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Abstract

In this paper the contribution of multiresolution analysis to the face recognition performance is examined. We refer to the paradigm that in

classification tasks, the use of multiple observations and their judicious fusion at the data, feature or decision level improves the correct

decision performance. In our proposed method, prior to the subspace projection operation like principal or independent component analysis,

we employ multiresolution analysis to decompose the image into its subbands. Our aim is to search for the subbands that are insensitive to the

variations in expression and in illumination. The classification performance is improved by fusing the information coming from the subbands

that attain individually high correct recognition rates. The proposed algorithm is tested on face images that differ in expression or

illumination separately, obtained from CMU PIE, FERET and Yale databases. Significant performance gains are attained, especially against

illumination perturbations.

q 2004 Elsevier B.V. All rights reserved.

Keywords: Multiresolution Analysis; Discrete Wavelet Transform; Independent Component Analysis; Principal Component Analysis; Fusion
1. Introduction

Face recognition problem has become one of the most

relevant research areas in pattern recognition. Face

recognition debts its popularity to its potential application

areas, ranging from human computer interaction to

authentication and surveillance.

The holistic or appearance-based approach has been

gaining popularity vis-à-vis anthropometrical feature-based

approach in face recognition [1]. In the holistic approach, all

the pixels in the entire face image are taken as a single

signal, and processed to extract the relevant features for

classification. Most of the appearance-based face recog-

nition algorithms perform some kind of subspace analysis in

the image space to extract the relevant feature vectors. The

most widely used subspace analysis tools are the principal

component analysis (PCA) [2], linear discriminant analysis

(LDA) [3] and a blind source separation technique, called

independent component analysis (ICA) [4]. All face

recognition algorithms, however, witness a performance

drop whenever face appearances are subject to variations by
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factors such as occlusion, illumination, expression, pose,

accessories and aging. In fact, often these factors lead to

intra-individual variability of face images, to the extent that

they can be larger than the inter-individual variability [5].

In this study, we apply multiresolution techniques in

order to mitigate the loss of classification performance due

to changes in facial appearance. We design experiments

specifically to investigate the gain in robustness against

illumination and facial expression changes. The underlying

idea in the use of the multiresolution analysis is firstly, to

obtain multiple evidences from the same face, and search

for those components that are less sensitive to intrinsic

deformations due to expression or due to extrinsic factors,

like illumination. Secondly, our approach follows the

paradigm of fusion that utilizes multiple evidences.

Although at first sight, these evidences can appear some-

what redundant and may contain less information, their

judicious combination can prove often to be superior for

classification.

The most popular multiresolution analysis technique is

the wavelet transform. Therefore in this study we use the 2D

discrete wavelet transform in order to extract multiple

subband face images. These subband images contain coarse

approximations of the face as well as horizontal, vertical
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www.elsevier.com/locate/imavis

http://www.elsevier.com/locate/imavis


Fig. 1. Tree representation of one-level 2D wavelet decomposition.
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and diagonal details of faces at various scales. Subsequently,

we extract PCA or ICA features from these subbands. We

exploit these multiple channels by fusing their information

for improved recognition. We have compared three fusion

approaches, namely, fusion at the subband data level, fusion

at the ICA/PCA feature level, and finally, fusion of the

classifier decisions at the subband channel level. The main

contribution of the paper is thus to search for most

discriminative set of wavelet channels, and to construct

face recognition schemes using fusion techniques at

different levels of data processing.

Discrete wavelet transform has been used in various

studies on face recognition [6–10]. In [6], three-level

wavelet transform is performed to decompose the original

image into its subbands, on which the PCA is applied. The

experiments on Yale database show that third level diagonal

details attain highest correct recognition rate. A wavelet

transform-based speaker identification system in a tele-

conferencing environment is proposed in [7]. In this

algorithm a three-level wavelet decomposition is per-

formed. The scaling components at each level as well as

the original image are used for classification. The classifier

used in this study is a kind of neural network with one-class-

in-one-network structure, that is, each subnet is trained

separately and there is one subnet per individual. Wavelet

packet analysis-based face recognition system is proposed

in [8]. The original image is decomposed into its subbands

by using two-level wavelet packet decomposition. Out of

the 16 subbands, a 21-dimensional feature vector is obtained

consisting of variances of 15 detail subbands and three mean

values and three variances calculated from different parts of

the approximation subband. From this 21 components, only

the most meaningful components are selected resulting in a

final feature vector size of 11. Bhattacharya distance

between these statistical features is used to classify faces.

