of the training
process.

The automatic transcriptions used for the training described above are filtered decoder
outputs. Filtering is done in a way that the resulting transcriptions have the character-
istics of plain text, i.e., they are cleaned of noise tags and filler tags and informations
about occurring silence. The intention of further experiments was to elaborate, whether
additional information carried by the transcriptions is beneficial for the training process.
The training pipeline for unsupervised training in general looks as follows:

1. Automatic transcription

2. Training database generation

3. Label writing

4. Viterbi re-training (1 iteration)

JANUS allows modifications on the generated hypothesis during label writing. Within the
process of writing labels, the decoder chooses the most probable variant of a recognized
word and autonomously inserts optional words – or “optWords” – which are marked as
$, into the hypothesis for the currently processed utterance. It must be admitted, that
between two neighbouring words there can not be placed more than one optWord at a
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32 4. Iterative Incremental Training for Speaker Adaptation

time. This obviously diminishes the dynamics of label writing if working on plain text
as transcriptions. One option to circumvent these restrictions is to define noise and filler
words and even silence tags which are comprised of pronunciations, i.e., strings of phonemes
with a length l

pron

> 1. Another option is to use hypotheses which contain noise, filler
and silence annotations instead of mere plain text. In this way it may happen during label
writing that an optWord $

ins

is inserted between two words w
i

and w
j

, where

w
i

_ w
j

2 N (4.1)

with N being the quantity of all noise, filler and silence tags. By Default, inserting opt-
Words and allowing for the automatic selection of the most probable pronunciation variant
during label writing is enabled. However, both may also be disabled, which would result
in not allowing for later insertions of optWords for -optWords 0, and for -variants 0 the
pronunciation selection during the build-up of the most probable HMM each tree for label
writing would be disabled. The latter leads to the e↵ect that the decoder which is used
for automatic transcription has sole power of decision regarding the pronunciation of each
word in the hypothesis to build. This may be a desired feature if is intended to trust the
transcription system to a greater extent. For further investigation of the e�ciency of the
unsupervised training via adaptive Viterbi re-training various degrees of transcription pre-
processing were to evaluate in regard to their influence on the overall system performance
after training. Labels were written for four di↵erent types of transcriptions, where the
types di↵er in the rigidity of filtering. It is to di↵erentiate between the categories filtered,
baseAll, baseWords and recognition.

recognition The annotation of noise words and pronunciation variants are taken as is from
the recognition output and is not altered by the Viterbi training.

baseAll Pronunciation variants in the recognizer output are mapped to their base form,
and the pronunciation variant used during training are picked by the Viterbi align-
ment in training. Wherever a noised word was hypothesized, all other noised words
are inserted as alternative paths, and the actual noise word used for training is again
picked by the Viterbi alignment

baseWords Only regular words are mapped to their base form and their pronunciation
variants are inserted as alternative paths. The hypothesized noise words are left as
recognized.

filtered All regular words are mapped to their base form, their pronunciation variants are
inserted as alternative paths; all recognized noise words are removed, and instead
inserted as alternative paths between regular words.

Filtering Example

filtered also wenn wir hier
baseAll $ also wenn wir $ hier
baseWords $(<noise>) also wenn wir $(<breath>) hier
recognition $(<noise>) also(1) wenn(1) wir(6) $(<breath>) hier

Table 4.9: Illustration of the di↵erent filtering categories applied as automatic transcrip-
tion pre-processing. filtered corresponds to plain text, baseAll contains general
noise tags, baseWords is enhanced by annotations of pronunciation variants,
and recognition resembles the unprocessed decoder output.
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Transcriptions of the category filtered were used for training as described in Table 4.9.
The same training schemes have been applied using the three new types of transcriptions:
First, a new database for each transcription type was generated. Then, labels were written,
allowing for the insertion of optWords and selection of the most probable pronunciation
variants of each word. For baseAll the e↵ect is, that multiple noise, filler and silence
tags may be neighbouring. This is also the case for baseWords, whereas now the word
pronunciations remain fixed, i.e., the decoders’ choice will be used during label writing,
without renewed decision-making during the construction of the search tree. For the
detailed, unmodified recognition outputs, variants and optWords are deactivated: The
decoder solely decides how the final transcriptions will look like. No further insertion of
non-word tags takes place, nor is there a possible re-selection of pronunciation variants.
The general assumption is: With more detail in the transcriptions, the label writing process
may react more dynamically to di�cult or noisy parts. Figure 4.1 shows the resulting
performance of the four configurations on the test speakers for increasing amounts of
training data.
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Figure 4.1: Performance of speaker-dependent system re-training after applying di↵erent
filtering methods for transcription pre-processing. Performance is plotted in
dependency of the amount of unsupervised training data and is measured in
terms of word error rate (WER). The development systems are compared to the
speaker independent baseline and two supervisedly re-trained reference systems
(supervised). All systems were evaluated on separate test sets for speaker

A

and
speaker

W

, respectively.

It can be seen that the training on the exact transcriptions from the recognition run
(recognition) improves slower with increasingly available training data than the other three
methods. It also performs worse when taking all available training material. Thus, using
transcriptions as provided by the recognizer is not necessarily the best procedure for unsu-
pervised training. Instead it turns out that it is of advantage to let the Viterbi algorithm
during training decide which pronunciations to use for the words during training, as well
as, where to insert which noise words. The decision is done by inserting pronunciation
variants as alternative paths, in addition to the base forms of the words. Noise words are
inserted as alternative paths between regular words. Even though baseWords and baseAll
perform about equally well, the latter seems to be more robust in most cases, as the speed
of improvement is slightly higher, being more stable at the same time, i.e., resulting in
a smoother performance curve as a function of the amount of training data. Comparing
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34 4. Iterative Incremental Training for Speaker Adaptation

baseAll and filtered, it is interesting to see that the former seems to be beneficial on less
data, whereas the latter is better when more data becomes available.

For speaker
A

, all speaker-dependent models perform better than the speaker-independent
models when at least 3.8 hours of training data are available, with the exception of the
models that were trained on the exact transcriptions from the recognition run. As was
expected, training on exact, i.e., manual transcriptions of the training data outperforms
the unsupervised training.

Keeping the decoder-selected pronunciation variants fixed seems to harm the generation of
labels for further training, thus contributing to a degradation of recognition performance.
For the following sections results are unrolled for systems trained on the transcription mode
baseAll only, as this mode turned out to work most reliably for all subsequent experiments.

4.6.2 Confidence Weighting & Thresholding

The most common methods for processing unreliable, erroneous transcriptions in unsu-
pervised acoustic model training are based on lattice confidence measures at word or state
level [FSGL11]. The idea of thresholding is to use only segments for training if the cor-
responding confidence is higher than a pre-set threshold. This error filtering again is not
free of making errors, as the confidences are estimates with limited reliability. First and
foremost, the strictness of thresholding is essential: If a too small threshold is chosen,
potentially incorrect words may slip in the training, whereas for a too high threshold po-
tentially reliable word hypotheses are dismissed, thus wasted. Moreover, in the latter case
the system does not learn anything new. Both extremes render the training process harm-
ful. In these experiments the word level posterior probabilities obtained during decoding
were utilized. The confidences were applied in three ways:

weighted Sets the gamma probabilities of the states of a word during Viterbi training to
the posteriori probability of the respective word

thresh Removes words with a confidence below a certain threshold from training

weighted+thresh Combines both methods

Section 2.5 of Chapter 2 gave an insight into the scoring mechanism of JANUS and its
decoder. The output of the automatic transcription is lattice-based, representing alterna-
tive hypothesis, which is used to estimate word-level confidences. [Kea97] has shown that
the information stored in lattices is su�cient for building high-accuracy word confidence
taggers.

A word lattice as produced by JANUS is a directed graph, where words are represented
by nodes, and links represent possible neighbouring words, according to the di↵erent hy-
potheses. The word based acoustic scores are stored in the links between nodes, rather
than in the nodes themselves. If the nodes are viewed at as HMM states and the links
as transitions between the states, one can basically apply the forward-backward algorithm
to estimate the probability of each link, given the word lattice. The probabilities can be
interpreted as word based a-posteriori probabilities [Kea97].

Training by JANUS is applied utterance-wise. For each utterance in the training set,
a Viterbi training along labels is performed. The labels were previously computed and
stored, and reloaded for the actual training. Prior to the update step for the codebook
and distribution weights, the previously computed and stored confidence measures are
applied for filtering the training data. Given a Viterbi path through a built up HMM, a
weighting factor gamma can be assigned to every frame. By default, this weighting factor
is set to 1. If set to 0, parts of a path are excluded from training. By setting gamma
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to 0, a frame will e↵ectively be discarded during training, or more precisely during the
update step for the codebook and distribution weights. A gamma 6= 0 results in a weighted
contribution of this particular frame to the training, where a weighting factor in general
may also be considerably higher than 1 or a negative value. For this study, the gamma
value corresponds to the posterior probability of the word w to which a frame frw

i

belongs.
Thus, the weighting factors of all frames are restricted to gamma 2 [0, 1].

