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Abstract

There are a multitude of languages and dialects in the world. To develop a speech
recognition system for all of them is an expensive and time-consuming task. Multilingual
systems can be advantageous here, but don't work as good as monolingual ones currently.
In this thesis we investigate sequence-to-sequence systems as the Transformer and an
encoder-decoder architecture consisting of Long Short-Term Memory (LSTM) layers. By
inserting the language identity those systems are supposed to learn language dependent
features.
Therefore, we compare di�erent methods like a gating algorithm, based on modulation,
and language speci�c Multi-Head Attention layers.
Especially gating worsens the recognition rate of the Transformer and also language
speci�c Multi-Head Attention layers did not lead to any improvements. The Transformer
without language adaption, only trained with mixed language data, outperforms both
methods and provides results that are comparable to the monolingual Transformer.
In the LSTM based encoder-decoder architecture gating and language speci�c Multi-
Head Attention performed well. In particular the combination of both methods works
best and outperforms monolingual and multilingual systems without language adaption.
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Zusammenfassung

Die Vielzahl an existierenden Sprachen und Dialekten macht es schwierig, für alle un-
terschiedliche Spracherkenunngssysteme zu entwickeln. Multilinguale Spracherkenner
können hier helfen, funktionieren aber oft nicht so gut wie monolinguale Systeme.
Wir untersuchen Sequence-To-Sequence Modelle, wie den Transformer und eine Encoder-
Decoder Architektur, die aus Long Short-Term Memory (LSTM) Layern besteht. Durch
Angabe der Sprache sollen die Netzarchitekturen sprachabhängige Eigenschaften lernen.
Dabei vergleichen wir verschiedene Methoden, wie sprachspezi�sche Multi-Head Atten-
tion Layer und einen Gating-Algorithmus, der auf Modulation basiert.
Insbesondere der Gating-Algorithmus hat negative Auswirkungen auf die Erkennungsrate
des Transformers und auch mit Sprachspezi�schen Attention Layern konnten wir keine
Verbesserung erzielen. Der Transformer, nur trainiert mit gemischten Sprachdaten,
liefert hierbei in der Regel bessere Ergebnisse, die zudem vergleichbar sind mit monolin-
gualen Systemen.
Beim LSTM zeigte sich, dass insbesondere die Kombination aus Gating und sprachspez-
i�schem Multi-Head Attention zu einer geringeren Wortfehlerrate, verglichen mit den
monolingualen und dem multilingualen System ohne Sprachinformation, führt.
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1 Introduction

1 Introduction

Automatic Speech Recognition (ASR) deals with the problem of translating human spo-
ken speech into text automatically by machines. In everyday life ASR already has a lot of
use cases, we control devices free-handed, e.g. mobile devices or program the navigation
system in cars. Lawyers or doctors can use ASR systems for dictations. But even if such
systems are adapted to a speci�c domain and for example only used for doctor's letters
the recognition is not perfect and wrong predictions are sometimes made. Strong accents
or dialects may be a problem. Furthermore the system should to be able t di�erentiate
between words with similar pronunciation of words, that have di�erent transcriptions.
Usually such systems are adapted to a speci�c task, for example one language. Con-
sidering the high number of existing languages and dialects in the world this is a very
expensive and time-consuming challenge.
Traditional systems model dependencies of the language, its acoustics and pronunciation
explicitly and separately, nowadays using neural networks this is not necessary anymore.
The network gets audio and corresponding target text as input and learns dependencies
by itself.
To train an ASR system a lot of data is necessary. The network processes this data and
makes a prediction. By comparing this prediction with the correct outcome and adjust-
ing it's weights by minimizing the error, the network learns and improves the prediction.
For some languages like German or English, which are both spoken by many people, a
lot of data is available. But for languages with fewer speaker this might be a problem,
too.

Multilingual ASR is di�cult because usually the acoustics and also the modeling of
language vary for di�erent languages. Nevertheless these are not complete various and
independent tasks. The idea behind multilingual ASR is to use such similarities and
bene�t from them like people do speaking more than one language. This would remove
the need of di�erent systems for each language and especially low-resource languages
could pro�t. Maybe it is possible to do the recognition for languages that have not been
seen during training some day.

This thesis looks at sequence-to-sequence models, a special kind of neural networks,
which transform one sequence to another. Speech recognition can be considered as such
a problem since the audio input and its transcription are both sequences. Two archi-
tectures are considered, an attention based encoder-decoder architecture consisting of
Long Short-Term Memory (LSTM) layers and the Transformer, also an encoder-decoder
model.
We investigate several methods for language adaption in multilingual ASR to study their
e�ect compared to our baseline without language information.

For the experiments with the Transformer we use two languages English and German.
In the case of the LSTM based system we also experiment with French as third language.

1



1 Introduction

Most of the evaluated methods are based on the insertion of the language identity into
di�erent stages of the architecture. We especially investigate a gating mechanism [6],
that was originally proposed for an LSTM based architecture. As in the underlying pa-
per it performs very well in our LSTM encoder-decoder architecture. Comparison of its
application only in the decoder or in encoder and decoder shows that the model bene�ts
most when being applied after each layer of the encoder and decoder. In addition we
experimented with gating of the output embedding in the decoder.
For the Transformer we couldn't achieve any improvements, instead gating yields even
worse results the more gating layers were inserted into the architecture.
Another technique applied to both Transformer and LSTM was language adaption in
Multi-Head Attention layers [7]. The �rst approach here was adding a language speci�c
bias to key, query and value. In addition a combination of language speci�c and shared
heads was evaluated. The results were comparable to the baseline, trained with mixed
language data only.
To further improve results, gating and language adaption in the Multi-Head Attention
of the LSTM architecture were combined. This leads to a model with language adaption
in almost every part of the architecture. In total we could achieve an average of 9.9%
reduced word error rate compared to the based multilingual systems in a bilingual setup.
When adding a third language the word error rate decreased even more by 10.9%.
Furthermore we applied modulation to the hidden states of LSTM layers to force the
network to learn language properties, which also outperforms the recognition rate of the
baseline.

The thesis begins with a chapter about the basics of ASR and neural networks. The
LSTM and the Transformer are described in Chapter 2.7.
The subsequent Chapter 3 gives an overview of related work and investigated methods
of other researchers in multilingual ASR. Especially the gating mechanism and language
dependent attention later applied to the Transformer and the LSTM based encoder-
decoder model are described in detail.
Chapter 4 presents all experiments and their results
Finally Chapter 5 proposes ideas of how to further investigate this topic to improve
multilingual ASR.

2



2 Basics

2 Basics

2.1 Basics of Automatic Speech Recognition

This chapter brie�y explains the basic structure of a statistical ASR system. The de-
scription is based on [8] and further details can be found there.

Figure 1 shows a diagram of a traditional statistical ASR system.

Language 
Model

Decoder

Pronunciation 
Dictionary

Pre-
Processing

Transcribed 
Text 

(Hypothesis)
Speech

X

Figure 1: ASR system

The �rst step is the pre-processing of the recorded audio, which is explained in Chapter
2.2.
The actual recognition, i.e. the transcription of the spoken speech is done by the de-
coder. The decoder receives the pre-processed speech as input and computes the most
probable word sequence and outputs it as transcribed text. This output is called the
hypothesis.
The other components shown in the diagram are the acoustic model, language model
and a pronunciation dictionary. The language model is independent from the acoustics
of spoken speech and models the probability of a word sequence.The language model
should be able to di�erentiate between words that sound similar, but have diverse tran-
scriptions.
The pronunciation dictionary usually includes phonemes (small acoustic units) and their
pronunciations, so that any word can be created by composition, even if it was not fea-
tured during training.
The acoustic model says how probable a signal corresponds to a word sequence and mod-
els the relation of a speech signal and words. This is traditionally achieved by Hidden
Markov Models (HMMs). Alternatively neural network approaches as time delay neural
networks (TDNNs) [9] can be used.

Such an ASR system can be mathematically described by the fundamental equation
of ASR. The most probable word sequence of all possible word sequences is Ŵ . Given

3



2 Basics

the pre-processed audio signal X, the feature vectors, we need to �nd the word sequence
W , so that the probability P becomes maximal

Ŵ = argmax
W

P (W |X).

With Bayes rule we can write

Ŵ = argmax
W

P (W |X) = argmax
W

P (X|W ) · P (W )

P (X)
= argmax

W
P (X|W ) · P (W ).

The last equality is given since P (X) remains constant for all possible word sequences
and the division does not make a di�erence for argmax and thus for the resulting word
sequence.
In the formula P (X|W ) represents the acoustic model and P (W ) the language model.

2.2 Audio Pre-processing

After recording speech it needs to be converted into a machine readable form and pre-
pared for ASR. This includes a reduction of dimensionality of the features. Next to the
spoken words there is a lot of information contained within the signal, which are not
important for our task. For example speaker related information, like pitch, or micro-
phone speci�c noises.
The descriptions in this chapter are based on [8].

The pre-processing of the audio signal is the �rst step in an ASR system and can be
done by di�erent techniques. We use logarithmic Mel scaled spectrum [10] and describe
the process shortly in the following.
The digitization of the signal is usually done by sampling it with a rate of 16kHz and a
resolution of 16 bit.
This digital signal is then split into small windows, that are called frames. Since we are
interested in frequency domain this windowing is done by convolution with a Hamming
window. The frames have a length of e.g. 25ms, in which we assume the signal to
be stationary. Choosing a smaller window size would increase time resolution, but fre-
quency resolution would su�er. Vice versa time resolution would decrease when choosing
a larger window size.
The windows do overlap with 10ms to improve time resolution again and catch changes
at the borders coming from windowing. Discrete Fourier transform (DFT) is used to
transform the signal into frequency domain.
As a next step the signal gets Mel scaled, which reduces the number of coe�cients.
Therefore the fact that humans can hear �ner di�erences in lower frequencies than in
higher ones is used.
The result for two example sequences is shown in Figure 2 and Figure 3. As we see there
are only 40 coe�cients for each point in time.