In [9], three-level wavelet decomposition is performed and

the resulting approximation subbands at each level are

concatenated to produce a new data vector on which PCA is

applied. Radial basis functions are used as the classifier of

the system. Discriminant waveletfaces approach is proposed

in [10]. In this study, third level approximation resulting

from three level wavelet decomposition, called the wavelet-

face, is used as the input of the LDA. For classification,

presented nearest feature plane (NFP) and nearest feature

space (NFS) classifiers are examined. Different from these

previous studies, we put into evidence the contribution of

wavelet subbands to combat; specifically, illumination and

expression factors, and we investigate the interplay of

subband information fusion styles, choice of metrics and of

features. In other words, the thrust of the paper is to explore

how the discriminatory ICA and PCA features can be de-

sensitized or rendered more invariant to the effects of

illumination and expression via the judicious selection of

subbands and via fusion at various levels.

The paper is organized as follows. In Section 2,

multiresolution analysis is briefly reviewed. Subspace
analysis tools (PCA, ICA) and fusion techniques used in

the study are explained in Sections 3 and 4, respectively. In

Section 5 experimental results against expression and

illumination variations are presented separately. Finally, in

Section 6 conclusions are given.
2. Multiresolution analysis

Multiresolution methods provide powerful signal

analysis tools, which are widely used in feature extraction,

image compression and denoising applications. Wavelet

decomposition is the most widely used multiresolution

technique in image processing. Images have typically

locally varying statistics that result from different combi-

nations of abrupt features like edges, of textured regions and

of relatively low-contrast homogeneous regions. While such

variability and spatial nonstationarity defies any single

statistical characterization, the multiresolution components

are more easily handled. Wavelet transform can be

performed for every scale and translation, resulting in

continuous wavelet transform (CWT), or only at multiples

of scale and translation intervals, resulting in discrete

wavelet transform (DWT). Since, CWT provides redundant

information and requires a lot of computation, generally

DWT is preferred.

The two-dimensional wavelet transform is performed by

consecutively applying one-dimensional wavelet transform

to the rows and columns of the two-dimensional data. In

Fig. 1, the tree representation of one level, two-dimensional

wavelet decomposition is shown. In this figure, G denotes

high-pass filtering and H denotes low-pass filtering, while

Y2, represents downsampling by a factor of 2. In the final

stage of the decomposition we have four N/2!N/2

resolution subband images: A1, the scaling component

containing global low-pass information, and three wavelet

components, H1, V1, D1, corresponding, respectively, to the

horizontal, vertical and diagonal details. We can perpetuate

this decomposition, either pursuing the same pattern along

the scaling component, or obtaining the full-blown tree, or

achieve some intermediate tree where ‘interesting’ branches



Fig. 2. Sample one-level wavelet decomposed image.
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are grown using, for example, some projection pursuit

scheme [11]. In Fig. 2, one-level wavelet decomposition of a

face image is shown.

In Fig. 3 the schematics of the wavelet decomposition

used in this study is shown. The letters in the figure serve to

differentiate the scaling component or the orientations of the

wavelet components, while the accompanying numbers

denote the level of decomposition. If the subbands are

obtained by decomposing the original image or any of the

scaling components, then they are represented with single

letter. If however, a subband is derived by decomposing one

of the detail subbands, then these are denoted with two

letters, where the first letter indicates the parent subband and

the second letter denotes the orientation of the child.

In the first level, a 128!128 original face image is

decomposed and four 64!64 pixels resolution subband

images—A1, H1, V1 and D1—are obtained. The H1, V1, and

D1 components are not further decomposed, because we

found their classification performance figures to be very

low. Consequently we proceed to decompose only A1,

yielding four 32!32 subband images—A2, H2, V2 and D2.

