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Connectionist Large Vocabulary Speech Recognition 

Alex Waibel1 

:School of Computer Science, Carnegie-Mellon University, Pittsburgh,PA 15213 
•' . 

. '�i i . 

. 'Abstract: ln this paper, the problern of large vocabulary word recognition is addressed from a 
'cpnnectionist perspective . The problern is not only of practical interest but also of scientific i mportance , 

'':. .• S.ince a workable solution must integrale pattern recognition under consideration of sequential , symbolic 
ftonstraints. We have developed two !arge vocabulary word recognition systems based on different 
)�peech recognition philosophies . One of the systems exploits the power of neural networks in performing 
<'kccurate classification, the other the power of producing good non- linear function approximation and 
'�ignal prediction . We present each system's operation and evaluate its performance. Both achieved 

,;,'respectable recognition scores in excess of 90% correct for vocabularies of up to 5000 words. We 

f•,suggest further avenues towards improvement of either system and in the process discuss the relat ive 
·��trengths of either approach . 
;'·<·-" 

·;jKeywords: neural networkds, connectionism , time-delay neural networks, predictive neural networks 
_.)!'"· 
.-;1 

a lntroduction 

'::��R��ognition of speech by machine has been a fascinating top ic of research that has for many years given '\JW�to some of the most innovative and excit ing models. lt has always been d riven by a mix of intuitions 
·:+;r� lating to system design and engineering on one side and human cognitive mode ling on the other. lt has A't<'�!y.iays drawn a great deal of ideas, motivation and inspiration from a desire to understand human ' �:} r� : '_,:.-.: :·:_·· _· 

';oiMmmunication, while imposing the realism of practica l engineering constraints and comparative 

<!.;p�rlormance me:fsures . Connectionist models or "neural networks" have recently attracted considerable 
%:(Änd renewed) attention in speech recognition as they provide speech scientists with a cognitively 
\;ipiiws ible model of speech processihg while at the same time introducing a novel , yet realistic engineering 
.�!s9h.ition to the p roblem . A number of initial designs have produced in a short time performance results 
·}.thilt compared favorably or exceeded those obtained by traditiona l speech processing 
··-�techniques [1, 2, 3, 4]. On the other hand, most of these experiments were limited to small tasks or 

,_:�:Ubproblems of the speech recogn ition problern such as phoneme classification [1, 2, 5] or small 
:'vocabulary word recognition [6, 7, 8]. 

While these results are encouraging given those l imited domains, the question remains to be answered 
· if .· and how this technology may be used effectively for the design of whole speech understanding 

1We gratefully acknowledge IEICE for permission to reprint this paper. II has originally appeared in the journal of the IEICE, 
Voi.J73-D-II, No.8 pp. 1122-1131, (Aug. 1990) by the same author. 
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tems. lndeed, a common criticism argues that connect ionist models are but good classifiers but 

,not handle the temporal, sequential nature of speech. As such, connectionist models may be 

active only in limited domains or toy prob l ems . but would scale poor ly to !arge vocabulary speech 

lerstanding systems. Although this criticism has b e e n  va l id for a nu mber of init ial s imp le networks, 
ensions that overcome these limitations have been proposed and are beginning to produce 

pectable results on !arger problems as weiL 

1 this paper we will describe current research activity !hat addresses the large vocabulary recognition 
blem. We present two large vocabulary word recognition systems that il lustrate that neural networks 
can be used productively for large vocabulary speech recognition by way of classification but also by 

y of non-l inear mapping and system identification 2.) neural networks can be integrated with 
mectionist as weil as non-connection ist strategies to handle temporal, sequential processing to form 
tins  of subword un its, words and sente nces . 

fhe large Vocabulary Word Recognition Problem 

rly on connectionist word recognition experiments were carried out that have exploited the 
ssification capabilities of neural nets by apply ing an entire word's coeffic ient matrix to the in puts of 
tic full word networks with outpul units for each word to be classified . Good results were achieved, but' 
' resulting systems required precise time alignment and a preprocessing stage that determines the 
jpo ints of a n  input word, both u nacceptable requirements in practice in the light of continuous speech,: 
ise and vary i ng speaking rate s . Similar ly limiting is the fact that on ly smal l  vocabu laries can be 
nd led in this fas hion , because netwo rk size and tra ining tim e  become prohibitively large and e nrollment 
:xactical with increasing vocabulary size. 