First, the word based confidences are loaded from the confidence annotated training
database. Then, the HMM for training is built, but instead of computing the path for
training via forced alignment, the pre-computed and reloaded label informations are used.
The subsequent step is to match the loaded confidence scores to the training HMM: The
path used for training may look di↵erent from the one built for label writing in a way that
there might be inserted more optional words $. The confidence measures are word based.
During the update step, however, gamma weighting is done frame-wise, i.e., thresholding
as well as weighting training data is processed on frame level. This makes it necessary to
apply the word-based confidence measures to a sub-word level. For weighting, each frw

i

belonging to w is assigned the confidence score conf(w) 2 [0, 1] by setting the parameter
gamma(frw

i

). If for a certain word w̃, e.g., a newly inserted optional word $ there is no
confidence conf(w̃), the gamma value of the respective frames is set to 1. For thresholding
with a threshold t, if for a ŵ the conf(ŵ) < t, the gamma value of the respective frames
is set to 0:

gamma(frw
i

) =

8
><

>:

0 if 9t ^ 9conf(w) ^ conf(w) < t

1 if 6 9conf(w)
conf(w) else

(4.2)

After accumulating all training statistics in a so called senone set using the state prob-
abilities [FMS], the accumulators are saved for joining parallel processes and a potential
reuse, then reloaded and used for parameter updating. The default configuration is to do
a maximum-likelihood update [FMS].

Figure 4.2 shows the result of weighting with confidences as well as applying a threshold
for both test speakers, either as exclusive techniques or in combination. According to the
depicted curves it can be assumed that using word-based weighting harms the reliability of
the training data, as the speed of WER reduction with respect to the amount of training
data is becoming slower, compared to unweighted training. On the other hand, when all
available training data is used, weighting with the confidences gives the best performance.
Using this method leads to up to 1% absolute error reduction, compared to systems not
utilizing any confidence measures. Whereas weighting leads to less smooth performance
curves, the application of an experimentally set threshold t = 25 instead leads to a much
smoother curve resembling the one achieved without using confidence measures, with the
di↵erence of a better convergence and final performance. The combination of weighting and
thresholding leads to a significant gain in terms of sped up convergence while maintaining a
smooth performance curve. This leads to the assumption that parts of a training utterance
with low confidence are potentially harmful even with lowered weights during training, as
thresholding helps to smoothen the gain in performance again after applying confidence
based weight factors, whereas thresholding alone seems to a generally less erroneous, but
not optimal training.

As can be seen, thresholding only gives advantages over not using confidences at all, in cases
where su�cient amounts of training data are available. However, the threshold should be
chosen with care, as using too high a threshold may discard too much data, and as a result
the performance degrades. On the other hand, setting the threshold too low, less erroneous
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Algorithm 1 Single training iteration using confidence measures
Require: AM
Ensure: AM 0

1: for all i with utterance
i

2 DB do

2: T
i

 transcript loaded from DB
3: C

i

 word based confidences loaded from DB
4: L

i

 labels loaded from disc
5: Compute path

i

through training HMM with L
i

, T
i

6: for all k with frame
k

2 path
i

do

7: Get word identity word
k

of frame k
8: if 9threshold ^ 9C

i

(word
k

) ^ C
i

(word
k

) < threshold then

9: Set gamma of pathk
i

to 0
10: else if 6 9C

i

(word
k

) then
11: Set gamma of pathk

i

to 1
12: else

13: Set gamma of pathk
i

to C
i

(word
k

)
14: end if

15: end for

16: Accumulate training data
17: end for

18: Update models AM ! AM 0
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Figure 4.2: Performance of speaker-dependent system re-training when applying confi-
dence measures for weighting and/or thresholding. Performance is plotted
in dependency of the amount of unsupervised training data and is measured
in terms of word error rate (WER). The development systems are compared
to the speaker independent baseline and two supervisedly re-trained reference
systems (supervised). All systems were evaluated on separate test sets for
speaker

A

and speaker
W

, respectively.
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data is exempt from training, rendering the training potentially harmful to the models.
Figure 4.3 shows the impact of di↵erent threshold values exemplarily for speaker

A

. As can
be seen, a threshold of 25% still does not lead to a significant degradation of performance
after training on even a very small amount of data. Moreover, with increasing amounts of
training data a threshold of 25% still can be beneficial for filtering out supposedly erroneous
parts. However, with application of a stricter threshold above this limit, considerably less
data remains for training, thus leading to significantly worse systems: A stricter cut-o↵ is
of no use and starts to break the training process.
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Figure 4.3: Performance of speaker-dependent system re-training after applying di↵erent
thresholds for confidence measures. Performance is plotted in dependency of
the amount of unsupervised training data and is measured in terms of word
error rate (WER). The development systems are compared to the speaker in-
dependent baseline and two supervisedly re-trained reference systems (super-
vised). All systems were evaluated on separate test sets for speaker

A

and
speaker

W

, respectively.

The impact of various thresholds has been analysed by counting the words that were
dismissed from training due to a too low confidence score. Additionally, a sorted list of
the words that fell below the threshold most often was computed. As expected, given
the method of confidence score computation explained in this section, especially short
words with high risk of confusion were discarded. In the case of German this particularly
a↵ects conjunctions (“und”, “dass”), pronouns (“wir”, “das”, “es”), prepositions (“in”, “im”)
and other short words like auxiliary verbs (“ist”, “sind”) and interjections (“ja”). Another
considerable proportion contribute the filtered noise and filler tags. Where the distinction
was made between di↵erent noises, which was only given for the unfiltered recognition
results used as transcriptions, the tags for breath noises and filled pauses, especially vowel-
nasal combinations (“ähm”) were filtered by their frequently low confidences. Table 4.10
shows the impact of the thresholds that have been experimented with, on consideration of
the full training set comprising both speakers. Regarding the transcriptions, the distinction
has to be made whether noise tags – either mapped to $ or as is – are contained or excluded,
as this has an impact on the overall accumulated word count and consequently the relation
of accepted and dismissed words given a particular threshold.
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38 4. Iterative Incremental Training for Speaker Adaptation

Threshold
Rejection rate in %

uncleaned transcriptions cleaned transcriptions

25% 13.5% 13.8%
50% 34.3% 36.3%
75% 60.1% 64.3%

Table 4.10: Rejection rate of words when applying di↵erent confidence measure thresholds.
For instance, a threshold of 25% discards all words with a confidence score lower
than 0.25. Uncleaned transcriptions correspond to the raw recognition results,
i.e., the unmodified decoder output. Cleaned transcriptions correspond to the
transcription pre-processing category filtered.

4.6.3 Light Supervision by Language Modelling

With the topic specific language models LM
A

and LM
W

at hand, to use for speaker
A

and speaker
W

respectively, the decision was made to experiment on light supervision by
language modelling. Therefor, automatic transcription of the training data was undergone
by using these language models instead of the general language model previously used. As
brief reminder, both language models were tailored to the respective speaker by mixing
a main language model with specific language models that were trained on text corpora
whose contents are close to the expected topics of the speaker’s held lectures.

After system training and testing, in general similar observations as explicated above can
be made, concerning the application of transcription filtering methods: Transcriptions
preprocessed by the policies baseWords and baseAll respectively show almost identical
results. Filtered transcriptions lead to smoother performance curves, and using the un-
modified recognition results leads to systems easily beaten by the other systems using
di↵erent transcription types.

There are some di↵erences to observe: Despite the fact that the most potent systems
again are the ones using transcriptions mapped via the baseAll and baseWords rules, for
speaker

W

a system trained on filtered transcriptions is capable of beating all other systems
when using all available data. For speaker

A

, the same set-up manages to outperform sys-
tems trained on smaller amounts of supervised data. On the other hand, the best system
for speaker

A

outperformed the supervisedly re-trained reference system by 3.1% relative,
using the transcriptions filtered with the baseWords modality. These observations lead to
the assumption that the initial and manually generated transcripts for this speaker are
partly unreliable due to a less careful transcription process, as missing informations con-
cerning fillers, noise or incomplete words indicate. This way, the automatic transcriptions
seem to hold an advantage. The improvements of the training results on very small data in-
dicate transcription errors in the original transcriptions, that potentially may be corrected
by automatic transcription. The increasing e↵ectiveness of using automatic transcriptions
also including noise informations, may they be mapped to base forms or not, give a hint
to missing informations in the manual transcriptions which are implicitly included in the
decoder output of automatic transcription runs.

Most importantly, performance of all re-trained systems increased significantly by up to
11% relative. Moreover, the best system for speaker

A

outperformed the supervisedly re-
trained reference system by 3.1% relative, using transcriptions with words and/or non-word
tokens mapped to their base forms.

The application of confidence measures for further data filtering and weighting during
training brought partial improvements in terms of recognition performance when using
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Figure 4.4: Performance of speaker-dependent system re-training when applying light su-
pervision during automatic transcription runs. Performance is plotted in de-
pendency of the amount of unsupervised training data and is measured in
terms of word error rate (WER). The development systems are compared to the
speaker independent baseline and two supervisedly re-trained reference systems
(supervised). All systems were evaluated on separate test sets for speaker

A

and
speaker

W

, respectively.

small amounts of training data for both speakers. Regardless of the kind of transcriptions,
whether filtered, mapped to base forms or raw decoder output, using the confidences for
weighting resulted in the best performing systems if trained on few data. If using more,
or even all available data for training, however, weighting as well as thresholding caused
a drop in recognition performance for speaker

A

, with speaker
W

at the same time gaining
an improvement.

Compared to the introduction of confidence measures to the fully unsupervised training
approach as explicated in Subsection 4.6.2 the possible improvements by application of
these techniques to a framework for light supervision by language modelling are less clearly
recognizable. One reason might be an increased precision of the decoding for automatic
transcription, as by using language models that provide light supervision the recognition
accuracy significantly increases. In terms of WER a relative performance gain of more than
17.5% for speaker

A

and 19.5% for speaker
W

on the in-domain test set listed in Subsection
4.1.2 were obtainable just by changing language models. Table 4.11 lists the improvements
of the baseline system performance in terms of WER when applied on the aforementioned
test set, using the topic specific language models LM

A

and LM
W

.