In the third level, we decompose all components, A2, H2, V2

and D2, producing 16 16!16 subband images. In summary,

we obtain 24 different subband images from the original

face image and input them into the classification scheme.
3. Subspace analysis

An m!n resolution face image can be considered as a

point in an NZm!n dimensional image space. For

example, a 128!128 face image corresponds to a point in
Fig. 3. Wavelet decompositio
16,384-dimensional huge feature space. On the other hand,

face images are very similar, and therefore highly

correlated. It follows than that they can be represented in

a much lower dimensional feature subspace. PCA and ICA

are the two popular methods to descend to such face

subspaces.
3.1. Principal component analysis (PCA)

Principal component analysis (PCA) is based on the

second-order statistics of the input image, which tries to

attain an optimal representation that minimizes the

reconstruction error in a least-squares sense. Eigenvectors

of the covariance matrix of the face images constitute the

eigenfaces. The dimensionality of the face feature space

is reduced by selecting only the eigenvectors possessing

largest eigenvalues. Once the new face space is

constructed, when a test image arrives, it is projected

onto this face space to yield the feature vector—the

representation coefficients in the constructed face space.

The classifier decides for the identity of the individual,

according to a similarity score between the test image’s

feature vector and the PCA feature vectors of the

individuals in the database.
3.2. Independent component analysis (ICA)

Independent component analysis (ICA) can be seen as a

tool, based on higher order statistics, for extracting

independent sources from an observed mixture, where

neither the mixing matrix nor the distribution of the sources
n tree used in the study.



Fig. 4. First face recognition architecture of ICA (ICA1). X: observation, A: rows of mixing matrix, representation coefficients, S: statistically

independent basis images.

Fig. 5. Face representation using ICA1.
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are known. The system model of ICA is given as

X Z AS

where A denotes the mixing matrix, S denotes the source

matrix containing statistically independent source vectors in

its rows, and X denotes the observation matrix containing

the ‘linear mixtures’ in its rows. The un-mixing matrix W

is found by minimizing or maximizing some objective

function, such as likelihood ratio, network entropy,

mutual information or Kullback–Leibler divergence [12].
Fig. 6. Second face recognition architecture of ICA (ICA2). X, observ

representation coefficients.

Fig. 7. Face representa
The separation matrix, W, under ideal conditions, is the

inverse of the mixing matrix A

Y Z WX and W Z AK1 and YzS

In the context of face recognition, the use of ICA features

was first proposed in [4], where two different approaches

were presented. In the first approach (called ICA1

architecture), the face images are assumed to be a

linear mixture of an unknown set of statistically

independent source images. Therefore, in this architecture,
ations; A, columns of mixing matrix; S, statistically independent

tion using ICA2.



Fig. 8. Block diagram of the data fusion scheme. Fig. 10. Block diagram of decision fusion scheme.
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the lexicographically ordered face images constitutes the

rows of the observation matrix X, the statistically

independent basis images constitutes the rows of the source

matrix S, and the representation coefficients constitutes the

rows of the mixing matrix A (Fig. 4). The source images

obtained in this architecture are spatially local and sparse in

nature (Fig. 5).

In the second approach (called ICA2 architecture), the

representation (weighting) coefficients are assumed to be

statistically independent. Therefore, in this architecture,

the lexicographically ordered face images constitute the

columns of the observation matrix X, the statistically

independent representation or weighting coefficients con-

stitute the columns of the source matrix S, and the basis

images constitutes the columns of the mixing matrix

A (Fig. 6). In this second architecture, while mixing

coefficient vectors are independent, source images tend to

have global face appearances, similar to the case of PCA

(Fig. 7).
4. Fusion

The outcomes from the various wavelet channels are

fused to achieve possibly higher correct recognition rates.

We investigated three schemes, namely, fusing raw pixel

values of the subbands, fusing ICA/PCA feature vectors

extracted from the subbands, and fusing the classification

decisions of the subbands.