4



2 Basics

Figure 2: Acoustic features for the utterance: "Klassi�kation ein wichtiger Schritt"

Figure 3: Acoustic features for the utterance: "entscheiden"

2.3 Data Preparation

As the audio is pre-processed the output text has to be prepared for training. Each
training sequence has a unique Id to assign audio feature and correct transcription
during training.
Out of the transcriptions of the sequences a vocabulary is created by a variation of byte
pair encoding (bpe) [11]. Byte pair encoding compresses data by replacing the most
common pair of bytes with another symbol, that is not in the data. This process is
repeated until no further pairs can be replaced.
SentencePiece [12] is a tool, based on bpe, that automatically splits a text into subwords,
which create the vocabulary. The size of the vocabulary can be chosen. Depending on
this choice the resulting word pieces vary in length. Using word pieces allows us to build
every word of the underlying text by combining the single pieces and create words that

5



2 Basics

have not been seen during training. SentencePiece computes the vocabulary by grouping
more common letter combinations into one subword, while rare combinations are split
into smaller units. Each of these pieces gets a unique id between zero and the vocabulary
size, which are called the tokens. The audio transcription is then represented by these
tokens.
In addition there are tokens for unknown words < unk > and those which declare start
< sos > and end of sequence < eos > included in the vocabulary.

2.4 Evaluation metrics

To compare di�erent systems with each other evaluation metrics are used. Those mea-
sure how well a system is performing.

2.4.1 Word Error Rate (WER)

One possible metric is the Word Error Rate (WER). It can be looked up in [13], for
example.
It compares the hypothesis with the correct transcription of the utterance (the reference)
and computes how many words need to be changed to obtain the reference from the
hypothesis. This is done by counting the minimal number of necessary deletions #del,
word insertions #ins and substitutions #sub. They are added and divided by the
number of words #words in the reference and multiplied by 100%

WER =
#del +#ins+#sub

#words
∗ 100%

The same can be done with the characters, giving the Character Error Rate (CER), or
other units.
The calculation of the WER always requires a trained system and is computed on a test
set.

2.4.2 Word accuracy

The word accuracy WA is the ratio of the correctly predicted words #correct and the
number of words in the reference #words, multiplied by 100%

WA =
#correct

#words
∗ 100%.

2.5 T-distributed stochastic neighborhood embedding (t-SNE)

T-SNE can be used to visualize high dimensional data by mapping this data into a two
or three-dimensional space. The high dimensional points are modeled in such a way
that similar points are close to each other and dissimilar points far away in the low
dimensional space. Based on the explanations in [14] we brie�y describe t-SNE in the
following.
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The Euclidean distance between two high-dimensional points xi and xj is converted into
a conditional probability pi|j by

pi|j =
exp

(
−‖xi−xj‖2

2σ2
i

)
∑

k 6=i exp
(
−‖xi−xk‖2

2σ2
i

) .
The variance σi of the Gaussian that is centered around data point xi and computed by
a binary search such that the user-de�ned perplexity of the probability distribution is
kept �x. Since only pairwise similarities between points are relevant we set pi|i = 0.
The low dimensional points are modeled by a student t-distribution with one degree of
freedom as

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l (1 + ‖yk − yl‖2)

−1 .

As before we set qij = 0. Having n ∈ N high-dimensional points in total we set pij =
pi|j+pj|i

2n
and minimize the cost function C (Kullback-Leibler divergence)

C =
∑
i

∑
j

pjilog

(
pji
qji

)
by using a gradient descent method to compute low dimensional points y1, ..., yn.

2.6 Basics of Arti�cial Neural Networks

Arti�cial Neural Networks (ANNs) are becoming more and more important and are al-
ready frequently used. They help solving problems such as classi�cation or prediction
tasks. Next to speech recognition typical applications are image processing, machine
translation or data mining, but they can be found in many other �elds, as well.
While the single-layer perceptron [15], a very simple network, can only be used for linear
classi�cation, ANNs can become more or less arbitrarily complex and solve more com-
plicated problems.
This chapter describes its basics, important types and how they are used in machine
learning to train a model to solve a speci�c task.

ANNs are inspired by natural neural networks even though the functionality di�ers
in some ways and they are not exact reproductions. The descriptions in this section are
based on [16].
Natural neural networks consist of neurons, also called nerve cells. These cells receive,
process and send information and are connected among each other to form a whole net.
The connections between neurons are called synapses.
A neuron usually consists of the cell body, dendrites and an axon. Dendrites receive
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signals from other neurons and transmit them to the cell body (soma), where all signals
are joined and then processed. If the stimulus is strong enough, an impulse will be �red
and transmitted by the axon to other neurons or muscles for example. Depending on
the activated neurons we can perform certain tasks, for example process impressions or
use one of our muscles. Performing a task more often, the corresponding synapses in the
network get stronger, we "learn" and become better in what we do. Learning something
can even create new connections, just like connections can get weaker or disappear. This
is one key di�erence to ANNs, where it is not possible to create new connections. Figure
4 schematically shows a biological neuron. Directly after the activation of a neuron, dur-

Figure 4: biological neuron [1]

ing the refractory phase, it can not react to incoming signals, which is another di�erence
to an arti�cial neuron.

2.6.1 Arti�cial Neuron

The equivalent of nerve cells in biological neural networks are arti�cial neurons in ANNs,
which are connected in a speci�c way. Chapter 2.6.2 presents a selection of important
structures.
Basically each neuron computes an output y ∈ R based on the n ∈ N incoming signals,
the inputs x1, ..., xn ∈ R. This is done by multiplying each input xi by a coe�cient
wi ∈ R �rst and summing up the weighted inputs afterwards. The weighting allows
us to take greater account of parameters, that are of more signi�cance to the result,
while others with less signi�cance can be dampened. This is comparable to the di�erent
strengths of the connections in natural neural networks.
Sometimes a bias b ∈ R is added to the weighted sum. The sum is then processed by
a transfer or activation function, which is explained in Chapter 2.6.3 in more detail.
Figure 5 shows an arti�cial neuron schematically.

De�nition 2.1, based on [17], summarizes the description given above.

8
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y

... ...

Figure 5: arti�cial neuron

De�nition 2.1 (Neuron). A neuron with n ∈ N inputs x1, ..., xn ∈ R can be de�ned by
n weights w1, ..., wn ∈ R, a bias b ∈ R and an activation function

ϕ : R→ Y,

with Y ⊆ R. Then the output y of the neuron is given by

y = ϕ

(
n∑
i=1

xiwi + b

)
.

2.6.2 Arti�al Neural Network (ANN)

In an arti�cial neural network usually multiple layers of connected neurons exist. The
number of layers and neurons depends on the individual task of the network just as the
kind of connections does. Since connections can only become stronger or weaker and
not emerge during training it is important to choose a network topology that �ts the
problem. Important kinds of arti�cial neural networks are described below.
De�nition 2.2 summarizes the main characteristics of ANNs. It's leaned on [18], but
strongly shortened and not completely formalized. It's purpose is to give an overview of
important architectural properties to be able to di�erentiate between di�erent kinds of
ANNs.

9
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De�nition 2.2 (Arti�cial Neural Network topology). The topology of an ANN can be
described by its

� number of layers l ∈ N

� number of neurons per layer ni ∈ N, i ∈ 1, ..., l

� connection scheme

The connection scheme is de�ned by

� Type of connections, i.e. which layers are connected

� connectivity, i.e. which neurons are connected

� symmetry vs. asymmetry, i.e. if connections are unidirectional or bidirectional

� order of connections, i.e. if a connection combines inputs from several neurons.

The �rst layer is called the input layer, the last the output layer and all layers in between
are called hidden layers.

These can be considered as the static properties of ANNs. Just like people can im-
prove their abilities when practicing and bene�t from experiences, neural networks need
training with data to improve their performance on their speci�c task.
At the beginning the weights of a network are initialized, for example randomly and
during the training stage these weights adapt to the problem that is to be solved.
Next to the description of the networks architecture some parameters like

� initial values of all parameters

� constraints (value ranges)

� transition functions (learning rule, activation function)

need to be de�ned for training. The learning rule de�nes how the weights are later
updated, which is explained in Chapter 2.6.4.

ANNs can be also de�ned using graph theory as for example done in [19].

Deep neural networks (DNN)

A deep neural network is a network with at least one hidden layer. Together with the
input and the output layer it has at least three layers in total.

Feed Forward neural networks (FFNN)

In a feed forward neural network (FFNN) information can only move forward, it is
unidirectional. A neuron can be connected to every other neuron in the subsequent
layer, but not to any neurons in the same or preceding layer. Thus it has no memory of
previous input and is usually used for classi�cation and not for prediction.

10
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Recurrent neural networks (RNN)

The recurrent neural network (RNN), based on [20], can be seen as a generalization of
FFNN. Connections between all neurons, including self-connections are possible. RNNs
are often used for prediction tasks, since information of previous time steps can be taken
into account.
Unfortunately RNNs have problems with long sequences, they "forget", due to the van-
ishing gradient problem [21]. A special kind of RNNs, the Long Short-Term Memory
(LSTM), described in Chapter 2.7.1 helps in solving this problem.

2.6.3 Activation Functions

The activation function transfers the output to a speci�c range, often [0, 1], or [−1, 1],
but every subset of R is possible. Di�erent types of activation functions exist. In the
single layer perceptron a binary function is traditionally used. Based on a threshold, the
outcome is zero or one.
Most activation functions are continuous and nonlinear. One of them is the Sigmoid
function σ : R→ (0, 1). It is de�ned as

σ(x) =
1

1 + e−x
.

Further description and other activation functions and can be found in [17].

Another important activation function is the Softmax function [22]. Instead of being
applied to each output xi ∈ R independently, it also takes the other outputs of a layer
into account. The Softmax function Softmax : RK → (0, 1)K , K ∈ N, is de�ned as

Softmax(x)i =
exi∑K
k=1 e

xk
∀i ∈ {1, ..., K}.

When K is the number of neurons in a layer with outputs xi, i ∈ 1, ..., K, by applying
the Softmax function the outputs get normalized in such a way, that they sum up to 1
and can thus be interpreted as a probability distribution. Therefore it is often used as
a last layer to predict the probabilities of the outcomes.

