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ABSTRACT

We describe recent extensions to the Ephyra question answer-
ing (QA) system and their evaluation in the TREC 2007 QA
track. Existing syntactic answer extraction approaches for
factoid and list questions have been complemented with a
high-accuracy semantic approach that generates a semantic
representation of the question and extracts answer candidates
from similar semantic structures in the corpus. Candidates
found by different answer extractors are combined and ranked
by a statistical framework that integrates a variety of answer
validation techniques and similarity measures to estimate a
probability for each candidate. A novel answer type classi-
fier combines a statistical model and hand-coded rules to pre-
dict the answer type based on syntactic and semantic features
of the question. Our approach for the ‘other’ questions uses
Wikipedia and Google to judge the relevance of answer can-
didates found in the corpora.

1. INTRODUCTION

In this paper we describe the Ephyra question answering sys-
tem that has been evaluated in the TREC 2007 QA main track.
The system extends the approach we reported on at last year’s
TREC evaluation [1] and the overall architecture and design
goals have been described in past papers [2, 3]. Here we fo-
cus on recent improvements and new techniques that proved
effective in this year’s evaluation.

We augmented our answer extraction approaches for fac-
toid and list questions with a high-accuracy semantic answer
extractor that is based on semantic role labeling. The ques-
tion is transformed into a semantic representation and answer
candidates are extracted from phrases which match this rep-
resentation. Different query generation techniques are used
to retrieve relevant text passages, ranging from simple key-
word queries to specific query strings such as reformulations
of the question into answer patterns. WordNet is used to
expand query terms with semantically related concepts. As
full semantic role labeling of all retrieved sentences is a pro-
hibitively time-intensive task, we carefully select candidates

that are further analyzed and transformed into semantic repre-
sentations. A fuzzy similarity metric is then used to compare
these representations to the question representation to identify
semantic structures that potentially contain an answer. The
similarity measure was designed to be flexible and robust in
order to maximize the recall of the answer extractor.

A statistical framework for answer selection combines the
answer candidates produced by this semantic approach and
previously developed answer type based and pattern based
extractors [4]. The framework estimates the probability of
an answer candidate based on a set of answer validation and
similarity features. Validation features use external semantic
resources to verify an answer, while similarity features mea-
sure the syntactic and semantic similarity to other candidates.

One of the crucial steps in answering factoid and list ques-
tions is the classification of the questions with respected to the
expected answer type. For this purpose, we have developed a
classifier that uses both manually encoded rules and a statis-
tical model to predict the answer type given a set of syntactic
and semantic features of the question. This hybrid approach
outperforms our previous pattern-based classifier.

To answer the ‘other’ questions, we use Wikipedia and
Google searches to identify keywords that frequently occur
in the proximity of the target. Assuming that these keywords
provide relevant information on the target, we favor those an-
swer candidates that contain the frequent terms. Additional
filtering techniques are used to drop redundant and non-infor-
mative answers to improve the precision of our responses.

In this year’s TREC evaluation, answers were extracted
from both the AQUAINT2 newswire corpus and the Blog06
corpus, a crawl of a large volume of Web logs. We submit-
ted runs using only the newswire corpus and a combination of
both corpora, which gave us an insight into the benefits and
also the challenges arising from the use of a large corpus con-
taining a significant proportion of noisy text as an additional
source.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of related approaches. Section 3
discusses recent improvements and extensions of our pipeline



for factoid and list questions, while Section 4 deals with the
‘other’ questions. Section 5 describes our TREC runs and
summarizes the evaluation results; Section 6 outlines open is-
sues for future work.

2. RELATED WORK

Moldovan and Novischi [5] use relations in WordNet [6] to
derive topically related terms for query expansion. Terms are
considered semantically similar if they are linked through a
lexical chain, a sequence of related WordNet synsets. For
each of the WordNet relations, a weight has been determined
empirically that reflects the degree of similarity between re-
lated synsets. We adopt the idea of lexical chains and reuse
the proposed weights to calculate confidence scores for se-
mantically related concepts.

Nyberg et al. [7] describe how the JAVELIN QA system
has been extended with domain semantics to answer questions
in a restricted domain. A manually created ontology cov-
ers frequent concepts in this domain and English expressions
with domain-specific meanings. [8] introduces a lightweight
knowledge-based reasoning framework for JAVELIN. Ques-
tions and text passages are transformed into uniform semantic
representations and a flexible unification framework matches
questions with relevant passages, using weighted semantic re-
lations between terms.