If compared to Table 4.7 it is noteworthy that with using these topic specific language
models, the resulting systems outperform the set-up that serves as baseline for the exper-
iments of this work, although for evaluating the baseline performance – as well as testing
all other systems developed during this thesis – the exact same language models were uti-
lized. The reason is, that for the latter no lattice re-scoring is applied, as this resembles
the real-life application of the deployed lecture translator system. For transcription runs,
however, there exist no run-time restrictions as limitation, whereby lattice re-scoring is
becoming applicable, which potentially contributes to better recognition results and thus
more reliable transcriptions than without any re-scoring.

Table 4.12 shows that – if compared to the numbers of Table 4.10 – the rejection rate
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Figure 4.5: Performance of speaker-dependent system re-training when applying light su-
pervision during automatic transcription runs, and utilizing confidence mea-
sures for weighting and/or thresholding. Performance is plotted in dependency
of the amount of unsupervised training data and is measured in terms of word
error rate (WER). The development systems are compared to the speaker in-
dependent baseline and two supervisedly re-trained reference systems (super-
vised). All systems were evaluated on separate test sets for speaker

A

and
speaker

W

, respectively.

WER [%]

Supervision Language model speaker
A

speaker
W

no supervision LM
SI

23.2 19.6
light supervision LM

A

/LM
W

18.7 16.1

Table 4.11: Performance of the baseline system on the test sets for speaker
A

and speaker
W

for no supervision during transcription runs when using language model LM
SI

and for light supervision by utilizing the topic specific models LM
A

and LM
W

,
respectively.

Threshold
Rejection rate in %

uncleaned transcriptions cleaned transcriptions

25% 8.6% 8.8%
50% 24.8% 26.1%
75% 48.4% 51.5%

Table 4.12: Rejection rate of words when applying di↵erent confidence measure thresholds
and using topic specific language models for light supervision. For instance, a
threshold of 25% discards all words with a confidence score lower than 0.25.
Uncleaned transcriptions correspond to the raw recognition results, i.e., the
unmodified decoder output. Cleaned transcriptions correspond to the tran-
scription pre-processing category filtered.
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of words given a particular threshold significantly decreases when using language models
that comprise additional information regarding the target domain, indicating an increased
confidence in the decoder’s decisions.

For all remaining experiments explicated until the end of this chapter, light supervision
by language modelling has been applied during the automatic transcription runs.

4.6.4 Iterative Viterbi Training

The intention of the following experiment was to always re-train the currently most up to
date system S

i�1 with a set of transcribed training data Tnew

i

for a subsequent iteration
i, where

Tnew

i

\ Tnew

i�x

= ; 8i, x 2 [1, i
final

] (4.3)

thus Tnew

i

being a new portion of previously unseen and automatically transcribed training
data. Consequently, each new set of training data should optimally be transcribed by the
most recent system available, as this particular system is supposed to be the by then
most potent. However, for reasons of practicality this procedure has been simulated by
using the baseline system S0 for each iteration, instead of always using the most recent
system. Algorithm 2 schematizes a single training iteration of the simulated procedure:
As it was the case for all previous experiments, the automatic transcriptions of the full set
of available unsupervised training data were all written by the very same system. Instead
of the by then most recent system S

i�1, the transcription of Tnew

i

in line 4 is executed by
the very same system S0 for all i.

Algorithm 2 Iterative Incremental Viterbi Training
Require: 9S0 ^ i

final

> 0
Ensure: S

i

final

1: i
final

 max. iteration
2: for i = 1 to i

final

+ 1 do

3: Tnew

i

 previously unseen untranscribed data
4: T trans

i

 transcribe(S0, Tnew

i

)
5: generate training database DB

i

 T trans

i

6: write labels L
i

7: S
i

 trainingAlongLabels(S
i�1, Li

, DB
i

)
8: end for

The training step for system S
i

is performed in line 7 as a Viterbi training along labels
L
i

, using training data stored in a database DB
i

, and by re-training a preceding system
S
i�1. Practically this means that, starting from a baseline system, its acoustic models

are re-trained with each iteration by another additional Viterbi training. I.e., multiple
consecutively executed re-trainings of the same models lead to a final system S

i

final

.

Without loss of generality, the transcription pre-processing configuration baseWords has
been utilized throughout these experiments. Figure 4.6 shows the results of testing this
approach.

As can be seen, there is only little benefit for speaker
A

compared to the baseline perfor-
mance, and only when used all data in the end. There is a discernible convergence, however
the curve already indicates a deterioration likely to occur with increasing amounts of train-
ing data. For speaker

W

this is clearly seen, as the whole training process is spoiled even
with very little training data in use. There exists a variety of probable causes for the
observed phenomenon. One reason might be the dimension of the gap between baseline
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Figure 4.6: Performance of speaker-dependent, iterative and incremental Viterbi re-
training. Each iteration, the most recent system is re-trained. Performance
is plotted in dependency of the amount of unsupervised training data and is
measured in terms of word error rate (WER). The development systems are
compared to the speaker independent baseline and two supervisedly re-trained
reference systems (supervised). All systems were evaluated on separate test
sets for speaker

A

and speaker
W

, respectively.

performance and the theoretical upper bound given by the supervisedly trained system.
Training for speaker

A

proved to be clearly more e↵ective during previous experiments than
for speaker

W

, presumably due to the lower amount of related data already seen for the
baseline system training. Under these circumstances, it seems possible to obtain higher
gains with less data, whereas with a system that is already “aware of” the target speaker,
further improvement becomes rather challenging. In this case, another reason might be
that such a system is in higher danger of early over-fitting, which leads to a quick deteri-
oration of performance and results in unhelpful systems. The obtained results lead to the
conclusion that – besides marginal gains in Viterbi training runtime due to lower amounts
of data per iteration and visible convergence for one of both speakers – this approach is
not competitive and previously introduced frameworks are preferable to the former.

4.6.5 Incremental Training

Following a similar approach, the goal of further experiments was to iteratively train a
system S

i

in an unsupervised fashion by using data T trans

i

with automatic transcriptions
written with an old system S

i�1 that resulted from a preceding training iteration. T
i

is an
incrementally growing set of training data for iterations i! i

final

, where

T
i

=

(
Tnew

i

if i = 1

T
i�1 [ Tnew

i

if i > 1
with Tnew

i

\ Tnew

i�x

= ; 8i, x 2 [1, i
final

] (4.4)

with Tnew

i

being a new portion of previously unseen and automatically transcribed training
data. In contrast to Subsection 4.6.4, where with each iteration the most recent system
S
i�1 was re-trained by an iteration of Viterbi training atop of the updated acoustic models,

this set-up again solely re-trains the models of S0, as it was done initially. Again, the
transcription pre-processing category baseWords has been used. Without loss of generality,
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confidence measures have been utilized in order to apply word based weighting throughout
the model update step.

The operating procedure of training di↵ers to Algorithm 2, especially regarding the usage
of new data and the training step:

Algorithm 3 Incremental Training
Require: 9S0 ^ i

final

> 0
Ensure: S

i

final

1: i
final

 max. iteration
2: for i = 1 to i

final

+ 1 do

3: Tnew

i

 previously unseen untranscribed data
4: if i = 1 then

5: T
i

 Tnew

i

6: else

7: T
i

 T
i�1 [ Tnew

i

8: end if

9: T trans

i

 transcribe(S
i�1, Ti

)
10: generate training database DB

i

 T trans

i

11: write labels L
i

12: S
i

 trainingAlongLabels(S0, Li

, DB
i

)
13: end for

The training process is as follows: First, initial transcriptions of a subset of all available
training data are generated. Then, S0 is re-trained using this data. A subsequent tran-
scription run on a growing set of data is performed using the re-trained models. This
particularly means, that all previously transcribed data from earlier iterations will be
transcribed again, now using the hopefully more e�cient system. The latter is repeated
until iteration i

final

, where at each time the baseline models of S0 will be re-trained.

For both speakers, di↵erent step sizes regarding the growth of unsupervised data were
applied. For speaker

A

the step size remained the same than for all previous experiments.
For speaker

W

, however, the interval was doubled, purposely leading to less iterations given
the amount of available data due to feasibility reasons.

As can be seen by the Figures 4.7, the final systems trained in this way are not able to
outperform the systems of the previous experiments, although for speaker

A

the supervis-
edly re-trained system’s performance is touched again. However, incremental training on
data of speaker

W

leads to a non-competitive system. After some stable gain, the perfor-
mance curve even shows a degradation in terms of WER with increasing amount of utilized
data. Supposedly, the reason for these di↵erent manifestations is the dependency of the
performance of the transcribing system. The figures depict the respective transcription
performance for each speaker. The di↵erence arises from the use of topic specific language
models, the baseline performance of the initial acoustic models, and the application of
lattice re-scoring for automatic transcription, since there exist no run-time restrictions for
the latter. The assumption is, the higher the gap between transcription performance and
actual recognition performance, the more e�cient the incremental training becomes. For
speaker

A

transcription performance is well beyond the baseline system’s WER as well as
the supervisedly trained reference system, whereas the performance curve for speaker

W

during transcriptions can neither reach the scope of the baseline, nor the reference, except
when only very small amounts of data are used.