4.1. Data fusion

In data fusion, lexicographically ordered pixels of the

subband images are concatenated to construct a new data

vector. Following this operation, the subspace projection
Fig. 9. Block diagram of the feature fusion scheme.
and feature extraction are performed on the combined data

vectors (Fig. 8).
4.2. Feature fusion

In feature fusion, subspace analysis tools are performed

on each subband, and then the extracted feature vectors are

concatenated to construct a new feature vector to be used for

classification (Fig. 9).
4.3. Decision fusion

In decision fusion, face classification is run separately in

each subband. According to the distance values between the

test face feature vector and feature vectors of the individuals

in the database, a confidence measure is calculated for each

classifier. If we have K images in the database and if we

define the distance between two feature vectors by the

function d($), then the confidence score, ci, of a classifier’s

decision for ith class, is proportional to:

ci Z

PK
kZ1 dðxtest; xdatabase;kÞ

dðxtest; xdatabase;iÞ

The final decision is made through these confidence

values by using sum rule, product rule or maximum rule

[13]. Note that there are other fusion techniques based on

the training with decision patterns of experts. For example,

each subband can be considered to be a ‘face recognizer

expert’ and their decisions could be fused via a neural
Fig. 11. Sample face images containing changes in expression—

first row from CMU PIE, second row from FERET.



Table 1

Correct recognition rates of successful subband images against changes in expression

PCA-120 ICA1-120 ICA2-120

L1 L2 CC L1 L2 CC L1 L2 CC

Original 92.33 90.33 92 93.33 90.33 92 87 87.67 96

A1 93 91 91.67 93.67 91 91.67 90 88.67 95.33

A2 94 93 93 93 93 93 90.33 92 96

A3 94 91.67 91.67 94.33 91.67 91.67 90.33 93.33 95
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network. In our case, the limitations in the training data

precluded this approach (Fig. 10).
5. Experiments

Two separate experiments are conducted to test the

advantage of the wavelet-based face recognition scheme.

In the first experiment, the subbands that are potentially

insensitive to changes in expression are searched,

whereas in the second experiment the subbands that are

insensitive to variations in illumination are searched. In

both the experiments, feature vectors are extracted from

the subband images via PCA, ICA1 and ICA2. The

FastICA algorithm [12] is used to perform ICA.

Daubechies 4 wavelet is used in the study. The

Daubechies wavelets, with their compact support and

orthonormal nature, are one of the most widely used

wavelet families [14]. Besides this, in [6] it is shown that

Daubechies 4 wavelet performs best in terms of

computation time and recognition performance with

respect to other order Daubechies wavelets, and other

well-known wavelets such as biorthogonal, Symlets and

Lemarie.

We used the nearest neighborhood classifier in our study.

We evaluated comparatively three different distance metrics,

namely, the L1 norm, the L2 norm, and the normalized

correlation coefficient, defined as follows

L1 : d Z
XM

mZ1

jftraining;m K ftest;mj

L2 : d Z
XM
mZ1

jftraining;m K ftest;mj
2

 !1=2

CC : d Z
ftrainingftest

kftrainingkkftestk
Table 2

Correct recognition percentages using fusion techniques for faces having change

Best performing

subband

Data fusion Feature fusio

PCA 94.00 94.00 93.67

ICA1 94.33 94.33 94.00

ICA2 96.00 95.67 96.33
where ftraining, m is the mth (mZ1,.,M) component of the

training feature vector, and similarly for ftest, m.
5.1. Experiments with changes in expression

The experimental data we used to test the performances

of subbands against expression changes consists of 600

face images of 150 individuals (four images per individual)

(Fig. 11). The images were chosen from CMU PIE [15] and

FERET [16] databases. Two hundred and seventy-two of

these images belong to CMU PIE database, and remaining

328 images belong to FERET database, fafb image set.

Facial expression changes in the images occur due to

smiling, blinking or talking in CMU PIE database and due to

so-called alternative expressions in FERET database. It

would be desirable to have a more extensive set of

expressions that cover the whole gamut of human emotions.

