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Enabling Multimodal Human–Robot Interaction
for the Karlsruhe Humanoid Robot
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Abstract—In this paper, we present our work in building
technologies for natural multimodal human–robot interaction.
We present our systems for spontaneous speech recognition,
multimodal dialogue processing, and visual perception of a user,
which includes localization, tracking, and identification of the user,
recognition of pointing gestures, as well as the recognition of a
person’s head orientation. Each of the components is described in
the paper and experimental results are presented. We also present
several experiments on multimodal human–robot interaction, such
as interaction using speech and gestures, the automatic determi-
nation of the addressee during human–human–robot interaction,
as well on interactive learning of dialogue strategies. The work
and the components presented here constitute the core building
blocks for audiovisual perception of humans and multimodal
human–robot interaction used for the humanoid robot developed
within the German research project (Sonderforschungsbereich)
on humanoid cooperative robots.

Index Terms—Audiovisual perception, human-centered
robotics, human–robot interaction, multimodal interaction.

I. INTRODUCTION

OVER the last decade, much research effort has been fo-
cused on the development of humanoid robots, and great

progress has been made in developing robots with human-like
torsi, including legs, arms, head etc., as well as some human-like
motoric skills, such as walking, grasping, dancing [3], [4], [29],
[33], [41], [46]. Other researchers have focussed on advancing
robots’ capabilities in perceiving, interacting, and cooperating
with humans [2], [9], [12], [18].
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In the framework of the German research center SFB 588
“Humanoid Robots—Learning and cooperating multimodal
robots” [1], an interdisciplinary researcher team is working on
the development of humanoid robots that can safely coexist,
cooperate, and interact with humans in their daily environment.
To this end, we focus on the development of an appropriate
human-like robotic platform [6] as well as on the development
of components that are necessary to facilitate human-friendly,
natural human–robot interaction.

Our own research has been the development of such compo-
nents to enable the perception of the user(s), including many of
their important communication cues, such as speech, gestures,
head orientation among others, to develop mechanisms to fuse
and understand the perceptional and communicative cues, and
to build multimodal dialogue components that enable the robot
to engage in task-oriented dialogue with their users.

In this paper, we present many of the core perceptual and
interaction components that we have developed for the hu-
manoid robots. These include speech recognition, multimodal
dialogue processing, visual detection, and tracking and identi-
fication of users, including head-pose estimation and pointing
gesture recognition. All components have been integrated on a
mobile robot platform and can be used for real-time multimodal
interaction with a robot. We also report on several human–
robot interaction experiments that we conducted. These include
experiments on interaction using speech and gestures, the au-
tomatic determination of the addressee in human–human–robot
interaction, as well as interactive learning of efficient dialogue
strategies.

The remainder of this work is organized as follows: In
Section II, we give a system overview of the developed compo-
nents and on information flow between the components. We also
give some background on the robotic platform. In Section III,
we describe the components for speech recognition, visual per-
ception of the user, and dialogue processing. In Section IV, we,
then, present some multimodal human–robot interaction exper-
iments. We conclude the paper in Section V.

II. SYSTEM OVERVIEW

Fig. 1 shows the humanoid robot ARMAR III and its prede-
cessor ARMAR II that are being developed in Karlsruhe within
the SFB 588 “Humanoid Robots.” For a detailed description
of the ARMAR platform, we refer to [6]. The sensors available
on the robot head are a stereo camera system and six omnidirec-
tional microphones. For speech recognition, we, alternatively,
use a remote close-talking microphone. The current version of
the robot has a 1.6-GHz industrial personal computer (IPC) that
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Fig. 1. Humanoid robots (left) ARMAR II and (right) ARMAR III.

Fig. 2. Overview of the perceptual components.

is reserved for real-time speech recognition, speech synthesis,
and acoustic localization. Another 2-GHz PC/104 is to be used
for image processing.

Fig. 2 shows an overview of the components employed for
human sensing and human–robot interaction. The microphone
data is handled by a speech recognition system that produces
a transcript of the user’s speech. The onboard camera and mi-
crophone data are jointly processed by an audiovisual person
tracker that fuses both modalities in a probabilistic framework.
The output of the person tracker is, then, passed on to the fol-
lowing components: a face identification module based on local
discrete cosine transform (DCT) features, a head-pose estimator
using artificial neural networks (ANNs), and a 3-D-blob tracker
for hand tracking. The hand positions are, in turn, processed
by an hidden Markov model (HMM)-based pointing gesture
recognizer.

The pieces of information gathered by this perception chain
are: semantically annotated speech, the location of the user,
his identity and head orientation, and the pointing direction
in case of a detected gesture. Natural language understanding,
multimodal fusion, and dialogue management operate on the
highest level and process semantic information that is delivered
by the perceptual components. The following sections describe
each of the individual components in more detail.

III. PERCEPTUAL COMPONENTS

A. Speech Recognition

The probably most prominent interaction modality of hu-
mans is their speech. In order to provide for natural human–
computer interaction, recognition and understanding of sponta-
neous speech is of utmost importance.

