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Purpose - This paper gives an overview of our dialogue manager and recent
experiments with multimodal human-robot dialogues. It idenilfies requirements and
solutions in the design of a human-robot interface. The paper presents essential
techniques for a humanoid robot in a household environment, including interaction
techniques to control a humanoid robot using speech, as well as more".";,i;. tasks withmore profound dialogues. Along with these techniques the paper describes their
application to representative interaction scenarios ihat are based on standard situationsfor a humanoid robot in a household environment,

Design/methodology/approach - The presented dialogue manager has been
developed within the German collaborative research centei SFB-5BB on ..Humanoid
Robots - Learning and cooperating Multimodal Robots,,. The dialogue system is
embedded in a multimodal perceptual system of the humanoid robot developed withinthis project. The implementation of the dialogue manager is geared to requirements
found in the explored scenarios. The algorithms include multimodal fusion, reinforcement
learning, knowledge acquisition and tight coupling of dialogue manager and speech
recognition.

Findings - Within the presented scenarios several algorithms have been implemented
and show improvements of the interactions. Results a-re reported within scenarios that
model typical household situations.

Research limitations/implications - Additional scenarios need to be explored
especially in real-world (out of the lab) experiments.

Practical implications - The paper includes implications for the development of
humanoid robots and human-robot interaction.

Originality/value - This paper explores human-robot interaction scenarios and
describes solutions for dialogue systems.
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1 lntroduction
Recently there has been growing interest in the development of humanoid robots,
With humanoid robots, new types of robots are built that are neither controlled by a
simple remote control nor execute static pre-programmed activities. They participate inour every-day life and need to interact with humans in a style that seemi natural to
them.
For exactly this purpose it is important that the robot can understand and communicate
with humans by natural means, i.e. speech, language, gestures and dialogue.
Natural human-robot interaction includes speech aJa main modality, but-exceeds purely
spoken communication and includes additional information channels such as visualprocessing. Vision for example allows the robot to understand who is talking to the
system, recognize the state or mood a person is in, perceive objects u p".r6n is talking
about, or recognize pointing gestures by the human. These mul-timodal perceptions areinterpreted by a dialogue manager. It interprets given information in context and reacts
by responding or executing specific actions. In this paper we present o6 Ji"iogr"
manager Tapas which enables a robot to communicate with humans using multimodal
information. it allows humans to talk to the robot, command the robot, u"na jiu" ordersfor task execution. It furthermore enables the robot to acquire new information such asintroducing unknown objects or persons.
Tapas is a dialogue tools collection implemented in lava. It provides algorithms for
dialogue processing, including natural language understanding, discouise and context
modelling and dialogue strategies, for development, evaluation and runtime systems.
The dialogue system presented here has been implemented over the past few'years -within the German collaborative research center SFB-5BB on "Humanoid Robots -Learning and Cooperating Multimodal Robots" - with the goal to discover requirements
for such a system, and to provide a tool to improve human-robot communication.
Research within this project is based on the robot Armar 3 which is developeA in
Karlsruhe within SFB 588. A picture of the robot in the kitchen environment can be seen
in figure 1' For a detailed description of the ARMAR platform, we refer to (Asfour et al.
2006).
Most traditional dialogue management approaches consider speech-only interactions.
Dialogue management for a humanoid robot is a fairly complex task and r"quir",
interplay of many components. Many robots use commandibased speech input or simple
dialog control. Some dialogue systems for robots are based on finite-state automata e.g.
the robots HERMES and BIRON (Bischoff and Graefe 2002, Toptsis et al. 2004). In many
scenarios this is sufficient. The assumption is that in complex environments these models
are not adequate, e.g, to deal with speech recognition errors, process multimodal
information, and handle the manifold contextual states,
More advanced approaches are implemented e.g. for the robot pearl (Montemerlo et al.
2oo2), which uses a probabilistic approach to cope with recognition eirors, or in the
dialogue system WITAS for unmanned vehicle control (Lemon et al. 2001), which adopts
the information state update (ISU) approach.
So far, performance of different systems for human-robot interaction is hard to compare
since most systems are designed for different tasks and evaluation tools are missing to
compare complete systems. Therefore we compare key technologies of our system within
the respective field.
To understand which technologies are relevant for human-robot interaction, we have
explored different situations and requirements from humans, during the course of our
research project. These requirements span from very simple control interactions to
complex dialogues where the robot needs to identify and grasp objects or acquire new
information. To accomplish these complex tasks, detailedlnformafion needs to be
provided through dialogue.
In the following the paper describes different scenarios, associated dialogue
implementations and experiments, which demonstrate representative situations for
human-robot interaction and exhibit main properties of human-robot interaction.
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2 Control and lnteraction
The most basic functlonality for successful interaction is controlling the robot with
multimodal commands' These commands provide a basis for more-comptex icenarios.
We describe the architecture of the dialogue manager in the context of this control
scenario and extend the description with the followlng sections.
The control and interaction functionality required by 5 humanoid robot exceeds the
standard command-and-control metaphor. The idea of the basic command-and-control isto utter one command which is then executed by the robot. This idea however, is
idealistic, since it doesn't consider recognition errors/ uncertainties and ambiguities,
which need to be handled by the system, Here, a dialogue manager is required, which
includes context tracking, clarification and confirmation questions to conduct successful
control of the robot.
Natural communication is an additional requirement for humanoid robots. To be more
natural, other modalities than speech need to be considered. Multimodal recotnition can
be used to understand Information that isn't expressed verbally or to provide 