2.6.4 Back-propagation, error functions and learning

During training the weights of a network need to be adjusted to optimize the outcomes.
After a speci�c number N ∈ N of data points the error between actual and expected
outcomes is computed and back-propagated through the network to update the weights
[23].
For each datapoint p the actual output ypj ∈ R, of the jth neuron is compared to the
expected output dpj ∈ R. The total error of the net is de�ned by a loss function, e.g

11
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mean squared error

E =
N∑
p=1

1

N

∑
j

(ypj − dpj)2 .

The gradients of the error are computed and back-propagated through the network to
update the weights with the goal to minimize the error. One possible rule to update a
weight w is

w̃ = w − α · δE
δw

,

depending on the gradient δE
δw

and learning rate α > 0.
Several other possible loss functions and methods to update the weights are possible.

The network is trained in epochs. In each epoch the whole training data is fed into
the network and processed one time. After each epoch the model's accuracy on the
training and the cross-validation data is computed. The cross-validation data examines
the model's performance on data, that was not seen during training.

2.6.5 Dropout

One problem of ANNs is over�tting: the networks adaption to the training data is too
good and it is not able to handle unseen data in a proper way anymore.
Dropout [24] helps solving this problem by randomly omitting connections between
neurons during training. This forces the network to not train the same connections all
the time.

2.7 Sequence-To-Sequence model (seq2seq)

A sequence-to-sequence (seq2seq) model is an ANN that processes sequences. Many
problems like speech recognition or machine translation have a sequence as input and
another sequence as output. In general the sizes of in- and output are neither known nor
�xed, which makes the encoder-decoder architecture, a special seq2seq model, a good
choice. In contrast to simple DNNs it is able to handle variable length of input and
output sequences.
The seq2seq encoder-decoder architecture was introduced in 2014 in [25],[26] and the
recognition is done in two steps. First the input sequence is processed item by item by
the encoder into some representation, which is then fed into the decoder, that transfers
this representation into the output sequence.
Encoder and decoder both consist for instance of Long Short-term Memory (LSTM)
or RNN layers. LSTMs have the great advantage that they can handle long sequences
because they don't have the vanishing gradient problem. The LSTM is explained in
Chapter 2.7.1.
In speech recognition the encoder can be seen as the acoustic model, since it processes
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the acoustic features.
The decoder on the other side operates the output tokens and thus corresponds to the
language model.

Two model architectures are explained in detail: a LSTM based encoder-decoder ar-
chitecture and the Transformer.Both architectures use an attention mechanism to align
audio features and output tokens. Attention is explained in Chapter 2.7.3. Another
common method of alignment is CTC [27]. It is also possible to use a combination of
both methods, for example realized in [28], [29].

2.7.1 Long Short-Term Memory (LSTM)

The Long Short-Term Memory (LSTM) cell [30] was �rst introduced in 1997 and was
later modi�ed for example in [31]. This chapter is based on these papers.

In a LSTM cell an input, an output and a forget gate are used to update the cur-
rently stored information. Figure 6 shows such a memory cell with the three gates.

tanh

+

tanh

Figure 6: LSTM cell with input, output and forget gate inspired by [2]

Let xt ∈ Rdinput be the input at time t and ht−1 ∈ Rdmodel the hidden state one time-step
t − 1 before or the initial state. For each of the three additional gates ht−1 and xt are
concatenated and �rst multiplied by weight matrices Wi,Wf ,Wo ∈ Rdmodel×(dmodel+dinput).
Biases bi, bf , bo ∈ Rdmodel are added and the Sigmoid function (see Chapter 2.6.3) is
applied. Thus the input gate it, forget gate ft and output gate ot are computed as

it = σ (Wi · [ht−1, xt] + bi) ,

ft = σ (Wf · [ht−1, xt] + bf ) ,

ot = σ (Wo [ht−1, xt] + bo) ,
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where σ denotes the Sigmoid function.
The input gate it is multiplied element-wise (see 2.1) with

c̃t = tanh (WC · [ht−1, xt] + bC) ,

which is also based on the last hidden state ht−1 and the actual input xt. Using tanh
allows c̃t to have negative values, too. Here WC ∈ Rdmodel×(dmodel+dinput) and bC ∈ Rdmodel

are weight matrix and bias again.
The old cell state ct−1 is multiplied element-wise by the forget gate to calculate how
much to forget and added to the modulated input gate to receive the new cell state

ct = ft � ct−1 + it � c̃t. (2.1)

Here � denotes the element-wise multiplication.
The output gate multiplied by tanh (ct) yields the hidden state for time t

ht = ot � tanh (ct) ,

which is outputted by the memory cell together with the cell state ct.

Multilayer LSTM

A multilayer LSTM is composed of multiple stacked LSTM cells. The output ht of one
layer is the input xt of the next layer, so dinput is equal to dmodel after layer 1.

Bidirectional LSTM (BiLSTM)

In a bidirectional LSTM (biLSTM) the information does not only travel from past to
future, but also from future to past. The hidden states of the corresponding cells of the
two directions need to be combined, before being sent to the next cell. This can be done
by concatenation, element-wise addition or multiplication for example.

2.7.2 LSTM based encoder-decoder seq2seq model architecture

Our encoder-decoder architecture with LSTM layers [32] is shown in Figure 8.

Encoder:

The encoder is composed of NEnc ∈ N stacked bidirectional LSTM layers. The encoder
processes the audio feature vectors. The acoustics are not only depending on the features
of one point in time, but also on subsequent and previous ones. Thus it can be useful
to take the whole sequence of features into account.

Decoder:

The decoder is composed of NDec ∈ N LSTM layers. It's inputs are the already known
output tokens, that are used to predict future ones. It can be seen as the language
model. The output tokens are embedded before being processed by the LSTM layers.
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LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

...

Figure 7: bidirectional LSTM inspired by [3]

In the Multi-Head Attention (MHA) layer the acoustic features and tokens are aligned.
MHA is explained in detail in Chapter 2.7.3. The dashed line shown in Figure 8 consti-
tutes a residual connection, that adds the scaled output of the last LSTM layer to the
output of the MHA layer.
When xenc ∈ Rdmodel is the output of the encoder, xdec ∈ Rdmodel the decoder's output
and MHA the attention layer function, this can be written as

y = xdec · s+MHA(xenc, xdec)

with some scaling factor s ∈ [0, 1]. It's output y ∈ Rdmodel is then inputted to the Linear
layer, where the projection to the new output token takes place. The Softmax layer is
used to give a probability estimation of the recognized output tokens.

2.7.3 Attention

Attention [33],[34] is a mechanism that enables the model to focus on important parts
of a sequence. As described before it can be used to align acoustic features and tokens.
When modeling dependencies between the single positions of one sequence, we say self-
attention. The following description explains self-attention and is based on [35]. Other
attention functions than presented here are possible, as well.

For each position in a sequence a similarity score is computed for all parts of the se-
quence. Let xi ∈ Rdmodel be the input feature vector of the attention layer for position
i ∈ {1, ..., dX} in the sequence with length dX ∈ N. By linear transformation of xi the
query qi is computed

qi = WQxi,

15



2 Basics

Inputs

Output Embedding
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Output 
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Linear
Add

Linear

х х

LayerNorm

Figure 8: LSTM based encoder-decoder architecture

with WQ ∈ Rdk×dmodel . For position j of the same sequence the key kj and value vj,
j ∈ {1, ..., dX} are computed as

kj = WKxj,

vj = WV xj

with WK ,WV ∈ Rdk×dmodel . The inner product of qi and kj is used to measure the
similarity score

sij =
qTi kj√
dk
.

Without scaling by 1√
dk

the dot product could become very large for large dk, which
would result in unstable gradients.
The score sij of the ith position is computed for every j ∈ {1, ..., dX} of the sequence
and the Softmax function normalizes the resulting vector

oi = Softmax ([si1, si2, ..., sidX ]) .
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Each value vj is then weighted by the corresponding normalized score value oij. The
attention vector for qi is then given by

Attention(qi, kj, vj) =

dX∑
j=1

oij · vj.

This can be done using matrix multiplication allowing to do the calculation in parallel
for all positions.
Let X ∈ Rdmodel×dX be the input matrix, each column containing the input vector for
the corresponding position in the sequence. Then

Q = WQX,K = WKX, V = WVX

are the key K, query Q and value V matrices and

Attention(Q,K, V ) = Softmax

(
QKT

√
dK

)
V.

denotes the attention function.

In encoder-decoder attention the query vector would come from the decoder, while key
and value are based on the output of the encoder.

Multi-Head-Attention (MHA)

The attention mechanism can be seen as a projection of the input into one space by the
embedding matrices. We de�ne this to be one attention head. Instead of using only
one head it is possible to use multiple attention heads. This means multiple embedding
matrices for key, value and query. Each of them projects query, key and value matrices
into a di�erent representation subspace, which allows to always focus on di�erent infor-
mation.
The computation of the output of each head is as described before. The resulting ma-
trices of the single heads are concatenated and down-projected. In Figure 8 this step is
done in the Linear layer after the MHA layer.
Figure 9 shows an example of multiple attention heads for self-attention of the acoustic
features of one utterance before multiplication with the value matrix. The focus lies on
or around the diagonal in most cases, which could mean that features close to each other
are most important. Only two heads seem to attend to completely other positions in
the utterance.

2.7.4 Transformer

Another seq2seq model is the Transformer. It was published 2017 in [35] for translation
and uses the attention mechanism in encoder and decoder. The explanations in this
chapter are based on [35] and [4], where the Transformer was adapted for ASR.
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Figure 9: Eight self-attention heads for acoustic features of "keine Ereignisse suchen
Bewegungen analysieren"

Encoder:

The encoder is stacked of NEnc ∈ N encoder layers, each consisting of a self-attention
and a feed forward layer. The feed forward layers are fully connected FFNs, which are
applied position-wise as

FFN(x) = W2 ·max(0,W1x+ b1) + b2
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Figure 10: one encoder-decoder attention head

with weigh matrices W2 ∈ Rdmodel×dinner and W1 ∈ Rdinner×dmodel and biases b1 ∈ Rdinner

and b2 ∈ Rdmodel .
The encoder outputs a representation of the audio features.

Decoder:

The NDec ∈ N decoder layers are each composed of a masked self-attention, an encoder-
decoder attention and a feed forward layer. The masking of the self-attention layer forces
the network to focus on the already recognized tokens only.
The encoder-decoder attention layer key and value are computed based on the encoder's
output, while the query is based on the preceding masked self-attention layer.