The QA system from the National University of Singa-
pore [9] used the semantic role labeling system ASSERT [10]
to answer factoid and list questions in past TREC evaluations.
Predicate-argument structures are extracted from the question
and answer sentences. The predicates are then compared us-
ing a similarity metric composed of the similarity of the pred-
icate verbs and the similarity of the arguments. We refined
the similarity measure for predicates to make it more flexi-
ble and robust to parsing errors in order to improve the recall
of this approach. The terms in the arguments are expanded
with WordNet, and the semantic similarity of the arguments
is measured in addition to their syntactic similarity.

To select the most probable answer(s) from an answer
candidate list, QA systems have applied several different an-
swer selection approaches. One of the most common ap-
proaches relies on external resources such as WordNet, CYC
and gazetteers for answer validation [11, 12, 13]. The Web
has also been used for answer reranking by exploiting search
engine results produced by queries containing the answer can-
didate and question keywords [14]. Collecting evidence from
similar answer candidates to boost the rank of redundant an-
swers is also important for answer selection. One popular ap-
proach is to cluster identical or complementary answers [15,
16]. Our recent work [4] proposed a unified probabilistic an-
swer ranking framework which combines different techniques
to validate answers and exploit answer redundancy for the an-
swer selection task. The results in this year’s TREC evalua-
tion demonstrate the effectiveness of this framework.

The evolution of answer type classification approaches
mirrors that of natural language understanding algorithms in
general: initial approaches consisting of handcoded rules [16]
or patterns [17] were followed by a variety of data-driven ap-
proaches based on simple [18] or complex [19] features, with
the occasional emergence of a hybrid algorithm [20]. While
a machine learning technique based on syntactic and seman-
tic features achieves one of the highest reported accuracies
(89.3%) for classifying English questions with fine granular-
ity (50 types) using a standard data set [19], it is also inter-
esting to note that Day et al. [20] report that combining a
rule-based classifier with a data-driven classifier yields higher
accuracy on Chinese questions than either approach used in
isolation. Notably absent is an empirical study comparing dif-
ferent global strategies for combining manually-encoded and
automatically-acquired linguistic knowledge for answer type
classification.

A simple but very effective approach for answering the
‘other’ questions has been introduced by Kaisser et al. [21].
Google is used to search for text snippets that contain the tar-
get of the question and the frequencies of the terms in the
snippets are counted. Assuming that frequent terms provide
important information on the target, answer candidates con-
taining these terms are assigned higher confidence scores. We
adopt a similar approach but use Wikipedia in conjunction
with Google to determine the term frequencies.

3. FACTOID AND LIST QUESTIONS

Our approach for factoid and list questions is based on a pipe-
line architecture consisting of components for question anal-
ysis, query generation, search, and answer extraction and se-
lection. While the pipeline layout has been described in some
detail in previous papers [2, 3], this section focuses on recent
extensions that were deployed for this year’s TREC evalua-
tion, including an improved answer type classifier (Section
3.1), a high-precision semantic answer extraction approach
that is based on semantic role labeling (Sections 3.2 - 3.5),
and a probabilistic framework for the combination and selec-
tion of answer candidates (Section 3.6).

3.1. Answer Type Classification

Classifying questions in terms of their expected answer type
is a crucial first step in automatic question answering. Some
QA systems rely solely on handcoded rules or heuristics to
determine the expected type of the answer, while other sys-
tems rely solely on automatically-learned patterns or proba-
bilistic models based on features to classify questions. For
this year’s TREC competition, we adopted a hybrid approach
that combines manually-encoded rules with a learned model.
The result of answer type classification is used downstream in
the Ephyra system to aid answer extraction and selection.



Answer Types
acronym language rate

angle legalSentence relation
birthstone location religion
bodyPart material score

causeOfDeath medicalTreatment size
color money socialTitle

creature musicalInstrument sport
crime musicType style
date nationality temperature

disease number time
dramaType pathogen timezone

drug percentage unit
duration profession url

food properName zodiacSign
frequency range

Table 1. Top-level answer types used in Ephyra.