ro overcome the former first set of i im itations , networks !hat model time, temporal distortion (warping) 

d/or shift-invariance internally have been proposed for small vocabulary recognition. Among them are 
:hniqu e s  that integrale neural network based classification with traditional schemes for t ime alignment 

d sequence management, such as the Dynam ic Neural Net (DNN) [8, 9], word Ievei Time-Delay Neural 
llworks (TDNNs ) [1 0, 1 1 ], hybrid n eural net classifiers and Hidden Markov Models [12] and Neural 
ediction Models [13]. Most of these models have be e n  tested on smal l vocabularies (Japanese, French · 

1d English digits) a nd have achieved excell e nt performance results, but all used dedicated models forc-
";· -.'.-

tCh vocabulary word and are in their basic forms not appropriate for large vocabulary recogn ition . . � ', ; 

To extend these models to large vocabulary recognition subward units such as phonemes or syllao!d�r;/ 
ust be e mployed. Since such subward units are limited in number large vocabularies can be,' · 

'nstructed as different sequences of these atomic subunits. ln !arge vocabulary word recognition'then 

e task is to identify the most likely sequence of phonetic units that make up a legal word (prefera�IY,�; 

,thout requiring segmentation in the process). Several models have been  proposed that expre��;! 
lquential constra ints in a connectionist framewerk alone [14, 15, 16, 17, 18]. Alternative ly, combinalio�s '. 
Hween the perceived strengths of neural networks at the pattern recogn it ion Ievei with the strength� t '1 

lditional methods at mode l ing sequenc e s  such as Hidden Markov Models, Viterbi Decoding, or Dyn��iq:· 
rogramm ing have also been proposed . Such "hybrid approaches" have recently gained in popularitY a�<: 
ey appear to oller immediate access to the best of both worlds . 
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ln the tollowing we describe two connectionist !arge vocabulary recognition systems. They are 

examples of two different recogn ition philosophies. We will refer to them as "classification based models" 

and "prediction based models". 

3 Classification Based Models 

Neural netwo rks have been shown to implement excellent non-linear classifiers both at the phonet ic Ievei 

as weil as at the word Ieve i . Large vocabulary systems can therefore be implemented by neural networks 

that recognize phonemes or parts of phon emes (states) and evaluate how weil a sequence of their 
phonem ic outpul hypotheses match the legal sequence of a word. 

3.1 Tlme-Delay Neural Networks 

one of our attempts in do ing this is based on the Time-Delay Neural Network (TDNN). This network has 
been shown to produce excellent phoneme discrimination pertormance (1 ]. This network was developed 

to provide a non-linear non-parametric2 pattern classifier !hat can spot features or phonemes independent 

of precise temporal alignment (shift-invariance property) . The network is a multilayer network of un its !hat 

incorporate current activations from lower layers as weil as time-delayed versions of the m  (context) as 

input . Fig.1 illustrates a TDNN trained to perform the discrimination task between the voiced stop 

· consonants /b, d, g/ (see [19] for a more deta i led description of its operat ion) . 

Initial experimentation with this class of networks was performed speaker-dependently on small 

phoneme sets only (/b ,d ,g/ discrim ination), but extensions to high pertormance mult i-speaker 

� recognition [20] and recognition of all phonemes were soon achieved. Both problems significantly 

... benefitted from modular and inc remental learning [20, 21, 2]. By us ing an integrating supernetwork 
'"(Meta-Pi network (20]) to decide on how to gate an appropriate mix of speaker specific network decisions, 
'iocus of attention or rapid adaptation to speaker specilic classification can be achieved. ln mu/ti-speaker 

... classilication experiments th is resulted in speaker-dependent recogn ition rates - a signiticant 

· .;· irpprovement over results from speaker-independent training. Modularity could also be used effectively to 
},.:··' problems re lated to scaling , tra ining t ime and general ization . By exp loit ing the featural 

· ractions in the hidden units of previously trained networks modular training ailowed for greater 

and f lexibility of design while achieving pe rformance greater than or equal to non-modular 

;;:f;Q•�tworks [2] . 