We use the JANUS Recognition Toolkit (JRTk) featuring the
IBIS decoder [50] developed at Universität Karlsruhe (TH) and
Carnegie Mellon University, Pittsburgh for acoustic model train-
ing and speech recognition. As linguistic knowledge sources,
IBIS is able to use standard statistical n-gram language models
or recursive transition networks (RTNs) represented by context-
free grammars (CFGs). Using this toolkit, we have developed
a user-independent speech recognizer for spontaneous human–
robot interaction.

This system is a slimmed down version of the National Insti-
tute of Standards and Technology (NIST) Rich Transcription
Spring 2004 Meeting Recognition Evaluation (RT-04S) sys-
tem [37]. The decoding was reduced to only one decoding pass
with an already speaker-adaptive trained acoustic model and the
search space was further restricted by using tighter beams to
reach real-time performance. Incremental speaker adaptation is
performed during decoding to increase the recognition perfor-
mance by compensating different channel and speaker effects.
The language model (LM) and vocabulary were tuned toward
the robot domain.

B. Sound Event Classification

When moving from close-talking to far-field speech recogni-
tion, additional knowledge sources may be exploited. The head
of ARMAR III provides six microphones (two in the ears, two
in the front, and two in the back of the head) to deliver a 3-D
acoustic localization, which is useful for future sound classifi-
cation and noise suppression. Besides speech recognition, the
detection of other perceivable sounds, which can be catego-
rized semantically as observations of dangerous situations (e.g.,
alarms), human (e.g., speech, coughs) and automated activities
(e.g., ring tones), or robot-related sounds (e.g., motor) is of
utmost importance.

We performed first experiments [32] to account for envi-
ronmental sound event classification. Using independent com-
ponent analysis transformed features on multiframe windows
instead of standard mel-scaled frequency cepstral coefficients
(MFCCs), significant improvements could be achieved. The
models were trained on 4166 real-world kitchen sounds recorded
with a distant microphone.

Ergodic tristate HMMs with seven frames context resulted
in an average per-class classification error of 9.4% (instead of
14.4% using MFCCs) on a test set of 1826 sound events cate-
gorized into 21 sound classes. A Bayesian information criterion
was used to determine the number of Gaussians per state auto-
matically. When using Gaussian mixture models (GMMs) with
an equal number of Gaussians per model, instead, an average
per-class classification error of 9.2% (instead of 12.4%, using
MFCCs) could be achieved.
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Fig. 3. Video feature maps with the 3-box body model superimposed. (a) Camera image, (b) Foreground segmentation. (c) Detector response. (d) Color
segmentation (head–torso–leg color model projected to the red–green–blue channel, respectively).

C. Person Localization and Tracking

Localizinga user in the vicinity of the robot is a prerequisite
for many other perceptional components including head-pose
estimation and face identification. The person tracking module
employed in this system is a further development of the tracker
presented in [39]. For a more detailed description, we refer to
the earlier-mentioned publication.

In our approach, we fuse both audio and video modalities in
a joint particle filter framework. Particle filters [26] represent
a generally unknown probability density function by a set of
random samples associated with individual weights. Here, each
particle is a hypothesis about the 3-D position of the user’s head
centroid. The particles are weighted by means of a visual and
an acoustical observation model.

The features used by the visual observation model are fore-
ground segmentation, face and body detection as well as color
models. On the audio side, we localize the user by evaluating the
time-delay-of-arrival (TDOA) of the user’s speech with respect
to the microphones on the robot’s head.

1) Video Features: The first visual cue is based on fore-
ground segmentation. The foreground map is made up of the
absolute differences between the input image and an adaptively
learned background model [see Fig. 3(b)]. To evaluate a particle
with respect to the foreground map, a person model at the par-
ticle’s position is projected to the image. The model consists of
three cuboids for head, torso, and legs. The foreground score is,
then, calculated by accumulating the foreground pixels covered
by this model. This can be done efficiently by means of the
integral image [54].

In the face detection algorithm proposed by [54] and extended
by [35], a variable-size search window is repeatedly shifted over
the image, and overlapping detections are combined to a single
detection. In the proposed particle filter framework, however, it
is not necessary to scan the image exhaustively: the places to
search are directly given by the particle set. Thus, the evaluation
of a particle takes only a single run of the cascade. Particles
passing many stages of the classifier cascade are given high
scores, while particles failing earlier are scored low. In addition
to face detection, we use a detector trained on upper bodies. The
detector hits are incorporated in the particles’ scores using the
same method as for face detection.

As a third visual cue, we use individual color models for
head, torso, and legs. For each body part, a support map is
generated by histogram backprojection [see Fig. 3(d)]. Just like
for the foreground segmentation cue, the particles are scored by

accumulating the support map pixels under the projected 3-box
model. The color models are updated after each frame using the
final tracking hypothesis.

2) Audio Features: Given a pair of microphones and a
speaker position, the speech signal arrives with a certain TDOA
depending on the spatial geometry of the setup. To estimate the
TDOA, a variety of well-known techniques [11], [42] exist. Per-
haps, the most popular method is the phase transform (PHAT),
which can be expressed as

R12(τ) =
1
2π

∫ ∞

−∞

X1(ejωτ )X∗
2(ejωτ )

|X1(ejωτ )X∗
2(ejωτ )| ejωτ dω (1)

where X1(ω) and X2(ω) are the Fourier transforms of the sig-
nals of the microphone pair and τ is the TDOA.