Nonetheless, these experiments allow us to show the proof

of concept, that is that subbands and fusion bring in

improvements in the recognition performance. All the face

images are aligned with respect to the manually detected eye

coordinates, scaled to 128!128 pixels resolution, and

histogram equalized. For each individual in the set, two of

their images are used for training, and the remaining two

images are used for testing purposes. The images that

contain neutral facial expression are put in the training set.

For recognition, 120-dimensional feature vectors, conser-

ving 91.55% of the energy, are used (Fig. 11).

In Table 1, the correct recognition rates from selected

‘successful’ subbands are given. Note that under expression

change, only the scaling components A1, A2, A3 are

selected, and in fact, none of the detail bands qualifies in

the recognition competition. For faces subject to expression

changes only, we found out that performing PCA or ICA1

on scaling components slightly increases the correct

recognition rate. On the other hand, in ICA2, no improve-

ment is observed. With PCA and ICA1 features, the L1

norm gives the best results, whereas for ICA2, the best
s in expression

n Decision fusion—

sum rule

Decision fusion—

product rule

Decision fusion—

max. rule

94.00 93.67 94.67

94.67 94.67 94.33

96.33 96.33 96.67



Fig. 12. Sample face images containing variations in illumina-

tion—first row from CMU PIE, second row from Yale.
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results are obtained with normalized correlation measure.

ICA2 proves overall superior to ICA1 and PCA in all

subbands, its best being realized on the A2 component.

We next tried to fuse the information contained in the

selected subbands, A1, A2 and A3, at the data level, the

feature level and the decision level as documented in

Table 2. For each feature type we took into consideration the

distance metric with which they performed best. Therefore

L1 norm is used for PCA and ICA1, and CC is used for

ICA2. In data and decision fusions 120-dimensional feature

vectors are used. In feature fusion, 360-dimensional feature

vectors are constructed by concatenating the individual

feature vectors of the subbands. The best result is obtained

with ICA2 by using the decision fusion, based on the

maximum rule principle. Since the individual subbands

already have relatively high recognition rates, only a small

improvement in the performance is achieved. If we take the

performance of the PCA on the original image as a

reference, the correct recognition rates increases from

92.33 to 96.67, thus an overall 4.33% improvement is

achieved. On the other hand, if we take as a reference

the performance of ICA2 on the original sized image, the

improvement is a meagre 0.67%. Since the performance of

the original 128!128 image is on a par with those of the

lower-resolution (64!64, 32!32, 16!16) versions,
Table 3

Correct recognition rates of sample subband images in the presence of illuminati

PCA-80 ICA1-80

L1 L2 CC L1 L

Original 54.82 52.41 51.20 51.81 52

A1 56.02 53.01 51.20 51.20 53

A2 57.83 53.01 51.20 51.81 53

H2 34.94 33.13 71.69 33.73 33

A3 57.23 51.81 50.60 51.81 51

H3 65.06 64.46 72.29 67.47 64

HH3 45.18 45.78 68.67 45.78 44

V2 21.08 21.08 37.95 23.49 21

D2 6.02 8.43 36.75 8.43 8.

V3 43.37 43.98 45.78 43.37 43

D3 33.73 34.94 56.02 36.14 34
a computational advantage would accrue by selecting, let

us say, the much smaller 32!32 images (A2 component).
5.2. Variations in illumination

The experimental data we used to test the performance of

subbands against illumination variations consists of 332

face images of 83 individuals (four images per individual)

(Fig. 12). The images were chosen from CMU PIE [15] and

Yale databases. Two hundred and seventy-two of these

images belong to CMU PIE database and remaining 60

images belong to Yale database. Illumination variations in

the images occur due to the intensity and direction of the

light. All the face images are aligned with respect to the

manually detected eye coordinates, scaled to 128!128

pixels resolution and histogram equalized. For each

individual in the set, two of their images that contain

frontal illumination with different amounts of light are used

for training, and the remaining two images that contain

illumination from sides are used for testing purposes.

Eighty-dimensional feature vectors, which conserve 92.74%

of the energy, are used (Fig. 12).

