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Zusammenfassung

Voice activity detection (VAD) bezeichnet den Prozess, bei dem festgestellt wird,
ob in einem Tonsignal menschliche Stimmen hörbar sind. VAD kann als Vorver-
arbeitungsschritt bei der automatischen Spracherkennung zum Einsatz kommen.
Einen interessanten Einsatzbereich stellen die Tonspuren von Filmen dar. Auf
Grund der oft vielfältigen Hintergrundgeräusche, insbesondere auch Hintergrund-
musik, ist die Erkennung von Stimmen auf diesen schwierig. Gleichwohl könnte
ein robustes VAD System Bestandteil eines zuverlässigen Systems zu automatischen
Transkription und möglicherweise Untertitelerstellung sein.

Traditionell bildet die sorgfältige Zerlegung von Tonsignalen zur Erstellung kom-
plexer Merkmalsvektoren die Grundlage von VAD Systemen. Obwohl Klassifika-
toren auf Grundlage von Standardmerkmalen an Bedeutung gewonnen haben, stellt
die Suche nach geeigneten Merkmalen noch immer einen aktiven Forschungszweig
dar.
In dieser Arbeit werden gewöhnliche Mel-Frequenz Cepstralkoeffizienten (MFCCs)
mit einigen exotischeren Merkmalen verglichen. Die besten Ergebnisse werden hier-
bei mit MFCCs erzielt, allerdings nicht unabhängig von den Hintergrundgeräuschen.
Es wird gezeigt, dass 40-dimensionale MFCCs die besten Ergebnisse mit nicht-
musikalischen Hintergrundgeräuschen liefern. Ist allerdings Hintergrundmusik vor-
handen, führen 64-dimensionale MFCCs zu den besseren Ergebnissen.

Aktuelle VAD Systeme nutzen Neuronale Netze als Klassifikatoren. In dieser Ar-
beit werden ein System, welches ausschließlich aus bi-direktionalen long short-term
memory (BLSTM) Schichten besteht, und ein System, welches aus einer Mischung
aus frequency shifting time delay neural network (FSTDNN) und BLSTM Schichten
besteht, verglichen. Letzteres beinhaltet hierbei so genannte gated FSTDNNs mit
dilation. Dabei führt das kombinierte System zu geringfügig, besseren Ergbenissen.
Die erzielten Ergebnisse sind konkurenzfähig zu anderen aktuellen Forschungsergeb-
nissen.

Durch eine gründliche Erkundung von Eingabemerkmalen, neuronalen Architek-
turen und Parameterkombinationen wurde ein VAD System gefunden, das der Zielset-
zung entsprach: Robust bei schwierigen Hintergrundgeräuschen, insbesondere in
Gegenwart von Musik. Die Ergebnisse erlauben es, das System auf ein bestimmtes
Ziel hin zu optimieren. Daher könnte das beschriebene System als Teil eines Sprach-
erkennungssystems getestet werden.



Abstract

Voice activity detection (VAD) is the process of determining, whether human voice
can be heard in an audio stream. VAD can be used as a preprocessing step for
automatic speech recognition. One interesting source of audio recordings are the
audio tracks of movies. These pose a particularly difficult challenge, because of
the high level and diversity of background noise, including music. Robust voice
activity detection could be one part of a reliable automatic transcription or subtitle
generation system. This makes searching for a robust VAD system a challenging
but worthwhile pursuit.

Traditionally, careful decomposition of the audio signal, yielding complex acoustic
features, was the foundation of VAD. Although classifiers based on standard features
have become more important, suitable input features are an area of active research.
This work compares standard Mel-frequency cepstral coefficients (MFCCs) with
some more exotic features. MFCCs show the best performance, but not independent
of background noise. For non-musical background noise, 40-dimensional MFCCs are
found to best detect voice activity. However, in the presence of background music,
64-dimensional MFCCs yield better results.

Contemporary VAD systems use neural networks as classifiers. In this work, a sys-
tem consisting of solely bi-directional long short-term memory network (BLSTM)
layers, and a system consisting of a combination of frequency shifting time delay
neural network (FSTDNN) and BLSTM layers are compared. The latter incorpo-
rates so called gated FSTDNNs with dilation. The combined system yields the
better performance, even if only by a small margin. The reported results are on par
with contemporary research.

A thorough exploration of input features, neural network architectures and para-
meter combination yielded a VAD system that met the requirements: Robust under
difficult background noise conditions and especially so when music is present. The
results allow for the system to be optimized for a chosen task. Thus, the proposed
system could be tested as part of an automatic speech recognition system.
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1 Introduction

Voice activity detection (VAD) is the process of detecting whether one or more
human voices can be heard within an audio stream. It differs from speech activity
detection (SAD) slightly as the latter requires the heard voices to produce intelligible
speech, while the former also applies to non-speech articulations like sighs[HSN19].
However, one has to be careful as this fine difference is not always adhered to in
literature. Speech/music discrimination on the other hand is the process of differen-
tiating whether a given recording or frame from an audio signal contains (primarily)
speech or music. This work proposes a VAD system capable of detecting not only
voice activity but also differentiating whether there’s noise or specifically music in
the background.

1.1 Motivation

VAD can be used as part of systems for voice transmission, speech enhancement,
automatic speech recognition (ASR) and related applications. This work focuses on
VAD in media, especially audio tracks of movies. These are particularly difficult,
as background noise is common and varies heavily. Background noise may include
car and machinery noises, nature sounds, even gunshots and a myriad of different
other sounds depending on the plot of the movie. Such a variety poses a difficult
problem when trying to estimate the attributes of the encountered noise in the cho-
sen feature space [HSN19]. Another challenge is the omnipresent background music.
While discrimination of music without vocals from speech can be achieved by using
carefully selected features [SS97], music with vocals is very similar to speech and
requires more sophisticated approaches [CG01]. Despite the described difficulties
the research on VAD under such circumstances is worthwhile. The archives of tele-
vision stations all around the world are filled with almost a century worth of voiced
movies. Unfortunately, for most of them no transcripts exist. This hurts the pos-
sibility to search them by topics properly, or to generate subtitles. The generation
of subtitles is especially interesting as those could be reasonably translated to make
these archives of human culture available to people outside the sprachraum of the
original production. Notably, this is not limited to historic movies, but extends
to lots of smaller contemporary productions lacking the means for subtitling and
translation. Because of the sheer amount of movies, annotating voice activity by
hand is not feasible. Thus a VAD system which is robust under the movie specific
circumstances is required.
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1.2 Approach

The general approach to VAD is to first split an audio stream into reasonably sized
frames for preprocessing. Subsequently fitting features are extracted from these
frames. These are fed into a classifier for the actual VAD decision. Those decisions
may be performed per recording or per frame of limited duration. The output might
either be a label per recording or a label per given time range within in the recording.
Usually 10 ms are the smallest used range, being the duration of a typical extracted
audio frame [HSN19; EWSS13]. Longer spans are used but less common[LWS15].
Another possible output are the endpoints of voice activity[CLS+17].

This work is aimed at performing VAD on a frame-wise basis, providing either these
labels or endpoints as output during inference. Strictly speaking, the aim of this
work is an extension of the VAD problem. VAD is a binary classification problem
whether voices can be heard or not. This work aims at further annotating the nature
of background noise, discriminating between music and other noises as well as clean
speech. When designing a VAD system there are three important considerations:
First, which features to use. This was the main area of research for early VAD
systems and still is an actively pursued topic. Carefully handcrafting features is one
possibility, [CWW14] lists several contemporarily used features. Another possibil-
ity is to directly learn features from raw waveforms [ZSSP16]. Recently, the most
common approach is using standard features like Mel-frequency cepstral coefficients
(MFCCs) and a more complex Classifier [HSN19; KSI18; GG18]. The proposed
system also uses MFCCs. The multi-resolution cochleagrams (MRCGs) [CWW14]
introduced 2014 are used for comparison.

The second consideration is how to classify a given feature vector. While a lot of
different classifiers have been proposed, most contemporary work focus on NNs. A
NN based on BLSTMs is thoroughly explored in this work. Different numbers of
layers and sizes of hidden layers are examined. Further analysis is conducted in
search of the optimal scheduler during training and the best way to combine the
directions of the BLSTM. Furthermore, following [LMHK20], an attempt was made
to incorporate an attention mechanism into the system. The WebRTC VAD [Goo20]
is used as a baseline for the VAD performance of the proposed systems. Notably,
the system proposed in this work is not a “pure” VAD system, as it is not a binary
classifier but knows four possible classes.

The third consideration is which data should be used for training, development and
testing. The AVA-corpus [CRE+18] is well suited to develop and test a system
addressing the problem described above. It features four classes: clean speech,
speech with music, speech with noise and no speech. Different smoothing techniques
were tested as well.

1.3 Overview

The remainder of this work is split into eight chapters. Chapter 2 describes the
concepts and technologies used in this work. Subsequently, some corpora of interest
to the areas of VAD and SAD are outlined in chapter 3. Their usefulness to this
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work is evaluated and the decision to mainly use the AVA-speech corpus is justified.
Chapter 4 starts with a short history of VAD and speech/music discrimination before
providing an overview on some contemporary approaches to VAD. In chapter 5, the
systems proposed in this work will be described in theory. Some information on
used technologies and software is also located there. The conducted experiments are
illustrated in chapter 6 and the results discussed in chapter 7. Finally, chapter 8 will
wrap up this work and give an outlook on the most promising possible continuations
of this work. A glossary and list of acronyms are appended.



6 CHAPTER 1. INTRODUCTION



2 Fundamentals

With the general idea and purpose of voice activity detection (VAD) systems cov-
ered, this section will outline the necessary fundamentals for a contemporary VAD
system. The descriptions follow the flow of data in a VAD system. First, the pre-
processing and feature extraction are described, followed by the structure of the
classifiers. Afterwards, the training process for the classifiers is described. The post
processing steps are outlined next, and the chapter is ended with a description of
the metrics used for evaluation.

The recording as the step before the preprocessing will not be covered here. This is
due to the fact that voice activity detection in the presence of music, the ultimate
goal of this work, is primarily aimed at media audio. Therefore the recording settings
are diverse and in no way controlled by the system or its user.

2.1 Preprocessing

The first step for performing VAD and related tasks is the preprocessing of the in-
put audio signal. Preprocessing towards voice activity detection can be approached
in different ways. Some historical methods and notable techniques from recent
works mentioned in chapter 4. For the predominant neural network based voice
activity detectors the most frequently used inputs are Mel-frequency cepstral coef-
ficients (MFCCs). Recently multi-resolution cochleagrams (MRCGs) as introduced
by [CWW14] led to some promising results. Both are used in the systems proposed
in this work and thus outlined subsequently.

2.1.1 Mel-frequency cepstral coefficients

MFCCs have been around for over forty years [DM80] and are regularly described in
textbooks [KLW19, pp. 121 sq.], [SDD19, pp. 54 sqq.]. Descriptions differ slightly,
yet the general procedure remains the same. The following explanation is aimed at
being consistent with the implementation. A depiction (fig. 2.1) is also enclosed.

Humans do not actively perceive the phase of a signal [PNHR88]. Therefore, after
sampling and quantization, the first step of preprocessing usually is to transform the
signal to a representation in the frequency domain[KLW19, p. 371]. For MFCCs, as
for different other features, this is achieved by performing a discrete fourier transform
(DFT) over short windowed excerpts of a signal [SS12]. The windows should be short
enough to reasonably assume the signal to be stationary within [KLW19, p. 373],
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Figure 2.1: Procedure to generate MFCCs from signal waveform [Cho18]

typically 10 ms to 30 ms [SDD19, p. 54]. To extract the windowed excerpts, called
frames, the signal waveform is multiplied by a sliding window function. Hann or
Hamming windows, two closely related cosine-sum windows, are the most commonly
used window functions for this purpose [KLW19, p. 373].