. Large Vocabulary Recognition by TDNN 

on a Japanese large vocabulary isolated word database (5240 words) [22, 19, 1] a number of 
ndent expe riments were carried out to improve the TDNN's performance, particular ly in view 

vocabulary recognition [23]. For use in word recognition , speech is to be classified into phoneme 
categories over running speech (in this case over entire words spoken in Isolation) . As the orig inal 
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Flgure 1 .  The TDNN architecture (/b,d,g/-task) 

rDNNs were tra ined on excised phoneme tokens only, seve ral modifications were desirable. First, the 
>riginal excised phoneme t rain ing patterns were now artificia l ly misaligned in time by various offsets. lt 
nore reali stica l ly simulates the absence of precise phoneme Iabels and segmentation. The resulting 

ntroduct ion of time a lignment "noise" turned out not to decrease performance, but Iead to noticable 

mprovements instead , particula rly for phoneme spott ing. Training in this fashion improved generalization 

md enforced shitt-invariant phoneme class ification even in trans itory regions between phonemes . The 

esulting phoneme spotting rates of the large scale TDNN's improved from 95.8% to 98.0% and more 

mportantly, the  fa lse a la rm rates3 decreased from 62.2% to 23.2%4. The performance results ot our 
l arl ier mode ls and this improved model compared favorably with various other recognition strategies over 

he same data. For word recognition also a silence category was necessary which was added by modular 

lesig n to the existing net [23]. Fig.2 shows the resulting large TDNN all-phoneme architecture. Fig.3 

:hows output activation patterns for the word "wata" . 

While good phoneme class ification performance is indeed encouraging , this will have to be properly 

ntegrated and have to translate into good large vocabu lary word recognition performance to advance 'h� 
ield. Mature speech recognit ion technology has already at its disposal a number of elegant techniq4es 

or this and similar word-level integration needs to be accompl ished in a connectionist frame-werk pr ip 

3Presumably due to previously undefined transitory regions. 

4AII recognition tests were run on independentlest data from the same speaker. 
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Figure 2. Modular TDNN used to spot all phonernes 
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Figure 3. TDNN spotting phonemes in word "wata" 
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?1Qe form of hybrid connectionist/ non-connectionist system design. Neithe r is necessarily a trivial step to 
;unde rtake and we sha ll desribe several successful initial attempts that have been proposed. 
·, ;., 

)', . ' Using data from a Japanese i solated word database (as  described above) and a TDNN as a front end :�,gponeme Ieve i model, a hybrid !arge vocabulary recognition systemwas developed [23]. 24 phonemes (5 
:,f;r.,?wels, 18 consonants and silence) were spotted by shifting TDNNs across time providing the front end 

it;�8L, phoneme based word recognition. To recogn ize a word , the overall l ikelihood of a word-specific t;�equence ot phoneme activations needs to be estimated. To do so , we can approximate the output 
:'0:�ctivations of a TDNN as rep resenting the maxirnum a posterio ri probabi l ities of a phoneme class given 
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3Ch at a given time frame (24]. lf each phone me is viewed as a single state with an associated output 

>ability, then a ward likel ihood can be calculated as the joint probability over all output probabilities 
·time. Assuming that all states are independent , a word likelihood would be given by the product of \ 
1ewise outputs. A simple way of implementing this is to evaluate at each time frame the log activation 

1e outpui uni! that corresponds to a legal phonemic state in the word and summing these log outputs 
r time. The correspondence between a given time frame and the current active phoneme node is 
ormed by a Dynamic Time Warping (DTW) procedure . 

n implementation of this procedure is described by M iyatake . Sawai, M inami and Shikano [23]. Here, 
todular TDNN as described above was used, and only one state per phoneme was provided. An 

parser provided top-down prediction of what set of phoneme t ransitions are legal to form legal  words 
he d ict ionary . For duration control each phoneme state was expanded to the average number of 
nes of that phoneme before DTW was carried out. Recognition experiments on variou s  vocabu lary 

)S we re undertaken with this system. All experiments were perfo rmed vocabulary independently5 and 
independent test data (phonemes not used for training ) . Fora 500-word test vocabulary, first choice 
uracy of 98% was achieved . For a !arge vocabu lary of 5000 words, recognition rates as h igh as 92.6 

·e obtained. Second and fifth choice rates for the later vocabulary size were 97.6% and 99.1%, 

pectively , indicating that most confusions occurred among a small group of acoustically sim i lar words 
J., "ita i" -> "ittai" ) . 

; Extensions 

3 performance of the system described does indeed sugg est that very high pertormance can be 
1ieved, independent of training vocabulary and training context. Several problems, however, need to 
overcome to further improve !arge vocabu lary speech recogn ition systems . 

