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ABSTRACT

Grapheme based speech recognition is a powerful tool for rapidly
creating automatic speech recognition (ASR) systems in new lan-
guages. For purposes of language independent or cross language
speech recognition it is necessary to identify similar models in the
different languages involved. For phoneme based multilingual ASR
systems this is usually achieved with the help of a language inde-
pendent phoneme set and the corresponding phoneme identities in
the different languages. For grapheme based multilingual ASR sys-
tems this is only possible when there is an overlap in graphemes of
the different scripts involved. Often this is not the case, as for ex-
ample for Thai which graphemes does not have any overlap with the
graphemes of the languages that we used for multilingual grapheme
based ASR in the past. In order to be able to apply our multilin-
gual grapheme model to Thai, and in order to incorporate Thai into
our multilingual recognizer, we examined and evaluated a number
of data driven distance measures between the multilingual grapheme
models. For our purposes distance measures that rely directly on
the parameters of the models, such as the Kullback-Leibler and the
Bhatthacharya distance yield the best performance.

Index Terms— Automatic Speech Recognition, Grapheme
based acoustic models, Rapid Porting of ASR systems, Multilingual
ASR

1. INTRODUCTION

Linguists estimate the number of currently existing languages to be
between 5,000 and 7,000. The fifteenth edition of the Ethnologue
[1] list 7,299 languages. Only for a small fraction of these languages
automatic speech recognition (ASR) systems have been developed
so far. Languages addressed are mainly those with either a large
population of speakers, with sufficient economic funding, or with
high political impact. The fact that applications using ASR only
address a small fraction of the world’s languages bears the danger
of creating a digital divide between those languages for which ASR
systems exist and those without one.

Languages are frequently disappearing. In [2] Janson estimates
that in a few generations at least 1,000 of today’s languages will
have disappeared and that, if the trend holds, in as little as one hun-
dred years half of today’s languages will be extinct. Janson attributes
this vanishing of languages to a frequently occurring switch to more
prevalent languages. Here the descendants of speakers of a smaller
language will start to speak a different, more common and wider
spread language instead, without learning the language of their par-
ents. He cites Gaelic as an example of a language that is currently in

the process of being replaced in such a way, in this case by English.
The creation of a digital divide as mentioned above is very likely
to contribute to this kind of extinction of languages, might even ac-
celerate it. In order to be able to preserve a high language diversity
and cultural richness that comes with it, it is thus necessary to create
methods for rapidly porting speech recognition systems to new lan-
guages, with possibly few resources for development, either in terms
of money or available data and knowledge.

The pronunciation dictionary is a central component of large vo-
cabulary continuous speech recognition systems. Its creation often
involves large amounts of manual labor and requires the help of an
expert in the targeted language. This makes it an expensive and dif-
ficult to create resource, especially for under-resourced languages.
The use of graphemes instead of phonemes as modeling units is
one way of trying to solve this problem. However, grapheme based
speech recognition has the problem that it can only be applied to
languages with a suitable script with a reasonably close grapheme to
phoneme relation. Also, the creation of language independent acous-
tic models becomes more difficult, since the alphabets from many
languages only have a minor or often no overlap, which hinders the
sharing of parameters and training material.

The rest of the paper is structured as follows. Section 2 briefly
reviews the topic of grapheme based speech recognition, while Sec-
tion 3 introduces the corpus and task on which our experiments
were performed. Section 4 then describes the monolingual grapheme
based ASR systems which were derived from earlier work and which
serve as a baseline and comparison for our experiments. Section 5
discusses the multilingual ASR systems used for our experiments
and Section 6 introduces the distance measures that we used. Sec-
tion 7 then describes how we used these distance measures to apply
the multilingual recognizer to the Thai data, while in Section 8 we
describe how we used the distance measures to integrate the Thai
data into the multilingual recognizer.