Around all single layers of encoder and decoder there are residual connections, that
add the input of the single layers to their outputs, similar to the residual connection
around the MHA layer in 2.7.2 for the LSTM encoder-decoder architecture.

Positional Encoding:

Inputs and outputs are embedded to vectors of size dmodel ∈ N, before being fed into
encoder or decoder and the positional encoding

pe[pos, i] = sin(pos/(10000(2·i/dmodel))), i even

pe[pos, i] = cos(pos/(10000(2·i/dmodel))), i odd

is added. The positional encoding provides information about the relative positions in
the sequence during, which is not explicitly present in the Transformer. This is di�erent
to the LSTM encoder-decoder architecture where information �ow through in chrono-
logical order. The positional encoding is based on the position pos in the sequence and
the index i ∈ {1, ..., dmodel} of vectors of size dmodel .

Figure 10 shows one example head for the encoder-decoder attention. The lighter the
higher is the score for theses parts. The y-axis corresponds to the embedded output
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tokens and the x-axis to the acoustic features.
The utterance "keine ereignisse suchen bewegungen analysieren" is tokenized as

keine-ereig-nisse-suchen-be-weg-ungen-anal-ys-ieren

in this example.

As in the encoder-decoder architecture with LSTM layers the Softmax layer as out-
put layer predicts probabilities for each target. Figure 11 shows the architecture of the
Transformer.
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Figure 11: Transformer architecture based on [4]
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3 Related Work: end-to-end approaches for

multilingual speech recognition

In this chapter we give an overview of di�erent approaches to multilingual ASR. We
concentrate on research in the �eld of multilingual ASR with neural networks.
Simply training a network with mixed language data can lead to improvements as well
in some cases [36], [37]. However this is not the general behavior. The following methods
all try to reach language adaption by explicitly adding language information. By doing
so the model is supposed to learn language dependent features.

To model the language identity (LID) a one-hot vector can be used. It has the same size
as there are languages available. Each of the vector's indices correspond to a language
and the entry at this index is set to one, while all other values are zero.
Another possibility is the use of a language embedding vector, which can be for example
obtained by linear transformation of the one-hot language vector.

3.1 Modulation

Modulation denotes basically the multiplication of the outputs of a layer with weights.

In [38] multilingual ASR with modulation was investigated. The concept is based on
Meta-Pi [39] networks, which was introduced for speaker adaption. The architecture

Figure 12: Model architecture with modulation [5]

shown in Figure 12 consists of a main network and pre-trained subnets. The main net-
work is composed of two parts each consisting of two biLSTM layers. After Part 1 the
outputs are modulated with neural language codes (NLCs) obtained from one of the
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pre-trained subnets. These NLCs are learned language properties, that were proved to
carry more language information than the LID alone.
Modulation can be seen as an intelligent way of dropout. By strengthening and damping
connections depending on the language properties the network learns features based on
the language properties.

3.2 Language Token

Language adaption can also be achieved by including language tokens into the vocabu-
lary. In [40] a Transformer was trained using language tokens integrated into the labels.
At the beginning or end of each utterance the LID token was inserted in addition to the
start < sos > or end < eos > token. When inserting it at the beginning the label of an
utterance is of the form

< sos >< lid > utterance < eos > .

This approach can also be used for multitask learning to recognizing speech and predict
the language at once.
Similar approaches were chosen in [41],[42],[43] and [36].
It was shown that inserting an extra token at the end is slightly better than inserting it
at the beginning. Compared to a jointly trained model without any language adaption
the improvements in WER were between 1% and 2% for most languages.
Alternatively the LID can also be integrated into the start token as

< sos− lid > utterance < eos > .

However this approach can only be used for experiments when the LID is known during
inference. In [40] the WER decreased up to 6.6% when using language tokens inserted
into the start token.

3.3 Language Vector

A common method to adapt to a speci�c language is the insertion of language informa-
tion as additional input to the model. To represent the language a one-hot vector or
a learned language embedding can be used. For an encoder-decoder architecture with
attention mechanism the addition of a learned embedding to the �rst layer of encoder,
decoder or both was compared in [41]. Best results were obtained when adding it to
either the encoder or to encoder and decoder. In average the model, that was trained
with nine Indian languages, outperformed the jointly trained baseline by a reduced WER
of 6.9%. When the language vector was only added as input to the encoder the WER
decreased by 6.7%.
In [36] a one-hot vector or alternatively an embedding of di�erent dialects was added
as input to di�erent layers of an encoder-decoder model. Tests showed that feeding the
one-hot vector to both the encoder and decoder gave best results and outperformed the
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multi-dialect model without adaption by 12.5% improved WER.
For most dialects adding the one-hot vector instead of an embedding led to better per-
formance.

To add the language vector dl, describing language l ∈ {0, ..., L − 1}, having L ∈ N
languages, as input to a layer, one common way is the concatenation of the feature
vector x ∈ Rdinput and dl

W · [x, dl] = Wxx+Wldl + b

with W = [Wx,Wl], Wx ∈ Rdmodel×dinput , Wl ∈ Rdmodel×L and b ∈ Rdmodel .
This is equivalent to add a language dependent bias blang ∈ Rdmodel

Wxx+Wldl + b = Wxx+ blang

since Wldl only depends on the language and not on the feature vectors.

3.4 Fine-tuning/ Adapter modules

A pre-trained network can be adapted to a new task by �ne-tuning. In the context
of multilingual ASR pre-training with data of other languages and then �ne-tuning by
data of the target language can improve the results. This is particularly useful when not
enough data of the target language is available. Another advantage is the reduction in
training time when using a pre-trained model.

It is also possible not to re-train the whole network, but only speci�c parts or single
layers. In [37] language dependent output layers were trained.
The authors of [44] investigated linear hidden unit contribution (LHUC) in multilingual
ASR. The outputs of a hidden layer are re-scaled by language dependent parameters.
When adding a new language the output layer is extended and the parameters are up-
dated by additional training.
Instead of only having language dependent layers, also complete language speci�c sub-
nets can be included. In [45] a conventional Transformer was trained with preceding
encoders for each language. The output of the - in this case - two encoders were con-
catenated and then down-projected and fed into the classic Transformer, which gave an
average improvement in WER of 4.6%.
In [46] �rst a global model with imbalanced data of nine Indian languages was trained
jointly. Then the model parameter were kept �x and for every language an adapter
module was introduced after each layer of the encoder. They achieved an average im-
provement of 17.5% in WER compared to the monolingual baselines and 53.2% compared
to the multilingual baseline.

3.5 Gating

In [6] a gating mechanism was applied to the hidden states of each biLSTM layer of a
CTC-based end-to-end model.

25



3 Related Work: end-to-end approaches for multilingual speech recognition

For the gating mechanism the language identity of language l ∈ {0, ..., L − 1}, having
L ∈ N languages, is represented by an one-hot vector dl. Based on dl and the hidden
state hi ∈ Rdmodel of a layer i a gate-value is computed as

g (hi, dl) = σ (Uhi + V dl + b)

with σ as the sigmoid function.
The hidden state hi and dl are linearly mapped with matrices U ∈ Rdmodel×dmodel , V ∈
Rdmodel×L and a bias b ∈ Rdmodel is added. The hidden state is then modulated by the
gate value

ĥi = g (hi, dl)� hi.

Here � denotes the element-wise multiplication. The resulting vector ĥi and dl are
concatenated

h̃i =
[
ĥi : dl

]
and down-projected by W ∈ Rdmodel×(dmodel+L)

h′i = Wh̃i.

The new hidden state h′i is inputted into the next layer. The above described gating
mechanism was compared to the following other methods

� concatenation of hidden state and LID [hi : dl] (see Chapter 3.3)

� modulation of the embedded hidden state with the hidden state g (hi)� hi

� modulation of the embedded LID with the hidden state g (dl)� hi

� modulation of the embedded LID and hidden state with the hidden state g (hi, dl)�
hi (without concatenation with LID and down-projection as last steps)

The methods are named in the order of descending WER obtained using them. Gating
outperformed the bilingual models by an average decrease in WER of 6.5%. In a trilin-
gual model the improvement was even higher with 9.3% relative decrease in WER.
In [47] gating after the �rst encoder layer and after all encoder layers in a RNN-
Transducer [48], consisting of LSTM layers, was researched.

3.6 Language Embedding Concatenation (LEC)

In [7] language adaption in the attention layer was investigated for a RNN-Transducer
model with audio encoder replaced by the encoder of the Transformer. Instead of the
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attention mechanism described in Chapter 2.7.3 a language speci�c bias term is added
to key, value and query. For each layer i key Ki, value Vi and query Qi are computed as

Qi = Qxxi +Qldl + bq

Ki = Kxxi +Kldl + bk

Vi = Vxxi + Vldl + bv

where xi is the feature vector and dl is the one-hot vector describing the language
l ∈ {0, ..., L − 1}, having L ∈ N languages. Here Qx, Kx and Vx are the "standard"
weight matrices (see Chapter 2.7.3), while Ql, Kl, Vl ∈ Rdk×L are language dependent
weight matrices for query, key and value. In addition biases bq, bk, bv ∈ Rdk are added to
the query, key and value. During inference Ql, Kl, Vl do not depend on the input such
that this method can be considered as adding language dependent biases. The method
is called Language Embedding Concatenation (LEC).
When applying LEC to every layer in the audio encoder of the RNN-Transducer model
the WER decreased by 7.1% compared to the multilingual baseline without language
adaption.

3.7 Language Speci�c Attention Heads (LSAH)

In [7], where LEC was proposed, another method, Language Speci�c Attention Heads
(LSAH), was presented. The encoder of the Transformer was used as audio encoder in a
RNN-Transducer model. Instead of adapting to a language by adding language speci�c
biases as done in LEC, a combination of shared and language speci�c attention heads is
used in the MHA layers.

Usually in Multi-Head Attention H ∈ N heads are used in each layer, that are shared
by all languages in multilingual ASR. Now K ∈ N language-speci�c heads per language
are added and at the same time the number of shared heads is reduced by K · L heads,
L ∈ N being the number of languages.