3.1.1. Answer Type Hierarchy

A crucial but often variable aspect of answer type classifi-
cation is the answer (or question) typology used. Early QA
systems used a small set of coarse-grained types, but modern
systems, including Ephyra, usually use a larger set of fine-
grained types. Because of the underspecified nature of many
questions (e.g. Where is the conference? as opposed to What
city is the conference being held in?), the typology used is
usually a hierarchy, allowing for varying levels of granularity
in the classification. Ephyra uses a set of 154 answer types ar-
ranged in a hierarchy with 44 top-level categories, which are
shown in Table 1. The hierarchy was designed to cover an-
swer types frequently found in past TREC questions. Named
entity recognizers have been devised to extract candidate an-
swers of all of these types except for a few high-level cate-
gories such as food or event. We use the Stanford NE Recog-
nizer [22] to extract answers of the types person, organization
and location and rule- and list-based taggers we built for the
remaining types.

3.1.2. Features

The features we use for answer type classification fall into
three categories: lexical, syntactic, and semantic. They are
described in detail below. All of our features actually appear
as binary features when input to the learning algorithm.

Lexical Features

• UNIGRAM : Individual tokens present in the question.

• BIGRAM : Pairs of adjacent tokens in the question.

Syntactic Features

• FOCUS ADJ : The focus adjective or adverb of the
question; only applicable for how questions that ask
about the degree of some property, such as How fast
can whales travel?

• MAIN VERB : The main verb of the question, deter-
mined from the syntactic parse of the question using
Collins-style head rules.

• WH WORD : The question word.

• WH DETERMINER : Indicates whether the question
word serves as a determiner to the focus word.

Semantic Features

• FOCUS TYPE : The semantic type of the question fo-
cus word (e.g. city in Which city hosted the 2002 Winter
Olympics?); only applicable for questions with a wh-
word of what or which. The focus word is identified us-
ing a manually-compiled set of syntactic patterns which
are matched against a syntactic parse of the question.
The semantic type of the focus word is determined by

– traversing the WordNet hypernym tree for each
sense of the focus word,

– looking up each hypernym synset in a manually-
constructed, many-to-one mapping1 from Word-
Net synsets to a set of general answer types,

– adding any successful mappings to a set of candi-
date types, and

– selecting the candidate type which corresponds to
the hypernym synset with the shortest hypernym
tree traversal.

Consequently, an incorrect disambiguation of the focus
word sense is possible, although not common. If the
focus word’s semantic type cannot be determined using
this approach, the focus word itself is used as the value
of this feature.

3.1.3. Classification Approach

Initially, the above features were meant to be used for train-
ing a model-based classifier. However, given information as
predictive as the focus word type, focus adjective, and the
question word, the answer type classification task becomes
fairly straightforward. This motivated us to construct a sim-
ple rule-based classifier that tests the same features (including
BIGRAM and UNIGRAM). We also built a hybrid classifier
that combines the outputs of the model-based and rule-based
classifiers using their associated confidence scores.

1Similar in spirit to the use of WordNet for answer type classification in
[23].



Approach Acc. (%)
Model-based 72.38
Rule-based 68.18
Hybrid 79.02

Table 2. Performance of different answer type classification
strategies.

To compare these three approaches, we measured their
classification accuracy on TREC 13 questions, with questions
from TREC 8-12, 14 and 15 serving as training data for the
model-based classifier and as development data for the rule-
based classifier. The results are shown in Table 2. Because the
hybrid classifier outperformed both the model-based classifier
and the rule-based classifier, this is the approach we adopted.
In the final system used for this year’s evaluation, the model-
based component of our approach was trained on questions
from TREC 8-15.

3.2. Semantic Parsing of Questions

We augmented our answer type based and pattern based an-
swer extraction techniques [2, 3] with a semantic parsing ap-
proach that generates a semantic representation of the ques-
tion and extracts answer candidates from phrases in the corpus
that match this representation.

The semantic role labeling (SRL) system ASSERT was
used to label semantic structures in questions and the corpus,
using the PropBank inventory of semantic roles [10]. SRL
is a form of shallow semantic parsing that labels predicate-
argument structures consisting of a target verb, usually de-
scribing an event, and a set of arguments along with their
semantic roles in the event. For instance, the sentence The
CMU campus at the west coast was founded in 2002. con-
tains the predicate-argument structure

• TARGET: founded

• ARG1: The CMU campus

• ARGM LOC: at the west coast

• ARGM TMP: in 2002

where ARG1 refers to the patient or theme, ARGM LOC to
the location and ARGM TMP to the time.