2. GRAPHEME BASED ASR

In large vocabulary, HMM based ASR systems words are usually di-
vided into sub-word units which are used as modeling units in the
HMM. Very often phonemes, or sub-phonetic units, are used as such
modeling units. These ASR systems therefore require as a central
component a pronunciation dictionary that maps the textual repre-
sentation of the words to be recognized to their phonetic manifes-
tation. The creation of that pronunciation dictionary can be very
costly in terms of time and money. It often requires the help of a
phonetic expert in the targeted language and is usually very time
intensive. Therefore, the creation of a suitable pronunciation dic-



tionary for under-resourced languages can easily become either too
expensive, may require too much time, or might even be impossible
due to the lack of an expert.

One possible solution to avoiding the need of a pronunciation
dictionary is the use of graphemes instead of phonemes as modeling
units. In that way the mapping from the orthography of a word to its
sub-word units that are used as HMM states becomes trivial.

Past research has demonstrated that the use of graphemes as
modeling units, instead of phonemes, can be a suitable approach to
ASR in a wide range of languages. [3], [4], [5], and [6], for example,
showed the feasibility of this approach for the languages English,
German, Russian, Spanish, and Thai.

When writing about grapheme based speech recognition systems
instead of phoneme based ones the terminology changes accord-
ingly. Instead of triphones we now talk about trigraphemes, instead
of a polyphone decision tree we use a polygrapheme decision tree,
instead of sub-phonemes we talk about sub-graphemes etc. How-
ever, the general setup of the grapheme based recognition systems
usually stays the same as for the phoneme based ones.

Context dependent ASR systems often utilize a decision tree for
HMM state tying. These decision trees require a set of questions to
ask about the context of the models. Traditionally, these questions
regard the phonetic context of the models. This counteracts the goal
of grapheme based ASR which tries to work without any phonetic
knowledge. [3] examined different types of questions in the decision
tree for HMM state-tying, and found that simply asking for the iden-
tities of the graphemes in the context of the models works better than
phonetically motivated or automatically derived questions. This type
of questions for the identities of neighboring graphemes are called
’singleton questions’ in our work.

Sometimes, in order to improve the performance of the
grapheme based models, pre-processing steps are applied to the
graphemes, such as reordering of the graphemes, or grouping
graphemes, to form a separate model. In our work we explicitly do
not perform such preprocessing, since we assume as little knowledge
as possible given for the target language.

[4] and [3] also conducted first experiments in building multi-
lingual acoustic models based on graphemes, and [3] very briefly
reported on porting grapheme models to a new language in a rudi-
mentary way and under the assumption that a large amount of train-
ing data in the new language is available. The experiments were
performed using languages with Latin based alphabets that have a
larger overlap. While for phonemes the overlap between languages
is generally fairly large, for graphemes it can be dramatically worse.
The Thai alphabet, for example, does not show any overlap between
the Latin based alphabets used in [3].

3. CORPUS AND TASK

The experiments in this paper were conducted on a selection of lan-
guages from the GlobalPhone [7] corpus. GlobalPhone is an ongoing
data collection effort that now provides transcribed speech data that
was collected in an uniform way in 18 languages. The corpus is well
suited for research in multilingual speech recognition and rapid de-
ployment of speech processing systems in new languages, because
data collection in all languages has been done in an uniform way.

The corpus is modeled after the Wall Street Journal 0 (WSJ0)
corpus and contains newspaper articles collected with close talking
microphones. The articles were read by native speakers of the re-
spective language.

For the work presented, the four languages English (EN), Rus-
sian (RU), Spanish (SP), and Thai (TH) were used. Since English is

not part of GlobalPhone, the WSJ0 corpus was used. For every lan-
guage three data sets are available: one for acoustic model training
(train), one for development work (dev) such as finding the correct
language model weight, and one for evaluation (eval). All three sets
are speaker disjunct.

Further, since Thai also takes the role of the new language for
which we want to create a new ASR system, we assume a very lim-
ited amount of 30 minutes of adaptation material (adapt) as given.
Table 1 shows the size of the individual data sets for the four lan-
guages in terms of length in time, number of utterances, and number
of speakers.