The spectrogram is derived from the squared magnitude of the DFT. The result-
ing spectrogram is then passed through several Mel scaled triangular filters. The
Mel scale is aimed at measuring the different frequencies as perceived by humans
rather than equally spacing the filters according to the actual physical frequencies.
[KLW19, p. 372-74]

Subsequently the Mel filter bank log energy (MFLE) is calculated for each filter.
To retrieve the actual MFCCs a linear transformation of the MFLEs is needed to
increase robustness and decorrelate the features. The most commonly used is the
discrete cosine transform. The resulting cepstrum’s amplitudes are the MFCCs.
[SS12]

Details concerning the actually chosen parameters can be found in subsection 5.3.1.

2.1.2 Multi-resolution Cochleagrams

Multi-resolution cochleagrams are a relatively recent feature introduced in [CWW14].
The composition, along with some standard parameters, are depicted in fig. 2.2.

Multi-resolution cochleagrams are based on cochleagrams as described by [PNHR88].
Those are psychoacustically motivated representations of a signal. They are based
on gammatone filters and spaced according to the equivalent rectangular bandwidth
(ERB). The ERB is a coarse approximation of the sensitivity of the cochlea to
different frequencies. The cochleagram itself is aimed at representing the movement
of the basilar membrane. [PNHR88; CWW14]

Multi-resolution cochleagrams are aimed at encoding the context of an audio frame
directly into a single feature matrix. Just as for MFCCs the frames are windowed
excerpts, but for the cochleagrams they are chosen to have a slightly shorter du-
ration. The MRCGs consist of four 64-dimensional vectors. First, cochleagrams
with a window size of 20 ms and a shift of 10 ms. The second vector also consists
of cochleagrams, but derived from significantly longer frames of 200 ms. The shift
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Figure 2.2: Procedure to generate MRCGs from signal waveform

between the frames stays the same, so the number of derived vectors along a record-
ing is also identical. The third vector consists of the averages of a square window of
size 11x11 across the first cochleagram and those of the neighboring frames. Zero
padding is used at the lower and upper frequency borders of the cochleagrams as
well as on the temporal borders of the window. The fourth vector is constructed in
the same way as the third, but with a window size of 23x23. [CWW14]

2.2 Neural Networks

A neural network is composed of small processing units, often called neurons, and
weighted connections between them [Gra12, p. 13]. The naming derives from the
history of neural networks (NNs) as approximations for the inner workings of the
brain. Although NNs are in most cases not aimed at explicitly imitating the brain
anymore, the names stuck [GBC16, p. 169].

Each processing unit has an activation function, which determines the output of
that unit given the weighted sum of the inputs. Because “any combination of linear
operators is itself a linear operator” [Gra12, p.16], nonlinear activation functions like
the sigmoid (σ) or hyperbolic tangent (tanh) function (eq. (2.1)) are used. These
are also differentiable, an important property to be trainable using gradient decent
[Gra12, p. 16]. Gradient descent is described in section 2.3.1. Because there is a
linear transform between σ and tanh any function that can be approximated by a
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Figure 2.3: Feedforward and recurrent NN [Gra12, p. 14/21]

NN with sigmoid activation functions can also be approximated by a NN with hy-
perbolic tangent activation functions [Gra12, p. 15]. NNs are usually organized in
so-called layers. Although in theory a single layer with sufficient units can approx-
imate any function, in practice multilayered architecture need far less parameters
for sufficiently exact approximations [GBC16, p. 198].

σ(x) = 1
1 + e−x

tanh(x) = e2x − 1
e2x + 1

=⇒ tanh(x) = 2σ(2x)− 1

(2.1)

2.2.1 Feedforward Network

A network with connections only from one layer to the next is called feedforward
network [Gra12, p. 14]. Such a network is depicted in the left half of fig. 2.3.
For historical reasons such networks are sometimes called multilayer perceptrons
(MLPs). Depending on the number of hidden layers, such a network might also be
called “deep”. However, the number of hidden layers to consider a network “deep”
is not properly defined and subjected to change [KLW19, p. 154].

2.2.2 Softmax

The softmax function can be used to convert the output activation of a classifier
into a probability distribution. It is defined as

softmax(zi) = ezi∑
j e

zj
(2.2)

with z being a vector consisting of one real value per class. After applying the
softmax function, the values in the resulting vector are all between 0 and 1 and add
up to one, i.e. they resemble a probability distribution. The softmax function is also
derivable. Therefore it is often used as a final layer in a NN. [GBC16, pp. 184–187]
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2.2.3 Time Delay Neural Networks

Time delay neural networks (TDNNs) were introduced in [WHH+89] for phoneme
recognition. The idea is to train a network to recognize patterns useful to the task
at hand and then shift it over the input along the time axis.

Every step each of the hidden units is fed with the activation of the input layer from
the current or a previous time step. Another interpretation of this architecture is
a weight pattern being convolved with the contents of a sliding window over the
input. Thus, it is possible to achieve time invariance and an efficient incorporation
of context information. [LWH90]

The weight patterns are often called “filters”. Originally, they were moved exactly
one step at a time. However, moving them further is possible, and the corresponding
parameter is called the “stride” If there are gaps between the inputs of a filter, the
network is called “dilated”. The “dilation” then is the number of steps between each
input. Thus, a dilation of one denotes a non-dilated network, a dilation of two gaps
of one input step and so on. [KLW19, pp. 264 sq.]

TDNN based architectures are widely used for VAD systems, often arranged in
several layers [CLS+18; War17; SSVC17]. If the filter kernel of a TDNN is shifted
not only along the time, but also along the frequency axis, the corresponding network
is considered a frequency shifting time delay neural network (FSTDNN). Introduced
by [IW90], these systems are widely used for VAD applications [HSN19; ZSSP16;
CRE+18], especially when little to no preprocessing is conducted.

The input to a TDNN can be padded. Padding describes the process of adding
additional values at the borders of the input. The most common approach is to add
zeroes, consequently called zero-padding. The motivation is as follows: Consider an
input of width W , a filter with I inputs, stride S and dilation D, and a padding P .
The width of the output N can then be calculated as

N = W − (F ∗D) + 2P
S

+ 1 (2.3)

Thus, padding is a convenient way to trim the size of the output of a TDNN.
[KLW19, p. 264]

2.2.4 Long Short-Term Memory

Long short-term memory networks (LSTMs) were first introduced by [HS97]. They
are a type of recurrent neural networks (RNNs), depicted in the right half of fig. 2.3.
Because of the recurrent connections, RNNs are capable of encoding previously seen
information in the state of the NN itself [Gra12, p. 20]. Thus, temporal dependencies
in sequences of arbitrary length can be exploited for predictions [GBC16, pp. 373 sq.].

However, with each time step especially training gets more difficult because of the so
called “vanishing gradient problem” [Gra12, p. 32]. This results from the properties
of the backpropagation through time algorithm. For details on that algorithm see
section 2.3.1. The problem however is, that with increasingly long training sequences
the gradient of the error resulting from wrong predictions gets very small, as it
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is backpropagated through the network. Because the weights of the network are
adjusted depending on said gradient, the learning process becomes extremely slow.
[Hoc98]

One solution to this problem is the LSTM architecture. A single LSTM cell is
depicted in fig. 2.4. The distinctive feature are the three gates. The input gate
controls how much of the input is added to the cell’s internal state in each time
step. The forget gate controls how much of the previous state is preserved. The
output gate controls to what extend the current state is propagated. The net input
denotes the flow of information from the input of the network or the layer below the
given unit into it. The net output denotes the flow towards the subsequent layer or
the output of the network. All three gates calculate their activation from weighted
sums over the current input, the previous output and the previous cell state. As
for other NNs, these weights are the learnable parameters of the system. Because
the gates control the change of the activation of a given unit, each cell is capable of
preserving an activation and its gradient. Thus, the vanishing gradient problem is
much less of a concern. [Gra12, pp. 33 sq.]

A special case of LSTMs are bi-directional long short-term memory networks (BLSTMs).
Standard RNNs process the given sequence in the order in which it is presented.
Thus, they only make use of the past, also called right, context of a frame for the
corresponding prediction. However, if the left, also called future, context is already
known at computation time, it can be utilized as well. [GBC16, pp. 394 sq.]

To make use of both past and future context, two RNNs are used. One processes
the sequence in the forward direction, starting with the first frame. The other
processes the same sequence in the inverted, backward direction. Both are connected
to the same subsequent layer. Bi-directional RNNs (BRNNs) have been found to
consistently outperform their unidirectional counterparts, thus only BLSTMs will
be used in the proposed system. [Gra12, pp. 22 sq.]

2.3 Training

The process of fitting the weights in a NN to a specific problem is called training.
The weights are adjusted using the gradient descent and the backpropagation algo-
rithms. Too achieve this, an error function, representing how bad the current model
represents the training data is needed. In this work, the cross-entropy loss is used.
Schedulers like Adam or squared mean over root mean squared cubed (SMORMS3)
can be used to control the speed of the training process. The remainder of this sub-
section describes the mentioned techniques in detail. [GBC16, pp. 374 sqq.][KLW19,
pp. 41 sqq.][Gra12, pp. 4 sqq.]

2.3.1 Gradient Descent

The most popular approach to optimize NNs is gradient descent [GBC16, pp. 151 sq.].
Therefore, an objective function (see section 2.3.3) is derived with respect to the
network weights. During training, the weights are then adjusted slightly in the
directions of the negative slope of the gradient. [Gra12, p. 18]
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Figure 2.4: A single LSTM cell [Gra12, p. 34].
The small blue circles represent multiplicative units. The big red circle represents
the constant error carousel (CEL). The activation of the cell is preserved via the
self connection of the CEC. The forget gate is linked to this self connection as to

dampen activation considered not useful. [HS97]

The classical gradient descent algorithm calculates the error gradient on the entire
training data. However, modern training sets tend to consist of lots of training
samples. Thus, calculating the predictions and the resulting error of the entire set is
time consuming. To keep the training reasonably fast, the weights are updated after
a part of the training data has been consumed. This is possible because the gradient
calculated from a reasonably large subset of the training data, drawn at random,
is a sufficient approximation of the gradient calculated from the whole set. This
technique is known as online or stochastic gradient descent (SGD). The subsets
of the training data are commonly called minibatches. [Gra12, p. 18] [GBC16,
pp. 151 sq.]

2.3.2 Backpropagation

A neural network generates its output by first calculating an activation in every
unit of the input layer. This activation is then used as input to the following
layer, and so on until the output layer calculates the output. This process is called
forward propagation. In the same way the error derived from the objective function
can be propagated from the output layer towards the input. This process is called
backpropagation. The error with respect to each individual weight can be calculated
by repeatedly applying the chain rule. Thus, the weights of a multi-layer NN can
be adjusted effectively. [GBC16, p. 294] [RHW86]
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The training of RNNs is a special case. Because of the recurrent connections, the
activation and the gradient of a unit depend not only on the current input, but also
on the previous input. To train such networks an algorithm called “backpropagation
through time” is used. The recurrent network is treated like a very deep network
with weight sharing. This representation is called the unrolled computational graph.
Along this graph, the gradient can be propagated. [GBC16, pp. 384 sqq.]

2.3.3 Cross-entropy Loss

One error function fit for gradient descent is cross-entropy loss [GBC16, p. 226].
Sometimes it is also, more descriptively, called the negative log likelihood [KLW19,
p. 162].

Let x be an input frame, q(x) the corresponding label, represented as a one-hot
encoded vector, and p(x) the corresponding prediction. In the multinomial case,
both q(x) and p(x) have one entry per possible class c ∈ C. The cross-entropy
loss for all samples x ∈ X can then be calculated with eq. (2.4). In the binary
case, having two outputs is not necessary. As the output of a classifier should be
a probability distribution, it is sufficient to provide one probability p(x), the other
then is 1 − p(x). In that case the label q(x) can be represented as either 1 or 0.
Thus, the second sum becomes superfluous and eq. (2.5) is sufficient as objective
function.

CELmul = −
∑
x∈X

∑
c∈C

q(x) ln p(x) (2.4)

CELbin = −
∑
x∈X

q(x) ln p(x) (2.5)

2.3.4 Schedulers

One important consideration in SGD is how to choose the step size by which the
weights are adjusted. It is necessary to adapt this value to achieve convergence
reasonably fast [GBC16, p. 294]. An algorithm used to control this value is called a
training scheduler.