-more

robust recognition technologies by processi ng redundant information.

2,L Dialogue Manager Architecture
Figure 2 gives an overview over the components in the dialogue manager's architecture.
The dialogue manager is embedded in a perceptual system *ith speeci recognition and
visual processing for person tracking, identification and gesture recognition.It receives inputs from several recognition components. These are interpreted and
convefted to semantic representations. Semantics are then interpreted again in the
system's context and update the discourse model. A dialogue state abstraction
r.ep.resents the progress made in the dialogue and providei a decision basis for the
dialogue strategy, which selects the next dialogue move. A dialogue move includes
actions such as spoken or multimodal output or sending commands to the robotic
platform. It also updates the context model with expec[ations about next user actions.
Most parts of the dialogue design is language independent. By clear separation of speechgrammars and dialogue management, the system can be designed language
independently and be employed for different languages (Holzapfel zooS).
Recognition and processing of dialogue goals, multimodal fusion and diaiogue strategies
is described in the next sections. A system overview including details aboui the speech
recognizer, person tracking and gesture recognition, can be fbund in (Stiefelhagen et al.
2OO4).

2,2 Robot Control by Spoken fnteraction
Over the past few years we have explored the kitchen domain for human-robot
interaction. Within this domain, dialogue scenarios for simple tasks include information
handling such as providing recipe information forthe user, requests to bring or
manipulate objects, and execute tasks which require parameters which aretlarified in
dialogue. Basic functionality of the robot can also be controlled by speech commands,
such as open/close hands, look into a specifled direction, move to a given posilon,
A basic principle is that communication is task and goal-oriented. To achieve a goal
information must be given which is required by thelystem to execute this goal. The
implementatlon of dialogue goals and dialogue strategies follow the AriadnJarchitecture
(Denecke 2oa4 which uses information-based preconditions and executes actions bound
to a goal when all information for a goal is accumulated. The dialogue strategy decides
which goal to follow and clarifies missing information to achieve a goal,
Our current system uses 98 dialogue goals in the kitchen environment. Out of these 98goals, 55 goals control the robotic platform and 43 goals cover kltchen tasks and social
interaction. The following code shows an example how required information is defined. It
represents the dialogue goal to initialize the left or right arm.