English and Spanish have a very similar set of graphemes, since
their script is Latin based. Russian, however uses Cyrillic script. For
Russian we take as given a romanization which in part overlaps with
the graphemes of the Latin alphabet and thus with the graphemes
from English and Spanish. Table 2 shows the assumed mapping of
the Cyrillic graphemes to Latin ones. Note, that each romanized en-
try in the table is treated as one grapheme and thus modeling unit, so
that romanized entries that consist of more than one Latin grapheme
are treated as distinct from graphemes in the other languages. Thai
on the other hand uses an alphabet that has probably been derived
from the Old Khmer Script. The Thai alphabet has no overlap with
the English, Spanish or romanized Russian alphabet. Also, since for
our experiments we want to assume as little knowledge as possible
given about the language to which to port the acoustic models to, we
do not use a romanization for Thai and assume it as not given.

EN RU SP TH
train hours 15.0 17.0 17.6 24.5

#utt 7,137 8,170 5,426 12,260
#spkrs 83 84 82 80

dev hours 0.4 1.3 2.1 1.3
#utt 144 898 680 613
#spkrs 10 6 10 4

eval hours 0.4 1.6 1.7 1.1
#utt 152 1,029 564 568
#spkrs 10 6 8 4

adapt hours – – – 0.5
#utt – – – 252
#spkrs – – – 2

Table 1. Size of the data sets in hours

4. MONOLINGUAL RECOGNIZERS

As an initial baseline for our experiments serves the performance of
grapheme based recognition systems that were trained on their re-
spective language only. These recognizers are similar to the ones
described in [3], [8], and [5], but the preprocessing and training pro-
cedures were slightly modified and harmonized over all languages
involved. All acoustic models are left to right Hidden Markov Mod-
els (HMM) with three substates per grapheme. All experiments in
this work were performed with the help of the Janus Recognition
Toolkit (JRTk) that features the Ibis single pass decoder [9].

4.1. Preprocessing

The 16kHz, 16 bit audio data was preprocessed by calculating mel
scaled cepstral coefficients, liftering, and concatenation of 6 neigh-
boring feature vectors. The resulting 91 dimensional vector was re-
duced to 32 dimensions with the use of linear discriminant analy-



Graphemes Romanized Graphemes Romanized

a a r r
b b s s
v w t t
g g u u
d d f f
e ye h h
ë yo c tS
� jscH q scH
z z x sch
i i w schTsch
$i j � Q
k k y i2
l l ~ ˜
m m � e
n n � yu
o o � ya
p p

Table 2. The Cyrillic graphemes and their romanized form

sis (LDA). The mean of the cepstral coefficients was subtracted and
their variance normalized on a per utterance basis. During decoding
incremental feature space constrained MLLR (cMLLR) [10] and in-
cremental cepstral mean subtraction and variance normalization on
a per speaker basis was performed.

4.2. Training

Training was done with the help of forced alignments obtained with
the systems trained in [3], [8], and [5]. Initial forced alignments
for Thai were obtained by the flat start training procedure described
in [3] and [5]. For training the acoustic models, first the LDA ma-
trix was estimated, after that random samples for every model were
extracted in order to initialize the models with the help of the k-
means algorithm. Then these models were refined by six iterations
of label training along the forced alignments and 4 iterations of EM
training. The resulting models were used to obtain new forced align-
ments and the training procedure was iterated until minimum WER
on the development set was reached. Context-independent (CI) as
well as context-dependent (CD) models were trained in this way.
The polyphone decision trees for the context-dependent models were
obtained by a top-down clustering procedure that uses entropy gain
as distance measure, in the same way as it was done in [3]. As ex-
plained before, the clustering procedure must be able to ask ques-
tions about the phonetic context of a polyphone. For our experiments
we used the singleton questions described in Section 2.

4.3. Results

Table 3 shows the word accuracies (WA) of the context-dependent
and context-independent models for every language on their respec-
tive development and evaluation sets. The trigram language models
used for English, Russian, and Spanish were unchanged from the
previous experiments in [3] and [5]. The trigram language model
that was used for Thai was created with the help of the SRI Lan-

guage Model Toolkit [11] and is an interpolation of a trigram model
trained on 3.3 million words of newspaper texts and a trigram model
trained on the transcriptions of the training data. The interpolation
weight was chosen by minimizing the perplexity of the language
model on the development set.The word accuracies are similar to the
ones reported in previous work. The differences among the differ-
ent languages are not only due to their suitability for the grapheme
based approach, but also due to inherent differences in the respec-
tive languages and ASR system development in general, and can be
observed on phoneme based recognizers as well.