3equenclng of Phoneme Interna! Events: First, we have already noted that the TDN Ns described 
)Ve were all integrated as single phoneme states. While TDNNs can capture a variety of phoneine 
3Cific cues sequential ordering within a phoneme is only imposed within the reach of its fixed duration 
1e-delays . Additio nal erdering between variably duration subphonemic states must be imposed in the 
1text of word recognition. Variable or adaptive time-delays [25] could be used internal ly or a sequence 
several states [12] per phoneme at its output. Th is should Iead to better pertormance and duration 
1deling, particularly in continuously uttered poorly articulated speech. 

Stochastic Modefing of Sequences: The most successful and popular approach to stochastic 
>deling of sequences is given by Hidden Ma rkov Models (H MMs), where a phoneme is given by a 
1Ch ast ic sequence of states that can be linked together into words and from there on into sentences. f\1 
eh of these Ieveis (lexical , syntact ie, etc . ) constraints can be app l ied and probabi l it ies estimated, and 
�ir joint probabil i't ies (assuming they are independent) compu ted . A popu lar idea therefore is to use t�.e 
engths of neural networks at precise pattern classification in combin ation with the modeling of state 

quences and time alig nment found in HMMs. 

Some of the earlier proposals at this  were developed by Bourlard , Wellekens and Nelson [26, 24, 27]. 
theoretical and experimental work they had shown that the outputs of a multilayer perceptron 

5The phonemes used for training were extracted from words of a different vocabulary than the one used for testing. 
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(feedforward networl\) tra ined by backpropagation from a mean square error may be considered to be 

estimates of the maximum a po steriori probabilities of a given input to belong to its corresponding outpul 
class. They have since built on this notion to construct Hidden Markov Model chains where the output 
activat ions of a local multi layer perceptrons (MLP) are used as outpul probabilities for the states in a 
traditional HMM. Viterbi alig ment is performed to assign the framewise MLP f irings to corresponding 
states and to compute an overall word outpul probability . 

Several enhancements were subsequently proposed by several investigators. Morgan and 
sourlard [27] achieved significant improvements in recognition performance,  by norma lizing their network 

outputs (the a poste riori probabilities) by their respective prior probabilities to elim inate a blas to uneven 
distributions in the train ing data. Another techn ique aimed at optimizing generalization performance is the 
usage of a cross-validation set. lf only l imited amounts of training data are available given a net of a 

given s ize, this can Iead to overfitting to the training data and poor generalization to (poor performance 
on) new unseen data [27]. Use of an independent pseudo testing set (the cross-validation set) then 
yields a stopping criterion, that assures that a net is trained with optimal test-set performance in mind. A 

third enhancement proposed by several researchers is Connectionist Viterbi Training (CVT) (27, 12]. 

CVT is akin to the segmental k-means training procedure used for Hidden Markov model training [28] and 
aims at integrated and seg mentat ion free word Ievei training . The idea is to optimize a suitable phoneme 
(or state) segmentati on togetherwith the backpropagation network optimization . CVT iterat ively finds the 
best labeling of the input (by way of Viterbi a lignment), while the networks attempt to provide better 
outputs to correspond to these Iabei. These techniques produced good word Ievei recognition 
performance, that are beg inning to compare favo rab ly with other advanced HMMs on continuous 
sentence (27] and on connected digit (12] tasks. 

Research Directions: A hast of add it iona l modifications and improvements !hat are known to work 
weil for HMMs remain to be explored in the contex t of hybrid connectionist systems. Among them are 
corrective training (at the word Ievei), choice of best input representation, trans ition probabilities, choice of 

. optimal HMM topology, opt imal neural network architecture, etc. Last not least, work is in progress 
towards improved training algorithms that generate more meaningful probab il ity estimates at the outputs 

· of local phonetic classif ication networks to improve ward Ievel discrimination and overall system 
robustness. 

An alternate exciting research avenue is g iven by connectionist formal isms that represent sequential 
constraints altogether internally as connectionist modeling extensions [14, 15, 16, 17, 29, 18]. Such 
models may relax some of the l imiting assumptions made by current recognition strategies and could 
potential ly Iead to further i�provements in speech recognition system design . 