In our approach, we interpret the PHAT as a pseudoproba-
bility density function. The acoustic particle scores are, then,
given by the PHAT values at the hypothesized time-delay. We
integrate the scores from all those microphone pairs that are
exposed to direct sound given the particle’s hypothesized sound
source location.

D. Face Identification

Face recognition is an important building block of a natural
human–robot interaction system. A humanoid robot should rec-
ognize the people that it has met before and store associated
information related to these people to conduct a natural conver-
sation. However, face recognition in uncontrolled environments
is still a difficult problem [57].

To provide robust face recognition and to overcome uncon-
trolled environmental conditions, we are utilizing multiple sam-
ples of the same face that are obtained from the video sequence.
Our face recognition system analyzes the input face images to
locate the eyes and, then, registers the face images according to
the eye center coordinates.

A local appearance-based face recognition approach is used
to extract feature vectors from each face image. In this feature
extraction approach, the input face image is divided into 8×8
pixel blocks, and on each block, a DCT is performed. The most
relevant DCT features are extracted using a zig-zag scan pattern
and the obtained features are fused either at the feature level or
at the decision level for face recognition [16].

After extraction, the feature vectors are compared with train-
ing vectors stored in the database using a nearest-neighbor clas-
sifier. Each frame’s distance scores are normalized with the
min–max normalization method [49], and, then, these scores
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are fused over the sequence using the sum rule [30]. The ob-
tained highest match score is compared with a threshold value
to determine whether the person is known or unknown. If the
similarity score is above the threshold, the identity of the person
is assigned to that of the closest match. If the similarity match
score is below the threshold, the person is classified as unknown.

This approach was extensively tested on publicly available
face databases and compared with other well-known face recog-
nition approaches. The experimental results showed that the pro-
posed local appearance based approach performs significantly
better than traditional holistic face recognition approaches.
Moreover, this approach was tested on the face recognition grand
challenge (FRGC) version 1 data set for face verification [14],
and a recent version of it was tested on the FRGC version 2 data
set for face recognition [17], and it provided better and more
stable results than the baseline face recognition system.

On the FRGC version 2 data set, for example, 80.5% cor-
rect recognition rate is obtained under uncontrolled conditions.
On the same database, the well-known face recognition algo-
rithms, such as eigenfaces [53], Fisherfaces [8], and Bayesian
face recognition [38] attain correct recognition rates of 57.3%,
65.6%, and 63.4%, respectively. In these experiments, there are
120 individuals in the database and each individual has ten train-
ing and testing images. There is a time gap of approximately
6 months between the capturing time of the training and the
test images. The approach is also tested under video-based face
recognition evaluations and, again, provided better results [15].

E. Pointing Gesture Detection

The modules for pointing gesture recognition and hand track-
ing used in this system have been described in detail in [40]. The
gesture recognition is based on hand motion. Dedicated HMMs
are used to model the begin-, peak-, and retract-phases of typical
pointing gestures. They were trained on 3-D hand trajectories
of hundreds of sample pointing gestures. Whenever the models
fire successively, a gesture is detected and the peak phase is
identified. Within the peak phase, the line between the head and
the pointing hand is used to estimate the pointing direction. If
the positions of potential pointing targets are known, the most
likely target can be selected by measuring its deviation from the
pointing direction.

The underlying hand tracking algorithm is based on a combi-
nation of adaptive skin-color classification and dense disparity
maps. The skin-colored pixels are associated with their cor-
responding disparity values and are, then, spatially clustered.
Those clusters are evaluated in order to find an optimal assign-
ment of head and hands to skin-color clusters in each frame.
The optimal assignment maximizes three aspects: 1) the match
between hypothesis and observation in terms of skin-color pix-
els; 2) the naturalness of the hypothesized posture; and 3) the
smoothness of transition from the preceding to the current frame.
After temporal smoothing, the hand trajectories are passed to
the gesture detection module described earlier.

In order to evaluate the performance of gesture recognition,
we prepared an indoor test scenario with eight different point-
ing targets. Test persons were to move around within the robot’s

Fig. 4. Neural network for head-pose estimation. As input features, an inten-
sity image of the head region and its Sobel magnitude are used.

field-of-view, every now and then showing the robot one of the
marked objects by pointing on it. In total, we captured 129 point-
ing gestures by 12 subjects. The gestures were manually labeled
and, then, compared against the gesture detection hypotheses.
The detection rate (recall) in this experiment was 80%. The pre-
cision value—indicating the percentage of detections that are
actually pointing gestures—was 74%, meaning that the remain-
ing 26% were false positives. Gestures that were often missed
are the ones where the subject points to a target on the floor. In
these cases, the pointing hand is close to the torso, which is very
similar to the natural resting position. False positives, on the
other hand, were mostly caused by errors in the hand tracking
module.

In a second experiment, we measured the deviation of the
estimated pointing direction and the ideal line from the hand to
the target. The average error angle in that experiment was 25◦,
which allowed us to select the correct target (one out of eight)
in 90% of the cases.

F. Head-Pose Estimation

A person’s head orientation provides a good indication of a
person’s focus of attention, i.e., of the objects, area or people
which someone is interested in, or with which he or she interacts
[10], [36]. This is, in particular, useful to determine whether a
person is addressing a robot or someone else [28].