EN RU SP TH
CI dev 45.8% 48.1% 55.7% 70.8

eval 46.5% 44.2% 68.6% 71.3
CD dev 84.4% 64.3% 78.0% 87.3

eval 82.7% 60.7% 85.9% 86.0

Table 3. WA of the monolingual grapheme based ASR systems on
the dev and eval sets of their respective language

5. MULTILINGUAL ACOUSTIC MODEL

On the languages English, Russian, and Spanish a multilingual,
grapheme based ASR system was trained using the technique ML-
Mix [12]. When using ML-Mix, graphemes that are common to one
language share the same model and are treated as identical in the
rest of the system, e.g. in the polyphone decision tree. All infor-
mation about which language a grapheme belongs to, is discarded
in the system and the data from all languages for this grapheme
is used for training it. Since Russian uses a Cyrillic script instead
of a Latin based one, as the other three languages involved do, the
Cyrillic graphemes were mapped to a romanized representation as
described above.

First, a context-independent ML-Mix recognizer (ML-3Mix-CI)
was trained. Then a polygrapheme decision tree with three thousand
models was clustered and trained on these languages (ML-3Mix-
CD). Table 4 gives the word accuracies of the resulting models on
the dev and eval sets of the individual languages that were used for
training. One can see from the results that for the languages English
and Russian there is a clearly visible performance degradation com-
pared to the monolingual recognizers. The degradation for English
is larger than for Russian which is to be expected, since English
has a more complex grapheme-to-phoneme relation than Russian.
Also, Russian contains many graphemes that are not common to the
other two languages, so that their models are not broadened by the
training material coming from the other languages. For Spanish a
high degradation is only visible for the context-independent mod-
els. The context-dependent models show only a small degradation
on the development data and no degradation on the evaluation data.
This is due to the fact, that the, in comparison simple, grapheme-
to-phoneme relation for Spanish can be captured by the polyphone
decision tree, and no significant tainting of the shared models seems
to take place by the sharing of training material.

6. DISTANCE MEASURES BETWEEN MODELS

Since Thai uses a completely disjunct alphabet from the other lan-
guages involved, it is not possible to map the grapheme models of
the Thai recognizer to the models of the ML-3Mix recognizer by



EN RU SP
ML-3Mix-CI dev 27.6% 38.5% 44.5%

eval 29.2% 33.8% 58.5%
ML-3Mix-CD dev 78.2% 60.5% 74.7%

eval 75.9% 44.2% 83.7%

Table 4. WA of the ML-3Mix models on the training languages

simply using the grapheme identity. Such a mapping, however is of
interest, e.g. for applying the ML-3Mix model to Thai, or by extend-
ing it with the Thai data while at the same time sharing the Thai data
with the other models.

Therefore, it is necessary to resort to a data driven mapping that
does not rely on the grapheme identity. [13] constructed such a map-
ping by running a phoneme recognition pass of a multilingual acous-
tic model on the target language and taking the frame-wise phoneme
confusion of the resulting decodings as distance measure. In this
work we apply this approach to graphemes, but also examine other
distance measures that do no rely on grapheme confusion, but are
based on the model parameters itself. Some of these distance func-
tions are defined for probability functions in general, some only for
Gaussian distributions. All distance functions have a closed form
solution for Gaussian distributions.

6.1. Framewise Grapheme Confusion

[13] used a framewise confusion to establish a mapping between
the models of a multilingual recognizer and a target language. For
this the multilingual, context independent recognizer was used as a
phoneme recognizer to decode the adaptation material in the target
language, for which a phoneme reference existed. Then the normal-
ized, framewise phoneme confusion was calculated and used as a
distance measure: the higher the confusion, the closer the phonemes.
This measure can be applied to graphemes in the same way.