When H being the total number of heads, the ith head

headi = Attention(Q,K, V ), i ∈ {1, ..., H}

is computed as described in Chapter 2.7.3.
For each language l ∈ {0, ..., L− 1} the K language speci�c attention heads are trained
using data of the speci�c language only and concatenated

LanguageSpecificHeadsl = concatk∈{1,...,K}(headl·K+k).

The shared heads

SharedHeads = concatc∈{L·K,...,H}(headc)
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are trained commonly and independent from language. For language l then language
speci�c and shared heads are concatenated

MultiHeadl = concat(LanguageSpecificHeadsl, SharedHeads)

and proceeded as usual afterwards.
When maintaining the total number of attention heads as used in MHA without lan-
guage adaption this leads to a reduction of learnable parameters, because the number
of heads used for each language is reduced by K · (L− 1).
In experiments with �ve languages best results were obtained using K = 1 and H = 12
heads in total. Overall a relative improvement of 7.6% in WER was obtained compared
to the baseline with eight heads.

By combination of LEC and LSAH the WER decreased further by 8.6%.
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4 Experiments

This chapter describes our experiments in detail. The �rst section is about the data
used. In the subsequent Chapter 4.2 we explain our experimental setup and present
the results for the Transformer. Chapter 4.3 addresses the encoder-decoder architecture
consisting of LSTM layers.

4.1 Data

In the �rst step we trained the systems with the two languages, English and German.
The English training data set consists of ted talks of di�erent people, German was
trained with recordings from parliament talks and lectures.
Table 1 gives an overview of the total length of the data and the number of available
utterances for both languages.

Language Length of data Number of utterances
English 425h 251, 201
German 425h 317, 975

Table 1: Training data (mixed-case) for English and German

We tried to use a similar amount of data for each language in training. This was about
425 hours for English and German, the number of utterances used for German was
slightly higher.
The audio features are always extracted as described in Chapter 2.2 and the transcrip-
tions are tokenized as explained in Chapter 2.3.
The total length and the number of utterances used for cross-validation are summarized
in Table 2.

Language Length of data Number of utterances
English 22.5h 13, 221
German 22.1h 16, 735

Table 2: Cross-Validation (mixed-case) data for English and German

A speci�city of German is the capitalization of words like nouns. Creating a vocabulary
in multilingual scenario with mixed-case data for German will result in tokens that can
not be used to recognize English. Furthermore words like "sie"/ "Sie" only di�er in the
capital letter at the beginning, but are represented by di�erent tokens.
The splitting of the transcriptions into tokens is based on the frequency of letter combi-
nations. This results in larger tokens for more common subwords, while rare subwords
are split into smaller tokens.
Using only lower-case data might give a more realistic re�ection which subwords are
common and the number of shared tokens might increase, as well.

For this reason we later used lower-case data only with the expectation of improving
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recognition further. As before for the mixed-case data, parliament and lecture record-
ings are used for German in training. In addition we also use common voice data. For
English the data set remains the same. As a third language we added French, with data
consisting of common voice utterances.
The lower-case data is summarized in Table 3 and Table 4 for training and cross-
validation.

Language Length of data Number of utterances
English 425h 251, 201
German 425h 258, 149
French 419h 292, 539

Table 3: Training data (lower-case) for English, German and French

Language Length of data Number of utterances
English 22.5h 13, 221
German 22.6h 13, 587
French 9.3h 6, 443

Table 4: Cross-Validation (lower-case) data for English, German and French

After training we measure the performance of each model by computing the WER. The
English test data consists of recordings of ted talks. For German we use lecture and
parliament talks and for French common voice data is used for testing.

We also have a small data set consisting of Denglish utterances. These are German
sentences containing English words, e.g.

"schreib mir dazu mal einen reminder fürs nächste meeting".

In German, English words are used in a germanized form in daily speech. Those words
like "gecrasht", "outgesourced" or "googeln" are also contained in the Denglish data set.

Table 5 shows the length and number of utterances for each test set. The tests itself are
not case-sensitive.

Language Length of data Number of utterances
English 2.6h 1, 155
German 6.4h 8, 869
French 23.3h 14, 504
Denglish 350s 90

Table 5: Test data for English, German, French and Denglish
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4.2 Transformer

In this chapter the experiments for the Transformer and their results are presented. The
Transformer model architecture is explained in Chapter 2.7.4.
In Chapter 4.2.1 we �rst explain the parameters of the model and in the subsequent
sections di�erent approaches for the multilingual Transformer are evaluated.

4.2.1 Parameter Transformer

Table 6 summarizes the parameters of the Transformer. We use NEnc encoder layers
and NDec layers in the decoder. The input feature vectors have a length of dinput at
the beginning. By the input embedding they are transformed to vectors of size dmodel.
The feed forward network consists of 2 layers, the �rst projects the vectors into a higher
dimensional space of size dinner.
The number of heads used in Multi-Head Attention is identical in encoder and decoder
and set to nhead. The size of key, query and value is chosen to be dk for each MHA layer.
We use a vocabulary size of nvocab, independent of monolingual or multilingual systems.

NEnc 8
NDec 4

dropout 0.2
dinput 160
dmodel 512
dinner 1024
dk 64
nhead 8
nvocab 4003

Table 6: Parameters in the Transformer architecture

Table 7 shows the total number of trainable parameters in the Transformer.

Model Number of
parameters

Transformer 31,526,307

Table 7: Number of learnable parameters in the Transfromer

4.2.2 Baseline Transformer

As baseline we trained monolingual Transformers for English and German. In addition
a bilingual Transformer was jointly trained with mixed language data.
In Table 8 the results for German and English are shown for the monolingual and
bilingual setups. The column "Bpe" says which language data was used during training.
Here we di�erentiate between monolingual German (ge), monolingual English (en) and
bilingual (mix) with German and English mixed data.
We trained the models twice, with mixed-case and lower-case data. For this reason
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the result table contains di�erent columns for the word error rate (WER). "WER mc"
denotes the setup with mixed-case training data and "WER lc" is used fo the WER of
the model trained with lower-case data.

Language Model Bpe WER mc WER lc
English Transformer en 12.3% 12.3%
German Transformer ge 20.6% 20.7%
English Transformer mix 12.7% 11.7%
German Transformer mix 20.7% 21.1%

Table 8: Baseline Transformer

Comparing monolingual and multilingual systems both yield similar results. This is
surprising, since we expected the performance to decrease in the multilingual setup.
Maybe the fact that German and English are related languages and a lot of words are
similar helps the bilingual model in handling the di�erent data sets. Possibly the dou-
bled amount of training data compared to monolingual training also plays a role and
improves generalization.

In the bilingual model trained with mixed-case data the WERs increase for both lan-
guages even though the di�erences are small. In the lower-case model the recognition
of English improves, while for German it's worse. We assume that the vocabulary now
contains less German speci�c tokens and tokenization is more suitable for English. In
addition the model doesn't need to learn capitalization that is irrelevant for English.
However WER mc and WER lc are not completely comparable due to the slightly dif-
ferent data taken for German.

One observation made for German was that often the recognition is either really good
for one utterance with only minor mistakes or nothing is recognized at all. Instead
speci�c words are hypothesized like "axiallasten" for the spoken utterance "gucken wir
mal" or "wälzkörpersatz" instead of "dass sie das verinnerlichen". Those words are only
used in very speci�c domains and do not have any acoustic similarity to the spoken
sentences. One possible explanation is that they showed up in training very often and
the Transformer learns to predict them, when nothing else was understood. This kind
of confusion seems to be a Transformer speci�c problem and showed up during all of our
experiments for German.

We also tested the monolingual systems with the respective other language, which results
in very high WERs as expected. The results are shown in Table 9.

Language Model Bpe WER mc WER lc
English Transformer ge 106.5% 97.6%
German Transformer en 129.7% 129.9%

Table 9: Baseline Tranformer tested with wrong language
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Comparing hypotheses and references for the German system tested with English little
acoustic similarity can be observed. The predicted words are very often neither correct
German nor English words, although they are primarily close to German. This is as
expected, since the vocabulary consists of German subwords. For example the utter-
ance "the possibility of an individual to see themselves as capable" is recognized as "ja
beparsteten büro die aber in ende wildjor testie dem seros ist kate geborgt" by the model
trained with lower-case data. Furthermore the hypotheses don't build sequences that
would be possibly seen in German. If so, they are very short like "das ist" or "es war
ein".
The English system tested with German often predicts existing English words. As for
the German system tested with English only low acoustic similarity can be observed.
However the sequences of words, at least partly, in the hypotheses are more often plau-
sible. The utterance "dafür haben wir natürlich jetzt" is recognized as "if you have one
or two leaktes" by the lower-case monolingual German system, for example.

The Denglish data clearly bene�ts from the bilingual model. As to see in Table 10
the WER decreases compared to the monolingual German model and the word accuracy
increases. The word accuracy is computed considering only the English and germanized
English words.

Language Model Bpe WER lc Word accuracy
Denglish Transformer ge 30.5% 25.1%
Denglish Transformer mix 25.8% 44.4%

Table 10: Baseline Transformer for Denglish

As expected especially the Denglish words are recognized better, but the word accuracy
is still low. Even if many words have a wrong transcription, there is more acoustic
similarity. For example "awarness", by the monolingual system recognized as "während
ist", is recognized as "werness" by the bilingual system. The monolingual system only
recognizes commonly used english words as "system", "research", "feedback" or "state-
ment". Both systems have problems with English words with changed form due to
germanization as "gecovert", "gecheckt" or "abgelost".

4.2.3 Gating Transformer

As a �rst language adaption method we evaluate gating as explained in Chapter 3.5. In
[6] the gating method applied after every layer of an architecture consisting of stacked
LSTM layers achieved good results.

In the original paper the gating algorithm takes the hidden state of all time steps,
concatenates the language identity one-hot vector and multiplies the resulting vector by
a weight matrix. The weight matrix has one language dependent column per language.
The columns corresponding to other languages are not taken into account, because of
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the multiplication by zero values in the one-hot vector.
The values of the resulting vector are then transferred to (0, 1) by the sigmoid func-
tion. As an additional step we added a layer normalization before applying the sigmoid
function. Afterwards the gated hidden state is again concatenated with the LID vector,
down-projected and inputted into the next layer.