For head-pose estimation, we integrated the basic system that
has been described in [55]. We train one neural network classi-
fier to estimate the camera-relative head orientation of a person
standing in front of the robot. We crop the head region and
rescale it to a normalized size of 64 × 64 pixels. The normal-
ized intensity image and its Sobel magnitude are merged into a
common feature vector. The neural network is trained to output
a continuous real-value estimate of the depicted head orientation
in the range of [−90◦,+90◦] in both pan and tilt direction. The
network contains 80 hidden units and is trained with standard
error backpropagation (100 training cycles). A cross-evaluation
set was used to determine the optimal amount of training itera-
tions. Fig. 4 depicts the network’s topology and input features.

The core head-pose estimation system was evaluated dur-
ing the CLEAR’06 evaluation [51], [55]. Here, our approach
demonstrated state-of-the-art performance, achieving a mean
error of 12.3◦ for horizontal head-pose estimation and 12.8◦ for
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Fig. 5. Dialogue processing framework.

vertical head-pose estimation on the Pointing04 database [21]
(see [51] for a comparison to other systems).

G. Dialogue Processing and Fusion

The dialogue manager interprets multimodal input and gen-
erates responses and spoken output. Its strategy defines how
communication with the user is directed and interpreted. Within
the collaborative research center SFB-588, we see the main chal-
lenge for dialogue management in providing a natural way to
communicate and interact with the robot, and provide the robot
with an interface to the environment through which it can ob-
tain new information and learn from communication partners.
Natural communication with the robot includes multimodal in-
teraction as well as robust error-tolerant dialogue strategies.

Multimodal fusion as well as dialogue management is per-
formed by the dialogue manager TAPAS [22] that has explicitly
been developed for this purpose. It uses the same goal-based di-
alogue framework as the Ariadne [13] framework. In Ariadne,
each dialogue goal is specified by information that has to be col-
lected to achieve this goal. The dialogue strategy selects moves
to request missing information or to execute system services.
In recent experiments we have used TAPAS to train strategies
through reinforcement learning (RL). For this approach the di-
alog state uses additional information slots that describe an ab-
straction over information given so far, and actions are selected
to optimize the expected reward [44] (see also Section IV-C).

Dialogue management is integrated into the dialogue pro-
cessing framework as follows (see also Fig. 5): A context-free
grammar parses the user utterance. It is enhanced by information
from the domain model defining objects, tasks, and properties
within the robot’s world. The parse tree is converted into a se-
mantic representation, interpreted in context, and added to the
current discourse using unification-based update mechanisms.
If all information necessary to accomplish a goal is available
in discourse, actions associated with the dialogue goal can be
executed. Otherwise, clarification questions are generated to ac-
quire missing information. Within the proposed framework, the
dialogue manager is tightly integrated with multimodal interpre-
tation and tightly coupled with the speech recognizer by shared
knowledge sources (see also Section III-H).

For fusion of speech and pointing gestures we have developed
a robust constraint-based approach which is especially suitable

to deal with false detections of gestures and improves error-
tolerance by incorporating n-best hypothesis lists into the fusion
algorithm. This will be further described in Section IV-A.

Since human–robot interaction is prone to communication
failures not only due to imperfect speech recognition but also due
to user uncertainty about how to interact with such a robot, we
developed a general help strategy with all the tasks the robot can
accomplish in a hierarchical structure. The user can explicitly
ask for help, but there are also implicit factors that suggest that
the user is lost and needs help. Within user tests with our robot,
we found the following factors indicating problematic situations
and the need for help.

1) No speech act can be found in the user utterance.
2) The user utterance is inconsistent with the current dis-

course (unification with discourse information fails).
3) The user utterance can only partly be parsed.
4) The user utterance is inconsistent with the robot’s expec-

tations (unexpected information).
5) The user asks for the same information several times.
All these factors are used for an automatic problem detection:

Whenever one of these factors occurs, the user need for help
increases and, if it is above a given threshold, the robot explains
its capabilities to the user to help him. In addition, the discourse
information is finally cleared so that the user can start from
scratch again. In this way, we can avoid endless error spirals
and support the user in problematic situations.

H. Tight Coupling of Speech and Dialogue Processing

Most current human-machine interfaces consist of three main
components: a speech recognizer (ASR), a natural language
(NL) parser, and a dialogue manager (DM) [20], [43], [48]. The
ASR output in form of n-best lists or lattices is given to the NL
parser for interpretation and, then, passed to the DM for making
a system decision depending on the current dialogue context.

In [19], we have proposed a tight coupling, which makes a
separate NL parser superfluous and the human-machine inter-
face more robust, easier to maintain, and, hence, more portable
to new domains. The main structural change is to share the lin-
guistic knowledge sources, i.e., CFGs between IBIS and TAPAS,
whereas both components have direct access to the original
grammar structure. This gives us the ability to use the results of
one system for improving the performance of the other system
in the next step by e.g., weighting specific rules in the speech
recognizer to direct the decoder into specific regions of the
search space. Significant improvements of recognition results,
especially on user responses to clarification questions could be
achieved. This approach was generalized in [25] by creating
an expectation model that describes which utterances are most
likely used by the user for his next query/response and gives
this information to IBIS. We extend other work, such as [34], by
providing a generic approach for semantic grammars that takes
into account detailed speech act categorization and information
targets [25]. We also use additional knowledge sources, such as
missing information in discourse and ontological information in
combination with speech act theory, which already exist in the
domain description of the dialogue manager.
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TABLE I
WER AND SCER FOR THE CONTEXT WEIGHTING APPROACH IN COMPARISON

TO THE BASELINE ON ENGLISH (ENG) AND GERMAN (GER) ON TWO SETS:
IN-DOMAIN UTTERANCES ONLY AND ALL UTTERANCES

Fig. 6. Example of a schema for the speech act request_information-room.
Nodes in rounded boxes are modeled with n-gram LMs, nodes in angled boxes
with CFGs.

