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As communication becomes
increasingly automated and
transnational, the need for
rapid, computer-aided speech
translation grows. The Janus-ll
system uses paraphrasing and
interactive error correction to
boost performance.
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ot very long ago, the possibility of being able to carrv on a tele
phone cenversation with someane who spoke a different fan-
guage appeared remote. Speech recognirion and machine
translation were rudimentary, and no one expected these two technolo-
gies to deliver acceptable performance.

The past 10 years, however, have seen tremendous advances in speech
recognition performance. The technology has progressed from speaker-
dependent, single-utterance, small-vocabulary recognizers (for example.
spoken digit strings, as in telephone numbers or zip codes) o speaker-
independent, continuous-speech, large-vocabulary dictation systerns with
word error rates of about 10 percent. Similar advances in machine trans-
larion have resulted in commercially available text translation products.

Advances in this area will have far-reaching effects. As information ser-
vices extend beyond national boundaries, database vendors will have o
provide speech access in multiple languages to serve customers from dif-

ferent language groups. Public service operators (for emergencies, police,

directory assistance, and so on) frequently receive requests from immi-
grants or visitors unable to speak the native language. Multilingual spo-

ken-language services are growing to meet this need. Telephone

companies in the US, Europe, and Japan now staff human operators who
offer language translation. AT& T's Language Line is an examiple. Movies
and television broadcasts are rourtinely translated and delivered either by
dubbing, subrites, or multilingual transcripts.

The drive to automate information services has revealed the need for
automated multilingual speech processing. Few commercial muitilingual
e. The major goals
are

+ spoken-language identification,

 multilingual speech recognition and understanding for human-
machine interaction, and

* speech translation for communication between humans.

Speech translation is the most ambitious goal because it requires greater
accuracy and detail during analysis than either of the other two, and it
must be able to track highly disfluent and colloquial conversational speech.
Translation of conversational speech therefore represents the ultimate
frontier for both speech and language processing and offers many other
potential benefits for speech and tanguage applications.

THE CHALLERGE OF SPEECH TRANMSLATICN
Although speech recognition and machine translation have both
improved, it has become increasingly clear that merely combining them
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annot produce geod speech translation. Continuous-
speech recognition has become possible withoutattempt-
ing to achieve perfect phuneme recognition {in fact,
phoneme accuracy stili ranges berween 50 and 70 per-
cent). Ohviou}v other factors enter into the solution,
cked inits

nurety. Closer ‘n\peu'on of actual spoken diaiogue ver
ifies this intuinion. Consider this fragment itom a conver-
sation between two Spanish speakers trying to agree on a
time to meet. A careful manual transliteration of the utter-
ance as acrually spoken is

which su s that the problem must be atta

ststel viernes diecinueve puedo st porque sabes me voy de
siaje d hov la verdad asi es que este mes es Imuy vidjero me
soy el dia seis de viaje v estoy hasta el doce asi que el dia

diecinueve me viene muy blen francamente . .

Running this utterance through a commercial text trans-
lation system (assuming perfect speech recognition) pro-
duces '

ves ves on friday nineteen can ves because know [ go me
of trip D today the truth such is that this month is very
wraveler 1 go me the day six of ip and I am until the twelve
as soon as the day nineteen comes me very weil outspo-
kenly

What went wrong? In the real world, people’s spoken
sentences are hardly ever well-formed and seldom obey
rigid syntactic constraints. They contain disfluencies,
including hesitations (“um,” “hmm”), repetitions (*. .. so
1,1, 1guess, what I was saying”), and false starts (... how
about we meeton Tue ... um . ..on Wednesday .. ."). Yet

ext thev are perfectly undersiandable to a human
ner. A successtul speech ir "AF\)HUQW svsiem, theretore.
cannot rely on perfect recognition or perfect svnrax.
Rarher, it must search for a semantically plausxblé inter-
pretation of the speaker’s intent whiie judiciously ignoring
linguisticaily unimportant words or fragments

Recognition errors and environmentai l".U\an*‘COUghs_
laughrer, a telephone ring, a door slam—exacerbate
preblem. Without proper treatment,
mistaken for part of the vocabul:
degrade the translation.