The correct classification rates of subbands selected on

the basis of their success are given in Table 3. It is

interesting to observe that the horizontal detail subbands

(H2, H3, HH3) attain higher correct classification rates as

compared to the scaling components. In this respect, PCA

and ICA1 features extracted from the three horizontal detail

images lead to better results than the ICA2 features. The

normalized correlation measure, CC, has proved to be

superior in all of the three feature extraction methods. In

contrast, ICA2 features performed better when extracted

from the scaling components (A1, A2, A3) as well as the

original face image, though the recognition rate remained

overall inferior to those attained with the horizontal

components H2, H3, HH3. As can be observed from

Table 3, a significant performance improvement, of

the order of 40%, is achieved by using horizontal details

of wavelet subbands. If we again take as a reference the

performance of the PCA on the original image (54.82%
on variations (first five rows correspond to the successful subband images)

ICA2-80

2 CC L1 L2 CC

.41 51.20 57.83 56.02 66.87

.01 51.20 59.64 56.63 67.47

.01 51.20 56.02 60.24 63.86

.13 71.69 34.94 30.12 71.08

.81 50.60 57.83 60.24 60.24

.46 72.29 58.43 59.64 62.65

.58 69.28 40.36 42.17 60.24

.08 37.95 18.67 18.67 48.80

43 36.75 6.63 6.02 39.16

.98 45.78 42.17 44.58 50

.94 56.63 34.34 32.53 49.40



Table 4

Correct recognition rates of fusion techniques against variations in illumination

Best performing

subband

Data fusion Feature fusion Decision fusion—

sum rule

Decision fusion—

product rule

Decision fusion—

max. rule

PCA 72.29 75.90 77.11 77.11 77.11 75.30

ICA1 72.29 75.90 75.90 77.11 77.11 75.90

ICA2 71.08 77.11 72.89 75.90 75.30 77.71
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score), the correct recognition rate increases to 72.29, by

using only a 16!16 third-level horizontal subband

component. It is quite interesting that the vertical and

diagonal details bring in no improvement at any level of

fusion. In Table 3, the last four rows are reserved for the

vertical and diagonal subband components on two succes-

sive scales, where one can observe the poor performance

with these components.

Next, we carried out fusion experiments, with fusions

realized at the data level, feature level and decision level. In

all fusion experiments, we used the correlation coefficient,

CC, since it was overall the best performing distance metric.

The subbands involved in the fusion were the three

components, H2, H3 and HH3 using PCA and ICA1 features,

and the six components A1, A2, H2, A3, H3 and HH3 using

ICA2 features. These subbands were selected on the basis of

their performance in single-band experiments. Note that

since the energy levels of the scaling components and of the

horizontal detail components are very different, for the data

fusion experiments, they must be rendered commensurate.

In other words, to prevent the low-frequency subbands

containing higher energy from dominating the horizontal

details, energy normalization is applied by scaling each

component by its respective standard deviation.

In the data fusion, the concatenated subband coefficients

form longer vectors. For example, when the A1, A2, H2, A3,

H3 and HH3 data are fused, the resulting vector becomes

4096C1024C1024C256C256C64Z6656 dimensional.

These longer concatenated vectors are, however, still

reduced to dimension 80, as shown in Fig. 8, after PCA

projection (recall that ICA scheme has a PCA preprocessing

stage.) In the feature fusion case, on the other hand, 240-

dimensional feature vectors are formed in PCA and ICA1,

which are constructed by concatenating the feature vectors

of H2, H3 and HH3 subbands. In ICA2, 480-dimensional

feature vectors result from concatenation of the features of

the A1, A2, H2, A3, H3 and HH3. Finally, in the case of

decision fusion, the confidence scores from the different

channels (three channels in the case of PCA and ICA1 and

six channels in the case of ICA2) are combined to a final

decision by using sum rule, product rule and maximum rule

[13].