A recognition system that uses CFGs only as knowledge
sources has the disadvantage that out-of-domain sentences or
spontaneous user queries are not covered at all. Following
the approach presented in [56], we implemented a unified or
HMM/CFG language model, which is a combination of sta-
tistical n-gram LMs and CFGs. Each speech act is, thereby,
represented with the help of a schema modeled as an HMM,
whereas each node can be modeled either with a CFG, or with
a statistical n-gram LM (see Fig. 6). The training of this model,
i.e., the alignment of phrases to specific nodes and the n-gram
probabilities, can be done automatically with the help of the
EM-algorithm if a sufficient amount of (hand-labeled) data is
available. Our experimental results and those presented in [56]
show that even on small domains with a limited amount of train-
ing data the performance of the unified LM is similar in word
error rates to n-gram LMs. Nevertheless, a tight coupling with
our dialogue manager is still possible—knowing the structure,
i.e., semantical tagged schemas and nodes of the underlying
HMM and modeling this by a grammar is sufficient for the
dialogue management.

Table I shows a comparison of recognition results1 for
context-dependent weighting of rules on the ”barkeeper” sce-
nario, described in Section IV-C. The in-domain set consisting
of parseable utterances only contains 267 utterances for English
and 152 utterances for German, the full set having 314 utter-
ances for English and 171 utterances for German, respectively.
In Table I, it can be seen that the results for the German baseline
(without rule weighting) are already very good, probably be-
cause the system has been used by people that regularly speak
to ASR systems, which is not the case for English. The im-
provements for the SCER, which is more informative for use by
the dialogue system are more significant because it ignores se-
mantically irrelevant errors than the improvement for the WER.

1The word error rate (WER) is the average amount of misrecognized words
per reference word. The semantic concept error rate (SCER) is measured iden-
tical to the WER, but on the level of semantic concepts and their attributes.

Fig. 7. Time correlation between start of gesture and start of deictic words.

IV. EXPERIMENTS ON MULTIMODAL

HUMAN–ROBOT INTERACTION

A. Multimodal Interaction and Fusion

As presented earlier, the system processes multiple modal-
ities, which provide different or redundant information. Some
perception outputs are used to provide contextual information
about the user such as faceID, others are used for direct in-
teraction such as speech or pointing gestures. Due to different
natures multimodal integration happens at different stages. For
example, contextual information, such as faceID, is only used in
discourse processing, while others can be combined at an earlier
stage.

One key aspect of when information from different modali-
ties is combined is their temporal correlation. Speech and de-
ictic gestures, for example, have shown to be highly correlated
in time and, thus, are an optimal candidate for fusion after
recognition but before dialog processing [23]. Fig. 7 shows
this correlation, with statistics of the time difference between
a pointing gesture and referring words in speech, such as “this
lamp.” These statistics emphasize the approach of input fu-
sion instead of fusion in dialog. Furthermore, these statistics
were used to define time-based constraints for fusion. Both
modalities, speech and gesture, can provide different but use-
ful information, and can also deliver redundant information
to improve the robustness of the system. In noisy environ-
ments, gesture recognition can improve the results obtained
from the speech recognizer, e.g., in bad light conditions, the
speech recognizer might deliver information that cannot be ob-
tained through the visual channel. We now describe experi-
ments on fusion of speech and pointing gestures. Later, in Sec-
tion IV-C, we will also discuss an adaptive learning approach to
model information channel that can situationally provide better
information.

Our approach to multimodal fusion operates on a pool of in-
put events and uses a constraint-based rule system to determine
events that can be merged. Typical constraints take into account
the time correlation of the events and their semantic content [23].
The approach is very robust against falsely detected gestures and
could be extended to processing of n-best lists. We know of no
other approach that takes these aspects into account. Robustness
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against falsely detected gestures was an important aspect in our
experiments given precision rates of 47% at a gesture detection
rate of 87%. This means when achieving high recall of gestures,
more than 50% (here 53%) of all detections are false detec-
tions, which have to be sorted out by the fusion algorithm. Our
approach was validated in an experiment with 500 interaction
turns, and 102 multimodal inputs, where the user had to in-
struct the robot to switch on lamps or bring specific cups. Using
pointing gestures has helped to disambiguate objects. The main
improvements over a simple fusion algorithm were achieved by
robustness against false detections and processing of n-best lists
of objects.

B. Determining the Addressee in Human–Human–Robot
Interaction

An important issue when developing humanoid robots that
should be able to interact with humans is the problem of auto-
matically determining when a robot was addressed by humans
and when not. This is an important problem when robots should
eventually become companions in our daily lives. A household
robot, for example, should know whether a person in the room
is talking to him (the robot) or whether this person is talking to
someone else in the room.