However, by observing the outcomes for both speakers one might realize that with in-
creasing recognition power, i.e., improved capacities for automatic transcription, the per-
formance curves for the test sets not only catch up, but notably approach the respective
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Figure 4.7: Performance of speaker-dependent system re-training. Each iteration, an in-
crementally growing training set is re-transcribed by the most recent system.
Performance is plotted in dependency of the amount of unsupervised training
data and is measured in terms of word error rate (WER). The development
systems are compared to the speaker independent baseline and two supervis-
edly re-trained reference systems (supervised). All systems were evaluated on
separate test sets for speaker

A

and speaker
W

, respectively.

transcription performance curve. This means, that even with marginal improvements or
stagnation in terms of WER regarding the automatic transcription e�ciency, the result-
ing text output appears to increase in accuracy, given the corresponding audio data. A
decreasing transcription performance however is likely to cause a performance drop of the
system resulting from training on this data, as can be seen by the example of the last
iteration for speaker

W

. If the latter is not taken into consideration when analysing the
results for both speakers, one can observe that, although transcription performance con-
verges up to 53% less strongly than the performance on test sets, the discrepancy between
both performance curves decreases by up to 50%. These observations show that the tested
approach of incremental training has the potential to increase the quality of automatically
generated transcriptions over time. Due to lack of su�cient amounts of data it was not
possible to verify an ongoing positive development regarding the conceivable outperforming
of a supervisedly trained system in case of speaker

A

.

The Figures 4.7 present further details: Curves entitled iteration i reflect the theoretical
development of the performance curve over the available data, when from then on solely
transcriptions of the particular iteration i are used. It can be seen for speaker

A

that
the transcriptions resulting from the first transcription run performed by S0 initially are
superior for training of S2, i.e., on the data chunk with 4.57 hours in size, when compared
to the ones written with S1, which is the system that results from training with an ad-
ditional 2.29 hours of automatically transcribed data, i.e., the system after iteration 1.
With growing data, however, the performance curve resulting from the usage of the initial
transcriptions flattens, whereas the curve representing the incremental approach shows a
steady improvement in WER. That means for the training of S3 on the largest amount of
data of 6.87 hours, that the transcriptions delivered by S0 turn out to be inferior to the
ones generated by the most recent system, S2. Moreover, if writing all transcriptions with
help of S1, performance also decreases, compared to the strictly iterative procedure. Even
if in this case the data was very limited, both phenomena indicate, that with more untran-
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scribed training data becoming available, the iterative course of action, i.e., subsequently
re-training the baseline models and re-transcribing a cumulative set of training material
leads to an overall steeper and more steady decrease of recognition errors. On the other
hand, the outcomes for speaker

W

reveal the dangerous nature of too low initial automatic
transcription capacities: Uniformly, all systems S

i

with i < i
final

apparently deliver more
reliable transcriptions for the full set of data than every respective subsequent system.
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Figure 4.8: Distribution of the word based confidence measures on confidence bins.
The distribution is depicted in dependency of the amount of performed re-
transcription runs followed by re-training. Clearly visible is the gradual shift
of rates for confidence score spans to higher bins.

Figures 4.8 depict the gradual shifts of the rates for single confidence bins with respect
to the undergone training iterations. Only the confidence measures for word tokens were
taken into account. Non-word tokens, i.e., noise and filler tags were ignored in order
to determine the impact of the iterative training process to the changing of recognition
capabilities solely for words. For both speakers initial transcriptions that were written
with the baseline system feature generally moderate confidence scores, which manifests in
a median of 0.7 for speaker

A

and 0.74 for speaker
W

. With every iteration, the confidences
shift to higher regions, ending with a median of 0.8 after 3 iterations for the former, and
a median of 0.82 after 4 iterations for the latter speaker. Moreover, even though the
highest bin [.95, 1] has a smaller range, it holds most of the words in terms of ratio for
both speakers after several iterations. The re-distribution of increasing amounts of words
to higher confidence bins and at the same time decreasing WER in tests prove that the
systems get potentially more reliable given the respective speaker they are trained to.
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46 4. Iterative Incremental Training for Speaker Adaptation

4.6.6 Analysis

In this chapter work on unsupervised adaptation of the acoustic model by training has
been described. The goal was to evaluate new techniques for integration in the simulta-
neous lecture translation of KIT. For this, automatic transcriptions of new lectures with
a speaker-independently trained baseline system were produced in order to improve the
same system for a specific lecturer in an incremental as well as iterative fashion.

Evaluating four di↵erent ways of processing of the decoder outputs led to the conclu-
sion that it is of advantage to let the Viterbi algorithm during training decide which
pronunciations to use and where to insert which noise words, instead of fixating these
informations in the transcriptions as they are produced by the decoder during automatic
transcription runs. Mapping all words and non-word tokens to base forms (baseAll) seems
to be beneficial on less data, whereas filtered transcriptions work better when more data
becomes available. For speaker

A

, speaker-dependent models perform better than the
speaker-independent models when at least 3.8 hours of training data are available.

Further, the word level posterior probabilities obtained during decoding were utilized by
weighting and thresholding the words of a transcription. Combining word-based weighting
and a threshold of 25% led to the fastest drop in word error rate with increasing amount of
training data. The best systems in terms of WER reach an error rate of 18% for speaker

A

and 16.9% for speaker
W

, being trained on baseAll processed transcriptions and weighted
training. In terms of convergence time, an additional threshold of 25% led to an increased
performance, yielding a competitive WER of 18.2% and 17.0%, respectively.

Experiments on light supervision by language modelling led to similar results than previous
tests with respect to the impact of transcription pre-processing policies. Performance
of all re-trained systems increased by up to 11% relative. Moreover, the best system
for speaker

A

outperformed the supervisedly re-trained reference system by 3.1% relative,
which possibly indicates transcription errors in the manual transcriptions, that potentially
may be corrected by automatic transcription.

Based on the latter set-up, an iterative incremental approach was evaluated. A growing
set of training data was always re-transcribed by the most recent system and then used to
re-train the baseline again. The final systems trained this way were not able to outperform
the systems of previous experiments. It has been shown that potential performance gains
strongly correlate to the performance of the systems for automatic transcription. The
redistribution of word confidences to higher confidence bins and likewise decreasing WER
in tests prove that with each iteration systems get more reliable given the respective
speaker they are trained to.
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5. Iterative Batch Training for Domain
Adaptation

Having a large amount of potential, yet unannotated training data at hand, iterative batch
training can easily be applied for enhancing an existing system. During these experiments,
a mediocre baseline system was utilized for transcribing additional audio data intended to
add to the acoustic model training. The purpose of this set-up was to overcome a domain
mismatch between the given baseline framework and the target domain for the actual
decoding process. Large quantities of annotated in-domain audio data was available, that
made it possible to train a reference system delivering an upper bound for the expected
performance gains by applying unsupervised training. For the unsupervised iterative batch
training the existing transcriptions have simply been ignored. Starting from a system
trained on European Parliament Plenary Session (EPPS) recordings, the objective was to
push the system towards the general domain of TED talks with help of domain adaptation
by unsupervised acoustic model re-training. The re-training took place in an iterative
fashion, i.e., at each point in time, the by then most recent system was used to re-transcribe
a fixed set of unannotated training data which was then used to re-train the baseline system
by adding this very data, including the new transcriptions to the supervised data that was
used for the baseline training. Further, it was an objective to investigate the impact
of the transcription pre-processing methods that were explained in detail in Subsection
4.6.1 of Chapter 4, as well as the e↵ectiveness of confidence measure based data filtering
methods applied during acoustic model training, i.e., weighting with confidence scores and
thresholding by a bounding confidence value, as elucidated in Section 4.6.2 of Chapter 4.

5.1 Databases

The experiments described in this chapter were conducted with the help of two distinct
corpora derived from EPPS speeches and TED talks, respectively. The former was used for
the baseline acoustic model training, the latter for unsupervised acoustic model training
experiments on the baseline produced in this way. The EPPS data comprises approx-
imately 80 hours of manually transcribed speeches, provided by RWTH Aachen within
the TC-STAR project [GBK+05]. Around 157 hours of TED talks have been downloaded
from the TED websites1. In contrast to the former speaker adaptive training experiments
conducted with the KIT lecture translation system, that very choice of training sets for
baseline and adaptive training leads to an implicit domain adaptation experiment.

1
http://www.ted.com/talks
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48 5. Iterative Batch Training for Domain Adaptation

5.1.1 Training Data

The speakers of the EPPS corpus can be categorized in di↵erent ways: Besides the distinc-
tion between original speakers and interpreters, who simultaneously translate speeches in
other o�cial languages of the European Parliament, it can be distinguished between native
speakers and non-native speakers. Most of the speeches are planned. The interpreters’
contributions show e↵ects such as pauses following by dense speech intervals, that arise
from the process of simultaneous translation [GBK+05]. The TED talks collection is a
freely accessible web repository of recordings of public speeches and talks with varying
length of 5 to 25 minutes each. They are held by people from various fields of expertise
covering repetitive topics related to technology, entertainment and design (TED).

Each recording was processed by normalizing and down-sampling the signal to 16 kHz
with a resolution of 16 bit, which conforms the standard input for all utilized speech
recognition systems. The EPPS data was manually segmented and transcribed, and thus
already contained speaker labels ready to make use of during supervised training. The TED
data was automatically segmented with the help of a decoding pass on the input data in
order to discriminate speech and non-speech regions and doing a forced alignment given
the subtitles that accompany each recording for simultaneous video closed captioning. The
time stamps of those closed captions are not precise enough for training purposes, which
finally led to the necessity of generating more accurate segment boundaries. However,
they were also utilizable for exposing the relevant speech part of each downloaded video
soundtrack by cutting away intro and outro sequences given the annotations. The final
segmentation was then done by splitting at non-speech regions of notable length. For the
TED data the simplified assumption that each talk is spoken by exactly one speaker has
been made. Table 5.1 lists the details of the resulting training sets.