InitializeArmConfirm
OBJ I obj_arm ]
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LEFTRIGHT I prp_side ]
CONFIRM I prp_conf ]

One parameter defines which arm to initlalize, a second parameter defines whether to
initialize the right orthe left arm, and the third parameter defines a confirmation slot to
execute the associated action. These parameters can be given within one utterance, e,g.
"initialize the right arm", or be collected over multiple uttlrances. If parameters are
missing, they are requested by the system, e.g. "which arm do you want me to
initialize?".
The confirmation parameter represents the confidence of the system in executing the
right action, and is used by the strategy to prompt for explicit confirmation before
executing an action that might be dangerous for the environment or harmful for the
system itself.
The implementation of the robot control metaphor is not alwaystrivial. Interaction with
the system often is error-prone because of insufficient capabilities of the robot but also
because of the human due to limited understanding of the robot's capabilities
(Gieselmann and Stenneken 2006). Error sensitivJstrategies significanly improve
dialogue performance (Gieselmann and Ostendorf ZOOT).

2.3 Multimodal Fusion
A multimodal command in its classic form follows Bolt's scheme of "put that there" (Bolt
1980). This example addresses multimodal fusion of speech with two pointing gestures,
also called deictic gestures. Different approaches have since been presenteA ifrat address
multimodal fusion and interpretation of speech and gestures (Oviatt et al. 1997, Johnston
1998)' Natural communication with a humanoid robot includes 3D pointing gestures, e.g.
(Corradini et al. 2002, Nickel and Stiefelhagen 2003), which have dtfferenl Iharacteristics
compared to pen input, e.g. much lower detection accuracy of gestures.
In (Holzapfel et al, 2oo4) we present robust multimodal fusionior speech and 3D
pointing (deictic) gestures. It extends (Johnston 1998) and provides a fusion which is
robust against false detections and exploits n-best listi of pointing references.
Deictic gestures can be used to point at an object (nonverbal inteiaction) and thus giving
either redundant information which helps the system to improve its recognition accuracy
or delivers additional information not given by speech. One example is "5ring me the
blue cup (over there)". For correct understanding, the system needs to recolnize the
spoken utterance, recognize the gesture, resolve the object the person poinfs to and
merge the information with information from speech recognition. If there is more than
one blue cup, the object can be identified from gesture iniormation. Speech and deixis
can be considered to be more or less synchronous or are at least tightly coupled with the
speech signal. Fusion of these two modalities can thus be handled 5s input fusion in the
dialogue manager, i.e, before discourse updates are performed.
The fusion algorithm operates on a pool of input events and checks for matching events
by applying a set of constrained-based fusion rules with n-best list processing. N-best
resolution is crucial in our approach since the pointing gesture is often not sp-ecific
enough to resolve the object correctly only by pointing. Events remain in the pool if they
aren't covered by fusion rules. After a predefined timeout they are abandoned. Figure 3
illustrates the fusion process and shows an example for merging information from one
speech and one gesture event.
In contrast to related work referenced above, the presented approach is robust against
false detections of gestures. In our setup we have observed B7a/o recall for detecting
gestures. However out of all reported gestures, only 47o/o were gestures actually
performed by the user. The remainlng falsely detected gestures could be sorted out
almost completely by the fusion algorithm, due to statislical correlation in time. out of a
total of 102 multimodal user inputs 74o/owerl correct. About half of the failed attempts
were due to missing gesture detection (which was 877o on all gestures),22o/o of the
errors were caused by bad recognition of pointing direction, L7o/o of the errors were
caused by speech recognition errors/ 2o/o incorrect fusion, and 7o/o other errors were
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observed. The fusion algorithm thus shows nearly optimal behaviour, Remaining errors,
e.g. speech recognition errors, are left for correction in dialogue.