The dramatic vanation in speaking rate is another chal
lenge. Fast speech causes considerably higher error rates
because it involves more coarticulation, reduction, or eli-
sions between words.

Spoken dialogue does not consist of sentences in the
classical sense, nor are there punctuation markers tc
delimit sentences and clauses. Instead, each utterance i
fragmentary and each speaker’s turn often contains two ot
more sentences or concepts (. .. no, Tuesday doesn’t work
for me . . . how abourt Wednesday morning .
Wednesday the twelfth”). Even if there were punctuatior
markers, attempts to translate such fragmentary utter
ances would result in awkward ourput.

To provide useful speech translation, we must attemy
more than a sentence-by-sentence transiation: We mus
interpret an urrerance or extract its main intent. This ofte
invoives summarizing. Thus, we wish to “translate’
Spanish example above as . .. 'm availabie on Friday th
nineteenth . ...” Only through semantic and pragmat:
interpretation within a domain of discourse can we hop
to produce culrurally appropriate expressions in anothe
language.

tnis
these notses may be
rv and thereby greatly

Systems in the late ‘80s and early '90s were mtended
mainly to demonstrate the feasibility of speech translation.
Along with domain constramts they had a fixed speaking*
style, and vocabulary size and grammatlcal coverageWere‘
limited. Their system architecture usually handled speech“
recognition, language analysis and generation, and speech

style. Each partner butlds complete system S or component‘

; exchange and

" Additional members jomed as partners ‘or affiliates: ETRI
(Korea), IRST (italy), LIMSt{(France), SRt (UK), ln’{tndna)DFKl g

synthesis in the target language sequﬂntmﬂv Deve!oped at«
industrial and academrc institutions, these systems repre-
sented a modest yet significant first step toward multilin-
gual communication. Early systems include mdependent
research prototypes developed by ATR,! AT&T,2 Carnegie
Mellon University and the University of Karlsruhe,? NEC‘
and Siemens AG. ;
Most speech translation systems were deve!oped through
international collaboration that provided cross-linguistic "

expertise. For example, the Consortium for Speech Translation ™
Advanced Research, or C-STAR, arose from a partnership:=

comprising ATR Interpreting Telephony Laboratorie ’(now
just Interpreting Telephony’ Laboratories) in’ Kyo apan;
Carnegie Mellon University in Pittsburgh; ‘Siemens'AG in

Munich; and the Urm/ersr‘y of Karlsruhe in Karlsruhe, Germany

(Germany), and meoin Labs M!T and AT&T in the US Stl"

tla’uves ‘One of the1argest :sVe
I sponsored by BMFT, “the. German Mmistry for Scxence and
Technology, that involves 32 research groups. e N
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JARMUS-II—A CONVERSATIONAL-SPEECH
TRARMSLATCR

Janus' was an early speech-translation svstem devel-
oped at Carnegie Mellon University and the University of
Karisruhe in the late '80s and early '90s. in partnership
with ATR in Japan and Siemens in Germany. {See the side-
bar “Other speech translation efforts” for additional back-
ground.) Mv colleagues and [ at both sites have extended

Janus to handle more advanced tasks. Results from rhese
efforts now contribute to ongoing spoken-language-trans-
lation efforts in the US (Project Enthusiast) and Germany
(Project Verbmobil). The first version of our spoken-lan-
guage translator, Janus-I, processed only svntactically
well-formed speech (speech that was read) using a small
(500-word) vocabulary.

Janus-1I operates on spontaneous conversational
human dialogue in limited domains with vocabularies of
3,000 or more words. Current experiments involve
10,000- to 40,000-word vocabularies. It now accepts
English, German, Japanese, Spanish, and Korean input,
which it translates into any other of these languages.

