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Institut für Theoretische Informatik, U
Am Fasanengarten 5, 76131 K

{wolfel|fuegen|shajith|

Abstract
In this work, we present our progress in multi-source far field auto-
matic speech-to-text transcription for lecture speech. In particular,
we show how the best of several far field channels can be selected
based on a signal-to-noise ratio criterion, and how the signals from
multiple channels can be combined at either the waveform level
using blind channel combination or at the hypothesis level using
confusion network techniques to improve the accuracy of a far
field lecture transcription system. Using the techniques described
here, we ran a series of experiments on the test set used by the US
National Institute of Standards and Technologies for the RT-05S
evaluation. For the multiple distant microphones (MDM) task of
RT-05S, our system achieved a word error rate of 38.5% which
represents an improvement of over 13% absolute compared to the
best reported results in the RT-05S evaluation.
Index Terms: far-distance, automatic speech recognition

1. Introduction
Ideally, automatic speech recognition systems working on lecture
or meeting tasks operate on data recorded from distant micro-
phones, freeing users from wearing body-mounted microphones.
If applied wisely a combination of microphones can improve the
performance over a single one. Therefore, an important effort in
current speech research is focused on the processing of speech
from multi-source far field microphones. This problem is surpass-
ingly difficult, given that the speech signals collected by a varying
number and types of microphones are severely degraded by both,
background noise and reverberation and that their locations are un-
known. As in many real-world applications, microphone arrays
with known and fixed geometries are not be available, we focus in
this work on speech recorded by several randomly placed table-top
microphones. Furthermore, the chosen material is challenging on
other aspects: lecture speech varies in speaking style from freely
presented to read, comprising spontaneous events as well as hyper
articulation [1]. The evaluated corpus contains mainly non-native
speakers of English, some not even fluent.

Section 2 describes the development of a baseline system at
the Universität Karlsruhe (TH). Section 3 covers in detail differ-
ent multi-source selection and combination techniques. Section 3
presents and discusses a variety of speech recognition experiments
and section 5 concludes the findings.

2. Task Description and Baseline System
The evaluated NISTs RT-05S lecture meeting data [2], selected un-
der the European Commission integrated project CHIL [3], Com-
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rs in the Human Interaction Loop, which aims to make sig-
ant advances in the fields of speaker localization and tracking,
ch activity detection and distant-talking ASR, presents signif-
t challenges to both modeling components used in automatic
ch recognition (ASR), namely the language and acoustic mod-
With respect to the former, the currently available lecture data
arily concentrates on technical topics with focus on speech
vision research. This is a very specialized task that contains
y acronyms and therefore is quite mismatched to typical lan-
e models currently used in the ASR literature. Furthermore,

he acoustic modeling side, large portions of the data contain
taneous, disfluent, and interrupted speech, due to the inter-
e nature of seminars and the varying degree of the speakers’
fort with their topics. In addition to the latter difficulty, the
inar speakers exhibit moderate to heavy German or other Eu-
an accents in their English speech.
Three evaluation conditions using different type and number
icrophones were defined for RT-05S lecture data:

• MDM Multiple Distant Microphones

• SDM Single Distant Microphone

• IHM Individual Head-set Microphone

The SDM condition can be derived from the MDM condi-
by disregarding all but one centrally-located channel for each
ting, which was specified by NIST in the task description. Us-
this channel, however, did not necessarily result in the lowest
ible single-channel word error rate. A description of the sys-
used for the IHM condition is not given here, but can be found
ügen et al [4].
The above problems are compounded by the fact that not
gh data is available for training new language and acoustic
els matched to this lecture task, and thus one has to rely on
ting existing models that exhibit gross mismatch to the data.
rly, these challenges present themselves in both close-talking

rophone data, as well as far-field data captured using table-top
rophones, where of course they are exacerbated by the much
rer quality of the acoustic signal.
A detailed description of the room layout, data collection, la-
ng as well as some preliminary experiments on the far field
rophones can be found in [5].

Vocabulary Selection and Language Model Training

dictionary contains 58,695 pronunciation variants over a vo-
lary of 51,731. We used a 4-gram language model, which
eve a perplexity of 130 on the NIST RT-05S lecture meeting
. More details can be found in the system description [4].

September 17-21, Pittsburgh, Pennsylvania



2.2. Acoustic Pre-Processing

For the extraction of speech features we have used two different
front-ends. One is identical to the one used in the RT-04S meet-
ing evaluation [6] based on Mel-frequency cepstral coefficients
(MFCC). The second uses a warped minimum variance distortion-
less response (MVDR) spectral envelope [7] of model order 30.