2,4 Tight coupling with recognition components
The approach presented above could suggest independent sequential processing ofspeech
recognition, natural language understanding and dialogue rnunug.-.rrt. However, valuable
information is given by the dialogue state that can be used to improve speech recognition in
dialogue context. This is achieved by tight coupling between speech recognizer uni diulogr.
manager in sharing as much information between these two components as possible (Ftigen et
aL.2004, Holzapfel and Waibel 2006). Sharing linguistic knowledge ,orr""r, i.e. recognition
and understanding grammars, improves processing speed and robustness, less knowledge
sources need to be maintained. Improvements in recognition accuracy over loose 

"orplirgcould be observed especially for contextual utterances and distant speech recognition. Here,
contextual information plays a more important role to distinguish aioustic sigrials. Contextual
utterances are for example typical question-reply pairs. In contrast to existing work, the
approach is generic in a way that for a new system no training is required to-enable contextual
weighting. Rather, grammar weights are determined by automaticaliy mapping expected
information types to grammar rules using ontorogical information
Experiments in the barkeeper scenario (described in the following) with generic
contextual weighting show improvements of 33% (relative) on clise-spe-ech and 21olo(relative) on distant-speech recordings. Recognition rates have been measured on
semantic concepts at5.2o/o error rate for close-speech and 15.7o/o error rate for distant-
speech. The gain of employing this technology is signiflcant and has been employed for
the following complex scenarios.

3 Complex lnteraction Scen arios
Besides simple control and interaction techniques, complex scenarios show additional
requirements for dialogue abilities and more complex dialogue technologies. Here wepresent such technology in two scenarios, which are first steps to create real-world
scenarios. The first scenario is a barkeeper scenario. It models the task to have the robot
serye a selected object as requested by a human user. This scenario shows application of
multimodal integration and application of optimization techniques to dialogue strategies
for robust processing including clarification questions and recognition errois. The second
scenario describes a robot receptionist. Here the dialogue system is used to engage in a
conversation with persons and conduct a receptionist dialogue. It exhibits another
important aspect of an autonomous system, which is its ability to learn autonomously,
here, by acquiring information about previously unknown persons,

3.1 Barkeeper Scenario
The barkeeper scenario originates from a task which a household robot fulfils, namely to
bring a selected object to a human. To do so, the system needs to clarify which objects
the user refers to, which is done in a dialogue with the user.
We simulate this task in a setup where both the robot and the user can look at a table,
which contains a number of objects. The user can now tell the robot which object he
would like to get using speech and pointing gestures. The task of the robot isio find the
right object and use speech and pointing himself to confirm his current belief, The
problem that needs to be solved by the dialogue manger is to find an optimal strategy to
confirm recognized user input, correct (repair) informition and confirm the object
selection with as few turns as possible. In the future we plan to extend this scenario with
detection and learning of unknown objects.
To develop a dialogue strategy for this scenario we have first conducted a Wizard-of-Oz
study. A Wizard-of-Oz study is frequently applied in the design of dialogue systems. It
includes a data collection with real users, where the system'i decision ;aking is taken
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over by a human, the "wizard". Based on this data we have created a dialogue strategywith handwritten dialogue moves. This rule based approach is the standard"way to define
a dialogue strategy, A dialogue move uses preconditions based on the abstract dialogue
state. The strategy selects the best matching move and executes its actions. one
shottcoming of handcrafting dialogue strategies is that it is a time-consuming and non-trivial task, especially with increasing complexity of the dialogue. edditional firoblems arerobustness on unseen data. one promising approach to avoid these problemi is to use
collected dialogues for automatic training of dialogue strategies. For this task especially
reinforcement learning has become popular. So far, reinforcLment learning has
successfully been applied in a couple of dialogue scenarios (Singh et al. f9ig9, Levin et al.
1998, Levin et al. 2000, Walker 2000). More recently, there have also been approaches to
training dialogue strategies with a user simulation, which allows to generate a vast number of
dialogues (Scheffler.and Young 2002, Schatzmann et al. 2005, Williams and young 2003).
For training and evaluation of such optimization algorithms, we have chosen a setup with20 objects (plates, cups, bottles) which are located on the table between the robot andthe human. The objects have three different colours, red, blue and yellow. The maximum
number of identical objects was 5, which differ only in their location on the table.
An example of a dialogue in one turn is "give me the red cup over there (+ pointing),,
which is correctly understood and the gesture can be resolved correcly. btf,".
interactions start with the user only as-king for a cup and then redefining their selection.
The system also needs to take into account speech or gesture deteclon errors and
inaccuracy of pointing resolution. Thus, the strategy needs to confirm the selected object,
e'9. "did you mean this object", or confirm and re[air specific information, L.g-, ..did you
say you want a red cup?".
Which actions are selected in each situation should be learned by the system and
depends on the reward function, which defines the evaluation criteria for each dialogue.
The reward function was created from feedback from the Wizard-of-Oz experiments
taking into account objective measures such as dialogue length and dialogue success andsubjective measures, e.g. people did not like if the system repeats a quesilon.