Since SRL systems often fail to correctly label the seman-
tic roles in questions, we first transform the question string
into a statement, using a number of simple syntactic trans-
formation rules. An appropriate rule is selected based on the
interrogative pronoun of the question, adjacent prepositions
and noun phrases, and the expected answer type. Examples of
transformation rules are given in Table 3. For instance, apply-
ing the second rule, the question In what year was the CMU
campus at the west coast established? can be transformed
into the statement The CMU campus at the west coast was

• TARGET: established
TERM: established (NE Types: -)

Aliases: founded (Weight 0.8),
launched (Weight 0.7)

• ARG1: the CMU campus
TERM: CMU (NE Types: Organization)

Aliases: Carnegie Mellon
(Weight 0.9)

TERM: campus (NE Types: -)
Aliases: -

• ARGM LOC: at the west coast
TERM: west coast (NE Types: Location)

Aliases: -

• ARGM TMP: missing

Fig. 1. Semantic representation of the sample question.

established now. The phrase now is a placeholder for an ar-
gument that specifies the time and represents the answer to
the question.

ASSERT is used to extract predicate-argument structures
from the resulting statement. The placeholder argument is
dropped and the corresponding semantic role is marked as
missing, indicating that this is the information the question
is seeking. The arguments are further split into terms, which
are units of meaning consisting of one or more tokens (e.g.
”Carnegie Mellon”, ”west coast”). Terms are used for query
generation and expansion (Section 3.3) and to measure the
similarity between predicates in questions and corpus sen-
tences (Section 3.4).

We use our NE recognizers and WordNet lookups to ex-
tract compound terms from the predicate arguments. Word-
Net is also used to expand terms with semantically similar
concepts, following an approach similar to [9]. Each term
is mapped to a synset in WordNet and a breadth-first search
along WordNet relations identifies related synsets. We make
use of relations such as synonym, hypernym, hyponym, holo-
nym and meronym and restrict the search depth to a maximum
of two relations. The related terms are assigned confidence
values based on the relations on the path from the original
term, adopting the weights suggested in [5].

Figure 1 shows the semantic representation that is gen-
erated for the sample question In what year was the CMU
campus at the west coast established?

3.3. Query Generation and Expansion

We generate various types of queries, ranging from recall-
oriented queries such as bags of keywords to specific query
strings which retrieve text passages that closely match the
structure of the question:



Interrogative Pronoun Answer Type Transformation Rule
+ Adjacent Phrases
where any drop where, move auxiliary verb to main verb,

append placeholder argument here
[PP] + what + NP date, time drop [PP] + what + NP, move auxiliary verb to main verb,

or subtype append placeholder argument now

Table 3. Question transformation rules. [PP] refers to an optional preposition, NP to a noun phrase.

• Keyword queries are duplicate-free sets of the content
words in the question.
Example: CMU campus west coast established

• Term queries consist of the question terms (single to-
kens or compound expressions), expanded with seman-
tically related concepts.
Example: (CMU OR ”Carnegie Mellon”) campus
”west coast” (established OR founded OR launched)

• Predicate queries are formed from the predicate verb
and arguments.
Example: ”the CMU campus” ”at the west coast”
established

• Reformulation queries are obtained by rephrasing the
question into an answer pattern.
Example: ”the CMU campus at the west coast was
established in”

The above queries are used to retrieve text passages from
both the Web and the corpora used in this year’s TREC eval-
uation (AQUAINT2 and Blog06), and answer candidates are
extracted from both sources. The Web answers are matched
with the answers found in the corpora to identify support-
ing documents, following the answer extraction approach de-
scribed in [2].

We use Google to search the Web and the Indri search
engine, which is part of the Lemur toolkit [24], to retrieve
passages from the TREC corpora. For the top 100 Google
snippets, we fetch the entire Web documents and convert them
to plain text. Both the Web documents and the passages from
the corpora are segmented into sentences.

3.4. Extraction of Candidate Answers

Semantic parsing is a time-intensive task and not all of the
retrieved sentences are equally likely to contain an answer.
Thus we first narrow down the number of candidate sentences
before we parse them with ASSERT. A sentence is considered
relevant if it meets the following constraints:

• The number of tokens in the sentence falls between up-
per and lower thresholds that are typically satisfied by
a natural language sentence.