Adam [KB17] is one very popular scheduler. Because the gradient is calculated
with respect to each individual weight, an individual stepsize may be chosen as well.
Adam does so by keeping track of the previous adjustments of the weights. Thus,
a momentum for each individual weight can be calculated, avoiding oscillations.
[GBC16, pp. 308 sq.] [KB17]

Another, similar algorithm is SMORMS3 [Sim15]. Like Adam, it is based on
RMSProp [GBC16, p. 308]. SMORMS3s main assumption is, that although the
mean of the gradient approaches zero when close to a minimum, the noise need not
to. Additionally, the learning rate is tied to the denoising factor to keep it “the
(known) scale of the parameters themselves than in the (relatively unknown) scale
of the gradients” [Sim15].
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2.4 Postprocessing

The output of the classifier consists of class probabilities for each class and time step.
One goal of postprocessing is to incorporate knowledge not properly learned by the
classifier into the final decision. For example, some kind of smoothing, keeping
the final decision from oscillating between classes, can be useful. Another goal of
postprocessing is tailoring the output towards the subsequent tasks. For automatic
speech recognition (ASR) some superfluous noise frames are tolerable. Clipping
on the other hand is problematic. Therefore, a threshold shifting the output to
either under- or overestimate the presence of voice activity can be useful as well.
Subsequently, the tested postprocessing techniques are outlined.

2.4.1 Padding

All smoothing techniques discussed in this section rely on a smoothing window. An
important consideration when working with windows is how the algorithm should
behave at the borders of the input. Otherwise the smoothed output might be dis-
torted towards the borders or consist of less values. One way to avoid this is to
pad the input with additional values. Zero padding, i.e. adding a fitting number of
zeroes on both sides preserves dimensionality, but may still distort the result. The
alternative used in this work is called “mirror” or “reflect” padding. The padded
values are mirrored versions of the input on the other side of the original border.
The left and right padding are denoted in eq. (2.6). w is the context width, i.e. the
width of the context window to both sides of the current frame. n is the length of
the input. The padded input is the concatenation of left pad, original input and
right pad.

left pad: p(x−t) = p(xt), t ∈ [1..w]
right pad: p(xn+t) = p(xn−t), t ∈ [1..w]

(2.6)

2.4.2 Continuous Smoothing

One straightforward approach to smoothing is mean-smoothing the class probabili-
ties along the time axis. This is achieved by replacing each class probability by the
result of a multiplication of itself and its neighboring frames with a window function
as denoted in eq. (2.7). A hamming window [SDD19, p. 46] was used in this work
and is assumed in the formula. w is the context width, i.e. the number of frames
to both sides of the current frame to be considered during smoothing. W = 2w + 1
is the total width of the smoothing window, including the central frame. xt is con-
sidered the current frame, p(xt) its unsmoothed probability and p̂(xt) the smoothed
probability. Each probability is multiplied by a corresponding entry of the smooth-
ing window. The sum is then divided by the sum of the smoothing window alone.
This is important because if the general magnitude changed, the output would no
longer resemble a probability distribution over the possible classes in each frame.

p̂(x) =
∑n=W
n=0 0.54− 0.46 cos 2πn

W−1p(xt−w+n)∑n=W
n=0 0.54− 0.46 cos 2πw

W−1
(2.7)
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2.4.3 Thresholding

During training some loss function, in this work the cross-entropy loss (CEL), be-
tween the ground truth and the prediction of the network is minimized. The resulting
predictions do not necessarily yield the best results for the subsequent tasks. For
example, in ASR scenarios a few noise frames handed over to the ASR system are
tolerable. Clipping on the other hand should be avoided, as it may harm recognition
performance severely. A common measure to shift the output of a VAD system to-
wards a wanted behavior is thresholding. Based on the results on the development
data, a threshold τ when to consider a frame to contain voice activity can be fixed.
The output class c is then assigned according to eq. (2.8). If there is more than
one class representing voice activity, as is the case for the AVA corpus, the decision
becomes a little bit more complicated. However, as long as the threshold is only
used to shift between classes with or without voice activity and there is only one
class representing frames without voice activity, the changes are minimal. The re-
sulting formula is eq. (2.9). p̂(x)k is the smoothed probability of frame x belonging
to the class with index k. V is the set of indices belonging to classes representing
voice activity, n is the index of the class representing no voice activity. So, if the
probability of the frame containing no voice activity is below the threshold, the most
probable class representing voice activity is assigned to the frame. Otherwise the
class representing no voice activity is assigned to the frame.

c(x) =
voice activity, if ˆp(x) ≥ τ

no voice activity, otherwise
(2.8)

c(x) =
c[argmaxip̂(x)i∈V ], if ˆp(x)n ≤ τ

no voice activity, otherwise
(2.9)

2.4.4 Max-vote Smoothing

After a hard decision towards classes was made, single frames with or without voice
activity in otherwise different sequences are unlikely to be correct predictions. One
simple way of correcting these frames is max-vote smoothing. Within a window of
a given length, any frame not belonging to the predominant class is considered an
erroneous prediction and the class of the surrounding frames is assigned instead.

2.4.5 Length-based discrete smoothing

By analysis of the training data a minimum length of sequences with and without
voice activity to be expected can be be derived. When these lengths are known, a
postprocessing step eliminating shorter sequences can be used. Any elimination of
a sequence leads to the combination of the surrounding sequences into a larger one.
Therefore, the smoothing process is started by assigning single frames surrounded
by frames of a different class to that class. This is repeated for sequences of length
two and so on until the minimum length is reached. It is possible to perform this
with different minimum lengths per class.
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2.5 Metrics

This section describes the metrics used during evaluation of the proposed systems.
Throughout the following subsections let M be the size of the entire dataset. Let P
be the number of samples belonging to the positive class, in this case voice activity.
Note that several of the metrics below are aimed at binary classifiers. For using
them with the multinomial classifier used, all classes representing voice activity
were considered equal. Let further N be the number of samples belonging to the
negative class, in this case no voice activity. Tp and Tn, denote the total numbers of
samples correctly assigned to the positive or negative class respectively. Fp and Fn
denote the corresponding values for incorrectly assigned samples.

2.5.1 Accuracy

Accuracy is a measure of the correctly classified proportion of the dataset [GBC16,
pp. 103 sq.]. The calculation is denoted in eq. (2.10). Accuracy is a good measure of
performance for balanced datasets, but suffers from class imbalance. For example,
a model assigning the negative class to every sample has an accuracy equivalent to
N
S

, which might be a value close to one.

Acc = Tp + Tn
M

(2.10)

2.5.2 Precision

Precision is a measure of how many of the predictions of a frame belonging to the
positive class are correct. The calculation is as follows:

Prec = Tp
Tp + Fp

(2.11)

2.5.3 Recall

Recall is a measure of how many samples belonging to the positive class are correctly
classified [Cho20, p. 559]. The calculation is denoted in eq. (2.12). Recall is of special
interest for VAD systems aimed at speech recognition, as it is a good approximation
of the level of clipping.

Rec = Tp
M

(2.12)

2.5.4 F1-Score

The F1-Score is the harmonic mean of the precision and the recall [Sas07]. The
calculation is as follows:

F1 = 2 ∗ Prec ∗ Rec
Prec + Rec (2.13)
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2.5.5 Error Rates

The following error rates are often reported in VAD literature. The frame error
rate is usually not reported, as it can easily be derived from the commonly reported
accuracy. The other three were especially reported for the movies of the Holly-
wood corpus by [LWS15] and [JASJ17] and thus used for evaluation of the proposed
systems.

False Positive Rate

The false positive rate is the rate, at which a sample belonging to the negative class
is assigned to the positive class. Its calculation is as follows:

FPR = Fp
N

(2.14)

False Negative Rate

The false negative rate is the rate, at which a sample belonging to the positive class
is assigned to the negative class. Its calculation is as follows:

FPR = Fn
P

(2.15)

Equal Error Rate

The equal error rate is the value of false positive and false negative rate, if the
threshold is adjusted such that the both are equal. Calculating the equal error rate
and the corresponding threshold on the training data is necessary to optimize a
system towards the F1-Score.

Frame Error Rate

The frame error rate is the proportion of the samples assigned to the wrong class.
Thus, it is the opposite of the accuracy. The calculation is as follows:

FER = Fp + Fn
M

= 1− Acc (2.16)

2.5.6 Receiver Operating Characteristics Curve

Receiver operating characteristic (ROC) curves are useful for visualizing the per-
formance of a binary classifier. A ROC curve of one of the proposed systems is
shown in fig. 2.5. To understand it, picture the following: Initialize a system with
a threshold of one. Thus every sample, regardless of the networks output, is placed
in the negative class. The TPR is zero, the FPR likewise. This corresponds to the
point (0, 0) in the lower left. As the threshold is moved towards zero, more and more
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Figure 2.5: ROC curve of one of the proposed systems.

samples are assigned to the positive class. This leads to an increase of the TPR,
moving the curve in y-direction, and also an increase in FPR, moving the curve in
x-direction. As the threshold reaches zero, all samples are placed in the positive
class. TPR and FPR are both one, corresponding to point (1, 1) in the upper right.
A classifier is desired to assign samples to their corresponding classes, yielding a low
FPR and high TPR. Thus a threshold yielding an ROC value as far “northwest” as
possible is desirable. [Faw06]

Another metric related to the ROC curve is the area under the curve (AUC). In
fig. 2.5 the lightly pink colored area represents the AUC. The AUC is theoretically
between zero and one. Yet only values above 0.5 are relevant, as that is the AUC
for randomly assigning classes. Notably, the AUC is equivalent to the probability of
the classifier of assigning a higher probability to a sample belonging to the positive
class than to one belonging to the negative class. [Faw06]
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3 Corpora

In the context of VAD, and related tasks like ASR, a corpus is a collection of input
data and some accompanying annotations. For VAD a corpus should consist of audio
files with annotation indicating whether voices can be heard. Generally interesting
attributes of a corpus are its size as well as the assumed precision of annotations.
The first consideration naturally is whether the annotated classes match the task at
hand. As this work focuses on the difficulties of separating music from speech, the
presence of music should also be annotated. These considerations lead to a relatively
sparse selection of useful corpora, which will be described subsequently. For further
reference some corpora linked to either speech/music discrimination or VAD but not
used for this work are also listed.

3.1 Used Corpora

Ultimately this work used only two corpora. The training was exclusively done on
the AVA-corpus described subsequently. Because the AVA-corpus is not separated
into training and test data, it could not be used to evaluate the performance in
comparison with other works. For this, a corpus of four Hollywood movies, simply
called Hollywood corpus throughout this work, was used.

3.1.1 AVA-Speech

The AVA-Speech corpus was introduced by a team of google researchers in 2018 as

”A Densely Labeled Dataset of Speech Activity in Movies “[CRE+18]. It features
about 40 h of movie excerpts taken from 160 movies publicly available on Youtube.
Each of the excerpts is between the fifteenth and thirtieth minute of the correspond-
ing video. There are four possible labels: “Speech and Noise”, “Speech and Music”,
“Clean Speech”, and “No Speech”. The annotation process is described as follows:
When no clear distinction was possible, the labels were to be considered in the
aforementioned order. The 15 min excerpts were split into 1 min clips. Each clip
was annotated by three humans with the final labels chosen by majority vote. The
labels were aligned to frames of 10 ms.
Movies as a source for a voice activity detection corpus offer several advantages. Be-
cause the movies originate from different countries, several languages from different
continents are present within the corpus, allowing a system to be trained on general
properties of speech rather than on specifics of a certain language. Furthermore
different situations like monologues, dialogues of two or more persons, and a variety
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Table 3.1: Movies in the Hollywood movie corpus [LWS15]

Movie title Genre Duration Speech in %
I am Legend Action Thriller 1:40:22 18.3
Kill Bill: Volume 1 Martial Arts 1:46:08 19.2
Saving Private Ryan War 2:42:27 32.1
The Bourne Identity Action Thriller 1:58:24 26.7
Total - 8:07:21 25.2

of background noises are present in the corpus. Especially when considering voice
activity detection with music in the background movies are very useful, as they can
provide a much more realistic mixture of speech and music than artificially created
training data from clean speech and music.
[CRE+18] offers three baseline models for comparison. The voice activity detector
of WebRTC is their baseline with two different, neural network based, superior mod-
els. This corpus was primarily used during development of the proposed system. It
has been split into 16 movie excerpts for development, 16 movie excerpts for testing
and the remaining 128 movie excerpts for training.