,{Prediction Based Models 
Ip.e connectionist models that we have discussed so far apply neural nets as classifiers of eilher word 
:,P�tterns or subpatterns . For classification, the input usually consists of a coefficient matrix and the outpul 
�pproximates a bit pattern representing the classification res ults. ln addition to learning discrete 
Gl�ssifications, however, neural networks can implement a variety of other constraint satisfaction tasks. 
Among them are no n- linear function approximation, interpolation and prediction, which generate 



t:OO 

1uous real-valued outpul vectors . This can be exploited in speech for various signal mapping and 
.g applications, including noise suppression [30]. speech code mapping (31] and non-linear signal 

ction [32]. The use of neural networks as non-linear signal predictors in speech recognition has 
1tly first been shown successfully in the "Neural Prediction Model" proposed by lso and 

mabe [13] and the "Hidden Control Neural Network" proposed by Levin [33]. Both ofthese models 
so far o nly been implemented for small vocabulary recognition tasks ( i .e . , digits), but have yielded 

recognition performance speaker-independently. Extensions to !arge vocabulary recognit ion are also 

1ble with this approach as we sh all see in the following. 

Recognition Using Small Vocabularies 

basic idea is illustrated in Fig.4. A two frame window of input coeffic ients is input into a multilayer 

lforward net trained to produce at its outpul a frame of coefficients that is as close as poss ible to the 

(future) speech frame. The distance between this predicted frame and the actual next speech frame 

be measured as a predict ion error or d isto rtion and this distortion is used as error criterion for 

.-<propagation training. Given a set of predictor networks one can imagine training each pred ictor for a 

Predicted Speech Frame 

Predictor for "A" 

(10 hidden 
units) a1 

Input Speech Frames 

Good Prediction -> "A • 

Prediction Errors 

Figure 4. Modeling a phoneme by signal prediction 
:'�L .- , 

parate reg ion of an uttera"nce. Each predictor ne t becomes specialized to best predict this portion 9ta.v� 
erance, suchthat the prediction error is likely tobe lowest in these regions. A word is then repres�·rJig!5l 
the sequence ot pred ictor nets th at best predicts the actual obseNed speech. Dynamic PrograrnMifl� . 

used as a mechanism to optimall y apply each pr ed ictor sequent ially over time to best approxima.t�,JP:�i· 
:tual signal. Fig.S shows this alignmen t step based on the matrix of distances between actual �Pc.i�f:��� 
tmes and predicted frames. Du ring training an alignment path is determined by Dynamic Progr� · · · 

Ich predicto r is then trained to minimize the error between its outpul and the speech frames th.� 
;signed to predict according to the D P-alignment path. During recognition the word whose seq� 

edictors minimizes the error between predicted frames and actual signal frames is chose n, , 

'atanabe [13] used 10 mel scale cepstral coefficients and amplitude change as inputs to theirl"lrv��l 
1e number of predictors used depended on the utterance and ranged (for Japanase digits) Qeti,iJ�. 
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Prcdicllon crrors 
Prcdlctors 

Speech Input 

Figure 5. A Neural Prediction Model 

and 14. Each predictor net has three layers, an input layer of two 11 coefficient frames, 9 hidden units 

and 11 predicted outpul coefficients. Excellent performance (0.2% error) was reported for a Japanese 
speaker-independent isolated digit recognition task uttered over telephone l ines . This result compared 
favorably with other techniques (0.7% for the DNN (34, 8] and 1.1% for DP-matching [35]) tested on the 
same data . 
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Ir: _ Figure 6. The Hidden Control Neural Network 

""'"''"}',he model proposed by Levin is similar to the one described above and is illust rat ed in Fig.6. As before 
.ses non-linear predict ion by neural nets to measure a model's fit to the input data. Unlike the Neural 
)Riion Model, however, it uses only one single predictor for an entire word and a sequence of varying 
.. ,)tags or "control units" that switch the predictor into alternate modes of Operation as time 
,,�§�es. Similar to "counter nodes"(proposed for spelling correction [36]), thes e units are used to 
91the sequentiai state of the network. The predictor network used 24 speech inputs (12 cepstral and 
!tacepstal parameters), 30 hidden units, 24 predicted outputs and 8 control input units. The control 

::;turn on sequentially when approp riate andremainon as additional bits are activated ("thermometer" 
. f�Sentation). Control transitions (the point at which a new bit is turned on) are determined by Viterbi 
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i g n m e n t .  Du ring t r a i n i ng , the V i t e rb i  a lgor i t h m  d e te rm i n e s  the state of co nt ro l u n it set t i ng s  for each 
•eech i nput  f rame and appl i e s  backpro p a g a t i o n  le a rn ing  to reduce p red ict io n error according to this 
�g m e ntat ion . The n etwo rk was te st ed o n  co n n ected digits fro m t h e  Tl-digit  d atabase (u si ng male 
•eakers o n ly) . U s i ng I ndepe nde nt l e s t data but f ro m t h e  same speake rs u s ed i n  t ra i n i ng , a word 

cog n i t io n rate of 99 .3% was ach ieved.  