• The sentence contains the predicate verb from the ques-
tion or a semantically related verb.

• If the answer type of the question is known, the sen-
tence must contain an entity of that type.

• The sentence contains at least one additional term that
is semantically similar to a term in the question.

Sentences that pass the above tests are parsed and trans-
formed into a semantic representation similar to the one given
for the question in Figure 1. The semantic structure of each
sentence is compared to the question and a similarity score is
calculated as described in the following.

The term similarity of two terms t1 and t2 is defined as
the Jaccard coefficient of the sets of content words W1 and
W2 in the terms:

ST (t1, t2) := J(W1,W2) =
|W1 ∩W2|
|W1 ∪W2|

The expanded term similarity between an answer term
ta and a question term tq takes into account that each question
term t has related concepts R = {r1, ..., rn} with weights
w(r1), ..., w(rn):

SET (ta, tq) := max
t∈{tq}∪R

(w(t)× ST (ta, t))

where w(tq) := 1

The verb similarity of an answer predicate pa and a ques-
tion predicate pq is the expanded term similarity of the predi-
cate verbs va and vq:

SV (pa, pq) := SET (va, vq)

The argument similarity of an answer predicate pa and a
question predicate pq is determined by comparing the sets of
terms within the arguments of the predicates, denoted Ta and
Tq. We have extended the concept of the Jaccard coefficient to
take the semantic similarity of terms into account, rather than
just distinguishing between common terms and terms that ap-
pear exclusively in one set:

SA(pa, pq) :=

∑
ta∈Ta

max
tq∈Tq

(SET (ta, tq))

|Tq|+ count
ta∈Ta

(
max
tq∈Tq

(SET (ta, tq)) = 0
)



Each term in Ta is compared to all terms in Tq and the maxi-
mum of the similarity scores is computed. If the maximum is
larger than 0, then the term is assumed to be covered by both
predicates and the numerator of the coefficient is incremented
by this score, else the denominator is incremented by 1.

Finally, the predicate similarity of an answer predicate
pa and a question predicate pq is the product of their verb and
argument similarity scores:

SP (pa, pq) = SV (pa, pq)× SA(pa, pq)

This scoring mechanism has been designed to be flexible
and robust to parsing errors in order to maximize the recall
of the answer extraction. The idea of using a Jaccard coef-
ficient to measure the similarity of all arguments as a whole
was introduced in [9]. It takes into account that SRL sys-
tems often fail to assign the correct semantic roles to the ar-
guments, which makes a per-argument comparison infeasible.
We extended this idea to perform a fuzzy matching not only
for arguments but also at the level of terms.

If the confidence score of a predicate is larger than 0, it is
considered semantically similar to the question and one of the
following strategies is used to extract factoid answers:

• If the answer type of the question is known, entities of
the expected type are extracted from all arguments of
the answer predicate. This takes into account that SRL
systems often mislabel the arguments.

• If the answer type is unknown and the answer predi-
cate has an argument with the role that is missing in the
question, this argument is extracted as an answer.

The confidence score of an answer is the sum of the confi-
dence scores of all the predicates it was extracted from.

3.5. Score Normalization and Combination

The answer candidates retrieved with this semantic approach
are combined with candidates from our answer type based
and pattern based extractors [2, 3]. Since these extraction
techniques use different underlying scoring mechanisms that
produce incomparable scores, it is necessary to normalize the
confidence scores before merging the answers. We trained an
AdaBoost classifier [25] that uses a decision tree as the under-
lying weak learner to classify answer candidates into correct
and incorrect ones. The classifier is applied to unseen answer
candidates and the probability of the positive class is used as
a normalized confidence score. The following features were
used to train the classifier:

• Score assigned to the candidate by the extractor.

• Answer extractor that found the candidate.

• Predicted answer type(s) of the question.

• Number of candidates from the same extractor.

• Minimum and maximum score over all candidates.

For one of our runs, we used a simple score combination
scheme (known as CombMNZ [26]) to merge the normalized
scores of a candidate found by multiple extractors: The com-
bined score is the sum of the (normalized) scores from all
extractors, multiplied by the number of extractors that found
the answer. However, this technique was outperformed by
the more general answer selection approach described in the
following section, which was used for the remaining runs.