3.1.2 Hollywood Movie Corpus

The Hollywood movie corpus was introduced in [EWSS13] and had it’s annotations
refined in [LWS15]. It consists of four full-length Hollywood movies, ≈8 h in total.
An overview of the movies is provided in table 3.1.
The original English versions of the movies were used, thus the speech is mostly
in English. All of the movies feature a great deal of background noise as well as
a rich soundtrack. The annotations discriminate speech and no speech and feature
a precision of 10 ms. Notably the corresponding work was aimed at ASR, thus
unintelligible voiced sounds like screams, groans etc. are annotated as no speech.
By the definitions in [CRE+18] used in this work this qualifies as speech activity
detection (SAD) rather than VAD.
Nevertheless, as it features annotations of actual movies this corpus is of great
interest to this work. It has been used as unseen test data by [LWS15] and [HSN19].
Therefore it can be used to further evaluate the performance of the system proposed
in this work.

3.2 Related corpora

The corpora in this section were not used in the training or evaluation of the pro-
posed system. Yet, they generally are of interest to VAD and thus are listed for
reference. While some are well promoted others were hard to find so this section
might also be useful as a kind of knowledge base for corpora.
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3.2.1 Music detection corpora

The corpora in this subsection are aimed at the detection of music, not voice activity.
However, as this work is explicitely aimed at the audio tracks of movies, they are
considered relevant enough to be outlined shortly.

Seyerlehner corpus

Lehner et al. describe a corpus of just below seven hours of broadcasts from Austrian
television[SPS07]. The presence of music was manually annotated. The correspond-
ing research is aimed at automatic music detection for royalty payments. Thus
speech is not annotated and therefore the corpus is ultimately not useful for this
work. However, because of its relatively small size and its careful annotation it was
used during prototyping.

OpenBMAT

The Open Broadcast Media Audio from TV (OpenBMAT) corpus [MMG19] features
more than 27 h of TV broadcast audio. Apparently unique, the loudness of music
relative to other sounds is annotated. As speech is not annotated this corpus is
mostly interesting to music detection research.

3.2.2 Record-wise labeled VAD corpora

As mentioned before, labels might be applied at frame, timespan or recording level.
This subsection lists corpora wherein each recording belongs to exactly one class.

MUSAN

The MUSAN corpus [SCP15] features ≈109 h of recordings from different sources.
Each recording is approximately 5 min long and belongs to either music (≈43 h,
speech (≈60 h) or noise (≈6 h) class. In the corresponding work, a real time VAD
system is tested by using small excerpts from the recordings. However, as this work
is aimed at frame-wise labels, the MUSAN corpus was not used.

VAST

The VAST corpus is a very large multi-modal corpus created by the Linguistic
Data Consortium. It was introduced in [TS18] and features ≈2444 h of amateur
videos. Different parts of the source data were annotated with different purposes
like language or speaker identification or ASR in mind. A total of ≈664 h featuring
three languages was annotated for SAD. The annotations consider three classes:
speech, no speech and music. However instead of frame-wise labels the data is
split into segments each belonging to exactly one class. Parts of the source data
containing music and speech are found in one segment belonging to the speech class
and another segment belonging to the music class. Therefore the corpus is, although
impressively large, unsuited for use in this work.



24 CHAPTER 3. CORPORA

3.2.3 Artificial Corpora

As manually annotating media is a rather tedious and thus expensive approach,
an easier way of acquiring training data is desirable. Corpora which where created
using some kind of automated approach are listed in this subsection.

QUT-NOISE-TIMIT

One approach to artificially generate VAD corpora is to mix clean speech recordings
with noise recordings, an approach pursued e.g. by [RMC07; EWSS13; DSVM10]
with the latter exemplarily described here.
The QUT-NOISE-TIMIT corpus is rather large, consisting of ≈600 h of audio. It
is mixed from the TIMIT corpus [GLF+92] released in 1992 by the US National
Institute of Standards and Technology (NIST) and specifically recorded noise. The
TIMIT corpus consists of ≈5 h of audio recordings of ten sentences each spoken by
630 speakers. The authors of the QUT-NOISE-TIMIT corpus note that there were
no sufficiently large noise corpora available and they therefore recorded one. The
noise consists of 20 scenarios and at least 30 min recording for each. These include
public as well as private locations and a moving car. The TIMIT corpus and the
noise recordings are mixed at different signal to noise ratios (SNRs), from −10 dB to
15 dB. Additionally for two scenarios the reverberant response was calculated and
added to the speech as well.
For two reasons this corpus was not used for this work. Firstly, the sentences in the
TIMIT corpus are ill-suited for the task at hand. They are calmly read as opposed
to the emotionally charged speech often found in movies. And secondly, although
mixing noise and clean speech provides noisy speech the result is quite different from
movie audio. The noise was recorded in everyday environments, missing distinctive
movie sounds like fighting. Music isn’t mixed in at all. Therefore the corpus was
not used in this work.

Large-Scale Multimodal Movie Corpus

Another way to obtain a corpus is by using a VAD system on a collection of media
files. [YISK16] introduces a corpus of ≈2066 h from 1722 movies in 22 genres. They
use MFCCs as features and a deep neural network (DNN) based classifier. The
classifier is trained on ≈2.5 h of TV broadcasts. The training data was manually
annotated. The VAD decisions are smoothed, including the dropping of voice seg-
ments shorter than 4 s. The resulting corpus is large but the annotations are very
coarse and not reasonably precise. It is aimed at providing annotations where to
look for dialogues in movies. Using this corpus as training data for VAD would
presumably result in a system mimicking the less sophisticated VAD system used
for its creation.



4 Related Work

This chapter provides a short overview of historic and recent approaches to VAD.
With the available corpora covered in chapter 3, it focuses on features and classifiers.
The fist section is a quick history of VAD, covering the time from the late sixties
until the early 2000s. Afterwards recent approaches, sorted by input features, will
be discussed. As mentioned before, MFCCs are the most common features for VAD,
used by a lot of contemporary systems with some examples given in section 4.2. Pre-
processing for VAD is being actively researched, therefore occasionally more exotic
or specialized approaches are being published. Several of these can be found in sec-
tion 4.3. Lately MRCGs have been used with promising results. The corresponding
examples are discussed in section 4.4. An overview of all recent works covered here
can be found in table 4.1.

4.1 Origins of voice activity detection

Voice activity detection has been a topic of interest for more than 50 years. At first
the main application was the time-multiplexing of landline calls and data transmis-
sion. A US patent filed in 1967 already states ”Statistical studies have shown that
in a full duplex voice voice communication, each of the two channels remains idle,
on the average, of 67 percent of time [. . . ] this idle time is simply an exorbitant
waste of the capabilities of the system”[FD67]. The patent further outlines a system
to find these idle times and inject data transmissions. However, the actual detection
of speech is only described as “A more detailed description of the decision circuit
will be given later.” Although no such description could be found, several other
companies linked to telecommunications patented speech detection technologies in
the mid-seventies. These systems, aimed for use in digital voice transmission, were
purely electronic without software or programmable components. Some calculated
frequencies based on zero crossing rate to determine the presence of fricatives[MP76;
AO77]. Others compared the current signal amplitude to a threshold calculated from
some kind of moving average presumed to be the noise level, considering any three
to four frames above this threshold to contain speech[Jan77; LJZ77]. [AR76] already
proposed five features to be used for voiced-unvoiced-silence classification: “the zero
crossing rate, the speech energy, the correlation between adjacent speech samples,
the first predictor coefficient from a 12-pole linear predictive coding (LPC) analysis,
and the energy in the prediction error”. In the following decade refinements and
combinations of these approaches were developed[LU86]. Additional methods e.g.
to avoid clipping were also introduced [Gru82]. Beginning in the late eighties pe-
riodicity measures, cepstral analysis and perceptually based linear prediction were
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Table 4.1: Overview of related works in order of appearance.
If more than one system is described, the best is characterized in this table
Work Input Features Classifier Distinctive Features
[TGY16] LSTM Comparison of different DNNs
[GG18] BLSTM Highly customized approach
[KSI18] DNN Multiple classes
[CLS+18] FSTDNN Sophisticated architecture
[HSN19]

MFCCs

FSTDNN Best results on Hollywood corpus
[LWS15] Handcrafted SVM Introduces Hollywood corpus
[JASJ17] HPSS/MFCCs DNN Harmonic-percussive source sep.
[EWSS13] RASTA-PLP LSTM Introduces LSTM for VAD
[CRE+18] Spectrogram FSTDNN Introduces the AVA corpus
[ZSSP16] Raw waveform Complex NN Raw waveform as input
[CWW14] MLP Introduces MRCGs
[ZW16] Stacked DNN Multi-resolution stacking
[KH18] DNN First attention mechanism for VAD
[LMHK20]

MRCGs

Complex NN Two attention mechanisms

introduced to VAD [HM93]. Although proposed for ASR tasks in the late seventies
[DM80], it wasn’t until the early nineties MFCCs got picked up for VAD[ALB93].
Around this time the applications of VAD broadened. As mentioned, earlier sys-
tems had focused on the effective utilization of communication channels. Although
noise reduction for ASR had been explored before, only now VAD was considered
as an explicit component of ASR systems [HM93]. In 2003 an algorithm for re-
trieving MFCCs was standardized by the European Telecommunications Standards
Institute [Eur03], further establishing them as commonly used features for VAD. To
this day, although other features are used as well, MFCCs can be found in a lot of
contemporary works on VAD [HSN19; GG18; Gra12; RLY13; KSI18].

While for the early systems the decision whether speech was detected or not was
derived rather directly from some threshold, more sophisticated classifiers came into
use during the eighties. The two-state-machines (speech - non-speech) were ex-
tended by adding a transitory state for more precise endpoint detection [Sav89]. To
model the silence and talkspurt duration, the mean talkspurt rate and the overall
speech activity, [Gru82] and [LU86] used probability density functions . Based on
these probability density functions, the endpoint detection was refined leading to
shorter talkspurts while still avoiding clipping. A generalized likelihood ratio test
was incorporated into the decision rule by [SS98], improving the performance of
VAD in scenarios with non-stationary noise. They also used Hidden Markov Models
(HMMs) to calculate hangover. Further development led to [RSB+04] using a sym-
metric Kullback-Leibler divergence for their decision rule. By that time approaches
utilizing machine learning for reference estimation were predominant, further mani-
fested by the use of support vector machines e.g. by [RYGS06]. Even earlier [SSR01]
had proposed a perceptron algorithm based classifier for VAD, foreshadowing the
decades to come. And by 2004 [KRH04] proposed a VAD system featuring a MLP.
Although using cepstral linear predictive coefficients instead of MFCCs, their system
had fundamentally the same architecture as most of the latest approaches published.
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As a result, about 15 years ago the general structure of today’s VAD systems was
in place. Since then progress was made in the area of even more sophisticated input
features and mainly on the types and architectures of NNs used.

4.1.1 Origins of speech/music discrimination

Another field of research leading to the system in this work is speech/music clas-
sification (SMC). The goal of SMC is to classify recordings or single frames within
recordings to be either music or speech[SS97; DC17]. Just like VAD, SMC can
precede different higher-level tasks such as ASR, speaker recognition and song and
musical genre recognition [DC17]. Related systems only try to detect music [SPS07]
or annotate its loudness [MMG19]. These are aimed at digital rights management
approaches to monitor broadcast media for copyrighted music. As for VAD, earlier
systems focused on hand-crafted features. For example, [SS97] used eight different
features based on energy, spectrum, cepstrum, zero crossing rate and beat detection.
Recently, standard features like MFCCs combined with FSTDNNs are used [DC17].