For strategy training we have created a user simulation from the Wizard-of-Oz data using
bigram-statistics of specialized speech act types plus a stochastic error model based on
word-Error-Rates for speech and pointing accuracy for gestures.
The 6-step process of training the dialogue strategy is illustrated in figure 4 and
described in the following. After the wizard-of-oz experiment (step tt the user
simulation and error models are trained (step 2) from collected data. Then the
reinforcement learning setup is defined which includes a reward function and the Markov
Decision Process (MDP) which models the state transition and observations of the learner(step 3). Different training runs can then be started with different reinforcement learning
configurations (step 4). The best strategy is then deployed to the runtime system and
evaluated with real users (step 5). During runtime of the system new data is collected,
from which the data corpus and models are updated (step'O;. figrre 5 illustrates
operation of the reinforcement learning agent in the simulation environment, which
corresponds to step 4. It shows that the actions of the agent influence the user model
and that the agent receives only reward and state information (impliciily Including user
actions) from the environment.
In order to empirically validate the benefit of our overall approach, we compared theperformance of the handcrafted baseline strategy with our learned strategy within the
simulation and real user experiment (Prommer et al. 2006). In the real user experiment
18 subjects were engaged and a total number of 94 dialogs (576 utterances) was
collected in sequential runs of four to six dialogs for eachlesi sublect. Hereby, in order
to fairly balance a potential learning effect of the user, we evenly switched be[ween use
of the two strategies. It shows a significant improvement for the reinforcement strategy
with a task success of 86.90lo versus 80.4o/o in the real user experiment and 91.3olo
versus 83.3olo in simulation and an average dialogue length of 4.9 utterances versus 5.9
utterances in the real user experiment and 5.0 utterances versus 5.9 utterances in
simulation.

in Industrial Robots Journal, Emerald publishing, 2008, to appear
@Emerald Group Publishing ltd.



The superiority of the reinforcement learning strategy is due to its higher number offeatures and more fine gralned rules than could be iieated with hand"craftint.

3.2 ReceptionistScenario
Besides the ability to locate, identify and talk about objects, social communication is akey feature for communication with humans. Robots must be able to get in touch withpersons and initiate a conversation. They should have knowledge abolt whoihey aretalking to and maybe what roles can be associated to this person. When meeting
unknown persons, the robot should be able to learn the name of a person and store faceor voice samples to be able to recognize the person later on.
A receptionist task is a good scenario to practice exactly these capabilities. Firsily, therobot can proactively offer help and try to engage in a ionversation. A reception is also aplace where people register to visit someoneilie, so the robot needs to obtain the nameto announce the person.
We have addressed the receptionist scenario with a series of experiments. The
experlments cover Wizard-of-Oz experiments to analyze the interaction, experimentswith handcrafted models and later experiments with optimized models, which weretrained with reinforcement learning.
The Wizard-of-oz experiment was conducted with a fully integrated system, where thewizard only replaced the dialogue decisions. Fully integrated means automatic person
tracking and face ID, speech recognition, naturai langiage understanding and user model.The scenario employs a robot in a corridor. Subjects 