Beyond translating syntactically well-formed speech or
carefully structured human-to-machine speech utter-
ances, Janus-il research has focused on the more difficult
task of translating spontaneous conversational speech
between humans. This naturally requires a suitable data-
base and task domain.

Task domain and database

To systematically explore spoken-language translation,
we needed a database for training, testing, and bench-
marking. To be realistic and practical, the chosen task
domain had to require translation between humans try-
ing to communicate with each other, as opposed to tasks
that involve human-machine information retrieval.

The first step is choosing a symmetric negotiation dia-
logue—conversation containing some give and take. A
task domain with this kind of dialogue is appointment
scheduling, as proposed in the Verbmobil project.? To elicit
natural conversations that are nonetheless contained and,
more importantly, comparable across languages, we have
devised sets of calendars with constraints that get pro-
gressively more complex and generate additional conflicts
between speakers. We asked subjects to schedule a meet-
ing at their own pace and to express themselves however
they wanted.

To build our database, we recorded and transcribed
these dialogues. Working in an office environment, par-
ticipants typically pushed buttons to activate the record-
ing. The recordings were transcribed carefully and
double-checked to ensure that all acoustic events {includ-
ing repetitions, false starts, hesitations, and human and
nonhuman noises) were transcribed and listed in the tran-
scripts as they occurred in the signal. Several sites in
Europe, the US, and Asia are now collecting and tran-
scribing data in this fashion. We have collected more than
2,000 English-language dialogues encompassing about
half a million words. Various sites have collected some-
what smaller databases for German, Spanish, Korean, and
Japanese.

Figure 1 shows how vocabularies grow as a function of
the number of words spoken. A quarter of a million words

1
|
8,000 " N
| ’ | & Korean
7'000r / . ® German
o 6000 /. b u Spenisn
E 5 000 ,‘“ o Engiisn |
> 7 r 0/ . © Japanese!
oz —
2 4,000 3§ P
£ 3.0001/ -
v 4 /"" -
s 2,000 j f'/r A o
L S
1,000 5 :
ot | i . ; . i | f g
520 60 100 :140 - 180 ::220 . 260

ds $poken (in thousands)
scheduling task

Figure 1. Domain vocabulary size as a function of
database size. The rate of vocabulary growth
differs by language.

spoken in English produces a domain vocabulary of about
3,000 words. In spontaneous speech, a system dictionary
cannot achieve full coverage even at that level, because
there will always be new words to contend with. The fig-
ure shows rapid growth in vocabulary size for Japanese,
Korean, and even for German. These languages generate
many more variants from root forms than English and

must be broken down into subunits. Thus, a strategy of

using full-form “word” entries in the dictionary is appro-
priate for English and Spanish, possible for German, but
inappropriate for Japanese and Korean.

System description

The key to speech translation is finding a way to deal
with uncertainty and ambiguity at every level of process-
ing. For example,

» aspeaker will produce ill-formed sentences,

» noise will surround the desired signal,

« the speech recognition engine will make errors,

» the analysis module will lack coverage, and

» withour dialogue and domain constraints, an utter-
ance’s meaning may be ambiguous.

Janus-1l was designed to deal with these difficulties bv
successively applying all sources of knowledge—from
acoustic to discourse—to narrow the search for the most
plausible translation. Two approaches appear possible:

¢ Provide feedback (backtracking) from later knowl-
edge sources to earlier knowledge sources.

* Mainrtain a list or a graph of possibilities at each stage
and narrow these possibilities as each subsequent
knowledge source is applied.

We selected the second approach, mainly for its effi-
ciency. It does not require backtracking or repeating
earlier processing stages. In principle, it allows for incre-
mental speech translation—that is, continuous recogni-
tion and rranslation, potentially while the speaker is
speaking.
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2ime

¥ tive spoken- -language translation.
The system uses language- independent modaules.

Figure 2 shows a Janus-Il system overview. The main
system modules are speech recognition (the recognizer),
parsing, discourse processing (contextual disambigua-
tion), and generation. Each module is language- indepen-
dent in the sense that it consists of a general processor that

can be loaded with language-specific knowledge.