4.2 MFCC-based

A well documented comparison of DNN, LSTM and FSTDNN classifiers can be
found in [TGY16]. They used 24 log-Mel filterbank features with first order deriva-
tives added were used as input features.A LSTM based classifier performed best at
modeling context. It outperformed the other two considering equal error rate (EER)
and AUC on both, seen and unseen noise conditions. So called “Noise-aware Train-
ing” was also applied. Therefore the average feature vectors of noise and speech
frames were appended to the input vector. The preliminary classification was taken
from a system without Noise-aware Training. This technique is shown to yield a
significant relative improvement on all reported metrics.

A detailed description of a highly customized SAD system is found in [GG18]. A
RNN called coordinated-gate LSTM (CG-LSTM) by the authors was used as a clas-
sifier. As described in section 2.2.4, the activation of each LSTM gate is based on
the input, and the cell state and output of the previous step. The CG-LSTM ar-
chitecture uses so called “peephole vectors” to calculate the activation of the gates.
Thus, the activation of each gate is additionally based directly on the previous ac-
tivation of all the gates. This system was fed with MFCCs. The parameters of
the feature extraction however were learned instead of being set manually. Namely
the window type and size, minimum and maximum frequency, number of filters,
number of discrete cosine transform (DCT) coefficients and the context width for
∆- and ∆∆-features. To achieve this, the quantum-behaved particle swarm opti-
mization algorithm, based on the popular particle swarm optimization algorithm
was used. This algorithm can thus be used to effectively learn the parameters of
non-differentiable processes. The parameters of the CG-LSTM were also learned us-
ing the quantum-behaved particle swarm optimization, but subsequently improved
using the SMORMS3 algorithm. SMORMS3 was found to be superior to Adam.
To optimize the SAD system towards ASR, a specialized loss function was used.
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It is based on the substitutions, deletions and insertions in the output of a subse-
quent ASR system with respect to the ground truth. And finally the 100 utterances
with the highest error rate were added to each minibatch to emphasize them during
training. An adaption of this technique was used in this work.

Normally, VAD is a binary classification problem. However, it might be beneficial
to discriminate between different background noise conditions. This was done by
[KSI18]. They used a DNN based classifier on top of 13-dimensional MFCCs with
∆- and ∆∆-features. The target classes were “speech”, “music”, “singing”, “noise”
and “silence”. The authors report performance gains by the increase in classes as
opposed to binary classifiers or their own experiments with three or four classes.

Another approach focusing on the architecture of the NN based classifier is reported
in [CLS+18]. It is based on 40-dimensional log-scale MFCCs and a FSTDNN as
base architecture. So called “causal dilated convolution” was used. The “causal”
simply implies, that only the left context was used. This decision had been made,
because the work was aimed at endpoint detection in Google home devices and
Android voice typing, which is a latency-dependent task. The “dilated” describes the
filter kernel skipping some frames, leading to a broader context while maintaining a
reasonably trainable input size. Gated activations, similar to LSTMs, are also used.
Therefore, two sets of weights, one for the activation, the other for the filters are
learned. Finally, residual connections skipping entire layers were used to handle the
vanishing gradient problem, allowing for up to 36 hidden layers to be trained.

The system proposed in this work was trained on the AVA corpus and evaluated
on the Hollywood corpus. Both were used for testing in [HSN19]. They report on
several complex architectures. One model was a single BLSTM layer with a DNN
with successively smaller layers on top. Four additional models based on FSTDNN
stacks and differing DNN based networks on top are also presented. One of these,
with so called “time distributed” fully connected layers on top of the FSTDNN stack
is reported to perform best, but only by a small margin. The results are compared
to the systems proposed in this work in chapter 7.

4.3 Less common input features

As mentioned before, although MFCCs became the most common input features
for VAD, specialized input features are still actively being researched. Some recent
approaches will be discussed in this section.

The fine-grained annotations for the Hollywood dataset were first mentioned in
[LWS15]. The authors also included an evaluation of their own system. Its classifier
is a support vector machine as implemented by the Weka toolkit [HFH+09]. To
achieve competitive results, they utilized an elaborate feature set. It was composed
of the fluctogram, the spectral flatness, the spectral contradiction and the so called
“polynomial shape spectral contrast” of the signal. This resulted in an overall 126-
dimensional feature vector. However, the system proposed in this work outperformed
their system, using less complicated features but a more powerful classifier.

A pair of intuitive characteristics of audio signals are their harmonic and percussive
components. An attempt to use these for VAD is described in [JASJ17]. They use
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a technique described in [Fit10] to first separate the input into its percussive and
harmonic components. This is achieved by median filtering along either the time or
the frequency axis of a spectrogram. From the filtered spectrograms 13-dimensional
MFCCs are extracted. The classification is done by a DNN based classifier. However,
the reported results on the Hollywood corpus are inferior to [LWS15] and [HSN19].

Although LSTMs have been around since 1997 [HS97], they were not used for VAD
until 2013. The first attempt to do so is described in [EWSS13]. As input they
use relative spectral transform perceptual linear prediction features with first order
derivatives appended. Two classifier networks are described: One with a single
recurrent layer with 200 LSTM cells. The other with three layers, a LSTM layer with
50 cells, a sigmoid layer with ten units and a final LSTM layer with 20 cells. From
a 2020 perspective, these are relatively small networks. However, a performance
superior to other contemporary approaches is reported. The movies of the Hollywood
corpus were first used in [EWSS13] as well, but the supplied annotations are very
coarse. Therefore the annotations by [LWS15] were used by all subsequent works
found.

The systems proposed in this work were all trained using the AVA corpus. In the
work introducing the AVA corpus [CRE+18], two FSTDNN based VAD systems
were also described. The one yielding better results is based on the ResNet-50
architecture [HZRS15] introduced for image recognition. It features 50 layers of
FSTDNNs with residual connections to handle the vanishing gradient problem and
keep the system trainable. As input a Mel scaled spectrogram was used.

With FSTDNNs becoming increasingly popular for VAD, spectrograms are often
used as input without further preprocessing. One step further is the approach by
[ZSSP16], applying no preprocessing at all. The input to the classifier is the raw
waveform. It is first fed into a TDNN and subsequently filters along the frequency
axis are applied. A small LSTM with two layers of 48 cells and a single feedfor-
ward layer with 48 units then lead to a VAD decision. The authors report relative
improvements of more than 50 % over a LSTM-only model for noisy data.

4.4 MRCG-based

A comparative study of no less than 16 different input features is described in
[CWW14]. MRCGs are introduced as a novel feature. They are aimed at incor-
porating the context required for a robust VAD decision directly into the input for
each frame. A MLP is used as classifier. The authors report superior performance
to all other tested features, including a combination of MFCCs, relative spectral
transform perceptual linear prediction and the amplitude modulation spectrogram.

The incorporation of contextual information is a key component of robust VAD. A
complex, yet interesting approach is described in [ZW16]. The proposed system is
a DNN based classifier with MRCGs as input features. It exhibits two distinctive
characteristics. The first is the use of so called “boosted DNNs”. The idea is to
produce multiple predictions from a single DNN by “boosting” the contextual infor-
mation. This is achieved by training the network to not predict a single label on a
single frame, but a sequence of labels on a sequence of frames. The final prediction
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is the average of the predictions for a frame from different time steps. A similar
technique was used by [HSN19], but the rise in computational cost was considered
disproportionate compared to the performance gain. The second interesting tech-
nique used by [ZW16] is the so called “multi-resolution stacking.” A stack of DNNs
was used as a classifier. Each block received the output of the previous block and
a different context window of frames as input. The context got increasingly wider.
To limit the size of the input vector, intermediate frames were skipped. The input
vector in each time step is constructed from the transposed audio features by tak-
ing equally sized steps on both side of the current frame and its direct neighbors.
The authors [ZW16] report a significantly increased performance compared to prior
works. They also emphasize the good generalization capability towards noise unseen
during training.

Attention mechanisms have successfully been applied to varying fields, including ma-
chine translation and ASR [CBS+15]. The first attempt at using them for VAD was
described by [KH18]. Generally speaking, they use a MRCGs-based DNN classifier.
Their approach is based on the previously described work [ZW16], using the same
spacing of feature vectors. They also generate their final prediction as the average
of the predictions for a single frame from several sequence to sequence predictions.
However, they replaced the complex and computationally expensive multi resolution
stacking with an attention mechanism. They also used specialized loss functions to
focus the attention on the most crucial frames, particularly in high noise conditions.
They report performance on par or slightly superior to [ZW16].

Another work, based on both [ZW16] and [KH18] is [LMHK20]. They used the same
spacing of feature vectors as the other two, but did not transpose them. Instead,
they used several FSTDNNs, deployed in pairs, connected similarly to [CLS+18].
They called this approach “spectral attention”. Subsequently, multi-head attention
[VSP+17] is applied, called “temporal attention” by the authors. They reported
significantly improved performance in comparison with [ZW16] and [KH18].



5 Proposed Systems

This chapter describes two structurally different systems, that performed well on the
evaluation data, compared to related works. The experiments leading to these exact
configurations are described in section 6.1. In the following section the structure of
the proposed systems will be described. In the second section the used software and
other implementation details are covered.

5.1 Classifier Networks

The VAD classification was performed by different NNs. Numerous configurations
were tested and the two best compared to other works in section 6.2. This section will
outline, which parameter combinations were tested, and which proved to perform
best. The best performing models are depicted in fig. 5.1. For detailed results on
the experiments conducted see section 6.1.

5.1.1 BLSTM-based

The first proposed system consists of a multi-layer BLSTM and feedforward layers
for dimensionality reduction. Several different input features were tested, with 40-
dimensional MFCCs yielding the best performance.

Models with differing numbers of layers, one to eight, were tested. Likewise, the
number of units per layer was varied between 256, 512, and 1024. An attempt was
made to test a system with 2048 hidden units, but the available RAM of the GPU
was exceeded. The best AUC values were achieved by a model with four BLSTM
layers of 1024 hidden units each. Models with four layers, but 512 and 256 hidden
units each, scored second and third. Deeper models achieved a lower AUC, but
were still superior to models with less than four layers, indifferent of the number of
hidden units per layer.

Three ways of combining the outputs of the two directions of the BLSTM were
tested. Following [MSW18] a pairwise maximum was computed. However, the
results proved inferior to simply appending the directions into a single vector. Ul-
timately, summing the two directions showed the best performance. The resulting
vector was fed to a single feedforward layer to be projected onto four outputs. A
softmax layer transformed these into a probability distribution of the possible output
classes.
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Figure 5.1: Structure of proposed models
To the left, the structure of the proposed BLSTM-based system. The structure
of the violet part, although with different parameters, is reused in the proposed
FSTDNN-based system. In the middle, a basic building block of the proposed
FSTDNN-based system, called “gated FSTDNN”. To the right, the structure of the
proposed FSTDNN-based systems. Note that the four gated blocks all have different
kernel sizes and dilation.

The best performing variant of a pure BLSTM-based model is depicted on the left
side of fig. 5.1. In the remaining chapters, this model will be referred to as “BLSTM-
based” or simply “BLSTM”.

5.1.2 FSTDNN-based

The second proposed system is based on several FSTDNN units. Again, several
different input features were tested. For this system, 64-dimensional MFCCs yielded
the best performance.

The model itself is similar to the model proposed by [CLS+18]. There, the technique
described below was called “gating”. This work uses “gating” and “gated” in the
same way. Note that [LMHK20] employed a very similar technique, but called it
“temporal attention”.

The gated FSTDNN blocks are depicted in the middle of fig. 5.1. Each one consists
of two identical FSTDNNs. Both are fed with the same input. A sigmoid function,
and a hyperbolic tangent function (eq. (2.1)) respectively, are applied to the outputs
of the FSTDNNs. The output of the gated FSTDNN block is an element-wise or
Hadamard product [GBC16, p. 34] of the outputs of the two nonlinearities.

Another method taken from [CLS+18] are the increasing filter sizes and dilations. As
depicted, the leftmost gated FSTDNN block has a filter size of 3x3 and no dilation.
The rightmost block has a filter size of 7x7 and a dilation of 3, spanning a height and
width of 21x21 values. Thus, increasingly broader, yet coarser context information
can be incorporated. As opposed to [CLS+18], the gated FSTDNN blocks are not
stacked with residual connections. Instead, their results are concatenated and fed
to a smaller version of the BLSTM-based model.
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Table 5.1: EERs and corresponding thresholds for proposed systems.
These values were calculated on the AVA validation set and used for testing on the
Hollywood corpus.