3.6. Answer Selection

The Answer Generator (AG) is responsible for selecting the
correct answers from the candidates produced by our answer
extractors. A statistical framework estimates the probability
of an individual answer candidate given a set of validation
features that predict its relevance according to external re-
sources, and a number of similarity features that exploit re-
dundancy among the answer candidates. The AG has been
described in detail in our previous work [4].

To estimate the relevance of an answer candidate, we use
four external resources. Gazetteers and WordNet are used in a
knowledge-based approach (e.g. to check whether a candidate
satisfies the relationship described in the question such as IS-
A(Shanghai, city) or IS-IN(Shanghai, China)). The Web and
Wikipedia are used in a data-driven approach. For instance, if
there is a Wikipedia document whose title matches the answer
candidate, the document is analyzed to obtain a tf-idf score,
which is used as a relevance feature. Web snippets are used
to calculate a word distance between an answer candidate and
question keywords.

To identify similar answer candidates found by different
extractors, we combine various syntactic and semantic sim-
ilarity features. String distance metrics such as the Leven-
shtein distance and the cosine similarity are used to measure
the syntactic similarity of answer candidates. A database of
synonyms was generated from WordNet, the CIA World Fact-
book and Wikipedia.

As we use three different approaches to extract answer
candidates, and each extractor sometimes produces more than
100 candidates, the AG only estimates probabilities for the
top 50 answer candidates from each extractor. The answer
candidates are then reranked according to these probabilities.
For factoid questions, the highest ranked candidate is chosen
as the final answer.

For list questions, we return all candidates with estimated
probabilities of at least 25% of the probability of the top an-
swer. In our experiments on previous TREC questions, we
first attempted to maximize the F1 score by returning all can-
didates with probabilities of at least 0.5. However, the proba-
bilities assigned by the AG turned out to be rather unreliable
estimates of the correctness of an answer candidate because



Fig. 2. Pipeline layout for the ‘other’ questions.

of the high variance of the original scores from our answer ex-
tractors. For instance, the score of the top answer was some-
times very low, which resulted in estimated probabilities be-
low the threshold of 0.5.

4. ‘OTHER’ QUESTIONS

Our approach for the ‘other’ questions uses answer projection
from the Web onto the corpora, picking up the idea of Kaisser
et al. [21]. However, we use Wikipedia in addition to Google
to retrieve terms that are important in the context of the tar-
get. A Google query can be ambiguous and the results may
be unrelated to the target, while we can retrieve information
from Wikipedia unambiguously by searching for an article on
the target. We furthermore assume that in the online encyclo-
pedia, users make sure the most relevant information on the
subject (target) is given in a concise and concentrated fash-
ion with little noise. For targets not found in Wikipedia, we
extract terms from Google snippets as a fallback solution.

For selecting the relevant snippets from the corpus, we
further deploy several of the filtering techniques introduced
last year [2] to eliminate nonsensical, redundant or irrelevant
information. The modular architecture of Ephyra enabled us
to evaluate various combinations of filters, parameterizations
and orders. In the following we describe the key components
of our pipeline, illustrated in Figure 2.

4.1. Snippet Retrieval

We first retrieve whole paragraphs from the corpora, using the
Indri IR engine from the Lemur toolkit [24]. As the initial set
of passages can be quite large, we run them through a number
of filtering mechanisms before selecting answer candidates:

Reduction of Snippet Size. In order to allow more fine-
grained filtering operations and to increase the precision of
our answers, we reduce the size of the passages as much as
possible. Previously reported results [27, 2], and an analysis
of the snippets that were judged vital or OK in past TREC
evaluations, led us to the conclusion that the most effective
answers are sentences or sentence fragments. Thus we split
paragraphs into sentences, and we further segment long sen-
tences into their atomic clauses (Figure 2, Filter 1). This helps
us to deal with additional material outside these clauses, such
as explanatory prefixes (e.g. ”PARIS (France) AFP ...”) and
indirect speech (e.g. ”Secretary Gates said that ...”). By re-
taining only clauses that contribute relevant information we
further increase the precision (Figure 2, Filters 2 & 3).

Elimination of Redundancy. In order to minimize the time
required for the Web-based scoring process, duplicate snip-
pets are eliminated. Semantic duplicates, i.e. snippets provid-
ing the same information with slightly different wording, are
detected with a bag-of-words comparison mechanism, which
stems content words and ignores stop words in the similarity
calculation (Figure 2, Filter 4).