Both front-ends provided features every 10 ms (first pass) or
8 ms (following passes) obtained by the Fourier transformation
followed by a Mel-filerbank or the warped MVDR. No filterbank
was used in the warped MVDR case as the warped MVDR enve-
lope already provides the properties of a Mel-filterbank, namely
smoothing and Mel-frequency warping of the spectral estimate.
Vocal track length normalization was applied either in the linear
domain, MFCC, or in the warped frequency domain. The MFCC
models used 13 cepstral coefficients while for the MVDR mod-
els the number of cepstral coefficients has been increased to 20.
Thereafter, the mean and variance of the cepstral coefficients were
normalized, and seven adjacent frames were appended, resulting
in a feature of either 195 Mel-frequency or 300 warped MVDR
cepstral coefficients. These features were then reduced to a final
length of 42 by applying linear discriminant analysis (LDA) and
a global semi-tied covariance (STC) transform.

2.3. Acoustic Model Training

The speech recognition experiments described below were con-
ducted with the Janus Recognition Toolkit (JRTk), which was de-
veloped and is maintained jointly by the Interactive Systems Lab-
oratories at the Universität Karlsruhe (TH), Germany and at the
Carnegie Mellon University in Pittsburgh, USA.

Both, the MFCC and warped MVDR systems were trained in
the same way, resulting in a size of 16,000 distributions over 4,000
models, with a maximum of 64 Gaussians per model. For faster
turn around times we have optimized our system on close talk-
ing and later adapted the close talking models to far field by four,
MFCC, or two, warped MVDR, additional Viterbi iterations on the
close talking models using far field data. Details of the training
procedure can be found in [4].

3. Multi-Source Selection and Combination
To develop the reliable and computationally efficient combination
strategy presented here, we briefly review signal and text com-
bination techniques, and discuss their advantages and disadvan-
tages. We then explain how these strategies can be augmented by
a signal to noise ratio (SNR) criterion applied on an utterance and
speaker basis to select the utterances or channels per speaker to be
combined. We show that a selection based on SNR can improve
recognition speed as well as accuracy. Last but not least we give
a signal combination in conjunction with text combination strat-
egy which can increase the accuracy over either of the techniques
with a limited amount of extra computation compared to the signal
combination and a huge reduction of computation time compared
to text combination techniques.

3.1. Signal Combination: Blind Channel Combination

To perform automatic transcription of seminar recordings made
with far field microphones, it is necessary to separate the voice of
a single speaker from the background noise to improve the sig-
nal quality, and therefore the recognition accuracy. There exists a
large literature on various blind source separation techniques [8]
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claim to be able to solve this problem. To the knowledge of
urrent authors, however, such techniques have never been suc-
fully applied to the problem of automatic transcription of the
of speech encountered in the NIST RT evalaution. A sim-
approach suggests itself, however: assuming the speech on
icrophones is correlated while at least some of the noise is
rrelated, we can simply sum up all channels pre-shifted by

r relative estimated time delays of arrival (TDOA) and divide
he number of channels N to attenuate the noise. To estimate

DOA, we can maximize

R12(τ) =
1

2π

π

−π

Gx1,x2(ω) ejωτ dω (1)

the generalized cross correlation (GCC)

Gx1,x2(ω) =
X1(e

jωτ )X∗
2 (ejωτ )

|X1(ejωτ )X∗
2 (ejωτ )| (2)

mprove the estimate of the TDOA under realistic conditions
re correlated noise is present we have subtracted the cross-
elation of the averaged noise where N1 and N2 is estimated at
ime no speech is present [9]:

G(ω) = Gx1,x2(ω) − N1(e
jωτ )N∗

2 (ejωτ )

|N1(ejωτ )N∗
2 (ejωτ )| (3)

Signal Combination: SNR Based Channel Combination

ot all channels have similar quality for different utterances or
kers it might not be sufficient to weight the channels equally.
e literature it was suggested to weight the channels by their
values. Even though this approach led to a small improve-

t in SNR per speaker and recognition accuracy we found that a
bination of only the best channels led to better results in SNR
ell as accuracy. To decide which channels should be used

combination, we compared SNR values over all channels on
tterance basis and divided by the best SNR value. This ratio
NRs was then compared to a threshold and the correspond-
channel was chosen if the value was above the threshold. On
data we found that a threshold of 0.95 led to the best result
NR, an improvement of 2 dB. Hence, our selection rule was,
se channel X if

SNRX

maxchannel (SNRchannel)
> 0.95

reafter, this combined channel was compared to all single
nels on a speaker basis and the channel with the best SNR
e was chosen as the final channel. These steps are depicted in
ray boxes numbered one, two and three of Figure 1.