-wer-e 
given the tasklo deliver aparcel to a predefined person. In the corridor they obtaineJ fu,the, information from therobot. The wizard's task was to greet an arriving person and offer help, ask who theparcel should be delivered to, ask forthe person's name for registration, give directions

where to deliver the parcel, re-engage in a dialog after delivery of the parcel. The person
and the name of the person was unknown in the beginning until the name has beenlearned through spelling. Further experiments werelonou-cteo with name learning usingIarge background vocabularies. Figure 6 shows snapshots from the robot,s camera takenduring the experiment.
To obtain clean results, the subjects hadn't been instructed how to behave beforehand,
and they didn't know that the robot was operated by a human. Team members and thewizard were hidden in rooms and didn't interfere with the scene physically. Observation
and recording for later analysis was possible through two cameras in the scene. The
Wizard-of-Oz experiment was conducted on three ionsecutive days with tO peisons,
where each person had to do one interaction per day and went through an interview after
each interaction. The data, close and distant speech input, robot visiJn and system
logging, were recorded for a data corpus.
The technologies required in this scenario are to engage in a dialogue and attracting
attention when the person arrives, rearning new name!, learning plrson ids and
optimizing dialogues. Prestudies were conducted with experiments to initiate a
conversation and for person identification and ID learning (Holzapfel et al. 2007). The
receptionist scenario led to longer, more complex dialogues than the barkeeper scenario.
Here, several subtasks had to be conducted sequentially. using a modular dialogue
design and sequentially processing dialogue goals (greeting, receptionist task, person
registration, etc.) provided the basis for successful [raining of diaiogue strategies usingreinforcement learning (Holzapfel and waibel 2008). rach dialogue-goat is asiociated
with one module. This way different modules can contain comptLtet,,T different
implementations, for example the first module contains hand-written dialogue strategies,
while the second module contains dialogue strategies trained with reinforcEment leaining.
For reinforcement learning (i.e. strategy optimization) the same approach has been
taken as in the barkeeper scenario. with the wizard-of-oz experiment, data is collected
which is analyzed and used for training of a user simulation. In the simulation setup, the
dialogue strategy is trained with reinforcement learning. Additional experiments are then
conducted to evaluate the dialogue strategy with real users.
The strategies have so far been compared in the simulation setting, where a large
number of dialogues can be conducted with different strategy configurations. The results
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show that the reinforcement learning strategy produces less errors on the training set
and on a held out evaluation set in identifying the persons'names (9Oo/o / 9L.5o/o
accuracy) than the handcrafted strategy (87.5o/o /86.5o/o accuracy on the same sets) at
comparable dialogue length (3.9 / 4.1turns on avg. versus 4.0 / 3.g turns on avg.).

4 Conclusion and Ouilook
We have presented a dialogue manager for multimodal human-robot interaction and its
application to scenarios for which we have selected realistic situations for a humanoid robot
in a household environment. The paper tries to motivate the need of and requirements for a
dialogue component for robot control and presents several approaches to advance the state of
the art with practically applicable algorithms. In the future *" think that it is important to
continue working on realistic scenarios and to extend the list of current interaction situations,
to extend the robot's capability to acquire new information with evaluation over longer time
periods, and to address social interaction, multiple speakers and distant speech recognition.
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Figure 1: The humanoid robot Armar 3 in the kitchen environment.

Figure 2: Dialogue architecture with speech and gesture recognition, fusion and knowledge
bases.
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Figure 3: Multimodal fusion scheme. The upper picture shows the schematic processing chain
for speech and gesture inpul The lower picture shows time deltas (x-axis: seconds, y-u*i.'
occurrences) between referring words in speech and gesture events. They were used to
formulate time constraints.
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Figure 4: Design process for training robust dialogue strategies using reinforcement learning
with a simulated user.
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Figure 5: Simulation environment for reinforcement learning of the dialogue strategy.
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Figure 6: Snapshots from the robot's camera with corridor view in a robot receptionist
experiment. The subject's nametag was helpful for video annotation, it is obfuscated here.
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