Spepch s accepted rthrough a signal processing front

d. which uses signal-enhancement techniques to filter
or normalxze stationary background noises. Nonstationary
human and nonhuman noises, such as lip smacking,
coughs. doors slamming, or telephones ringing, must be

explicitly modeled as “garbage” words and then removed.
So that we do not have to create a model for every con-
ceivable noise, a clustering algorithm reduces these noises
to seven prototypical noise-garbage categories.

Given a pronunciation dictionary, the recognition mod-
ule then generartes acoustic scores for the most promising
word hypotheses. [t uses hidden Markov models (HMMs)
and HMM-neural net hybrid technologies combined with
statistical language models® to try to produce the most
robust recognition performance.

In lieu of the best recognition hypothesis, the Janus-II

Computer

recognition engine returns a laciice Ta rznk-orde red st

of near-miss hypothesis [Tagments Grgaiized 45 4 g

This graph is then reduced by a lattice 2rocessor that has

rwo funcnons

' : 3
+ Eliminate redundantor Vil"pr(\(]l_i’gi,\.%j attzrndtives,

such as ares that v difierent nowe-y

avpotheses (We assy on Delween sueh

noise aiterna T"U(\T{)p‘hi)ﬂ(‘

tap—nhas no bearing on transl:

« Break a long utterance into usable smatler sublattic
using rouyn prosodic cues such as pauses and hesi-

rations.

The shorter, reduced lattices are then passed te the lan
guage analysis module {semantic parser in Figure 2). Unlike
Janus-I, which relied heawil iy on syntactic analysis, Janus-1l
is almost exclusively. This approach

employs semantic analy
obtains a robust interpreranon of meaning inspite of poorty
formed expression and input recognition errors. Janus-Il
uses several parsing approaches: A semantc pattera- base-.
chart parser {Phoenix), and GLR* {generalized LR¥), a sto-
chastic, fragment-based extension of an LR parser. Both
employ semantic grammars and derive a language-inde-
pendent representation of meaning—an Interlingua.

The Interlingua approach has three main advantages:
First, it aims ro reduce the output sentence’s dependence
on the input language’s structure. What matters is the
intent of the inpur, regardless of how 1U's expressed. Janus
Il can now map sentences like “I don’t have time or
Tuesday,” “Tuesday is shot,” or “l am on vacation Tuesday’
to the same intended meaning—"1 am unavailable or
Tuesday’——and generate an appropriate sentence in the
output language. Even culturally dependent expression
can be translated in a culturally appropriate fashion. Thus

“Tuesday’s no good” could be transiated into Japanese a
“Kayoobi-wa chotto tsugo-ga warut " literally, “As fo
Tuesday, the circumstance is a little bit bad.”

The second advanrage of the Interlingua approach i
the comparative ease with which additiona al languages ca:
be added. Thus, only one outrput generator must be wrlt
ten for each new ourput language. as opposed to adding a
analvsis and a generation 1 module for each ianguage pat

The third advantage is thatitis easy {o generate outpt

n any language. Being able to generate an outpur 4tte
ance in the input language lets us paraphrase the inpu
With this very important feature, the user can vert
whether an input utterance was properly analyzed. Spee
translation thus becomes more practical, because use
probably don't know if an output translation in
unknown language is correct.

Semantic representations in natural language proces
ing have, of course, heen studied extensively over
years, leading to a number of Interlingua-based textirar
lation systems.*” We find the use of an Interlingua-bast
approach particularly advantageous for translating spo
taneous speech, because spoken language is less wr
formed syntactically and less reliable; however. the sen
tics are typically more contained.

For each recogniton hypothesis the recognizer generat
the semantic parser performs a semantic analysis, result
in a lattice of meanings. Naturally, not every recognitl
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pothesis will result in a different semanuc hvpothesis. nor

\\nl everyvrecogniuon mpmm’vb be semanucally plausibie.