2 Large Voca b u lary Recog n i t i o n  

1 rg e  vocabu l a ry word recognit io n u s i n g  p redicto r n·etworks i s  a l so poss ib le . F o r  u s e  i n !arg e vocabu lary 
cogni t io n ,  words must h e re again be decomposed into subwo rd u n its such as pho nes o r  syl l ables and 

1 opt imal  mod e l  for  t h e s e  u n i t s  m u st be t ra i n ed . Recent  wo rk by Tebelskis and Waibel [37] has 

3 monst rated t hat t h i s  can be done w it hou t the n e e d  fo r seg mentat io n .  ln this wo rk ,  t ime al ig nment and 

) n n ect ion we ights w e re opt i m i s e d  jo in t ly  and the weights  of sets of ne two rk pred ictors co rre spo nd ing to 

. e  s a m e  pho n e m e  symbo l s  w e re l i nked Iog e t h e r  (as i n t h e  TD NN) . Exp e ri me nts wit h  t he "Linked 
redict ive N e u ra l  N e twork" ( L P N N )  re s u l ted in  94% recogni t ion pe rfo rmance for speaker-dependent 

o lated wo rd recog n i t ion  over a database of 234 J ap an es e  wo rds and 90% ove r a 1 000 wo rd vocabulary. 

h e  data u s e d  in t h e se exper iments w as g ive n  by a co nfusable su bset of the data used for evaluation of 

1 e  TON N  based system descr ibed in t h e  p rev iou s s ectio n.  Performance resu lt s on this part icu lar subset 

e re fo u nd to be co mparab le betwe e n  the two syste m s .  

The operat ion and t ra ining of the L P N N  are s hown i n  Fig .7 .  As before, a set  of predictors is assigned to  

iffe rent po rtions of a wo rd . H e re t hese port ians a re d efi ned to be  pho n e me s  and e a c h  occu rrence of the 

3me pho n e me is mode l ed by the s a m e  set of t h ree pred icto rs . l n  Fig .7 ,  fo r examp l e ,  two words "BAB" 

nd "ABA'' may consist  of the same pho n e mes i n  d iffe rent o rder a nd po s it io n . Time al ign ment of the 

:Jqu e nce of p re dicto rs is done as before ,  but all p red ict ion errors ass ig ned to the same phoneme (or 

::> rt io n  t he reo f) t ra in  the same p re d icto r net by way of a l i nkage pattern that def ines the legal phone me 

3que nce of a word .  A nu mbe r of e n hance me nt s to th is  bas ic scheme have so  far been found to be 

ffect ive . A set of paral l e l  pred icto rs was add ed to e ach pho neme mode l to allow the LPNN to better 

!pres ent  alt e rnate p ro nu nciat io ns a n d  context de pe ndenc i es . An ass ig nme nt of e ach al ternate was not 

rede t e rm i ned , but t h e  syst e m  s e lects t h e  mo st su i tab le a lte rnate based o n  the pred ict io n e rrors , 
rodu ce d by each al ternate . Du ring t ra i n i ng the se lected a l ternate is also re inforced by addit ional tra ining 
• h i l e t h e  oth e rs are not . l n  t h i s  fas h ion , t h e  n etwo rk automatical ly gene rates d if fe rent mode l s depend ing 
n context and pronu nciat io n .  A measu rable  performance improvement was obtained from this 

lchniqu e .  S ig n if icant  improve ments were a l so obtained when phoneme pairs that are only 

ist i ng u i shable on t h e  basis of durat io n (e .g . ,  in Japanese : "k" vs . "kk") we re represe nted by d iffe rent sets 

f pred icto rs . Fig.8 s hows an ex amp l e of p rocess ing in th e LPNN fo r an input wa rd "kash iko i" . l n the : top ; 

a n e l ,  the orig i na l  spectrog ram is shown with 1 6  spectra l co efficients per  t ime frame and t ime moving 

·o m l eft to rig ht . U n d e rneath ,  t h e  o u tpul p red ict io n s of t h e  best predicto rs (as determ ined by DTW) at 
ac h t ime f ra m e  are d i sp layed . The t h i rd pa ne l s hows ouput  pred ict ions fo r on ly o ne /i/-pred ictor(s} .  As 

an be s e e n  p red ict ion is best in t he reg io n correspo n d i ng to t h e  f ina l  /i/, and degrades in other areas. 