Since we have two languages, English and German, our language identity (LID) one-
hot vector is of size two. LID 0 is allocated to German, the corresponding LID vector is
given by d0 =

[
1 0

]
. For English with LID 1 we analogously get d1 =

[
0 1

]
.

We experimented with the Transformer using gating after every layer in encoder and
decoder (all layer), since this worked best in the original paper. This was compared to
the e�ect of gating only in the decoder after every layer (all dec layer). Since the decoder
processes the output tokens, we hope the network learns language modeling dependent
on LID. Here we once used shared key and value weight matrices in both MHA layers
(all dec layer (shared kv)). The latter model has almost the same number of learnable
parameters as the baseline Transformer.
As a last experiment we only applied gating after the last layer of the encoder and after
the �rst layer of decoder (last enc + 1. dec).
The number of parameters increases due to gating as shown in Table 11. The column
"Model" states which method was applied to Transformer, e.g. "all layer" denotes the
Transformer with gating after each layer. See Table 6 for comparison with the number
of parameters in the Transformer without language adaption.

Model Number of Number of Parameter
languages parameters increase

all layer 2 37, 860, 771 20.09%
all dec layer 2 33, 637, 795 6.7%

all dec layer (shared kv) 2 31, 540, 643 0.05%
last enc + 1. dec 2 32, 582, 051 3.35%

Table 11: Parameter increase due to gating in the Transformer

Table 12 shows the WERs for German and English for the Transformer with gating.
The language identity used during testing is denoted by "LID". The relative decrease
of WER compared to the multilingual baseline model (see Table 8) is shown in the last
column. A negative sign actually states an increase, a worsening of the recognition.
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Language Model Bpe LID WER WER mc WER WER lc
mc decrease lc decrease

English all layer mix en 16.1% −26.8% 15.8% −35.0%
German all layer mix ge 21.1% −1.9% 23.4% −9.5%
English all dec layer mix en 12.7% 0.0% 13.8% −17.9%
German all dec layer mix ge 18.8% 9.2% 21.4% −1.4%
English all dec layer (shared kv) mix en 12.8% −0.8% - -
German all dec layer (shared kv) mix ge 18.4% 11.1% - -
English last enc + 1. dec mix en 12.3% 3.1% - -
German last enc + 1. dec mix ge 20.5% 1.0% - -

Table 12: Results for the Transformer with gating

Obviously gating has no positive e�ect on the recognition rate. Especially gating after
each layer is clearly worse than the baseline for both mixed- and lower-case data.
Instead of enabling adaptation to one language and thus improving results, gating seems
to make recognition harder. Maybe the gating algorithm, developed for LSTM and suit-
able to the gates in a LSTM cell, is not compatible to the Transformer's architecture.
Another observation we could make is that the learned features of the monolingual sys-
tem range in a more or less constant scope among all layers. In the system with gating
the value ranges get wider for subsequent layers. After the last layer of encoder, for
example, the values are often ten times higher than for outputs of the �rst layer. Maybe
these high di�erences also lead to problems.

Gating after every decoder layer doesn't seem to impact the results negatively for the
mixed-case model. For German the WER even decreased. In case of the lower-case
model on the other hand the WERs increase for both tested languages.
Eventually this is only due to the di�erence in data, but since the baseline results are
similar for mixed- and lower-case data this seems unlikely. Another explanation might
be that the language modeling di�ers, because there is no capitalization for German
anymore. Since the results of both models with gating after every decoder layer di�er a
lot and capitalization is probably learned in the decoder this might in�uence each other.
Without capitalized words, nouns can not always be clearly identi�ed in German, this
could complicate the prediction of subsequent words. Especially because German is very
�exible in sentence formation. However, the e�ect could also be conditioned by training.

The WERs for gating after the last encoder layer and the �rst decoder layer are compa-
rable to the bilingual baseline and the model was not trained with the lower-case data
for this reason. Although it could be interesting for further comparison of lower-case
and mixed-case data and could be investigated in the future.

When testing the Transformer with gating using the wrong LID we achieve the WERs
shown in Table 13. For comparison with the monolingual systems tested with the re-
spective other language see Table 9.
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Language Model Bpe LID WER mc WER lc
English all layer mix ge - 79.7%
German all layer mix en - 126.0%
English all dec layer mix ge 55.3% 24.8%
German all dec layer mix en 99.2% 94.4%
English last enc + 1. dec mix ge 26.6% -
German last enc + 1. dec mix en 46.6% -

Table 13: Results for the Tranformer with gating with wrong LID

The monolingual system tested with the wrong language and the multilingual system
tested with wrong LID yield both high WERs. This indicates that gating in the Trans-
former actually leads to language adaption of the given LID.

The system with gating after each layer for English with German LID, recognizes a
lot of words correctly in English, partly even complete phrases. In other cases not even
existing German words are predicted. For example the utterance "but what he e�ectively
did for me was reshape an awful daily occurrence into a new and promising experience
for me" is recognized as "bei wochee e�ekte did for me was rechee in orthor derry aquas
into a new and promising experience for me".
Decoding German with English LID on the other hand also results in English hypotheses
for almost all utterances. However nonexistent words are predicted, as well.
Even if the WERs are similar in monolingual and bilingual systems, the predictions
appear to be better when using gating, at least considering acoustic similarity. In Table
14 the hypotheses, made by the monolingual English system and the Transformer with
gating after every layer with English LID, are compared for a German utterance.

Model Utterance
Transformer on in this examined and darkened and i lay in tactuan
all layer in in diesen gesammothendaten syndon aletent action

Table 14: Hypotheses made by the Transformer without language adaption and the
Transformer with gating after every layer with English LID for the utter-
ance "und in diesen gesammelten daten sind nun alle interaktionen"

The mixed-case model with gating after each decoder layer and German id doesn't
predict anything for many English utterances. Comparing the results of mixed- and
lower-case models, this is probably the main di�erence. In cases of available predictions,
those are correct in large parts and furthermore comparable to the lower-case model.
When using the English id to recognize German we also obtain English predictions.
Besides the systems predict many nonexistent, and only few German words. An example
is shown in Table 15.
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Data Utterance
mc they've been in the next eye and googlees noise yeah wünschen
lc it stu� indones and goodes neues ya wünschen

Table 15: Hypotheses made by the Transformer with gating after every decoder layer
with English LID, trained with mixed-case or lower-case data, for the utterance
"ich darf ihnen zunächst ein gutes neues jahr wünschen"

The example utterance shown in Table 14 is recognized almost completely correct by
the Transformer with gating in the decoder.

We also tested the model with gating after the last encoder layer and after the �rst
decoder layer. For English with German LID no prediction is made for complete utter-
ances. In summary the recognition rate with wrong LID is worse than with correct LID,
but the di�erences are small. Furthermore language adaption seems to work, eg. the
English reference "hurt" is recognized as "hört" or the German reference "ist ja auch"
is predicted as "this is our". Again an increased number of nonexistent words can be
recognized.

At last we tested the Transformer with gating after each layer using the Denglish data
set. The results are consistent with the results obtained for German regarding the in-
crease in WER. Especially, but not exclusively, the recognition of English or Denglish
words is worse compared to the bilingual baseline. The word accuracy of the English
words in the test set is almost as low as for the monolingual German system. For com-
parison see Table 10.
The Denglish words, predicted correctly, are also to a large extent the same. The hy-
potheses of English words often have a certain similarity to existing German words or
are transcribed as pronounced in German. For example "gecrasht" becomes "gegräscht",
"managen" becomes "menschen". The bilingual baseline model predicts "ge crashed"
and "manage".
The WERs are compared to the result of the bilingual baseline model, shown in Table
10.

Language Model Bpe LID WER WER lc Word
lc decrease accuracy

Denglish all layer mix ge 35.5% −37.6% 25.7%
Denglish all layer mix ge + en 52.4% −103.1% 35.7%

Table 16: Results for the Transformer with gating for Denglish

Instead of using a one-hot vector representing only one language, we also inserted the
mixed language vector d0,1 =

[
1 1

]
representing English and German. This results

in hypotheses mixed with English and German words. For the reference "wie ist das
nightlife in hamburg", the system predicts "these does neid life in hamburg". Another
utterance "ich war beim zahnarzt und habe mir die zähne bleachen lassen" is recognized
as "ich war beim arzt und habe mir die center beach in lesson". However, the Denglish
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words bene�t and the word accuracy increases, but is stil lower compared to the bilin-
gual baseline.

In general we do not obtain improvements with gating in the Transformer. Roughly
speaking the more gating layers the worse the results. Nevertheless an adaption to the
indicated language seems to be happening. The WERs, when using the wrong LID,
are clearly higher compared to the correct LID. Furthermore the word accuracy of the
Denglish words obtained by the Transformer with gating using the mixed language vec-
tor is clearly higher than for the model adapted to German.

4.2.4 Language Adaption in MHA for Transformer

Another approach we evaluated is language adaption in the Multi-Head Attention layer.
In [7] two techniques were applied to the audio encoder of a RNN-Transducer architec-
ture.

Language embedding concatenation (LEC), was explained in Chapter 3.6. The one-
hot vector, describing the LID, is linearly transformed and added to the key, query and
value in the MHA layer. Attention was explained in Chapter 2.7.3. We experimented
with LEC in every encoder layer (Enc LEC) and in every MHA layer of the encoder and
decoder (T LEC).

Language Speci�c Attention Heads (LSAH), explained in Chapter 3.7, was applied to
every encoder layer (Enc LSAH) and to every encoder and decoder layer (T LSAH).
We use one language speci�c head per language and eight heads in total as before. For
each language we thus use a combination of seven shared and one language speci�c head.

The total numbers of learnable parameters of the networks are summarized in Table
17. Overall the impact on the numbers of parameters of both methods is quite small.
See Table 6 for comparison with the number of parameters in the Transformer without
language adaption techniques.