Thus. after semanuc analvsis

ewer hvpotheses will remain.
Semaritic anaivsisin the J amwﬂ svstem is provided by one
of several parsing schemes. as | describe later.

After parsing, the svstem can apply a discourse proces-
SOr ot contexruai hu mbigu

nto the remaining seman-

makes 1t possibie to incorporarte

e hwo neses
additonai considerauon of the context or discourse state

when selecting the most appropriate meaning rom the
[nterlingua lattice. To select this meaning, Janus-{i can use

plan-based inference mechanisms,

+ statistics of turn-taking patierns (conditioning the
current meaning on previous dialogue states), and/or

+ adialogue finite-state machine.

» discourse-

We can obtain the proper weighting of each disambiguating
strategy bv rraining statistics over a large training database.

After disambiguation, an appropriate expression is
generated in the output language, followed by speech
synthesis in the output language. For synthesis, Janus-1
resorts to commercial synthesis devices or builds on the
speech svnthesis research work of partners in the project.

RECOGNIZER. The baseline Janus-[{ recognizer uses two
streams of coefficients derived by performing a linear dis-
criminant analysis over mel-scale spectral features and
power and silence features. [t uses a three-pass Viterbi
decoder, continuous-density HMMs, cross-word triphones,
and speaker adaptadon. Channel normalization and explicit
noise models reduce stationary background noise or non-
stationarv human noises (brearhing, smacking of lips) and
nonhuman noises {doors siamming, phones ringing).

In trying to enhance overall system performance, we
continue to improve the underlying speech recognition
and translation strategies. Especially because we need to
rearrange and redeploy our recognizer for different ian-
guages and tasks, we wish to automate many system
design aspects to minimize the experimental effort when
tasks or ianguages are changed.

We've recenty achieved improved results through th

ollowing strategies’

* Data-driven codebook adaptation. These are methods
aimed at automatically optimizing the number of
modeling parameters.

Dictionary learning. Because of the variability in pro-
nunciation, dialect variations, and coarticulation phe-
nomena found in spontaneous speech, pronunciation
dictionaries must be modified and fine-tuned for each
language. We use dara-driven methods to save time
and effortand to improve performance.

* Morpheme-based language models. For languages
characterized by a richer morphology and greater use
of inflections and compounding than occur in
English, more suitable units than the “word” are used
for dictionaries and language medels.

* Phrase- and class-based language models. Words that

belong to word classes (Monday, Tuesday, Friday) or

frequently occurring phrases {for example, “out-of-
town,” “I'm-gonna-be,” “sometime-in-the-next”) are

discovered automatically by cluster

and added tc a dictionary
or minigrammars
* Special subvocabulares.”

is special words, phiases

To avoid confusion. s
subvocabularies {for example. conunucus speiing
for names and acronyvms) are processed 0 4 second
classtfication pass using connectionist models

PARSER. We use two mMain parsing sirategies

work: the Phoenix spoken-language parser
robust parser.

Phoenix spoken-language svstent.® This svsiem was
extended to parse spoken-language input into slots in
semantic frames and then use those frames to generate
outpuc in the target ianguage. On the basis of schedul-
ing-dialogue wranscripts, we have developed a set of fun-
damental semantic units that represent different
concepts of the domain. Typical expressions and sen-
tence patterns in a speaker's utterance are parsed into
semantic chunks, which are concatenated without
grammatical rules. Because it ignores nonmatching
fragments and focuses on important key phrases. this
approach is particularly well suited for parsing sponita-
neous speech, which is often ungrammadcal and subject
to recognition errors. Generation based on conceptual
frames is terse but delivers the intended meaning.