Data #talks #spk #utt dur dur/utt

EPPS 63 1894 52464 79.6 h 5.46 s
TED 699 699 204502 146.6 h 2.58 s

Sum 762 2593 256966 226.2 h 3.16 s

Table 5.1: Statistics of the speech data used for the baseline acoustic model training
(EPPS ) and subsequent unsupervised training (TED), including the total num-
ber of recordings (#talks), the amount of speakers (#spk), the total number
of utterances (#utt), the overall speech duration (dur), and average speech
duration per utterance (dur/utt).

5.1.2 Test Data

For the described experiments a development set for system development and parameter
optimization (“dev2010”), and a test set for evaluation (“test2010”) was used, both con-
taining held-out TED talks that were also used as development and test sets for the Auto-
matic Speech Recognition (ASR) task of the International Workshop for Spoken Language
Translation (IWSLT) 2010 evaluation campaign2. Both sets were used with the original
pre-segmentation provided by the IWSLT organizers.

5.2 EPPS-based Baseline system

The baseline system is derived from the ISL 2007 English speech transcription system
for European parliament speeches, developed at the University of Karlsruhe, now KIT

2
http://iwslt2010.fbk.eu
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5.2. EPPS-based Baseline system 49

Set #talks #utt dur dur/utt
dev2010 8 934 1.52 h 5.87 s
test2010 11 1664 2.47 h 5.36 s

Table 5.2: Statistics of the speech data used as development set (“dev2010”) and test set
(“test2010”), including the total number of talks (#talks), the total number of
utterances (#utt), the overall speech duration (dur) and average speech dura-
tion per utterance (dur/utt).

[SFKW07]. Unlike the original system which has been trained on the 80 hours of unsu-
pervised training data mentioned in Section 5.1 plus an additional amount of 167 hours of
unsupervised data with automatically generated transcriptions, both provided by RWTH
Aachen, the system used as baseline for the recent experiments was solely trained with the
supervised data. Also, acoustic models are fully continuous and remain it throughout the
development process for maintaining comparability with respect to the impact of unsuper-
vised training methods. The system uses a language model biased to EPPS and general
parliament speeches for all decoding tasks.

5.2.1 Feature Extraction

As for the experimental systems described in Chapter 4 the acoustic front-ends of the
proposed systems have been trained and tested with the help of the JANUS Recognition
Toolkit (JRTk) [SMFW01].

The feature extraction is based on the traditional and widely used mel-frequency cepstral
coe�cients (MFCC). For training the front-end provides features every 10 milliseconds.
During decoding this was changed to 8 milliseconds after the first stage. During both,
training and decoding, the features were obtained by a discrete Fourier transform followed
by a Mel-filter-bank. Vocal tract length normalization (VTLN) is applied in the linear
domain [ZW97]. The utilized MFCC front-end uses 13 cepstral coe�cients, where mean
and variance are normalized on a per-utterance basis. As a last step, 15 adjacent frames
are stacked into one single 195 dimensional feature vector which is finally reduced to 42
dimensions by applying a linear discriminant analysis (LDA).

5.2.2 Acoustic Modelling

All models are context-dependent quinphones with a standard three-state left-to-right
HMM topology with self loops and without skip states. The model for silence poses an
exception, as only the last state is equipped with a self loop. All transition probabilities
remain fixed throughout the whole training process. After a clustering step the models
use 4000 distributions over 4000 codebooks. This system was trained by using incremental
splitting of Gaussians training (MAS) [KFN98], followed by optimal feature space training
(OFS) which is a variant of semi-tied covariance (STC) [Gal99] training using one global
transformation matrix. Compared with the original system, no further Viterbi training
for refinement was applied, because this additional training step resulted in first signs of
over-fitting.

The phoneme set in use is modified version of the phoneme set used by the CMU dictionary
and consists of 45 phonemes and allophones [CMU]. The phonemes are completed by 9
additional tags for noises such as fillers, breath, laughter, general human and non-human
noise, and silence. All noise phonemes are modelled context independently, in contrast to
the genuine phonemes. Each model has a fixed amount of Gaussians, where the standard
phone models are comprised 60 Gaussians, some specific noise models have 64 Gaussians,
and silence is modelled by 24 Gaussians.
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50 5. Iterative Batch Training for Domain Adaptation

The full training cycle for the baseline system looks as follows:

1. Linear discriminant analysis (LDA)

2. Sample extraction

3. Merge and split (MAS) training (incremental growing of Gaussians)

4. Optimal feature space training (OFS)

5.2.3 Dictionary & Language Model

For decoding during automatic transcription runs and testing a slightly modified version
of an already existing dictionary tailored to the EPPS domain and general speeches was
used [SKK12]. It was build by utilizing textual data that was primarily used for language
model training (see Table 5.3). Pronunciations of known words were extracted from a
large background dictionary. Pronunciation for unseen words were generated with Festival
[BT97]. For the recent experiments, noise tags were added to the vocabulary as pronunci-
ation variants of the optional word $. As for the previous experiments this has been done
due to the use of the several transcription pre-processing techniques described in the previ-
ous chapter. The test and transcription dictionary is comprised of 141313 pronunciations
for 127806 unique, case-sensitive vocabularies.

Corpus #words mixing parameter

UK parliament 29.478.882 0.009
EPPS 33.793.627 0.001
UN 40.991.279 0.051
Gigaword 593.472.957 0.41
Broadcast News 130.768.508 0.273
Web dumps 144.062.839 0.253

Table 5.3: Statistics of the utilized training corpora for language modelling, including the
corpus name, the overall word count per corpus (#words) and the mixing pa-
rameter used as interpolation weighting factor.

Also derived from previous experiments, a 4-gram language model that was build on the
data listed in Table 5.3 was used for transcription and testing. The textual data was
extracted from various sources like EPPS transcripts, other parliamentary transcripts,
broadcast news data, web dumps and the Gigaword corpus. The applied language model
was built using the SRI Language Modelling Toolkit [Sto02]. Besides the application
of Good-Turing discountinggood1953population, Chen and Goodman’s modified Kneser-
Ney discounting is appliedmodified-kneser-ney. Between the di↵erent sources interpolation
weights have been computed on a development set, where

P (w|h) = �1P1(w|h) + �2P2(w|h) + · · ·+ �
k

P
k

(w|h). (5.1)

The interpolation weights �1, . . . ,�
k

were selected so as to maximize the likelihood of the
held-out data. As can be seen Table 5.3, the contribution of web data, Gigaword and
broadcast news data sum up to over 93%, whereas the EPPS data takes only a nominal
part in interpolation. In order to reduce memory demands the language model was finally
pruned [SKK12].
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N-grams count

1-grams 130625
2-grams 30264678
3-grams 36809561
4-grams 34072904

Table 5.4: N-gram count statistics of the language model applied during decoding.

5.3 Decoding

Decoding for automatic transcription and for system evaluations is performed the exact
same way as explicated in Section 4.3 of the last Chapter. Again, for reason of comparabil-
ity of the experimental systems the decision was made to refrain from decoder parameter
tuning. Moreover, the language model remains fixed for all fields of application. That
means a performance change of the development systems is directly deducible from the
quality of the automatically generated textual references.

5.4 Training

The framework for re-training the original EPPS system in an unsupervised fashion in-
cludes several steps: First, unannotated TED training data gets transcribed by the base-
line system that has been trained solely on EPPS data before, and by using the general
language model introduced above. The resulting transcriptions consist of confidence anno-
tated 1-best hypotheses for all generic utterances having been produced by the automatic
segmentation that was undergone before training. Posteriori probabilities were computed
with the help of word lattices in order to use them as a measure of confidence.

One iteration of re-training follows the same steps than the baseline training described
in Subsection 5.2.2, with two additional steps: First, training is performed along labels,
where the labels were computed and stored in a preceding step so that training can be
performed along the same Viterbi paths, but with modifications such as varying amounts
of data. Second, after OFS training, two iterations of Viterbi training is applied due to
the significantly larger amount of training data being available for unsupervised training.
The results elaborated in the following sections will show that with more data at hand,
the additional Viterbi training is beneficial for the overall system performance.

With these expansions of the training cycle, one step of unsupervised acoustic model
training is performed as follows:

1. Label writing

2. Linear discriminant analysis (LDA)

3. Sample extraction

4. Merge and split (MAS) training (incremental growing of Gaussians)

5. Optimal feature space training (OFS)

6. Viterbi training (2 iterations)
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52 5. Iterative Batch Training for Domain Adaptation

5.5 Testing

System performance for all development steps is measured with help of the data listed
in Table 5.2. The unit of choice for describing performance is again a simple word error
rate (WER). For each intermediate system, the WER was determined after each training
step, i.e., after MAS training, OFS training and each iteration of Viterbi training in order
to keep track of the system improvement in dependency of the applied training routines.
However, the main focus is on analysing the impact of several strategies for unsupervised
training, in particular filtering methods for potentially unclean and error-prone automati-
cally generated transcriptions. Thus, systems were trained multiple times, using di↵erent
approaches of data pre-processing as well as several methods for weighting and filtering
training data based on automatic confidences. Decoding of the test data was undergone
with lattice re-scoring and with incremental VTLN and feature space constrained MLLR
[Gal97].