EER Threshold
BLSTM-based 0.095 0.566
FSTDNN-based 0.092 0.47

Several combinations for the number of filters in each gated FSTDNN block, as well
as for the size of the subsequent BLSTM block were tested. The detailed results are
listed in section 6.1.3. The right side of fig. 5.1 shows the best performing configura-
tion. In the remaining chapters this model will be referred to as “FSTDNN”-based
or simply “FSTDNN”.

5.2 Postprocessing

The smoothing techniques outlined in section 2.4 were all tested. Details on pa-
rameters and results can be found in section 6.1.4. Ultimately, smoothing provided
no benefit with respect to the chosen metrics. Thus, it was not employed in the
proposed systems. Note however, that smoothing might prove beneficial, if one of
the systems was used as a preprocessor for ASR or a similar task.

Thresholding as described in section 2.4 was applied with the EER as target. The
corresponding threshold are listed in table 5.1

5.3 Implementation

This section describes, how the proposed system was implemented, which software
and libraries where used and how certain parameters were chosen. If parameters were
fixed early on, they are reported here. If sufficient experiments were performed, they
are listed in chapter 6.

The proposed systems were entirely implemented in python 3.8 using version 1.6 of
the pytorch library [PGM+19]. Within the pytorch library, most of the function-
alities needed for NN based systems were included. Pytorch is aimed at being as
compatible as possible with numpy. Thus, if a certain functionality was unavailable
in pytorch, it was almost always possible to use numpy functions without further
ado.

Pytorch is capable of using the CUDA API [NVF20] to utilize GPUs for NN com-
putation. Depending on which machine the code was run, version 9.2, 10.1 or 10.2
of CUDA were used. As far as the implemented systems were concerned, no differ-
ence was encountered. The management of the corresponding versions of pytorch,
and other python components, was handled by the Anaconda virtual environment
management system [20].
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5.3.1 Preprocessing

The MFCCs were extracted using the corresponding class of the torchaudio package,
which is part of pytorch. The number of frequency bins was left at the default value
of 400, except when extraordinary long windows were tested. Then the number of
frequency bins was set to the number of samples in the given excerpt of the audio
stream. If not specified otherwise, the window length was set to 25 ms, and the
window shift to 10 ms. The default pytorch MFCCs use a dB-scaling before the
DCT is applied. For this work, standard log-scaling as described in section 2.1.1
was used instead.

For the generation of MRCGs, the pycochleagram implementation by [mcd20] was
used. The frequency filters were limited to stay below 8 kHz. This was necessary, as
the audio files were resampled to 16 kHz. A decibel scale was used as nonlinearity
during cochleagram creation. The included polyphase resampling proved to be very
resource hungry, pushing the time needed for preprocessing an audio file to almost
20 times its duration. To find a more efficient solution, the cochleagrams of several
frames without resampling were analyzed. There was little to no change along
the time axis. Thus a simple mean-averaging was used to generate 64-dimensional
feature vectors from the original cochleagrams. The MRCGs were then generated
as described in section 2.1.2.

5.3.2 Training

Adam [KB17] and SMORMS3 [Sim15] were used for training. The Adam imple-
mentation provided by pytorch was slightly adapted to return the step size. For
SMORMS3 the implementation by [19] was used and also slightly adapted.



6 Experiments

The proposed systems were trained using 128 of the 160 movie excerpts of the AVA
corpus. Another 16 excerpts were used as validation set. The remaining 16 excerpts
were used as unseen test data to estimate system performance. The validation- and
testset were drawn at random once, but remained the same for all training and test
runs. As no work using only part of the AVA corpus for testing is known, these
results are only used for comparison of different proposed systems. Notably, this
data is used to evaluate how the different classes affect the system performance. For
comparison with related works the Hollywood corpus is used. This corpus was also
used as a testset by several other works [HSN19; JASJ17; LWS15].

Throughout this section, the best performing proposed models are used to present
the effects of the variation of certain parameters. These models have been described
in section 5.1 and are denoted “BLSTM-based” and “FSTDNN-based”.

The remainder of this chapter will first describe the experiments that led to these
two configurations. Subsequently, they are evaluated against related works on the
Hollywood corpus. The last section will give some insights, on how the models deal
with noise and background music respectively.

6.1 Development of proposed systems

This section describes the effects of the variation of certain parameters of the pro-
posed models. The results are usually provided in terms of AUC as metric. AUC
was chosen as most of the experiments were conducted without setting a threshold.
Thus, the F1-Score is a poor metric of the performance, as it can most easily be
tuned. The parameters not explicitly mentioned are those listed in section 5.1.

6.1.1 Preprocessing

All recordings were resampled to 16 bit, 16 kHz mono .wav files. MFCCs, cochlea-
grams and MRCGs were extracted once and stored for later use. MFCCs of dif-
ferent dimensionalities, 32, 40, and 64, were tested. Inspired by the MRCGs, a
feature denoted “MRMFCC” was tested. It consists of two sets of MFCCs as in-
put. One was derived from a standard window of 25 ms. For the other, a window
ten times longer was used. The shift between frames was kept at 10 ms, as to pro-
duce an identical number of frames. The results are listed in table 6.1. As can
be seen, 40-dimensional MFCCs proved optimal for the BLSTM-based classifier,
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Table 6.1: AUCs on the AVA test set for different input features

Feature MFCC CG MRCG MRMFCC
Dimensions 32 40 64 64 4x64 2x40 2x64
BLSTM-based 0.958 0.965 0.954 0.924 0.369 0.94 0.94
FSTDNN-based 0.964 0.967 0.968 0.967 0.509 0.954 0.958

while 64-dimensional MFCCs were best for the FSTDNN-based classifier. Thus,
these combinations of input features and classifiers were chosen for all subsequent
experiments.

The MRCGs yielded mediocre results. There are two possible explanations: The
implementation of the MRCGs extraction might be erroneous. There was only
research level code available for the extraction of cochleagrams, let alone MRCGs.
Thus, although great care was taken when trying to extract them, mistakes might
have happened. As the extraction of MRCGs for the training corpus took several
days, it was impossible to test the effect of some parameters thoroughly.

However, the results listed in table 6.1 also allow for a different explanation. As
can be seen, the FSTDNN-based systems performed disproportionally better with
MRCGs than the BLSTM-based. This might imply, that only the combination
of MRCGs with appropriate FSTDNNs yields the promising results reported in
[ZW16], [KH18] and [LMHK20].

6.1.2 Training

Each proposed system was trained for up to 50 epochs. Early stopping was used
if the average improvement of the CEL on the validation data fell below 0.02 for
five epochs, starting from the fifth epoch. The actual change, not the absolute, was
used, thus the early stopping triggered relatively fast when the CEL worsened. The
best model based on FER on the validation data was saved and used for subsequent
testing. This was not necessarily the model after the last epoch. Following [GG18],
the ten minibatches yielding the worst CEL during an epoch were presented a second
time. Both Adam [KB17] and SMORMS3 [Sim15] were tested as schedulers. The
latter consistently yielded faster convergence. All results listed here were achieved
by systems trained using SMORMS3.

For training, as well as for evaluation, the recordings were split into samples with a
duration of 10 s, i.e. 1000 frames. During training, the samples were provided in ran-
domized minibatches of 20 samples each. During evaluation, all samples belonging
to a single recording were presented sequentially.

6.1.3 Network configuration

To determine the best network configuration, extensive testing of different parame-
ters was conducted. For several of the tested configurations, the AUC on the AVA
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Table 6.2: AUCs for selected configurations of the BLSTM-based system.

BLSTM-Layers 2 4 6 8
Hidden Units 1024 256 512 1024 256 512 256 512
AUC 0.961 0.963 0.964 0.965 0.957 0.962 0.961 0.962

test set will be listed. The AUC was chosen as metric for two reasons. First, as
stated before, it is independent of the easily adjustable threshold, as opposed to the
F1-Score. Second, several other metrics showed generally similar orderings of the
tested systems, but a higher variance. Thus, the AUC was considered a relatively
robust metric of system performance.

The results presented here are all based on the combination of classifiers and MFCCs
described in section 6.1.1. Several of the presented configurations have also been
tested with different input features. However, the results reinforced the decision
to use 40-dimensional MFCCs for with BLSTM-based models and 64-dimensional
MFCCs with FSTDNN-based models for further experiments. The results are pre-
sented for BLSTM-based and FSTDNN-based systems separately.

BLSTM-based

For the BLSTM-based systems two parameters of the model itself could be opti-
mized: The number of layers, or depth, of the network. And the number of hidden
layers, or width, of the network. A selection of the tested configurations is listed
in table 6.2. The best configurations all feature four layers. Within this group,
models with more hidden units performed better. An attempt at testing a model
with one layer and 2048 hidden units was made, but failed because of insufficient
RAM. Thus, four layers of 1024 hidden units each was chosen as the final configura-
tion. The next decision was how to combine the outputs of the two directions of the
BLSTM. Three ideas were tested. First, the outputs were simply concatenated. The
following layer then was a feedforward layer projecting from two times the hidden
size of the BLSTM onto four outputs. The second idea was to sum the forward and
backward values for each position. The following layer then had an input size equal
to the hidden size of the BLSTM. And third, following [MSW18], taking the pairwise
maximum of the two outputs. These possibilities were tested and the results are
listed in table 6.3. The pairwise maximum yielded the worst results. Concatenating
the outputs or summing them yielded comparable results. Summing was chosen as
the method to be used in the final model. It showed the best performance while at
the same time being fastest.

The already mentioned feedforward layer and a softmax function constitute the
output of the classifier. A smaller version with only 256 hidden units per unit was
reused as part of the FSTDNN-based layer described next.
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Table 6.3: AUCs for different methods of combining BLSTM directions.

Hidden Units 512 1024
Combination Concatenate Sum Max Concatenate Sum Max
AUC 0.964 0.965 0.962 0.965 0.965 0.962

Table 6.4: AUCs for selected configurations of the FSTDNN-based system
The AUCs were calculated on the test data from the AVA corpus.

Filters per FSTDNN 8 16 32 48
BLSTM layers 4 4 2 4 4
BLSTM hidden units 256 256 256 512 256 512 256
AUC 0.964 0.965 0.966 0.964 0.967 0.967 0.965

FSTDNN-based

Before the decision towards the architecture described in section 5.1.2 was made,
several other models were tested. This included a stack of non-dilated FSTDNNs, a
stack of FSTDNNs with residual connections and models based on TDNNs. How-
ever, none was able to outperform the previously described BLSTM-based system.
If this was due to badly chosen parameters or the general architectures considered
remains an open question. After the first promising results using the proposed
FSTDNN-based architecture, research was focused on the optimal parameter con-
figuration rather than other architectures.

On top of the proposed gated FSTDNN blocks, a smaller variant of the BLSTM-
based system was used. The actual size was determined through testing again. The
only parameter of the FSTDNNs that was varied was the number of filters. In ta-
ble 6.4 the tested parameter combinations are listed. The number of filters yielding
the best results was found to be 32. Again, four layers of BLSTM performed best.
The number of hidden units did not yield mayor differences, thus the computa-
tionally less expensive 256 was chosen. The remainder of the BLSTM block was
not altered, utilizing the same composition of sum, feedforward layer and softmax
function to generate class probabilities.

6.1.4 Postprocessing

All smoothing techniques described in section 2.4 were tested with both systems.
The decision, not to include smoothing in the proposed systems, was made based
on the results on the AVA validation data. However, the results reported here were
calculated on the Hollywood corpus. Thus they are better comparable to the results
reported in table 6.6 and table 6.7.
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Table 6.5: Effects of differing smoothing techniques
These F1-Scores were calculated on the Hollywood corpus. The classifier was the
BLSTM-based classifier described in section 5.1.1

Smoothing None Continuous Continuous + Discrete Discrete Maxvote
BLSTM 0.77 0.769 0.755 0.754 0.556
FSTDNN 0.777 0.777 0.761 0.761 0.542

The effects of the different smoothing techniques on the Hollywood corpus in terms
of F1-Score are listed in table 6.5. The effects of maxvote smoothing were disastrous.
Discrete smoothing was better, yet still had a measurable negative impact on F1-
Scores. The effects of continuous smoothing were barely noticeable. Thus, the
proposed systems do not apply any smoothing. However, these results are based
on the F1-Score. A subsequent ASR system might still benefit from continuous or
maybe even discrete smoothing.