6.2. Grapheme Confusion

This distance measure is a modification of the framewise grapheme
confusion. Instead of calculating the confusion between two
graphemes on a per frame basis, a mapping between the hypothe-
sized and the reference graphemes is established using the Leven-
shtein distance. With that the confusion between hypothesized and
reference phonemes is calculated and used as the distance measure.

6.3. Euclidean Distance

Given two Gaussian distributions

Γ1(x) =
1√

(2π)d |Σ1|
exp−

1
2 (x−µ1)Σ1(x−µ1)

and
Γ2(x) =

1√
(2π)d |Σ2|

exp−
1
2 (x−µ2)Σ2(x−µ2)

where d is the dimension of the input vector x, µ1 and µ2 are the
means of the Gaussian distributions, and Σ1 and Σ2 their covari-
ance matrices, it is possible to calculate the distance between Γ1 and
Γ2 by simply taking the Eculidean distance between their two mean
vectors µ1 and µ2:

deucl(Γ1,Γ2) =

√
(µ1 − µ2) (µ1 − µ2)T (1)

This distance measure completely ignores the covariance matri-
ces of the two distributions. It therefore makes sense to apply this
measure in situations where no or only little information about the
similarity of two distributions is expected to be contained in the co-
variance matrices.

6.4. Extended Mahalanobis Distance

The Mahalanobis distance can be used to measure the distance of a
vector x to a set of samples that are distributed with a mean of µ and
a covariance of Σ:

dMhn(x) =
√

(x− µ)TΣ−1(x− µ) (2)

The Mahalanobis distance can be extended to a distance measure
between two distributions by combining the covariance matrices of
the distributions:

dextMhn(Γ1,Γ2) =

√
(µ1 − µ2)T (Σ1 + Σ2)−1 (µ1 − µ2) (3)

Compared to the Euclidean distance the Extended Mahalanobis
distance has the advantage that it also considers the covariance ma-
trices of the distributions in addition to the mean vectors.

6.5. Kullback-Leibler Distance

The Kullback-Leibler divergence between two probability functions
P1 and P2 is defined as [14]:

dkl(P1, P2) =

∫
P1(x) log

P1(x)

P2(x)
(4)

The Kullback-Leibler divergence can bee seen as a dissimilarity
measure between two probability functions. However it is not sym-
metric and does not obey the triangle inequality and is thus not a true
metric. In order to be able to use it as a distance function, one can
make it symmetric by averaging the Kullback-Leibler divergence be-
tween P1 and P2 with the divergence between P2 and P1:

dkl−sym(Γ1,Γ2) = dkl(Γ1,Γ2) + dkl(Γ2,Γ1) (5)

For the case that P1 and P2 are Gauss distributions with diago-
nal covariance matrices, the symmetric Kullback-Leibler divergence
takes the following form:

dkl−sym(Γ1,Γ2)

=
1

2

d∑
i=1

σ2
1,i

σ2
2,i

+
σ2

2,i

σ2
1,i

− 2 +

(
1

σ2
1,i

+
1

σ2
2,i

)
(µ1,i − µ2,i)

2 (6)

where µ1, µ2 are mean values of Γ1 and Γ2, while σ1,i and σ2,i

are the ith element of the diagonal of covariance matrix Σ1 and Σ2,
respectively.

6.6. Bhattacharya Distance

When working in a two class scenario often the Bhattacharya dis-
tance is used [15]:

dbhatt(P1, P2) = − ln

(∫
x

√
P1(x)P2(x)

)
(7)



The Bhattacharya distance is symmetrical but does not necessar-
ily obey the triangle equation. For the case that Gaussian distribu-
tions with diagonal matrices are used as above it takes the form:

dbhatt(Γ1,Γ2) =
1

2

d∑
i=1

ln

 σ2
1,i + σ2

2,i

2
√
σ2

1,iσ
2
2,i

+
|µ1,i − µ2,i|2

2
(
σ2

1,i + σ2
2,i

) (8)

7. APPLYING THE ML MIX MODEL TO THAI

For this set of experiments Thai takes the role of a language onto
which we want to apply the ML-3Mix model, e.g. in order to ini-
tialize the grapheme based acoustic model of a new Thai recognizer.
We assume that almost no linguistic or phonetic knowledge about
Thai is available to us, especially that no romanization or other man-
ual mapping of the Thai graphemes to the models of the ML-3Mix
recognizer is available. We further assume that we only have 30 min-
utes of training material available that is annotated at the grapheme
level. For our experiments we simulated this manual annotation by
performing a forced alignment with the best Thai recognizer from
Section 4.