5.6 Experimental Results

The intention of all following experiments was to evaluate how well a system can be adapted
to a new domain by the application of unsupervised iterative batch training, given a fixed
training set. That means, in contrast to the experimental set-up described in Chapter
4 the main focus now is on appropriate ways of pre-processing erroneous training data
and methods for avoiding the use of malicious data during training, which are potentially
harmful to the correctness of the acoustic models intended to get improved.

Initially, the unmodified baseline system performs reasonably well on data of the domain
it was optimized for, i.e., recordings of EPPS talks, whereas the base performance of data
belonging to the new target domain, i.e., recordings of TED talks, is significantly worse.
Table 5.5 lists the WER of the baseline system, given test data of both, the old as well as
new target domain.

WER in %

Test set Data Training

MAS OFS VIT2

eval2007
EPPS

17.5 16.7 16.5
dev2010 39.3 38.0 38.6
test2010 39.6 37.3 37.9

dev2010
+ TED

24.9 24.3 24.2
test2010 23.1 22.4 22.3

Table 5.5: Performance of the baseline system trained on EPPS data and a supervisedly
re-trained reference system trained on EPPS + TED data in word error rate
(WER), evaluated on test sets eval2007 (EPPS specific test set, comprised of
53 utterances summing up to 2.7 hours of data), dev2010 and test2010 (both
TED specific test sets).

As can be seen, the baseline performance is compared to a supervisedly re-trained system
using the TED data. The subtitles that came along with the downloaded and converted
TED talks were re-aligned to the audio material via a forced alignment on the full talks,
as was described in Section 5.1. As a reminder, the reason for this procedure is the
low accuracy of the given segmentation, which was particularly unusable for a correctly
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conducted supervised acoustic model training. The system trained in this way served as
reference for the following experiments, whose achieved WER is representing an upper
limit for the potential improvements via the unsupervised training approach.

The table also reflects the impact of Viterbi training, given di↵erent amounts of training
data. Where for the systems solely trained on EPPS data the additional Viterbi training
iterations clearly harm the overall performance, the opposite is the case for the systems
trained on both corpora, EPPS as well as TED. In this case, Viterbi training leads to a
slight improvement in terms of WER, compared to systems finalized with OFS training
only.

The intention of the following experiments was to firstly determine a promising set-up for
pre-processing the training data resulting from automatic transcription runs, as well as
the most useful training scheme, that optimally utilizes pre-computed confidence scores for
the automatically generated textual annotations and excludes erroneous and potentially
harmful parts from system training. Secondly, after finding the optimal pre-processing
and training scheme, this framework is applied for iterative batch training in order to
evaluate the potential system improvements by successive re-transcription and re-training
runs given a single, fixed set of data.

5.6.1 Transcription Pre-processing

Based on the developments made in Chapter 4, it has been decided to follow the elaborated
work flow in a similar way by adaptation and transfer to the new training set-up and task.
This decision has also been made in order to back up made conclusions and reproduce
previous observations, thus ascertaining consistency in the usefulness of particular methods
and techniques.

Consequently, the first set of experiments aimed at evaluating the e↵ect of various tran-
scription pre-processing styles. However, for the sake of simplicity, only the two winning
pre-processing strategies were selected for further experiments. Without loss of generality,
experiments have been conducted with filtered transcriptions, that are cleaned from noise
tags and informations about pronunciation variants, as well as the variant baseWords (all
noise tags are used as they were output by the decoder, whereas all words are mapped
to their base forms), that embodies one of the two previously evaluated middle ways be-
tween fully filtered and raw decoding outputs (see Section 4.6.1 of the last Chapter), were
examinated.

The training pipeline for unsupervised training in general looks as follows:

1. Automatic transcription

2. Training database generation

3. Label writing

4. MAS, OFS, and Viterbi training (2 iterations)

Section 4.6.1 of Chapter 4 elaborates the details of all four particular pre-processing meth-
ods that were applied, and how JANUS handles textual annotations during label writing.

Table 5.6 shows the resulting performance for the two selected configurations on both, the
development and test set after one single iteration of unsupervised batch training.

Compared to the baseline system, an improvement of up to 22.1% relative on the develop-
ment set and 26.6% relative on the test set is observable after only one training iteration.
It can be seen that both pre-processing methods perform about equally well, with filtered
transcriptions having a slight advantage on the development set. Performance after MAS
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WER in %

Training dev2010 test2010

baseWords filtered baseWords filtered

MAS 30.3 30.0 29.4 29.1
OFS 29.6 29.6 28.3 28.3
VIT1 29.7 29.6 28.3 28.6
VIT2 29.7 29.5 28.4 28.5

Table 5.6: Performance of the re-trained system using additional unsupervised data with
transcriptions pre-processed in di↵erent ways. Performance is measured in word
error rate (WER), evaluated on data sets dev2010 and test2010.

and OFS has additionally been taken into consideration in order to examine the tendency
of decreasing generalization after Viterbi training. Presumably, using transcriptions with
words mapped to their base forms (baseWords) is more robust to over-fitting when ap-
plying further model training. However, performance does not increase either, rendering
Viterbi training on top of OFS training ine↵ective.

5.6.2 Confidence Weighting & Thresholding

The main focus of these domain adaptation experiments was on evaluating the poten-
tial improvements of unsupervised training via weighting and thresholding the erroneous
training data. Where weighting ensures a di↵erentiated procession of partly unreliable
data, thresholding actively excludes potentially harmful data from training. Section 4.6.2
of the last Chapter describes in detail how JANUS computes and treats confidence scores
internally and how these confidence measures can be utilized to a↵ect the actual acoustic
model training.

In these experiments the confidence scores obtained during decoding were utilized in the
same fashion than in the experiments elaborated in the previous chapter:

weighted Sets the gamma probabilities of the states of a word during Viterbi training to
the posteriori probability of the respective word

thresh Removes words with a confidence below a certain threshold from training

weighted+thresh Combines both methods

For this set-up, prior to Viterbi training, incremental splitting of Gaussians training
(MAS), followed by optimal feature space training (OFS) is performed. This leads to a
major di↵erence in handling confidence scores during training: When applying the Viterbi
algorithm for updating the models, statistics for all speakers in the training set are ac-
cumulated in a first phase. In a second phase, these accumulated statistics are used to
update the model parameters according to the maximum-likelihood criterion [FMS].

Quite di↵erent from this scheme, MAS and OFS training is conducted on sample feature
vectors that were extracted from the training data beforehand. Sample extraction is done
on frame level, given pre-computed labels, i.e., fixed state alignments that were stored to
disc before the actual training. Prior to sample extraction, a linear discriminant analysis
(LDA) is performed, which – besides an LDA matrix that is used during pre-processing in
the ASR module – outputs the number of occurrences for every codebook. These statistics
are then used during the sample extraction to extract an evenly distributed number of

54



5.6. Experimental Results 55

example feature vectors. The sample data collection is stored in separate files for each
codebook.

In order to be able to train the acoustic models on confidence annotated training material,
several modifications were to undergo. First, sample extraction was extended so as to
write out sample vectors into bins according to their respective confidence. The confidence
score enabled sample extraction proceeds as follows: During initialization, the word based
confidences are loaded from the confidence annotated training database. Then, the HMM
for training is built by loading the previously computed fixed state alignments. The word
based confidence measures are assigned to each frame frw

i

that belongs to a particular
word w by setting a parameter gamma(frw

i

) (see Section 4.6.2 of the last Chapter). For
words without a confidence, e.g., optional words that were added to the training path by
the Viterbi algorithm, the gamma value of the respective frames is set to 1, i.e., the default
value:

gamma(frw
i

) =

(
1 if 6 9conf(w)
conf(w) else

, conf(w) 2 [0, 1] (5.2)

Because there is no mechanism available for internally passing confidence scores on to
the actual model training, a circumvention has to be accepted. By writing out samples
to separate folders, where one particular folder contains the extracted samples sharing
confidences of a particular range, and subsequent folder-wise sample re-loading during
training the confidences become communicable into the training pipeline. This approach,
however, has a major drawback: The described way of transducing confidence scores has
a discretizing e↵ect and hence leads to a loss of information. Yet this e↵ect may be
counteracted to a certain degree by selecting an appropriate bin size for discretizing the
confidences. For the following experiments, the range of word confidence scores reaching
from c

min

= 0.0 to c
max

= 1.0 was split into b
n

bins with equidistant centres ĉ
i

, i =
1, 2, . . . , b

n

and uniform width �c = c

max

b

n

:

bin
i

:=

(⇥
�c(i� 1),�ci

�
if i = 1, 2, . . . , b

n

� 1
⇥
�c(i� 1),�ci

⇤
if i = b

n

(5.3)

This binning leads to an error err
k

for a sample k with confidence c
k

, where

err
k

= |ĉ
i

� c
k

| (5.4)

Besides sample extraction, the training framework for MAS training as well as OFS training
had to be adapted so that either became capable of incorporating confidence measures
into the update step for the acoustic model parameters. The training data is accumulated
frame-wise during MAS training. Every frame that gets added to the training accumulators
with a default weighting factor -factor of 1. By loading the training samples folder-wise,
where a folder with designation �cf solely contains samples belonging to the particular
confidence bin bin

f

, frame-based weighting gets enabled by setting -factor �cf

100 .