* GLR* Parser.® For a more detailed semantic analysis,
we also pursue GLR*, a robust extension of the
Generalized LR Parser. This strategy attempts to find
maximal subsets of an input utterance that are
parsable, skipping over unrecognizable parts. Using
a semantic grammar, GLR* parses input sentences
into an [nterlingua, a language-independent repre-
sentation of the inputsentence’s meaning. Compared
with Phoenix, the Interlingua generated by GLR* pro-
vides a greater level of detail and more specificity—
for example, different speaker attitudes and levels of
politeness. Thus. transiation can be more natural,
overcoming the telegraphic and terse narure of con-
cept-based translation. Because GLR* skips over
unparsable parts. it must consider a large number of
potentially meaningful sentence fragments. To con-
trol the combinatorics of this search. GLR* uses sto-
chastic parsing scores and prebreaking of the
incoming lattices to reduce the ambigutiry. GLR' nas
greater computational requirements but prod
more detailed translation.

Performance evaluation

We devised several measures to evaluate the perfor-
mance and relative progress of speech translator devel-
opment. Thus, we evaluate Janus-1l on three levels:

Speech recognition rate. We measure this by counting
substtution, deletion, and insertion errors over a pre-
viously unseen test database.

» Semantic analysis based on transcripts. For this to be
measured, a “desired” Interlingua representation (the
reference) must have been established over a new test
set. This approach is subjective and requires consid-
erable manual labor.
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Figure 3. Performance results shown as percentages
for the recognition (a) and translation {b) of

Spanish conversational dialogues within a domain.

» End-to-end translation accuracy based on transcrip-
t{ons and recognizer input. Each clause or conceptual
fragment (not each turn) represents an event for eval-
uation. This avoids undue weighting of short confir-
matory remarks (“That's right,” “OK,” and so forth).
Three (human) judges then determine whether the
output is “good,” “acceptable.” or *bad.” Acceptabl
means an utterance was translated awkwardly hut
still transmits the intended meaning. Utterances
established as “out-of-domain™ are u)umed asaccept-
able if they produce an acceptable translation

nonetheloss, orif they are rejecied as out-of-domain

stherwise. they are counied as vad

Figure 3a shows recognition results obtained during

recent development of a Spanish conversational rransia-

thatipinal 1

TOr ! main. We see

0N aCCUr ClO'-.'\.l'ﬂlSwS'DZHV
insutficient d ]
CAd Cvmonal.\ e rCS'" 5
culty of processing mersdno.q‘ i
ple. Such dialogue is highly J'S.F
coarticuiated, varies considerably in speaking rate. and
contains manv mere short, pooriy arniculated words than
human-machine speech or speech that is read. Other
research teams have also expenmced this on similar con-
versational tasks. For example, on the Switchboard task
database. higher perplexity and the additional ditheulty of
telephone bandwidth resultin current word accuracies of
only 60 percent. But when speakers know they are ratk-
ing to a computer rather than conversing with each other,
berter than 80 percent accuracy can be observed in the
scheduling domain.

Figure 3a also compares speech collected using a pusi-o-
taik swutch versus free cross-talk dialogues. While both rep-
resent human conversation, cross-talk appears to result in
even less well articulated speech and thus is more difficult
to recognize and translate than push-to-talk speech. For
other languages (English, German. Japanese), Janus-UI cur-
rently delivers similar word accuracies of 70-plus percent.
In recent evaluations carried out by the Verbmobil project
using five different recognition engines, 70 percent accu-
racy was the best achievabie for conversational German.

Figure 3b shows the result of end-to-end speech transla-
tion performance over a set-aside test set (data not used to
train the system). The results were obtained by scoring the
translations produced by three different grammars from
three different moments in the development cycle. The
same test set was used to test all three grammars (of course.
without any development in the interim). Reassuringly
translation accuracy was found to improve with grammare
of greater coverage. Figure 3b shows that by using the twe
parsers, Phoenix and GLR*, translation accuracie:
approaching 85 percent can be achieved for transcribec
spoken language and up 1o 74 percent when using the out
put from the recognizer (recognition errors inciuded).

Table 1 compares cross-talk and push-to-talk condinons
In both cases the test was carried out using the Phoent:
parser over several previously unseen test sets. Humar
translators report that translating rap'dAﬁre rurn-taking
spontaneous dialogue is unacceprably difficult. On th
basis of these reports, we predicted that cross-talk speec
would also be much harder to recognize and translate b
machine. Since we mus
compare results from du

gue between peo

[
ent and heavily

Table 1. Performance comgarison for push-to-talk and aoss-talk dialogues between humans.