Model Number of Number of Parameter
languages parameters increase

T LEC 2 31, 600, 035 0.23%
Enc LEC 2 31, 563, 171 0.12%
T LSAH 2 31, 002, 019 −1.66%
Enc LSAH 2 31, 264, 163 −0.83%

Table 17: Parameter increase due to language speci�c attention layers in Transfromer

Table 18 shows the WERs obtained for English and German. The WERs are compared
to the WERs obtained by the bilingual baseline, shown in Table 8.
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Language Model Bpe LID WER WER lc
lc decrese

English T LEC mix en 12.8% −9.4%
German T LEC mix ge 21.4% −1.4%
English Enc LEC mix en 12.3% −5.1%
German Enc LEC mix ge 20.6% 2.4%
English T LSAH mix en 13.2% −12.8%
German T LSAH mix ge 22.7% −7.6%
English Enc LSAH mix en 13.1% −11.9%
German Enc LSAH mix ge 22.7% −7.6%

Table 18: Results for the Transformer with language adaption in the MHA layers

All methods yield worse results compared to the bilingual baseline. Interestingly apply-
ing LEC and LSAH only in the encoder results in lower WERs than applying them in
encoder and decoder. However especially for LSAH the di�erences are very small and
could also be conditioned by training issues.

Since both methods yield best results when applying them in the encoder only, we
restrict the tests with wrong LID on these two methods. The results are shown in Table
19.

Language Model Bpe LID WER lc
English Enc LEC mix ge 48.4%
German Enc LEC mix en 100.9%
English Enc LSAH mix ge 55.3%
German Enc LSAH mix en 110.0%

Table 19: Results for the Transformer with language adaption in MHA layer with wrong
LID

Both systems predict hypotheses mixed with English and German words. Even though
the main parts are in English. An example utterance is shown in Table 20 for English
and in Table 21 for German.

Model Utterance
Enc LSAH weil wochee e�ectively did for me was reshape in oreford derry accounts [...]
Enc LEC but what he e�ectively did for me was reshape in ohr vor daily accounts [...]

Table 20: Hypotheses made by "Enc LEC" and "Enc LSAH" with German LID for
the utterance "but what he e�ectively did for me was reshape an awful daily
occurrence [...] "
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Model Utterance
Enc LSAH in einer besprechung by the idea the underneath gestured werden zone
Enc LEC in einer besprechung by the idea underneath gestured we hadn't owned

Table 21: Hypotheses made by "Enc LEC" and "Enc LSAH" with English LID for the ut-
terance "in einer besprechung bei der die anderen nicht gestört werden sollen"

For Denglish the results are shown in Table 22. The WERs are higher than obtained
for the bilingual baseline. The column "WER lc decrease" shows the relative increase in
WER, compared to the results in Table 10. Not only the overall WER is higher, the word
accuracy of the Denglish words is lower compared to the bilingual Transformer, although
the di�erences are small. However, all four models with LEC and LSAH outperform the
monolingual German Transformer.

Language Model Bpe LID WER WER lc Word
lc decrese accuracy

Denglish T LEC mix ge 28.1% −8.9% 40.4%
Denglish Enc LEC mix ge 28.4% −10.1% 39.8%
Denglish T LSAH mix ge 27.5% −6.6% 39.2%
Denglish Enc LSAH mix ge 26.8% −3.9% 40.9%
Denglish T LEC mix en 87.5% - 39.2%
Denglish Enc LEC mix en 90.0% - 38.6%
Denglish T LSAH mix en 101.6% - 32.7%
Denglish Enc LSAH mix en 92.0% - 37.4%

Table 22: Results for the Transformer with language adaption in MHA layer for Denglish

Compared to the bilingual baseline the Transformer with LEC in the encoder adapted
to German has more problems to recognize English and Denglish words. For example,
"style sheets", recognized correctly by the bilingual baseline, becomes "stahl shieds".
Also German words are confused, e.g. "fürs nächste" is predicted as "für snakeste" by
the "Enc LEC"-model.
Using LEC in encoder and decoder with German id seems to enable the model to be
more �exible regarding acoustic similarity. For example "�schen" is predicted instead of
"fashion". The bilingual baseline predicts "feschen". In contrast to the example given
above, the Transformer with LEC in encoder and decoder does not always predict exis-
tent words.

In Table 23 hypotheses, made by the "Enc LEC"-model and the "T LEC"-model adapted
to English, are shown. Interestingly the language itself is better when using language
adaption in the encoder only.
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Model Utterance
Enc LEC i've made out to male einen remind o�ce next to meeting
T LEC tried madarzumal and reminded for snakes to meeting

Table 23: Hypotheses made by "Enc LEC" and "T LEC" with English LID for the
Denglish utterance "schreib mir dazu mal einen reminder fürs nächste meet-
ing"

The hypotheses made by the Transformer with LSAHs in the encoder using German id
are in general comparable to the bilingual baseline. However, more nonexistent words
are predicted, in some cases with less acoustic similarity, as "sportelneck" instead of
"bottleneck" or "bischofs" for "visuals". Comparing the results of LSAH in encoder
with LSAH in encoder and decoder we don't notice general di�erences. Even if the
WER of the "T LSAH"-model is higher overall, the predictions are better in some cases.
For example "visuals" is recognized correctly and "bottleneck" becomes "bordelneck".
In both models the occurring errors are concentrated on the Denglish and English words.

The Transformer with LSAHs in the encoder and decoder with English id yields a de-
creased word accuracy compared to the "Enc LSAH"-model. Even English words as
"editor", "scoring" or "production", that are recognized by the other models adapted
to English, are not predicted correctly.
However the English head in the MHA layers actually seems to lead to an adaption
to English. The hypotheses made by the "T LSAH" and "Enc LSAH"- systems are in
English in large parts.

In general LSAHs and LEC worsen the performance of the Transformer. When us-
ing LSAHs an increased number of heads could be investigated to increase the number
of learnable parameters again.
In [7] both methods were applied to the Transformer's encoder in a RNN-Transducer
model, which can be used for streaming ASR. To enable streaming relative positional
embedding [49] was used instead of adding positional encoding as we do. This could
also be investigated in the future.

4.2.5 Conclusion

We evaluated language adaption in the Transformer by a gating mechanism and lan-
guage speci�c MHA layers. Both of these approaches did not lead to improvements over
the baseline without language adaption.
The gating layers were applied after every layer of the encoder and decoder, only after
the decoder layers or after the last encoder layer and the �rst decoder layer. The latter
model was only trained with mixed-case data, but outperformed the bilingual baseline
slightly. Due to the small di�erences in WER over the baseline, we did not train the
model with lower-case data.
For the Transformer with gating in the decoder we obtained di�erent results when train-
ing with mixed-case or lower-case data. One possible explanation could be the di�erent
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German data for training. However large parts of the data were equal and the baseline
results are comparable for both setups. The di�erences could also be conditioned by
training. Further investigation, if this behavior can be lead back to the missing capital-
ization in the German data or is due to the experimental setup, is necessary.
For language adaption in the MHA layers two methods, LEC and LSAHs, were inves-
tigated. We compared using both methods only in the encoder and in both, encoder
and decoder. The WERs obtained for all methods are similar and couldn't improve the
recognition rate for English, German or Denglish.
However, all investigated methods seem to lead to language adaption, as the high WERs
suggest, when testing with the wrong LID. The changes in the word accuracy of the
Denglish words support this impression.
Nevertheless the Transformer, simply trained with mixed language data yields the best
results in the bilingual setups. It even achieves similar WERs as the monolingual sys-
tems. English and German are related languages, multiple words exist in both languages
or at least have a similar pronunciation and transcription. Those similarities could help
the network when it's trained jointly.
A general observation we could make when testing with the wrong LID is that the WERs
are lower for English than for German. English systems or English adapted systems pre-
dict more words in general as we noticed. This is probably one reason for the high WERs
obtained for German. However, also the hypotheses are better. One explanation could
be that in German English words are used in daily speech, which could help the model
predicting English even when German LID is given.

For all systems the recognition of Denglish is a problem. Words that are commonly
used in both languages as "computer" or "research" are often recognized, but also in-
cluded in the German training data. English words, that are rarely used in daily speech
or that are germanized, have a low recognition rate. Especially verbs with changed form
as "gecovert" or "agbelost" are problematic.

4.3 LSTM based encoder-decoder seq2seq model

The second evaluated seq2seq model is an encoder-decoder architecture with stacked
LSTM layers as explained in Chapter 2.7.2. We �rst outline the parameters of the
architecture in Chapter 4.3.1. In Chapters 4.3.2 - 4.3.7 the results for the baseline and
for di�erent language adaption methods are presented.

4.3.1 Parameter LSTM

Table 24 summarizes the parameters used for the LSTM based encoder-decoder model.
The number of encoder layers is denoted by NEnc, the number of decoder layers is NDec.
The input feature vectors have a length of dinput and the number of features in the hid-
den states is equal to dmodel.
We use nhead heads for the MHA layer with key, query and value of size dk.
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The number of tokens in our vocabulary is nvocab for monolingual and multilingual mod-
els, if nothing else is stated.

NEnc 6
NDec 2

dropout 0.2
dinput 40
dmodel 1024
dk 128
nhead 8
nvocab 4003

Table 24: Parameters in the LSTM encoder-decoder architecture

Table 25 shows the number of parameters for our baseline. When speaking of "LSTM"
as model we always mean the encoder-decoder architecture consisting of LSTM layers
and not a single LSTM cell. We used two di�erent methods of combining the outputs of
the biLSTM layers in the encoder in the experiments. The �rst is simply concatenating
the outputs. In some cases we add the outputs of the two directions element-wise. To
distinguish between both of them we use "LSTM" for the model with concatenated
outputs and "LSTM with addition" to refer to the model with element-wise addition of
the bidirectional outputs.

Model Combination of Number of
biLSTM output parameters

LSTM concatenation 161, 777, 923
LSTM with addition addition 119, 834, 883

Table 25: Number of learnable parameter in the LSTM ecoder-decoder architecture

4.3.2 Baseline LSTM

We �rst trained monolingual systems for English and German. Then we mixed the
language data and trained a bilingual system. The results are presented in Table 26.
The structure of the tables used in this section is equivalent to those in Chapter 4.2.2 for
the Transformer. "LSTM" as model denotes the LSTM based encoder-decoder model
with concatenation of the outputs of the biLSTM cells in the encoder.