Elimination of Useless Snippets. The snippets from the
AQUAINT2 corpus turned out to include two special types of
likely useless snippets, which mainly appear if the target is a
person’s name. In particular, these include long lists of proper
names without any further information, and snippets that con-
sist of a person’s statement in direct speech. We filter out lists
of proper names based on the observation that most of their
tokens are either stop words, or parts of a proper name and
thus capitalized (Figure 2, Filter 5). Our experiments on pre-
vious TREC questions proved that the risk of useful snippets
being lost to this filter is very low. Direct speech formulations
citing a person’s statement sometimes contain useful informa-
tion, but in general they deliver opinions rather than facts, so
we decided to also filter them out (Figure 2, Filter 6).

4.2. Snippet Selection

To select the actual answer snippets from the ones returned
by the retrieval and filtering step, we adopted the Web-based
approach proposed in [21] with Wikipedia as an additional
information source. We assume retrieving an article from
Wikipedia is considerably less ambiguous than retrieving text
snippets from a Web search engine using the target as a key-
word query. Only if we do not find a Wikipedia article, we use
Google as a fallback. Experimental results on past TREC data
encouraged us to use this combined approach. The complete
scoring process consists of several steps:

4.2.1. Query Generation

In order to become less vulnerable to different possible ways
of naming the target, we generate several different queries
from the target string, as proposed in [21]. In particular, the



generation process comprises two steps: First, we identify the
type of the target, using the Stanford NE Recognizer [22].
Second, we vary the target string using several modification
rules that depend on the target type:

• If the target contains a part enclosed in brackets, we
use the part inside and the part(s) outside as individual
queries.

• If the target contains a proper name, we use it as an
individual query.

• If the target is an organization, we produce variations
with and without determiner, and we produce an acro-
nym query from the organization’s name.

• For the Google fallback, we also generate quoted ver-
sions of all queries that consist of a proper name.

4.2.2. Web Term Retrieval

Since Wikipedia is our primary source of Web terms, we first
try to retrieve a Wikipedia article on the target. If that suc-
ceeds, we do not retrieve any further Web documents. Other-
wise, we try to retrieve articles on the parts we extracted from
the target during the query generation. If this fails as well,
we obtain the top 100 snippets from Google for each of our
generated queries. Once we have obtained all necessary Web
documents according to the policy above, we extract all the
terms from them and count their frequencies.

4.2.3. Snippet Scoring

Our scoring mechanism for the corpus snippets uses the gen-
eral method of score computation reported by Kaisser et al.
[21] (Figure 2, Filter 7), with the following refinements: (a)
A count decrease parameter indicates how the counter of a
term is decreased after it has contributed to the score of a
snippet that is actually selected. (b) We do not simply score
the snippets using the terms they contain, because this would
favor longer snippets over shorter ones. Instead we normal-
ize the score of a snippet using the logarithm of the number
of terms it contains. (c) We also found that using the plain
count of Web terms for computing the scores of the corpus
snippets over-weights common terms, while under-weighting
more specific terms. To compensate for this effect, we nor-
malize the term counters by the logarithm of the term’s global
frequency, which we obtain from a dictionary.

4.2.4. Answer Length

To make sure our answer snippets do not exceed the max-
imum of 7000 characters, we finally apply a filter that drops
all snippets after the top ones have a combined length of some

threshold ≤ 7000 (Figure 2, Filter 8). The relatively low im-
pact of precision might encourage to return the maximum al-
lowed number of characters, but our experiments with previ-
ous TREC targets revealed that with almost every parameter
combination for the scoring, the optimal total length of the
answer was 3000 characters. Consequently, we used 3000 as
the cutoff length.

5. EVALUATION RESULTS

We submitted 3 runs, differing in the answer selection ap-
proach and the corpora used for answer projection (factoid
and list questions) and to extract information nuggets (‘other’
questions). Ephyra1 exclusively used the AQUAINT2 corpus,
while Ephyra3 combined the AQUAINT2 and Blog06 cor-
pora and treated them as a single knowledge source. Ephyra2
deployed both corpora to find supporting documents for fac-
toid and list questions, but restricted the nugget extraction
for the ‘other’ questions to the AQUAINT2 corpus. In the
runs Ephyra1 and Ephyra3 the Answer Generator (AG, cf.
Section 3.6) was used to select and combine candidate an-
swers. Ephyra2 applied a simple score combination approach
to merge candidates from different extractors (cf. Section
3.5). Figure 4 shows our evaluation results and compares
them to the median over all 51 runs.