T ferent test dialogues {wir
considerable variability |

performance) to check th

Speech recognition Translation Speech-to-speech prediction, we note that
Acenrasy of transcript @anS‘?ﬁ,OP,- precise comparison unde
Push-to-talk data TN o 74% 52% o equal conditions is n
Cross-talk data 70% = 5 81% 73% possible. Within our tat
‘ domain and over multip
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i : 4. Janus-i! speech transiator in a videoconfer-
con ; encing environment. Translation, appearing visually
18K ; as subtities as well as by synthetic acoustic output,
iy or ‘ vide e speech 1 is obtained in about real time. The user controis the
55‘1” E janon. and simuitaneoes digl asiauon. system through buttons on a touch-sensitive
atk %: display. Vocabulary size is between 1,000 and 3,000
t(h.&' E words per language.
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Figure 5. instead of a
camera, this "tourist” is

wearing a speech trans-

lator with a microphone

fernative modahines can and a head-mounted

heads-up dispiay. See-
through goggles facili-

”“A'Ch‘ v ad Portable speech tate an oveclaid display
b By translation of transiation cutput.
”Uf’r‘ its a somew hat more benizn user iKing stvle | con- The Janeite svsi  Alternatively, acoustic
: d”" versational speech t Janus-1L sona 7 5-MbEz m iay output can be presented
L To exploit this opportuniny for error cor top with 32 Mbyre 3 by earpiece. Current
iy in exploring several for recovering from human  takes about twice as iong to transiate ar speed is still four times
< this and machine lude repair by respeaking, wee as Janus-11. As Figure . slower than real-time,
fata 2.4 by handwriting as alterna- nerte can be carried in a knaps and the system’s vocab-
ndex ive redundant modes of human-computer interaction.  Translation is presented either throughan  ulary had to be reduced
not One or rwo tries are rypically enough for recovery. The 2Ce Or QN 3 We The  to 500-plus words per
HAsK sistance.  heads-up display shows vionin language from alimited
Lipre nrions. textiormonsee-throsgl ' domain.
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whtitles under the face of the per-

lSel £0

allowing the z
son he or she is talking to. Presenting translauon results

rhis way allows grearer throughput, as the rranslation can
be viewed without interrupting the speaker. While
acoustic output may allow for feedback with the system.

a simultaneou QI\« presented i visual rranstation may pro-

vide greater communication speed [he human raciors of

such new devices await turcher study in actual neld use
Passive simultaneous dialogue translation

The language interpreting svstems described so tar offer
the opportunity for feedback. verification. and correction of
transiation berween two willing and cooperative parties. Not
every situation affords this possibility, however. Conferences
among many users, foreign TV or radio broadcasts, or simul-
raneous translation of speeches or conversations are pas-
sive, uncooperative translation situations in which the
speaker cannot verify the translation. Also, with conversa-
tional speech. this kind of translation may be particularly
difficult, as it requires processing of speech between people,
greater coarticulation, and potentally more difficult turn-
taking protocols. Indeed, the rapid succession of sometimes
overlapping turns makes the cognitive planning of a trans-
lation particularly difficult for humans trying to translate
conversational dialogue.

THE RESULTS REPORTED in Table 1 for cross-talk and push-
to-talk dialogues suggest that the cognitive limitations
human translators experience do not hold for machines:
Two separate speech-translation processes can operate
easily in separate dialogue channels and produce transla-
tions that keep up with the spcakers Our lab has installed
a conversational translator that slices turns at major break-
ing points and sends the corresponding speech signals to
an array of five processors that incrementally generate
translations during a human conversation (again, two sub-
jects negotiating a meeting). Despite the disfluent nature
of such an interactive and rapid conversation, conversa-
tional dialogues within this domain can be translated
accurately more than 70 percent of the time. |
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