A person’s gaze and head orientation are well known to play
an important role during social interaction and to be reliable
cues to detect a person’s focus of attention [5], [27], [31], [45].
Stiefelhagen et al., for example, have investigated the use of head
orientation to detect focus of attention in small meetings [52].
Maglio et al. [36] have, for instance, shown that people tend to
look toward objects with which they interact by speech. Bakx
et al. [7] have analyzed facial orientation during multiparty in-
teraction with a multimodal information booth. They found that
users were nearly always looking at the screen of the information
kiosk when interacting with the system.

In the experiments presented here, we investigate to what
extent the addressee of an utterance can be determined in a
situation where people interact with each other and a robot in-
termittently. Our goal is to automatically determine whether the
robot has been addressed, and our main approach to accomplish
this goal, is to estimate the visual focus of attention of a person
during an utterance based on his or her head orientation.

1) Experimental Setup: The data collection setup we used
mimics the interaction between two humans and a robot. One
person (the host) introduces another person (the guest to the new
household toy, a robot. Our experiments focus on the recordings
of the host, since the goal of this work is to determine if the host
addresses the robot or the guest. In this experiment, the robot
consisted of a construction using a camera to simulate the eyes,
and a distant microphone to simulate the robot’s ears. We also
recorded the host’s speech using a close talking microphone.
Overall, 18 sessions were recorded, each of roughly 10-min
length. The audio data were fully transcribed and tagged on the
turn level to indicate whether the host addresses the robot or
the guest. For evaluating the video components, we manually
labeled the first 2.5 min of the video recordings of four of the
sessions.

Fig. 8. Typical class-conditional probability distribution for the classification
of the visual target for two targets.

2) Relation of Visual Target and the Addressee: To check,
how well a person’s gaze (i.e., visual focus of attention) can serve
as an indicator of the (acoustically) addressed target, we first
analyzed the correlation between the manually labeled acoustic
targets—i.e., the addressees of an utterance—and the manually
labeled visual target, i.e., the targets that had been looked at.
Here, the visual targets could be either the “Robot,” the other
person (“Guest”), or anything else (“Other”). The acoustic tar-
gets, as in all our experiments, could be either the “Robot” or
the “Guest.”

In these experiments, it turned out that looking towards an-
other person is indeed a very reliable indicator that the person
was addressed. In fact, in 99.5% of the cases in our data, when
the host was looking toward the other person, he indeed ad-
dressed that person. Looking at the robot, however, could not
be used as such a clear indicator: Here, in only 65% of the cases
when a person looked at the robot while talking, the robot also
was addressed (for further details, see [28]).

3) Finding the Most Likely Target: Our approach is to es-
timate a person’s visual target based on head orientation and,
then, consider this target as the addressee. In order to estimate
the visual target, we use a Bayesian approach, where we try
to maximize the posterior probability that a certain target has
been the visual focus, given the observed head orientation of a
person. To compute the a posteriori probabilities for the visual
focus FV for each target class T (either “Robot” or “Guest”),
the a priori probability P (FV = target), the class-conditional
probability P (X|FV = target), and the probability P (X) for
each horizontal head orientation X have to be estimated

P (FV = T |X) =
P (X|FV = T ) · P (FV = T )

P (X)
. (2)

When using manually set priors and class-conditional distri-
butions of our model given in (2), we were able to correctly
detect the host’s visual target in 96% of the frames. Here, the
host’s head orientation was estimated using the approach de-
scribed in Section III-F. Fig. 8 depicts typical class-conditional
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TABLE II
DETERMINATION OF THE ADDRESSEE, BASED ON ESTIMATING THE VISUAL

TARGET. RESULTS WITH TRUE AND LEARNED PARAMETERS

TABLE III
ACOUSTIC, VISUAL, AND COMBINED ESTIMATION OF THE ADDRESSEE

probability distributions for the two targets, as obtained from
the head-pose estimates of one person in our data sets.

Occasions when the person was looking toward the robot
could be detected 77% of time, with a relatively high precision of
89%, resulting in an f -measure of 0.82. In another experiment,
we, then, automatically learned the priors and class-conditionals
of our model in an unsupervised way, as described in [52].
Using these learned model parameters, a slightly lower accuracy
and f -measure were obtained. By using these estimated visual
targets as an indicator for the addressee of an utterance, we
could determine the correct addressee in 93% of the time (89%
with learned parameters). Commands toward the robot could be
detected with a recall of 0.8 and a precision of 0.6, resulting in
an f -measure of 0.7 automatically learned model parameters).
Table II summarizes the results.

4) Identification of the Addressee Based on Speech: In ad-
dition to using head orientation, we have also investigated the
use of acoustic and linguistic features in order to determine the
addressee directly from the utterance itself [28]. The features we
investigated included low-level speech-based features, such as
the length of an utterance and the occurrence of the work “robot”
or “robbi” in the utterance, as well as features extracting syn-
tactical and semantical information. We explored classification
using various subsets of these features and different classifiers.
With the best feature set and a multilayer perceptron for classi-
fication, we could detect 91% of the utterances toward the robot
(recall), however, with a very low precision of 19% only. By
fusing the audio-based determination of the addressee with the
head-pose-based approach, a further improvement compared
to the vision-only based result could, however, be achieved.
Table III summarizes the results.2

C. Learning in Human–Robot Dialogues

One of the key aspects of an autonomous system is its ability
to learn and to adapt to new environments. We address this issue
with two main concepts: first, we implemented and tested an
RL approach that allows us to retrain the whole system to adapt
to changing environments; second, we have studied techniques
that equip the robot with the ability to acquire new knowledge,
such as to learn the semantics of words, and to learn to know
new objects and unknown persons [24].