Table 4 shows the improvements in correct recognition

rate achievable as a result of fusion schemes. All features

(PCA, ICA1, ICA2) seem to benefit from fusion, whether it

is data, feature or decision fusion. The first column of

Table 4 gives the best attainable ‘pre-fusion’ score for
a comparison. The highest classification performance

increase is obtained with ICA2 using decision fusion

based on the maximum rule principle. The recognition

performance amounts to 77.71 in a database where faces are

subject to lighting variations. The contribution of fusion

techniques in this case is a 5.42% improvement vis-à-vis

the single best performing subband and feature combination

(PCA, ICA1, H3).
6. Conclusions

In this study, we searched for the frequency subbands

that qualify as being insensitive to expression differences

and illumination variations on faces. Briefly, it was

observed that the frequency subbands containing coarse

approximation of the images are successful against

expression differences, whereas the subbands containing

horizontal details are successful against illumination

variations.

Since the recognition performance is not in the first place

very adversely affected by changes in facial expression, the

performance improvement brought about by the multi-

resolution analysis and/or fusion remains unimpressive. One

interesting observation made is that the performance with

the original image and scaling components at various levels,

namely, the A1, A2 and A3 components, respectively, at the

128!128, 64!64, 32!32 and 16!16 resolutions remain

almost the same, hence low-resolution versions should be

preferred for computational simplicity.

The search for alternative wavelet channels for faces in

the presence of illumination variations proves much more

effective. The horizontal wavelet components, obtained

after either one or two stage of low-pass filtering, were

found to be the channels yielding the highest performance

scores. One can conjecture that horizontal wavelet removes

any horizontal illumination pattern, e.g. one cheek darker,

the other lighter. Alternatively, one can conjecture that the

horizontal details emphasize the left–right asymmetry on

faces, and the facial asymmetry was shown to be a very

good feature in face recognition [17]. Fusing a number of

channels further improves the highest performance achieved

by a single channel, by another 5.42%. The Tables 5–9

summarize the recognition performance improvements

instrumented by the choice of metrics, choice of wavelet

components and choice of fusion scheme. The comparison

reference is the original face image with PCA features and



Table 7

Improvement due to fusion vis-à-vis the best subband component

Facial expression change (%) Illumination change (%)

PCA 0.67 4.82

ICA1 0.33 4.82

ICA2 0.67 6.63

Table 6

Improvement due to wavelet decomposition vis-à-vis the full-scale

performance

Facial expression change (%) Illumination change (%)

PCA 1.66 17.47

ICA1 1.00 19.88

ICA2 – 4.21

Compare corresponding columns in Tables 1 and 3: for example, PCA on

original image performance is 54.82, while PCA on the H3 band

performance is 72.79 resulting in 17.47% improvement.

Table 5

Improvement due to choice of features and metrics vis-à-vis the PCA-L1

performance

Facial expression change (%) Illumination change (%)

3.67 12.05

Both improvements are attained with the max-rule fusion of the ICA2

features of the A1, A2, A3, bands in lieu of the original images (compare first

rows of Tables 1 and 3).

Table 9

Decrease in the error rate vis-à-vis the PCA-L1 performance

Facial expression change (%) Illumination change (%)

56.45 50.66

Table 8

Overall improvement vis-à-vis the PCA-L1 performance

Facial expression change (%) Illumination change (%)

4.33 22.89
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L1 metric (referred to, simply as PCA-L1), as this is the

most commonly occurring technique in the literature.

In conclusion, it can be said that natural expression

changes, i.e. smiling, blinking, talking, do not cause severe

performance reduction in face recognition. The attained

correct recognition rates are already relatively high; there-

fore, multiresolution analysis and fusion provide a small

improvement. On the other hand, it is observed that

recognition of faces, subject to illumination changes is a

more sensitive task. Utilizing multiresolution analysis and

fusion is quite effective in combating the detrimental effects

of illumination variations. For example, it would be

intriguing to consider the illumination variations

coupled with expression variations. However, not only the

effects of illumination variations are more dominant vis-à-vis
the expression variations, but also we have found that the

subbands useful in combating illumination variations sub-

sumes already subbands effective for expression variations.

Similar studies can be conducted for other facial factors,

of aging, accessories or pose, provided adequate databases

become available. In such relatively more complicated

tasks, where more intra-class variability and/or more

number of classes can be encountered, we believe the

multiresolution scheme can also be beneficial.
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