The best setup for factoid and list questions (Ephyra3)
projected the candidate answers found in the Web onto both
the AQUAINT2 and the Blog06 corpus and deployed the AG
to generate the final list of ranked answers. A comparison
to the runs Ephyra1 and Ephyra2 shows to what extend the
Blog06 corpus and the AG improved the overall performance.

For the ‘other’ questions, it proved most effective to ex-
tract information nuggets from the AQUAINT2 corpus only.
Ephyra1 and Ephyra2 were identical runs that restricted the
search to the newswire text. The nuggets extracted from the
Blog06 corpus in the run Ephyra3 rarely contained relevant
information on the target, but often they were meaningless
sentence fragments or not even natural language phrases.

6. FUTURE WORK

A major bottleneck of the previously described semantic ap-
proach for question analysis and answer extraction is the cov-
erage and reliability of the semantic parser. It has been shown
that by integrating multiple semantic role labeling (SRL) sys-
tems, the robustness can be improved significantly [28]. A
combination of SRL systems is particularly beneficial if the
systems use different syntactic parsers [29]. Yet there remains
a significant portion of questions and answer sentences with
semantic structures that do not fit into the schema of predi-
cate verbs and arguments. It would therefore be desirable to
cover a wider range of semantic structures such as the seman-
tic frames used in FrameNet [30].



Ephyra1 Ephyra2 Ephyra3 Median
(51 runs)

Corpora AQUAINT2 AQUAINT2 AQUAINT2, -
Blog06 (factoid, list) Blog06

Answer Generator yes no yes -
Unsupported (U) 28 21 23 -
Inexact (X) 18 18 23 -
Locally correct (L) 1 3 1 -
Factoid accuracy 0.206 0.203 0.208 0.131
List F1 0.140 0.123 0.144 0.085
Other F3 (pyramid score) 0.189 0.188 0.156 0.118
Average per-series score 0.181 0.171 0.172 0.108

Table 4. TREC 16 evaluation results.

Currently we do not pre-annotate the TREC corpora but
we build a full-text index and use simple boolean queries
for both the Web search and to retrieve text passages from
the corpora. By annotating the corpora with semantic in-
formation and integrating these annotations in the index, we
could (a) improve the runtime performance and (b) formulate
structured queries that combine evidence from different doc-
uments. For instance, one could search for all organizations
X in the corpora that satisfy the constraints imposed by the
predicate-argument structures based(ARG1: X, ARGM-LOC:
Japan) and manufacture(ARG0: X, ARG1: SUV) to obtain a
list of Japanese car makers that offer SUVs.

The Answer Generator can be further improved by incor-
porating additional features to validate individual answer can-
didates and to identify semantically similar answers among
the candidates. We will also need to conduct additional ex-
periments to determine a more flexible cutoff strategy for list
questions. Furthermore, we consider extending the AG to per-
form answer selection not only for factoid answers but also
for more complex answers such as the definitional phrases re-
trieved for the ‘other’ questions.

Extensions to our answer type classifier would include an-
alyzing precisely how the knowledge encoded by the rules
augments the knowledge contained in the training data, in the
hope of discovering whether it helps to resolve noise, cover
gaps, or do both. It also seems important to address questions
such as: How can we most effectively cover gaps in the data
with hand-crafted rules? How can we most effectively cover
gaps in the hand-crafted rules by learning from data sets that
target specific, variable aspects of language? Which of these
strategies yields the best performance? Are there general lin-
guistic principles that can guide the decision of whether to
treat a particular phenomenon using rules or data?

Experiments on past TREC data revealed that the effec-
tiveness of our answers to an ‘other’ question highly depends
on the choice of (a) the source of Web terms, (b) the param-
eter values for the scoring process, and (c) the cutoff length.
Therefore we need to thoroughly investigate characteristics of
the individual targets and find categories of targets for which

an individual combination of term source and parameter val-
ues yields the optimal result. We then need to find criteria for
assigning each target to a category, so that we can choose a
setup for our scoring mechanism accordingly. Furthermore,
additional filtering techniques and more robust parsing and
sentence segmentation approaches will be required to extract
useful information nuggets from resources with a high con-
tent of noise, such as the Blog06 corpus.
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