The same approach is applicable for OFS training, with the exception that data is accu-
mulated from matrices. A scaling vector v

s

can be defined for re-scaling the data prior to
the accumulation. With this tool at hand, weighting of an accumulation matrix ACC

m,n

can be enabled by explicitly setting a parameter -scaleVect v
s

, where

v
s

=
�cf

100
·~1 ,with ~1 = (1, 1, . . . , 1)T , dim(~1) = m (5.5)
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Thresholding becomes trivial for both training steps and gets realized by not loading folders
that contain samples that were assigned a confidence score below a pre-defined limit.

Weighting an thresholding during the final Viterbi training step is realized the exactly
same way as explicated in Section 4.6.2 of the last Chapter.

Algorithm 4 Single training iteration using confidence measures
Require: AM
Ensure: AM 0

1: BINDIR binned data directory path
2: for all i with bin

i

2 BINDIR do

3: C
i

 i

100
4: if 9threshold ^ C

i

< threshold then

5: continue
6: end if

7: S
i

 samples loaded from bin
i

8: for all j with sample
j

2 S
i

do

9: Set factor of sample
j

to C
i

10: end for

11: Accumulate training data
12: end for

13: Update models AM ! AM 0

Algorithm 4 schematizes the confidence score enabled MAS training update step. OFS
training follows the same program flow, but instead of iterating over sample vectors
sample

j

, accumulation is done on matrices matrix
k

, where one matrix comprises only
samples assigned to one particular model each. As a result, instead of setting a single
weighting factor in line 9, a scaling vector of the form like Equation 5.5 has to be defined
and subsequently set as parameter for the accumulation step.

Figure 5.1 shows the results of applying the di↵erent confidence based weighting and
thresholding techniques after one full training iteration, i.e., the graphic displays the system
performances after two iterations of the final Viterbi training.

By reference of the word error rates on dev2010 it can be seen that the transcription
pre-processing configuration filtered proves to be superior also when applying weighting
or thresholding of the training data. Compared to not using any confidence measure an-
notations for data filtering, all techniques of weighting and thresholding lead to a gain in
performance by up to 3.7% relative. Weighting the training data according to the confi-
dences of the decoder already results in a competitive performance without losing any data
in terms of quantity. If using the configuration baseWords, weighting alone already results
in the best performance of all tested approaches. However, this is not the case for filtered
transcriptions. Here, thresholding – whether exclusively or in combination with weighting
– can further improve the system performance after training, compared to weighting alone.
The graphic also reveals that it is of advantage to set the threshold to a higher value: Best
results were obtained by skipping parts of the training data that were below a confidence
threshold of 50%. A threshold of 50%, at the same time, was the strictest value tested
during these experiments. Thus, the influence of an even stricter threshold may possibly
lead to further improvements. A very rigorous thresholding, however, would also lead to
a considerably higher loss of potentially useful training data.

It can also be seen, that the combination of both, weighting and thresholding leads to
a competitive overall performance, if compared to using thresholding or weighting alone.
Where for transcription configuration baseWords the combination a↵ects the system only
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Figure 5.1: Performance of a full training iteration of MAS, OFS and Viterbi training
(2 iterations). Performance is plotted for each configuration of transcription
pre-processing and in dependency of the applied confidence based filtering.
Filtering is applied via weighting the training data with confidences (weighted),
removing words from the training data with a posterior probability below a
certain threshold (25% and 50%), and a combination of both. Performance is
measured in terms of word error rate (WER). All systems were evaluated on the
TED-talk specific development set dev2010 and test set test2010, respectively.

marginally, combined weighting and confidence based data filtering is beneficial if compared
to weighting alone, and results in a better or comparable performance if compared to
thresholding alone, where the additional weighting seems to be of higher advantage, if the
threshold is set to a moderate value, that allows for more potentially erroneous data to
slip into model training. By reference to the results a trade-o↵ between the strictness of a
threshold value for actively excluding data from training, and weighting the training data
so that potentially erroneous parts will be cushioned is observable.

If compared to the system performances on the test2010 set, the observations made are
consistent with the performance progression on the development set. For the baseWords
configuration it is noteworthy that the combination of weighting and thresholding has
a clear advantage over applying the techniques in isolation. When using filtered auto-
matic transcriptions for training, the behaviour remains the same as for the dev2010 test,
demonstrating that the combined approach again leads to the system with lowest word
error rate.

According to the observed results it can be assumed that letting the Viterbi algorithm
decide where to insert noise words and also what pronunciation variants to choose for
each word in the training path triumphs over the decisions made by the decoder during
automatic transcription. Thus, accepting the decoder decisions regarding noise and filler
parts in the training utterances tends to harm the reliability of the training data. Given the
considerably higher amount of utilizable unsupervised training data, it is recommendable
to set a confidence score threshold to a higher value, so that a good share of potentially
harmful data can be avoided to slip into model training.

The impact of thresholds with increasing strictness has been investigated by computing
statistics of the word rejection rate given a particular threshold value. Furthermore, a
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sorted list of the words that were excluded from training most frequently in dependency of
a particular cut-o↵ confidence score was computed, giving a more detailed insight into the
e↵ect of transcription filtering by thresholding. As expected, especially very short words
that bear a high risk of confusion were discarded from training, even when setting the
cut-o↵ confidence to a moderate value of 25%. In particular this a↵ects frequently used
words such as articles (“the”, “a”), auxiliary verbs (“are”, “is”), prepositions (“of”, “to”,
“in”), pronouns (“I”, “we”, “you”), and so forth. Another strongly a↵ected word class in the
case of the transcriptions conforming the baseWords configuration is the set of noise and
filler tags, where especially the tags for breath noises were filtered by their frequently low
confidences. Table 5.7 shows the impact of the thresholds that have been experimented
with (25% and 50%), as well as the theoretical threshold of 75%, whose impact on the
overall system performance has not been tested by any actually conducted experimental
training runs. Regarding the transcriptions, the distinction has to be made whether noise
tags are contained (as is the case for the baseWords configuration) or excluded (which ap-
plies for the filtered transcriptions), as this has an impact on the overall accumulated word
count and consequently the relation of accepted and dismissed words given a particular
threshold.

Threshold
Rejection rate in %

baseWords filtered

25% 8.8% 9.5%
50% 27.3% 29.0%
75% 48.7% 51.1%

Table 5.7: Rejection rate of words when applying di↵erent confidence measure thresholds.
For instance, a threshold of 25% discards all words with a confidence score lower
than 0.25. baseWords corresponds to transcriptions that still include noise and
filler tags, filtered correspond to transcriptions that have been cleaned from all
annotations of noise parts and filler words.

5.6.3 Iterative Training

Given a considerably large amount of unsupervised training data adequate for full training
runs, one major focus was on the evaluation of an iterative batch training approach. The
core idea is to iteratively generate new, and hopefully improved automatic transcriptions
with each most recent system at a given point in time. By always re-training the ASR-
system with the updated transcriptions, system performance is supposed to gradually
improve with each iteration.

Formally, the goal was to always perform a full system re-training with a data set

T
i

= EPPS [ TEDtrans

i

8i 2 [1, i
final

] (5.6)

where T
i

is the data set for training S
i

, EPPS is the training data used for building the
baseline system, TEDtrans

i

is a domain specific training set fixed in size, annotated by
automatically generated text resulting from a decoding performed by S

i�1. Algorithm 5
outlines an iteration of unsupervised training, where the baseline system is denoted as S0.

The individual training steps for system S
i

are performed in lines 10 to 12. MAS training
on previously extracted samples SMP

i

is followed by OFS training. The final step is a
Viterbi training along labels L

i

, using training data stored in database DB
i

. Practically
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Algorithm 5 Iterative Batch Training
Require: 9S0 ^ i

final

> 0
Ensure: S

i

final

1: i
final

 max. iteration
2: EPPS  supervised EPPS data
3: TED  unsupervised TED data
4: for i = 1 to i

final

+ 1 do

5: TEDtrans

i

 transcribe(S
i�1, TED)

6: T
i

 EPPS [ TEDtrans

i

7: generate training database DB
i

 T
i

8: write labels L
i

9: extract samples SMP
i

10: S
0
i

 masTrain(SMP
i

)
11: S

00
i

 ofsTrain(S
0
i

, SMP
i

)
12: S

i

 trainingAlongLabels(S
00
i

, L
i

, DB
i

)
13: end for

this means that – starting from a baseline system – its acoustic models are completely
re-trained with each iteration. I.e., multiple consecutively executed re-trainings of lead to
a final system S

i

final

.

Without loss of generality, the transcription pre-processing configuration filtered has been
utilized throughout the iterative batch training experiments. Transcriptions that are
cleaned from any noise and filler tags as well as informations of pronunciation variations
turned out to result in the most reliable systems, as can be seen in the previous sections.

Figure 5.2 shows the results of testing this approach. Experiments have been conducted
by weighting the data during training, as well as thresholding the data. For the latter, two
use cases have been hypothesized: Figure 5.2(a) depicts the progression of the performance
curve, a fixed threshold of 50% is applied for each iteration, so that for all intermediate
systems every word below this confidence score is exempt from training. Figure 5.2(b)
depicts the performance curves, when using a degrading threshold over time. I.e., with
every new iteration, the confidence threshold is set to a lower value, so that gradually
more data will be e↵ectively utilized for training. The assumption is, that with increasing
transcription performance, training data becomes more reliable and less error-prone, thus
filtering may be applied in a less strictly fashion. Furthermore, [LZM12] has shown that
adding low confidence scored data to training can be beneficial for the recognition correct-
ness rate of a system, following the assumption that this procedure is helpful to improve
the system’s generalization capabilities. In lowering the threshold, previously unused data
with the tendency to be incorrect or not correct to a certain degree becomes available for
system training.