Text Combination: Confusion Network Combination

fusion networks reduce the complexity of lattice representa-
s to a simpler form that maintains all possible paths from the
ce, but transforms the space to a series of slots which each have
d hypotheses (and null arcs) and associated posterior probabil-
. Therefore, by combining the hypotheses or lattices of the
e time segment of recognition runs on different microphones
a single word confusion network the networks can be used to

mize the word error rate (WER) over different microphones by
cting the word with the highest probability in each particular
[10].
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3.4. Text Combination: SNR Based Confusion Network
Combination

The mayor drawback of confusion network combination is a very
high computation load as an individual adaptation and recognition
is required for every available channel. Hence, the overall compu-
tation grows linearly with the number of available channels. In this
section, we aim on reducing the amount of computation time by se-
lecting channels and utterances which might lead to an additional
improvement in word accuracy over the best single channel (note
that the best single channel could be a combination of more than
one physical channel). To decide which channels and utterances
should be used we once more compare the normalized SNR val-
ues. Only those utterances and channels are decoded which have
a value above 0.9 for the speaker and 0.8 for the utterance. These
steps are depicted in the gray boxes numbered one, four and five of
Figure 1. This strategy yielded an overall reduction in additional
decoding effort of 70% as compared to decoding over all channels
with no increase in word error rate.

3.5. Dual Combination

Both, the blind channel combination (BCC) and the confusion net-
work combination (CNC), approaches have their advantages and
disadvantages and on a variety of experiments no clear decision
can be taken which of the approaches is leading to the best pos-
sible performance. To profit from both techniques the combined
channel has to be added as an additional channel to the confusion
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4. Speech Recognition Experiments
the preliminary experiments scored in WER without overlap,
le 1, we have used an unadapted one pass system with the
DR front-end and slightly worse language and acoustic mod-
s in later experiments. For the BCC system we see nice gains
g a threshold; e.g., we gain 3.8% by a threshold of 0.9. For
CNC system we can observe a small improvement in word
racy, 0.4% for a threshold of 0.9, by decoding only on an lim-
numbers of additional utterances and channels if compared
e decoding over all utterances and channels. Combining the
approaches are leading to the best numbers, again we profit
deleting bad utterances and channels chosen by a threshold,

peed as well as in accuracy. Note that in this case the lower
shold of 0.8 is leading to a better result.

For the following experiments three passes of decoding are
essed on automatic segmentation. Automatic segmentation
clustering steps for MDM and SDM are the same, except for
fact that in MDM a best single distant microphone (BSDM)
hosen by the SNR measure. The resulting segments from

entation are further tagged with speaker labels using a hier-
ical agglomerative speaker clustering technique as explained
1].

The first decoding used speaker based incremental VTLN es-
tion and incremental FSA. The following decodings were
2
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Figure 1: Flowchart of channel combination. Solid lines show the flow of the audio files while dotted lines are float values (SNR or values
between zero and one). The dashed lines stand for word hypos.



Combination WER

Cutoff 0.0 0.8 0.9

BCC 61.0% 57.7% 57.2%
CNC 58.5% 58.3% 58.1%
BCC & CNC 57.5% 56.6% 56.9%

Table 1: Word error rates (WER)s for different channel combina-
tion techniques and cutoffs.

Spectral Estimation WER

Pass 1* 1 2 3

Fourier 53.2% 49.3% 44.0% 41.8%
warped MVDR 52.3% 49.3% 43.0% 40.2%
CNC 50.9% 46.9% 42.0% 39.0%
+ all channels - - 38.7%
+ selected channels - - 38.5%

Table 2: Word error rates (WER)s for channel combination. Pass
1* has used an SNR based weighting, all other passes have used
the proposed selection of channels.

adapted on either confidence-weighted hypothesis of the MVDR
system, for the MFCC front-end or on confusion network com-
bined confidence-weighted hypothesis for the MVDR front-end
with maximum likelihood linear regression (MLLR), VTLN and
FSA.

The first and second pass in Table 2 uses only the SNR based
BCC approach. On the final pass the combined SNR based BCC
and SNR based CNC approach is leading to an improvement of
0.5% over the SNR based BCC approach. By comparing the single
channel WER of Table 3 with the mutiple channel WER of Table 2
we see a significant gain by using multiple far field microphones
wisely over a single far field microphone. If we apply simple blind
channel combination we don’t see gains over the single channel.
This is consistent to the numbers published by ICSI [12] last year.

On preliminary results of the RT-06S lecture evaluation data
the proposed system shows a similar improvement between the
MDM and SDM condition, which is significantly higher than the
improvements reported by other sides.

5. Conclusions
The paper has presented our progress in multi-source far field au-
tomatic speech transcription. Based on the SNR selection we were
able to improve in speed as well as in accuracy over our previous
system. In addition to this we have successfully combined the two
different combination approaches with further improvements over
the single approaches with limited additional decoding time.
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Spectral Estimation WER

Pass 1 2 3

Fourier 52.9% 48.2% 46.4%
warped MVDR 52.6% 47.4% 44.8%
CNC 50.9% 45.9% 43.4%

Table 3: Word error rates (WER)s for single channel
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