6.1.5 Comparison of ROC curves

The ROC curves of both systems are shown in fig. 6.1. The right diagram is an
enlarged version of the upper left corner of the left one for better comparison. As
can be seen the two systems behave very similar. With coordinates given as (FPR,
TPR) the curves are roughly identical between (0, 0) and approximately (0.02,
0.65). There is also little difference between approximately (0.31, 0.93) and (1, 1).
These intermediate points represent reasonably good performances themselves. The
biggest difference is at an FPR of approximately 0.15, with an TPR of approxi-
mately 0.85 for the BLSTM-based system and 0.87 for the FSTDNN-based system.
However, the threshold of each system needs to be chosen with great care to exploit
this improved performance.

6.2 Evaluation on Hollywood corpus

No other work before used part of the AVA corpus for training and another part for
testing. Thus, another corpus was needed for evaluation. The Hollywood corpus,
a corpus consisting of four Hollywood movies annotated by [LWS15] was used. In
table 6.6 the results on this corpus are coarsely compared to other works. Another,
more detailed comparison can be found in table 6.7. However, these detailed values
were not reported by [HSN19], containing the most recent and performant systems.
In-depth analysis of both tables constitute the remainder of this section.

6.2.1 Coarse comparison

One work, [HSN19], tested several systems on this corpus. The two best were
selected for comparison. Both use the vgg-conv network, originally developed for
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Figure 6.1: ROC curves of the proposed systems.
The right diagram shows a detailed view of the upper left corner of the left

diagram.

image recognition [SZ15]. The vgg-conv network employs several layers of FSTDNNs
with pooling layers in between. One of the systems described in [HSN19] features a
single BLSTM layer, another pooling layer and two feedforward layers on top of the
vgg-conv block. Thus, it is very similar to the FSTDNN-based network proposed
in this work, yet more complicated. In table 6.6 it is denoted as [HSN19](1). The
other system, denoted [HSN19](2), features only feedforward and pooling layers on
top of the vgg-conv block.

The other two works listed in the table mainly rely on sophisticated input features.
A decomposition of the input audio into harmonic and percussive components is
used by [JASJ17]. As classifier they employ a simple DNN, consisting of three
layers with 286 hidden units per layer. The classifier used by [LWS15] is a support
vector machine. They employ a highly customized 126-dimensional input vector.

The first system listed in the table, denoted “WebRTC” is the voice activity detector
of the widely used WebRTC framework [Goo20] This framework is aimed at in-
browser real-time communication. Therefore it is not at all optimized towards VAD
in media audio. However, it is a highly optimized, widely used VAD system. It
features a thresholding parameter, called “aggressiveness”, allowing values between
zero and three. The higher the value, the less frames are classified as containing voice
activity. The aggressiveness was set to three for this comparison, thus the relatively
low recall. However, for lower aggressiveness values the precision deteriorated so
badly the F1-Score got even worse. Thus, the system is not competitive, but stands
to prove one thing: that VAD on media audio is hard.
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Table 6.6: Results on the Hollywood corpus

Accuracy Precision Recall F1-Score
WebRTC 0.37 0.49 0.59 0.54
[HSN19](1) 0.89 0.79 0.75 0.77
[HSN19](2) 0.88 0.74 0.81 0.77
[JASJ17] 0.86 0.84 0.57 0.67
[LWS15] 0.87 0.75 0.73 0.74
BLSTM 0.88 0.75 0.79 0.77
FSTDNN(1) 0.88 0.84 0.66 0.73
FSTDNN(2) 0.89 0.76 0.8 0.78

The systems proposed in this work are denoted as BLSTM, FSTDNN(1) and FSTDNN(2).
The FSTDNN(2) is the same system as FSTDNN(1), but with a threshold tuned
slightly in favor of the Hollywood corpus. This was done because the threshold
calculated on the AVA validation data generalized well for the BLSTM system, but
not for the FSTDNN system. Thus, a system showing a very good performance in
terms of AUC and accuracy had a mediocre recall and thus a unfavorable F1-Score
as well. However, this is an only partly fair comparison and with respect to F1-Score
the BLSTM-based system should be considered superior.

The best accuracy was achieved by both the first system from [HSN19] and the
specially trimmed FSTDNN-based system. The second system by [HSN19], the
untrimmed FSTDNN-based system and the BLSTM-based system make a close
second, with the two remaining specialized systems only slightly worse. Thus the
accuracy shows little variance and is not very useful for a ranking of the systems.

The precision and recall need to be examined together. A recall of 0 automatically
yields a precision of 1. A system is considered good, if it can raise the recall without
the precision deteriorating or vice versa. Thus, the high precision of [JASJ17] is
not as impressive as it may seem at first. They simply classified fewer frames as
containing speech as others. This holds true for the untrimmed FSTDNN-based
system as well. Impressive results are achieved by [HSN19](1), yielding the third
highest recall while maintaining a competitive recall. Also by [HSN19](2), yield-
ing the highest recall and still a reasonable precision. And by the BLSTM-based
system proposed in this work, yielding the third highest recall while maintaining a
competitive precision. The trimmed FSTDNN-based system is also very good, but
as mentioned before this is not a fair comparison.

The F1-Score is the most informative value in this table. As it is calculated from
those, it exactly resembles the ranking to be expected from precision and recall. The
specially trimmed system is best, the two systems by [HSN19] and the BLSTM-based
system share the second place. It should however be noted, that the BLSTM-based
system is much less complicated than the systems by [HSN19].
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6.2.2 Film-wise comparison

Detailed results for several metrics and all four movies in the Hollywood corpus
can be found in table 6.7. For a short overview of the movies see table 3.1. The
systems featured in the table are the untrimmed FSTDNN-based system and the
BLSTM-based system. Further the systems by [HSN19] and [JASJ17] as described
in section 6.2.1. Such detailed results were not reported by [HSN19], thus their
systems are omitted.

Both the highest precision and lowest false positive rate (FPR) are mostly achieved
by [JASJ17]. However, as before the corresponding recalls are low and the false
negative rates (FNRs) high. Their system simply classified few frames to contain
voice activity. Therefore, the F1-Scores they achieved are not competitive. As they
did not report AUCs, those can not be compared.

The best AUCs were consistently achieved by the FSTDNN-based system. The
second best values, and for “Kill Bill” even the same was achieved by the BLSTM-
based system. Somewhat surprisingly, the best EER for both “I am Legend” and
the whole corpus was achieved by [LWS15]. Their overall performance on “I am
legend” is impressive. Their system also did very well on “Kill Bill”, a trend seen in
both of the proposed systems as well. Notably, these are the movies with the lowest
percentage of speech. Thus, all the systems appear to profit from class imbalance
with less speech frames, but the system by [LWS15] more than the two proposed
systems.

The BLSTM-based system consistently yields the highest recalls and F1-Scores. The
FSTDNN-based system yields high precision, but at the cost of significantly lower
F1-scores. The system by [HSN19] keeps a good balance of precision and recall but
is generally inferior to the BLSTM-based system.

6.3 Effects of noise and music

This work is especially aimed at VAD in the presence of music. As reported before,
no other work using parts of the AVA corpus as train- and testset respectively
could be found. Thus, a comparison of the performance with respect to different
classes can only be drawn between different tested systems. The results of such a
comparison are depicted in fig. 6.2. Note that the scale for the TPR only covers
the range from 0.9 to 1. All these values are very close together. The depiction
overstates the differences for better comparability. The four groups of bars belong
to one system each as denoted below the x-axis. Each color represents one class, see
the legend in the lower right for details.

The chosen metric was the TPR for a fixed FPR of 0.315. This means a threshold
was chosen such, that 31.5 % of the frames not containing any voice activity would
still be placed in one of the classes meant to contain voice activity. Subsequently
for all the frames belonging to one of the classes meant to contain voice activity the
rate of them being classified as containing voice activity was calculated. Whether
they would have been assigned to the actually correct class was not questioned, only
if it contained speech or not.
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Table 6.7: Metrics per movie

The Bourne Identity
Model AUC EER FNR FPR ACC PREC REC F1
[LWS15] 0.897 0.134 0.297 0.074 0.866 0.776 0.703 0.738
[JASJ17] - - 0.355 0.04 0.876 0.855 0.645 0.736
BLSTM 0.92 0.148 0.194 0.091 0.881 0.763 0.806 0.784
FSTDNN 0.928 0.133 0.282 0.049 0.889 0.841 0.78 0.775

I am Legend
Model AUC EER FNR FPR ACC PREC REC F1
[LWS15] 0.922 0.092 0.225 0.062 0.908 0.738 0.775 0.756
[JASJ17] - - 0.463 0.023 0.897 0.842 0.537 0.656
BLSTM 0.949 0.117 0.178 0.075 0.906 0.712 0.822 0.763
FSTDNN 0.95 0.107 0.397 0.027 0.905 0.834 0.603 0.7

Kill Bill: Volume 1
Model AUC EER FNR FPR ACC PREC REC F1
[LWS15] 0.914 0.124 0.186 0.109 0.877 0.640 0.814 0.717
[JASJ17] - - 0.313 0.072 0.882 0.695 0.688 0.691
BLSTM 0.944 0.116 0.163 0.082 0.902 0.713 0.837 0.77
FSTDNN 0.944 0.124 0.328 0.048 0.897 0.772 0.472 0.719

Saving Private Ryan
Model AUC EER FNR FPR ACC PREC REC F1
[LWS15] 0.880 0.155 0.306 0.084 0.845 0.797 0.695 0.742
[JASJ17] - - 0.535 0.02 0.814 0.916 0.465 0.617
BLSTM 0.912 0.167 0.26 0.087 0.858 0.802 0.74 0.77
FSTDNN 0.923 0.151 0.374 0.049 0.845 0.861 0.626 0.725

All
Model AUC EER FNR FPR ACC PREC REC F1
[LWS15] 0.895 0.13 0.271 0.082 0.870 0.748 0.729 0.738
[JASJ17] - - 0.43 0.037 0.861 0.838 0.572 0.67
BLSTM 0.924 0.148 0.214 0.087 0.881 0.753 0.786 0.769
FSTDNN 0.929 0.14 0.345 0.043 0.881 0.835 0.655 0.734
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Figure 6.2: True positive rates for different classes.
The true positive rates are reported for a threshold at which the same class would

achieve a false positive rate of 0.315.

One obvious result is, that the FSTDNN for every class and combination with one
exception for speech with music. However, as the AUC of those systems was already
known to be higher this is no surprise.

More interestingly, the differences between the classes for speech with noise and
speech with music are less obvious for the FSTDNN-based systems. It is possible
that the FSTDNNs were better capable to learn characteristics of voice activity
independent of the type of background noise than the BLSTM-only system.

The most interesting find however is, that 64-dimensional MFCCs are superior for
distinguishing speech and music. 40-dimensional MFCCs on the other hand perform
better at distinguishing speech and noise. This is backed by additional data from
training runs not reported here to maintain conciseness. As both features were ex-
tracted from the same number of frequency bins, higher dimensional MFCCs meant
a better spectral resolution at the cost of temporal information. Thus the results
might imply, that music can be distinguished from speech robustly based on fine-
grained spectral analysis while noise requires more temporal information. However,
further research is required to achieve a reliable confirmation of this assumption.