As can be seen by reference to both graphics, the recognition performance of the re-trained
systems increase considerably even after just one iteration. Particularly, this iteration gives
the highest boost of all re-trainings, resulting in relative improvements of more than 29.5%
as observed on the test2010 evaluation set. Subsequent iterations still give significant
improvements in terms of recognition capabilities, but the gain remains much smaller
compared to the initial iteration of unsupervised training. Re-training was halted after
the completion of three full iterations due to the emerging convergence of the system’s
recognition performances.

The iterations plotted in Figure 5.2(a) consistently use a confidence threshold of 50%. As
opposed to this, system training during the experiments that yield the performance curves
of Figure 5.2(b) makes use of a gradually decreasing threshold: Where for iteration 1 the
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Figure 5.2: Performance of iterative system re-training in batch mode. Each iteration, the
full training set is re-transcribed by the by then most recent system. Each sys-
tem re-training comprises MAS, OFS and Viterbi training (2 iterations). Per-
formance is plotted in dependency of the iterations and is measured in terms
of word error rate (WER). The development systems are compared to super-
visedly trained reference systems using the dev2010 and test2010 data sets,
respectively. Figure (a) depicts system performance when using weighting and
thresholding with a threshold of 50%. Figure (b) depicts system performance
when using decreasing threshold limits for each iteration: 50% for iteration 1,
25% for iteration 2, 0% for iteration 3.

threshold likewise is set to 50%, it is reduced to 25% for iteration 2, and set to 0% for
iteration 3, which practically means that for the final iteration it has been refrained from
thresholding. The depicted curves clearly show that the lowering of the applied confidence
score threshold for re-training system (b) is of no disadvantage for iteration 2, and results
in a slightly worse, yet still competitive system after iteration 3. The latter phenomenon
may be an indication of a too rapid reduction of the threshold value. With weighting alone,
lower-scored training data with erroneously labels still has an impact on model training,
where thresholding with even a low value can e↵ectively reduce the risk of adversely biasing
the models. Likewise, no observations can be made by reference to the depicted curves
that attest an advantage of gradually lowering the applied threshold over keeping a fixed
threshold for all iterations of re-training.

Figure 5.3 depicts the gradual shift of word based confidences. With every iteration, higher-
valued bins proportionally comprise more data, whereas the lower-valued bins clearly con-
tribute with considerably smaller fractions. It is noteworthy that only the confidence
measures for word tokens were taken into account. Non-word tokens, i.e., noise and filler
tags were ignored in order to determine the impact of the iterative re-training process on
the recognition qualities of the ASR system targeted to words only.

The initial transcriptions that were generated with iteration 1 feature scores that are
almost equally distributed in the middle ranges of the confidence bins, with a drop on very
low confidences ([, .05)) and a peak for very high confidences ([.95, 1]), which is reflected in
a median of 0.73. With each subsequent iteration, the relative portions of the total mass of
confidences shifts to higher bins, which reflects in a median of 0.93 after the 3rd and final
iteration. Where for lower confidence ranges the share gradually decreases, the occurrence
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Figure 5.3: Distribution of the word based confidence measures on confidence bins.
The distribution is depicted in dependency of the amount of performed re-
transcription runs followed by re-training. Clearly visible is the gradual shift
of rates for confidence score spans to higher bins.

of very high confidences increases rapidly. It is remarkable that, even though the range
of the highest bin has half the regular bin size (as does the lowest bin), it holds more
than 47% of all words after iteration 3. This re-distribution of words with initially lower
confidence scores to bins covering higher confidence values, accompanied by a decreasing
WER indicate that the system learns to produce more reliable recognition hypotheses given
the new domain and channel it is adapted to. Even with a fixed threshold value, more
data is used during subsequent iterations, as the amount of higher-scored words increases
due to the improved confidence of the decoder. Moreover, by lowering the confidence
threshold, this e↵ect is further intensified. on the supposition that the decoder’s ratings
get more reliable with each training iteration, the risk of including potentially harmful
data into model re-training increases by lowering the cut-o↵ value. Thus, adjusting the
threshold may be helpful to maximize the yield of the training data, but this step should
be conducted with care.

5.6.4 Analysis

In this chapter work on unsupervised adaptation of the acoustic model by iterative batch
training has been described. The goal was to evaluate how well a baseline system can be
adapted to a new domain by utilizing unsupervised training data, fixed in size. For this,
automatic transcriptions of the unsupervised data have been generated with the baseline
system, which was then used for fully re-training a new system. This training scheme was
iterated several times.

Two di↵erent ways of processing the decoder output were applied, that were selected ac-
cording to the results of Chapter 4. It has been shown that both pre-processing methods
lead to systems that perform about equally well, where filtered transcriptions performed
slightly better on the development set. Although the final Viterbi training already showed
signs of imminent over-fitting, the results indicate that transcriptions following the base-
Words configuration have a slight advantage over filtered transcriptions in terms of ro-
bustness towards over-fitting when taking the results on both test sets into consideration.
An improvement of up to 22.1% relative on the development set and 26.6% relative on
the test set was observable after only one iteration of unsupervised training with applied
transcription pre-processing.

During further experiments, word level posterior probabilities that were obtained during
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automatic recognition runs on the unsupervised training data were utilized for word based
weighting and thresholding. Transcriptions that were filtered proved to be superior on
the development set in all tested combinations of weighting and thresholding. All applied
techniques led to a significant gain in performance by up to 3.7% relative, compared to
training without application of confidence measure based filtering. The positive e↵ects of
thresholding the data during training were higher than weighting the data. A threshold of
50%, which correlated with the highest value that has been tested, resulted in the system
with the lowest WER on the development set, being 28.4%. The combination of weighting
and thresholding lead to a competitive system on the development set, and to the winning
system on the test set, yielding a WER of 27.2%.

By reference to the observations made it is of advantage to let the Viterbi algorithm decide
which pronunciations to use and where to insert which noise words, establishing conformity
with the analysis of Chapter 4. Given a considerable amount of unsupervised data it is
beneficial to set a confidence score threshold to a value not lower than 50%.

For iterative batch training, two use cases have been hypothesized: Using a fixed thresh-
old of 50% for each iteration, and using a threshold that degrades over time. It has been
shown that a fixed threshold is of advantage. However, the alternative approach led to a
competitive system and is potentially improvable by vernier adjustment of the threshold
degradation speed. Recognition performance of the re-trained systems increased consider-
ably even after a single iteration. With each subsequent iteration, higher-valued confidence
score bins proportionally comprise an increasing amount of data, accompanied by a de-
creasing WER in tests prove that with each iteration the system get more reliable given
the respective speaker they are trained to.

The iterative re-distribution of word confidences to higher confidence bins and likewise
decreasing WER in tests indicate that the system qualifies to generate more reliable recog-
nition hypotheses given the new domain and channel it is adapted to. Even with a fixed
threshold value, more data is used during subsequent training iterations, which implicitly
leads to an increased yield of the available data. The final system with highest perfor-
mance on the test set used word weighting and a threshold of 50% and yielded a WER of
25.0% after 3 iterations of unsupervised training.
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6. Summary

The goal of this thesis was to application and evaluation of unsupervised acoustic model
training schemes, that lay the foundation for an unsupervised adaptation framework based
on acoustic model training for use in KIT’s simultaneous speech-to-speech lecture transla-
tion system. The focus during experimental test runs and evaluation on the KIT lecture
translator system was on speaker adaptation via unsupervised training. Iterative and
incremental training principles were compared with respect to the training e�ciency and
overall recognition performance after training, given certain minimal amounts of data. The
focus of the experiments on a baseline system trained on EPPS data was the application
of unsupervised iterative batch training for domain adaptation.

Given these two experimental scenarios, the impact of various transcription pre-processing
methods and confidence measure based data filtering methods during acoustic model train-
ing was evaluated. Experiments showed that it is of advantage to let the Viterbi algorithm
during training decide which pronunciations to use and where to insert which noise words,
instead of fixating these informations in the transcriptions. With weighting and thresh-
olding it was possible to improve unsupervised training in all test cases. The best system
based on the KIT lecture translator reached a word error rate of 16.9% with processed
transcriptions and weighted training. Tests with an iterative incremental approach showed
that potential performance gains strongly correlate to the performance of the systems for
automatic transcription. For the EPPS-based system, significant performance gains of up
to 29.5% relative was observable after only one iteration of unsupervised training with
applied transcription pre-processing, weighting and thresholding. Given a considerable
amount of unsupervised data it is beneficial to set a confidence score threshold to a value
not lower than 50%. For iterative batch training it has been shown that a fixed threshold
is of advantage.

6.1 Future Work

The experimental results of this study showed, that unsupervised acoustic model training
can e↵ectively be applied to the tasks of speaker an domain adaptation. Already small
amounts of new data were su�cient for obtaining significant improvements of the baseline
systems. Future work will comprise the implementation and integration of an unsupervised
acoustic model training framework into the KIT lecture translator system for automatic
model adaptation. Further research will focus on comparisons of well approved adaptation
techniques and adaptation via re-training, with a special focus on the dependency of
adaptation e↵ectiveness and amount of available unannotated training data.
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[SKM+12] S. Stüker, F. Kraft, C. Mohr, T. Herrmann, E. Cho, and A. Waibel, “The kit
lecture corpus for speech translation,” in LREC 2012, Istanbul, Turkey, May
2012.
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