·h e f i n a l  d isplay shows the  distance marix obta ined for e ach i npu t f rame and for each pred ictor l inked into 

1e word. A l ig n m e n t is P:e rformed based on t h is m atrix and the re su lt i ng labe f ing is shown at the input 

.x is .  
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Word " B A B "  

B 1-+-t--+-t--+--t- : : : : : : : : . . . . .  
A 
B HI-HJ-����� 

A 
B 
A 

Fig u re 7 .  Tra ining a Li nked Pred ict ive Neural Net  

To fu rther e nhance pred ict ion based large voca b u l a ry recog n itio n , seve ral  cu rre nt l imitat ions have to be 
addre ssed . The stre ngth of the mode l de scribed he re is that it inhe rent ly provides for simple mechanisms 

for word Ievei  integ ratio n a nd optimizatio n .  Opt imization essent ial ly proceeds to p down, in an attempt to . suitably represent a word's speech pattern g iven the pho netic sequence of the word. A possible problern 
with this app roach is t h e  apparent Iack of d iscrimi nat ion at the speech pattern Ievel as can be seen in 

Fig.8 from the re lat ive qual ity of a s ing le /il-predictor appl ied to t he entire utterance. This Ieads to good 
. .  word Ievel integrat ion ,  but can re sult in poor acou st ic-phonet ic d iscriminability [38] .  The re p resentation is 

also potent ia lly more s e n sit ive to vary ing pho net ic contexts (38] , un less one provides alternate models for 
ä.lternate context s or pronunciations . This suggests e nhancements similar to those appl ied to Hidden 

Markov Models , such a s  corrective train i ng a nd context dependent phones . Alternative ly ,  connectionist 

�elf-organiz i ng princ ip les could be attempted . 
. •::., , 

{;�i.fj)his pape r we have reviewed connectionist st rategies app l ied to speech recognition . Reaching beyond 
?mere classif icatio n of sou nd patte rns , we have add re s s e d  the problern of large vocabulary recognit ion , 
i���re co nstra ints aris ing from the c la ssificat ion of the underlying speech sounds must be interwoven with 
,:iJp� addit ional const raints of sequ ent iality and lex ical legali ty .  We have o n  the other hand del iberately 
J:,!imited th i s discu ssio n to t h e  wo rd Ievel and not addresse d se ntence Ievei issues that certain ly have to be 
; JPC,Iuded in complete ! arge vocabu lary speech u nde rstanding systems (see [39 , 40] for furthe r discussion) .  
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' .- ·  •• > F igure 8 .  LPNN pred ict ion for the word "kash ikoi" :B ;0; (Se e text for explanation) L·::, 
1/1/e h ave developed two diffe re nt co n nectio n ist !arg e  vocabu lary systems, based on diffe re nt underiY,(��­
recog nitio n p h i lo so p h i e s .  One is based o n  cfassification, the other on prediction of speech . . 's'?�ri;, 
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s trateg i e s ac hieved exce l l e nt re co g ni t ion p e rfo rmance and p e rto rmed co mp arably with respect t o  e ach 

other. l nt erest ingly ,  e i l h e r  appro ac h  d isp layed d i f ferent  are a s  of st re ngt h and we akness , re lated to the i r  
respect ive botto m-u p o r  top-down recog ni t ion  p h i losoph i e s .  Wh i l e near-term e nhancements  u sing e i t h e r  

recog n it io n p h i losophy are be ing e x p lo red , o ne may wonder  what k i nd of  model  may u lt i m ately mirnick 
humans ' ab i l ity to use what e v e r  constra ints  to  reco g n i z e  spe ech , be they high Ievei pragmat ic or f ine­
phonet ic dist inct io n s .  Our s e a rc h  fo r a n  u nd e rstanding of co g n it ive mechan isms and their  re a l izat ion by 
mach i n e  wil l  u ndou bt ably co n t i nu e .  
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