7 Discussion

This work is aimed at voice activity detection in media audio, especially in the pres-
ence of background music. To achieve this, two systems have been proposed. Both
consist of a preprocessing step yielding input features and a NN-based classifier. In
chapter 6 the decision to use the reported architectures and parameter combinations
was justified. Furthermore, the performance of the proposed systems was compared
to other contemporary approaches. In this chapter, the overall performance will be
summed up and put into perspective. Moreover, possible implications of the results
and possibilities to extend the proposed systems will be examined.
The overall performance of the proposed systems is competitive. [HSN19] reported
comparable results, but used a larger and more complicated NN architecture. The
results reported by [JASJ17] and [LWS15], although impressive, are not competitive.
Several input features were tested in this work. Although some related works pub-
lished very promising results based on MRCGs, they showed mediocre performance
in this work. If this was due to a erroneous implementation or a ill-suited combina-
tion of input features and classifier remains unknown.
The best results in this work were achieved by standard MFCCs. The number of
MFCCs per frame was varied. The BLSTM-based system worked best with 40-
dimensional MFCCs. The FSTDNN-based system on the other hand achieved the
best result based on 64-dimensional MFCCs. Moreover, higher dimensional MFCCs
were better suited for distinguishing speech from music, while lower dimensional
MFCCs proved superior for distinguishing speech from music. This might be due
to the trade-off between spectral and temporal attention when calculating different
sizes of MFCCs from the same number of frequency bins. This could be further
investigated by going one step further and varying the parameters of the DFT.
The two proposed systems achieve comparable performance. The margins in-between
them considering several metrics are small. However, the threshold for BLSTM-
based system calculated on the AVA validation data showed better generalization
capability than it’s counterpart for the FSTDNN-based system. The FSTDNN-
based system on the other hand was not only slightly superior in terms of general
performance. It also was less dependent on the type of background noise than the
BLSTM-based system.
The relatively small advantage of the FSTDNN-based system over the BLSTM-based
system seems counter-intuitive. On the other hand, the results of the BLSTM-based
system were already good. Thus, further improvements might be difficult to achieve.
However, several contemporary works report their best results based on complex
combinations of FSTDNN and RNN layers. Possibly, a more complex or deeper
FSTDNN-based architecture below the BLSTM might yield further improvements.
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Although the proposed systems are ultimately aimed at supplementing an ASR
system they were not tested as part of one. This would be another interesting
expansion of this work. As stated before, different types of VAD systems are more
or less tolerable for an ASR system. The very high recall at a reasonable precision
achieved by the FSTDNN-based system with adjusted threshold might be highly
beneficial.

Also, the systems proposed in this work applied no smoothing, as it yielded no
benefit with respect to the examined metrics. An ASR system however might profit
from the continuous or even the discrete smoothing. The systems themselves have
been prepared for use in an offline ASR system. Thus, given an ASR system with
a proper API and a suitable training corpus this should be testable with reasonable
effort. Still, it exceeded the scope of this work and thus has not been done yet.

In conclusion, this work yields two things. First, a comprehensive overview of the
necessary considerations when building a VAD system and their effects on the system
behavior. And second, instructions on how to build such a system with reasonable
performance. For each aspect of such a system, this chapter provided not only the
findings of this work, but also open questions and expansion possibilities.



8 Conclusion

In this work, VAD on the audio tracks of movies was explored. The necessary
preprocessing was described for both standard MFCCs and the recently introduced
MRCGs. Both LSTMs and FSTDNNs were outlined. A comprehensive description
of the training process for deep neural networks was provided. This included gradient
descent, backpropagation, cross-entropy loss as objective function and the use of
schedulers. Notably, SMORMS3, an alternative to the popular Adam scheduler was
described. Different smoothing techniques were outlined as well. An overview of the
metrics used in this work was provided.

VAD relies heavily on corpora of training audio and corresponding annotations. An
overview over several corpora of interest was provided. The decision to use the
AVA corpus for training and validation and the Hollywood corpus for evaluation
was justified. These were described in detail.

A comprehensive overview of works on VAD was provided. Starting with the histor-
ical roots of both VAD and speech/music classification, the development leading to
the modern setup of input features and a NN classifier was traced. Contemporary
works of interest, assorted by used input features, were listed and their distinctive
characteristics described.

The proposed systems were described in detail. They consist of a relatively stan-
dard preprocessing step, yielding MFCCs and a NN-based classifier. Several different
features, as well as different dimensionalities of the MFCCs were tested. For the
classification, several different architectures were analyzed. Two best performing
models, one based solely on BLSTM layers, and one based on a mixture of BLSTM
and FSTDNN layers, were determined. For these a thorough search of optimal com-
binations of input features and parameter combinations was conducted. Different
smoothing techniques were also examined, and an overview of the used technology
and software was provided.

The experiments leading to the proposed systems were described in detail. The
performance of different combinations of input features and NN architectures is
listed. For both proposed models the effect of varying the number of layers, hidden
units and, in case of the FSTDNN, filters was explored and the results reported.
The effects of different smoothing techniques are listed.

Two systems were chosen for further experiments. One consisted of four layers
of BLSTMs with 1024 hidden units each. 40-dimensional MFCCs were used as
input features. The two directions of the BLSTM were summed, and a feedforward
network projected them onto four outputs. A softmax function was used to generate
a probability distribution.
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The second system consisted of four blocks of gated FSTDNNs with increasing
filter size and dilation. Each FSTDNN featured 32 filters. The results of the four
blocks were concatenated and fed to a BLSTM block similar to the first system. It
featured 256 hidden units per layer, otherwise it was identical to the first network.
This system used 64-dimensional MFCCs as input features. The second system
performed slightly better.

Several smoothing techniques were tested on the outputs of both systems. None
led to an increase in performance, thus the subsequent experiments were conducted
without applying any smoothing. However, if one of the systems was used as pre-
processor to an ASR system, some smoothing might improve overall performance.

The two proposed systems were then evaluated against other contemporary VAD
systems. This was done based on a corpus of four Hollywood movies. A coarse anal-
ysis of the systems performances against the best systems in literature is provided.
Two works published in-depth results on the four movies, using these a fine-grained
analysis could be conducted as well. Furthermore a separated test set of the training
data was used to examine, how the different combinations of systems and features
handled background noise and music respectively.

It was shown that both systems performed on par with the best contemporary
systems from literature. The in-depth analysis showed especially the recall of the
BLSTM-based system to be very good, while preserving a competitive precision.
The AUCs of both proposed systems outperformed all reported ones by a substantial
margin.

Finally, the achieved results were discussed and set into perspective. The most
important characteristics of the proposed systems, and their effects on the perfor-
mance, were pointed out. The advantages and shortcomings compared to other
contemporary systems were examined. Ideas on how to improve or use the proposed
systems were contemplated.

VAD in the presence of music remains a difficult problem, but the tools to find a sat-
isfactory solution for many applications are in place. Further research is confronted
with the same decision as before, focus on the input features or the classifier. While
not introducing new or substantially enhanced features, this work provided some in-
sights on the interactions of input features and classifiers. Two NN models, capable
of working as a robust classifier in a VAD system were presented and described in
detail. Thus, a contribution to VAD research was made. By advancements in both
areas, input features and classifiers, substantially better systems are to be expected
in the future.
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Adam A popular optimization algorithm used during NN training. See section 2.3.4
for details. 27, 47

area under the curve The integral of the ROC curve. See section 2.5.6 for details.
19, 49

automatic speech recognition The transcription of an audio recording of speech
into the corresponding written representation by a machine or software. 3, 15,
49

bi-directional long short-term memory network A special case of LSTM. Bidi-
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16, 52

cochleagram A feature aimed at imitating human perception of sound. See sec-
tion 2.1.2 for details. 8, 35, 36

coordinated-gate LSTM A specialized type of LSTM introduced by [GG18]. See
section 4.2 for details. 27, 49

cross-entropy loss A loss function based on the dissimilarity between two proba-
bility distributions. See section 2.3.3 for details. 16, 49

deep neural network A type of NN. Originally any NN with at least one hidden
layer. Recently mostly used when several hidden layers are present. 24, 49

discrete cosine transform A linear transform used widely for the computation
of MFCCs. See section 2.1.1 for details. 27, 49

endpoint detection The detection of boundaries between speech and non-speech
segments instead of either record-wise or frame-wise classification. Especially
important for ASR and related tasks. 26
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equal error rate The FPR and FNR if a threshold is fixed such that both are
equal. See section 2.5.5 for details. 27, 49

false negative rate The rate at which frames predicted not to contain voice ac-
tivity actually do so. See section 2.5.5 for details. 42, 49

false positive rate The rate at which frames predicted to contain voice activity
actually do not. See section 2.5.5 for details. 42, 49

feedforward network A simple type of multilayer NN. See 2.2.1 for details. 49,
52

frame An extract from an audio stream. Usually short enough to consider speech
signals stable within, about 10 ms is a common duration. 4

frequency shifting time delay neural network A variant of the TDNN archi-
tecture shift-invariant not only along the time but also the frequency axis. See
section 2.2.3 for details. iv, 11, 49

hangover Frames added to a talkspurt deliberately even though not considered
speech by the decision rule. Used to avoid clipping. 26

Hidden Markov Model A statistical Markov model wherein the states are unob-
servable so the state sequence needs to be derived from the output of these
states. Historically very important to ASR and somewhat important to VAD.
26, 49

Kullback-Leibler divergence A measurement of of how different a probability
distribution is from a reference probability distribution. Also called relative
entropy. 26

long short-term memory network A type of RNN featuring four internal gates
per cell for deciding what information to save, what to forget and what to put
out. See section 2.2.4 for details. 11, 49

Mel-frequency cepstral coefficients Most commonly used features for neural
network based VAD. See section 2.1.1 for details. iv, 4, 7, 49

minibatch A small set of training samples during stochastic gradient descent. See
section 2.3.1 for details. 13, 28, 36, 53

multilayer perceptron A NN consisting of at least three layers, i.e. featuring at
least one hidden layer. Mostly referring to feedforward networks (FFNs), but
sometimes used for other types of NNs as well. 10, 49

multi-resolution cochleagrams A novel feature introduced by [CWW14]. See
section 2.1.2 for details. 4, 7, 50

neural network A computer system consisting of a collection of nodes and their
connections. The nodes may all behave the same or differently in groups.
Their number is arbitrary, reaching into the billions. They might be arranged
om one or multiple layers with arbitrary wiring complexity. i, 9, 50
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perceptron First attempt at mimicking a neurons’ behavior in computers. Impor-
tant predecessor to modern NNs. 26

receiver operating characteristic Performance of a binary classifier depending
on its classification threshold. See section 2.5.6 for details. 18, 50

recurrent neural network A type of NN where individual cells contain an in-
ternal state representing some combination of the previous states and inputs.
Utilized mainly to process sequences of variable length. 11, 50

signal to noise ratio In speech processing the ratio between the signal power and
the noise power. In VAD the ratio between the power of the speech signal and
the power of the background noise. 24, 50

softmax Function used to project a vector of real values onto a probability vector
(entries are between zero and one and add up to one). See section 2.2.2 for
details. 31

soundtrack The entirety of music used in a movie. Consists of the score, specifi-
cally written for the movie and other, preexisting, compositions. 22

speech activity detection The detection of intelligible speech in an audio signal.
3, 22, 50

speech/music classification The process of deciding whether a given audio record-
ing or excerpt is containing either speech or music. Depending on the subse-
quent task, mixed frames may be considered to belong to either of the classes
or one or more specialized classes are possible. 27, 47, 50

speech/music discrimination The process of deciding whether a given recording
or frame of an audio signal contains speech and/or music. 3, 5, 21

sprachraum Linguistic term for a geographical region wherein the same first lan-
guage or group of languages is spoken. 3

squared mean over root mean squared cubed A training scheduler. See sec-
tion 2.3.4 for details. 12, 50

stochastic gradient descent A variant of gradient descent, using minibatches.
See section 2.3.1 for details. 13, 50

talkspurt Continuous segment of speech between two pauses. Term is mostly used
when referring to digital telephony. 26, 52

time delay neural network A type of neural network used for audio tasks. Its
most important characteristic is its invariance to shifts in the time domain.
See section 2.2.3 for details. 11, 50

voice activity detection The detection of human voices in an audio signal. In-
cludes unintelligible sounds like sighs. iii, iv, 3, 7, 50

zero crossing rate A measurement of how often a signal changes its sign. Mainly
used for the detection of fricatives and percussive sounds in music detection.
25, 27
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