In order to apply the ML-3Mix model we establish a mapping
between the Thai models and the multilingual models using the dis-
tance measures described in Section 6 by mapping each multilingual
grapheme model to the closest Thai model according to the respec-
tive distance measure. For the grapheme confusion based distance
measures we worked directly with the ML-3Mix model from Sec-
tion 5 on the Thai adaptation data.

In order to be able to calculate the distance measures based on
the model parameters, we trained two auxiliary acoustic models, a
ML-3Mix and a Thai model that only have one Gaussian per model,
instead of the Gaussian mixture models used otherwise. With these
helper models we then calculated the distances described in Subsec-
tions 6.3 to 6.6.

Table 5 shows the word accuracies of the resulting models on
the Thai development and eval set when using the different distance
measures for establishing the grapheme mapping. The distance mea-
sures based on the model parameters significantly outperform the
grapheme confusion based measures. Further, the covariance matri-
ces of the models carry significant knowledge, demonstrated by the
gap in performance between the Euclidean distance measure and the
other measures, that include the covariance matrices. Bhattacharya
and Kullback-Leibler clearly outperform the Extended Mahalanobis
distance. On the evaluation set Kullback-Leibler also outperforms
the Bhattacharya distance.

dev eval
Euclidean 13.9% 15.9%
Ext. Mahalanobis 16.7% 16.9%
Kullback-Leibler 20.8% 19.7%
Bhattacharya 20.8% 19.0%

Table 5. WA on the Thai test data for the different distance measures
estimated on the Thai adaption set

8. INCORPORATING THAI INTO THE ML MIX MODEL

Using the distance metrics in the same way as in Section 7 it is also
possible to integrate the Thai grapheme based acoustic models into

the ML-Mix framework. This time the mapping between the Thai
and the ML-3Mix models was used to assign the Thai training data
to the models in the ML-3Mix recognizer. For this, the training ma-
terial that belongs to a specific Thai model is assigned to the ML-
3Mix model that is closest according to the distance measure. Then
the ML-3Mix models were trained anew on the combination of their
original training data and the assigned Thai training data. In that
way a complete sharing of the Thai training data with the models in
the multilingual recognizer takes place and we obtain a ML-4Mix
recognizer that was trained on all four languages.

In order to find the optimal distance measure without having
to train the complete recognizer, we repeated the experiment from
Section 7. This time the auxiliary Thai models were trained on the
complete Thai training data, not only the adaptation data. This time
the Bhattacharya distance turned out to be the best distance measure
for the mapping, when testing ML-3Mix models on the Thai data
according to the mapping.

Using this mapping to integrate the Thai data the ML-4Mix rec-
ognizer was trained the same ways as described in Section 5. Table
6 lists the word accuracy of the context independent (CI) and context
dependent (CD) models on the training languages.

EN RU SP TH
ML-4Mix-CI dev 22.1% 32.5% 38.3% 44.1%

eval 22.7% 28.1% 50.7% 44.6%
ML-4Mix-CD dev 73.5% 57.9% 71.9% 68.3%

eval 72.2% 54.3% 81.5% 68.3%

Table 6. WA of the ML-4Mix models on the training languages

9. CONCLUSION

In this paper we have incorporated Thai data into a multilingual,
grapheme based recognizer that was trained on languages with a
Latin based script. Since there is no overlap of the scripts of these
languages with the Thai script the mapping between the models had
to be done with the help of data driven distance measures. We
evaluated and compared several measures that are based either on
grapheme confusion or directly on the model parameters, and found
the Bhattacharya distance to perform best for this purpose. We fur-
ther tested the suitability of the same distance measures for applying
the multilingual model to the Thai data, e.g. for the purpose of ini-
tializing a new grapheme based model.
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