2Note that these results were computed on different and longer segments than
those used to produce the results depicted in Table II (see [28]).

Fig. 9. User interacting with the system in the experimental setup.

Without any doubt, the dialog strategy and its design play a
crucial role for the quality of any dialog system. Considering the
presence of uncertainty about the user dynamics as well as error-
prone system components, the dialog manager’s decisions—
e.g., which question to ask, initiative to use, or information
to confirm—are multifaceted and nontrivial. To overcome the
limitations and problematics of handcrafting dialogue strategies,
RL approaches have become a promising approach to compute
dialog strategies. Since RL algorithms usually require a lot of
training data, artificially generated dialogs with a simulated user
can be used to handle data sparsity (e.g., [47]).

Here, we present an approach for learning a multimodal
dialog strategy by applying a user simulation trained on a
small amount of user data, trained for the error conditions
of recognition and understanding components. During online
operation, more data can, then, be collected and used to refine
the models [44].

1) Experimental Setup: For evaluation of the applied meth-
ods, we developed a scenario, where the robot acts as an early-
stage bartender. Twenty objects, diverging in color, shape, and
location are placed on a table in front of the robot and represent
the user’s order options. Before each dialog, our test subjects
silently choose a particular item of interest from the table setting.
Our robot, then, initiates a multimodal dialog with the goal to
identify the user’s object of interest and serve the corresponding
item.

Our robot always initiates the dialog with a self-introduction
and the mixed initiative action “What can I serve you?”.
Afterward, the robot has the option to prompt for the three
available information slots: object type, object color, and object
location. For the case of object location, our robot prompts
explicitly for a pointing gesture of the user toward the desired
item. Further options exist in confirming information slots
either individually or jointly. At any point within the dialog,
the robot is able to confirm/exclude the so far best matching
item as desired item or, respectively, end the dialog and serve
the item. As a general constraint we restricted the number of
dialog turns to a maximum of ten.

To be able to conduct the experiments on our experimenta-
tion platform, which includes a pan-tilt unit with a mounted
stereo camera, distant speech microphones, and close talk mi-
crophones, we also equipped the robot with a laser pointer as a
pointing device to reference objects on the table. Fig. 9 shows
an interaction with the system.
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Fig. 10. RL with user simulation and error models.

2) RL: Fig. 10 illustrates the basic components used for
training the dialog policy. The user model facilitates simulation
of user actions, which is based on a simple bigram model and
models the probability of the user uttering a speech act given the
previous action by the system p = P (actionuser |actionsystem).
Due to its simplicity, it allows us to uniformly model mul-
timodality of user actions, responses to mixed- and system-
initiative actions, as well as multiplicity of user actions.

The error model is computed for each component separately
and independently. The ASR error model defines common errors
by the speech recognizer on the level of the output by the user
model, which is a confusion or not-recognition of semantic con-
cepts and in/out-of domain problems. To address interspeaker
variations in recognition rates, which might be due to language
capability, pronunciation clarity, dialect, or input device ad-
justment (e.g., proper setup of head-mounted microphone), we
stochastically draw from a distribution of error-priors estimated
from the existing data corpus. The gesture model was trained on
a specific corpus collected for this domain and models detec-
tion failures, misdetections, and standard deviations in pointing
direction.

Within our Wizard-of-Oz (WOz) experiment, 15 test subjects
were engaged and a total of 82 dialogs (314 utterances) were
completed. We used this data to train the previously described
user and error models, and took subjective user feedback to
model subjective criteria for the reward function.

In the system, we, afterward, evaluated the strategy in a dif-
ferent experiment with a new set of users, and also compared the
results to a handcrafted baseline strategy. The baseline strategy
first collects and jointly confirms the object type and color in-
formation, before asking once for a user gesture. Thereafter, the
robot explicitly tries to confirm the best matching item within
the candidate collection, until the referenced item is confirmed
as correct by the user. As a general rule, the dialog is ended as
soon as only one candidate item remains.

Eighteen test subjects engaged within this experiment of
which only one test subject also participated within the WOz ex-
periment. A total of 94 dialogs (576 utterances) were collected
in sequential runs of four to six dialogs of each test subject.
Hereby, in order to fairly balance a potential learning effect
of the user, we evenly switched between the use of the two
strategies. Table IV shows the results of comparing these two
strategies The learned strategy performs slightly better than the
handcrafted strategy, not only in the simulation (SIM) but also
in the real-world (REAL) with respect to the central optimiza-

TABLE IV
COMPARISON BASELINE TO LEARNED STRATEGY

tion criterion of collected reward, the task completion rate as
well as dialog brevity. As a further positive aspect, despite the
small corpus of collected real dialog interactions, the strategies’
performance figures resemble nicely for the simulation and real-
world domain and, thereby, indicate an adequate accuracy of our
simulation model. After retraining the different models with the
newly collected data, only 2.7% of the optimal state-actions di-
verged from the previous run, which indicates that each training
cycle converges in a stable manner and that the WOz corpus
provides a sufficient amount of training data for such a system.

V. CONCLUSION

Audiovisual perception of people and their communication
modalities, such as speech, gestures, and attention, as well as the
fusion and analysis of these cues are prerequisites for building
human-friendly robots that can interact with humans.

In this paper, we presented our work on enabling the hu-
manoid robot, which is developed in the German Research
Center on Humanoid Robots, with the capability to perceive
and interact with people in a natural way. First, we presented
several core perceptual components including speech recogni-
tion, multimodal dialogue processing, visual detection, tracking
and identification of users, as well as head-pose estimation and
pointing gesture recognition.

We also reported on several human–robot interaction experi-
ments. These include interaction using speech and gestures, the
automatic determination of the addressee in human–human–
robot interaction, as well as interactive learning of efficient di-
alogue strategies.

In the future, we will focus on a seamless integration of these
components into an autonomous humanoid robot. Here, further
work is necessary in order to improve the efficiency and robust-
ness of all the components. Also, we are investigating how these
perception and interaction components can be integrated into an
architecture that supports the full range of necessary cognitive
capabilities of a humanoid robot, including task planning and
supervision, learning, and attention.
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Christian Fügen received the Diploma degree in
computer science from the Universität Karlsruhe
(TH), Karlsruhe, Germany, in 1999.

Currently, he is a Research Assistant in the Inter-
active Systems Laboratories, Universität Karlsruhe
(TH). His current research interests include the field
of automatic speech recognition, especially acoustic
and language modeling and adaptation in the con-
text of a simultaneous speech-to-speech translation
system.

Petra Gieselmann received the Master’s degree from
the University of Regensburg, Regensburg, Bavaria,
Germany, in 1997, and the Ph.D. degree from the
University of Stuttgart, Stuttgart, Germany, in 2007,
both in computational linguistics.

From 2002 to 2007, she was a Research Assistant
in the Interactive Systems Laboratories, Universität
Karlsruhe (TH), Karlsruhe, Germany. Currently,
she is with Lucy Software and Services GmbH,
Muenchen, Germany, where she is engaged in re-
search on machine translation. Her current research

interests include human–robot communication and speech understanding.

Hartwig Holzapfel received the Diploma degree
in computer science from the Universität Karlsruhe
(TH), Karlsruhe, Germany, in 2003.

Currently, he is a Research Assistant in the Inter-
active Systems Laboratories, Universität Karlsruhe
(TH). His current research interests include multi-
modal dialogue management and learning.

Mr. Holzapfel is a member of the International So-
ciety for Computers and Their Applications (ISCA).

Florian Kraft received the Diploma degree in com-
puter science from the Universität Karlsruhe (TH),
Karlsruhe, Germany, in 2005.

Currently, he is a Research Assistant in
the Interactive Systems Laboratories, Universität
Karlsruhe (TH). His current research interests include
sound recognition with applications to automatic
speech recognition and environmental sound event
classification.

Kai Nickel received the Diploma degree in com-
puter science from the Universität Karlsruhe (TH),
Karlsruhe, Germany, in 2003.

Currently, he is a Research Assistant in the Inter-
active Systems Laboratories, Universität Karlsruhe
(TH). His current research interests include person
tracking and gesture recognition.



STIEFELHAGEN et al.: ENABLING MULTIMODAL HUMAN–ROBOT INTERACTION FOR THE KARLSRUHE HUMANOID ROBOT 851

Michael Voit received the Diploma degree in com-
puter science from the Universität Karlsruhe (TH),
Karlsruhe, Germany, in 2005.

Currently, he is a Research Assistant in the Inter-
active Systems Laboratories, Universität Karlsruhe
(TH). His current research interests include estima-
tion of head orientation and focus of attention.

Alex Waibel received the B.S. in electrical engi-
neering from Massachusetts Institute of Technology,
Cambridge, in 1979, and the M.S. and Ph.D. degrees
in computer science from Carnegie Mellon Univer-
sity, Pittsburgh, PA, in 1980 and 1986, respectively.

He is currently a Professor of Computer Science at
Carnegie Mellon University, and also Professor at the
Universität Karlsruhe (TH), Karlsruhe, Germany. He
is associated with InterACT, the International Center
for Advanced Communication Technologies at both
these universities. At Carnegie Mellon, he also serves

as Associate Director of the Language Technologies Institute and holds joint
appointments in the Human–Computer Interaction Institute and the Department
of Computer Science. He is also associated with the Human Interaction Loop
(CHIL) program and the NSF-ITR project STR-DUST. He has founded and
cofounded several successful commercial ventures. He was one of the founders
of C-STAR, the International Consortium for Speech Translation Research and
served as its Chairman from 1998 to 2000. His team has developed the JANUS
speech translation system, and, more recently, the first real-time simultaneous
speech translation system for lectures. His laboratory has also developed a
number of multimodal systems including perceptual meeting rooms, meeting
recognizers, meeting browser, and multimodal dialog systems for humanoid
robots. He is the holder of several patents. His current research interests include
speech recognition, language processing, speech translation, and multimodal
and perceptual user interfaces.

Prof. Waibel was the recipient of numerous awards for his work and
publications.