Language Model Bpe WER mc WER lc
English LSTM en 10.4% 10.4%
German LSTM ge 19.6% 17.7%
English LSTM mix 9.7% 9.0%
German LSTM mix 18.2% 18.5%

Table 26: Baseline LSTM with concatenation of the bidirectional outputs of biLSTM
cells in encoder
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For German the monolingual system trained with lower-case data yields better results
than the model trained with mixed-case data. Here we see very big di�erences com-
paring the WERs of the di�erent speakers of our test set. While the recognition rate
improves for three of eight speakers using lower-case data, it decreases for the other �ve
of them.
In the multilingual setup using lower-case data, results for English improve, while for
German they are worse. This is the same behavior as already seen for the Transformer.
When training the multilingual model with mixed-case data both languages bene�t.

Testing the monolingual systems with the respective other language gives very high
WERs as shown in Table 27. In general the monolingual systems predict words in the
language they were trained with. However both systems also create nonexistent words.
For instance the German system predicts "ja bepasste bürger die auch ein ende video
auch das ziel im servus ist key gebraucht" for the utterance "the possibility of an indi-
vidual to see themselves as capable".

Language Model Bpe WER lc
English LSTM ge 98.4%
German LSTM en 122.6%

Table 27: Baseline LSTM tested with wrong language

We added French as third language, to see if the multilingual models bene�t using
more languages. Table 28 shows the WERs of the baseline for the trilingual model. To
distinguish between the bi- and trilingual models we use "mix+" to denote the model
trained with English, German and French data.

Language Model Bpe WER lc
French LSTM fr 21.9%
English LSTM mix+ 9.0%
German LSTM mix+ 18.8%
French LSTM mix+ 21.3%

Table 28: Baseline LSTM for English, German and French

One general problem for French is that apostrophes are often counted as error, even when
they were recognized correctly. Comparing the monolingual system with the multilin-
gual, English and French bene�t, the WER for German is even slightly worse compared
to the bilingual model and clearly worse than the WER obtained using the monolingual
German system.

Table 29 shows the WERs for the monolingual and multilingual baseline models for
Denglish. As expected the monolingual German system has problems to recognize the
English and Denglish words correctly. In the mixed-case model they are usually replaced
by German words, e.g. "outsourcen" becomes "Autobahn" or "higlighten" becomes
"heiraten". Even if these were not the spoken words, they do exist.
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In the lower-case model on the other hand the predictions have a higher acoustic sim-
ilarity as in the mixed-case model. For example "outsourcen" becomes "autsourcen"
and "highleiten" becomes "heileiten", which both don't exist in German, but sound as
the spoken words. Words, that are used commonly in German as "meeting", "o�ce",
"googeln" or "joggen" are recognized correctly. Most of these words also exist in the
German training data.
Eventually training with the lower-case data complicates learning of language modeling,
which would make predictions of subsequent words in a sequence harder. German lan-
guage is very �exible. To learn the relation between words in a sentence, capital letters
denoting nouns, might be useful. On the other hand transcription and pronunciation
are closely related. Maybe the network learns to rely on acoustic more when training
with lower-case data.
The word accuracy is computed for the English and germanized words in the utterances
for the model trained with lower-case data. Here the multilingual models clearly outper-
form the monolingual German and English models. Furthermore the trilingual model
yields a better WER and word accuracy than the bilingual model.

Language Model Bpe WER mc WER lc Word accuracy
Denglish LSTM ge 37.5% 27.2% 29.8%
Denglish LSTM mix 32.9% 22.9% 44.4%
Denglish LSTM mix+ - 21.8% 46.2%
Denglish LSTM en - 109.1% 31.6%

Table 29: Baseline LSTM for Denglish

In the bilingual lower-case model the recognition is much better compared to the German
monolingual system. Especially English, but also germanized English words, bene�t. In
the examples given above "outsourcen" is recognized correctly and "highlighten" be-
comes "highleiten". Many mistakes are only small or caused by a wrong separation
of compound words. However, the model doesn't recognize germanized words as "ap-
proven" or "gecovert" correctly. We can not observe general di�erences in the hypotheses
of the bilingual and trilingual models.
The bilingual mixed-case system also has problems with English words, but often hy-
potheses and references have a similar pronunciation, for example "outsourcen" becomes
"audsausen" and "highlighten" becomes "heileiten" in the multilingual system.

Testing the English model with Denglish naturally yields a high WER, however, at
least English words are often predicted correctly. The word accuracy among them is
higher compared to the German monolingual system. Germanized words as "googlen"
or "twittern" are not recognized.

When using element-wise addition of the outputs of the biLSTM cells we obtain the
WERs shown in Table 30 for the bilingual model. Table 31 shows the results of the
trilingual model. This model is denoted by "LSTM with addition". Overall the WERs
of both models are similar to those obtained when concatenating the outputs of the
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biLSTM cells, but for the single languages they di�er. The word accuracy is again only
computed for the English and Denglish words in the Denglish data set.

Language Model Bpe WER lc Word accuracy
English LSTM with addition mix 10.3% -
German LSTM with addition mix 16.9% -
Denglish LSTM with addition mix 23.7% 41.5%

Table 30: Baseline LSTM with element-wise addition of bidirectional outputs of biLSTM
cells in encoder

Language model bpe WER lc word accuracy
English LSTM with addition mix+ 9.3% -
German LSTM with addition mix+ 18.3% -
French LSTM with addition mix+ 20.3% -
Denglish LSTM with addition mix+ 22.9% 46.2%

Table 31: Baseline trilingual LSTM with element-wise addition of bidirectional outputs
of biLSTM cells in encoder

4.3.3 Gating LSTM

As a �rst language adaption method gating [6], as explained in Chapter 3.5, was applied
to the LSTM based encoder-decoder model. We compared gating of the hidden states
after each layer (all layer) and only after each decoder layer (all dec layer).
As for the Transformer we added a layer normalization before applying the sigmoid
function.
The encoder in our architecture is composed of bidirectional LSTM layers, that always
output the hidden states for both directions. In the encoder of the "all layer"-model we
apply gating before combining the outputs of both directions by element-wise addition.
When using gating only in the decoder we concatenate the bidirectional outputs of the
LSTM layers in the encoder.
The total number of learnable parameters of the networks are shown in Table 32. For
the "all dec layer"-model we compare the numbers of parameters to the baseline model
"LSTM". The "all layer"-model is compared to the baseline "LSTM with addition".
The number of parameters of the baseline models can be found in Table 25.

Model Number of Number of Parameter
languages parameters increase

all dec layer 2 165, 986, 563 2.6%
all layer 2 174, 461, 187 45.6%
all layer 3 174, 489, 859 45.6%

Table 32: Parameter increase due to gating in the LSTM based encoder-decoder archi-
tecture
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Table 33 shows the WERs for the bilingual LSTM encoder-decoder architecture with
gating for English and German. The WER decrease using gating after every layer is
computed for the training setup with lower-case data. We compare it to the WER in
Table 30, obtained by the bilingual model without language adaption. For the model
with gating only in the decoder we used mixed-case data in training and the WER was
compared to the baseline results (WER mc) in Table 26.

Language Model Bpe LID WER mc WER WER
lc decrease

English all layer mix en 8.4% 8.4% 18.4%
German all layer mix ge 17.3% 17.3% −2.4%
English all dec layer mix en 9.5% - 2.1%
German all dec layer mix ge 18.9% - −3.8%

Table 33: Results for the LSTM based encoder-decoder architecture with gating

In contrast to the Transformer, gating has a positive e�ect on the WERs of the LSTM
based encoder-decoder architecture. The gating algorithm has a similar structure as the
LSTM cells, probably gating integrates better into the architecture.
The highest improvements are achieved with gating after each layer. As for the Trans-
former we �rst experimented with mixed-case data. On average the WER decreases by
5.8% over the bilingual systems without language adaption and by 15.5% compared to
the monolingual systems in Table 26. However, since we did not train a baseline model
with element-wise addition with mixed-case data, the results are not totally compara-
ble.
On the system trained with lower-case data, the WER improve by an average of 8%
compared to the bilingual baseline and by 10.7% compared to the monolingual system
with concatenation of the bidirectional outputs in the biLSTM cells.

Compared to the English monolingual system the "all layer"-model testing English with
English LID more often predicts small words, e.g. "a"'s, that were missing in the hy-
potheses of the baseline. Besides, mistakes like omitting single letters, e.g. "d" in "and",
occur less frequently. Many hypotheses with a high acoustic similarity to the reference,
but with wrong transcription, without language adaption, are recognized correctly using
gating.

Gating of the hidden states of the decoder layers only, didn't lead to improvements.
Training a model with gating after each encoder layer could be investigated in future for
better comparison. Since gating after each decoder layer gave no improvements, it was
not repeated with lower-case data.

Testing with the wrong language ID results in WERs, that are almost as high as in
the monolingual systems tested with a di�erent language. The results are shown in
Table 34. This supports the impression that language adaption works well.
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Language Model Bpe LID WER lc
English all layer mix ge 89.7%
German all layer mix en 115.1%

Table 34: Results for the LSTM based encoder-decoder architecture with gating with
wrong LID

The LSTM based encoder-decoder model with gating tested with wrong LID often pre-
dicts English words independent of LID. In German often English words are used in
daily speech. As a result this could eventually lead to the observed behavior.

The results for Denglish are shown in Table 35. Compared to the results obtained
by the German monolingual system, see Table 30 for comparison, the WER decreases
and the word accuracy increases by 11.3%.

Language Model Bpe LID WER lc Word accuracy
Denglish all layer mix ge 23.1% 46.2%
Denglish all layer mix en 102.4% 41.5%
Denglish all layer mix ge + en 29.0% 48.5%

Table 35: Results for the LSTM encoder-decoder architecture with gating for Denglisch

Especially the Denglish expressions bene�t using gating compared to the monolingual
system. In some cases, mostly English or Denglish words, are replaced by nonexistent
words, e.g "online" becomes "oilline", a word that was recognized correctly by the bilin-
gual baseline model.
Although the model is adapted to German, the system seems to take advantage of the
bilingual data. For example "highlighten" is recognized as "hileiten" by the model with
gating. It's neither a correct German nor English word, but "heileiten" as recognized by
the monolingual German system is closer to the acoustic of "highlighten" than German
pronunciation of "hileiten". Adapting to German enables the system to also recognize
germanized words as "recyceln" or "abgelost", even when this kind of words is still most
problematic.
Using the English LID during inference the made predictions are in English mostly. How-
ever, in contrast to the monolingual English system, nonexistent words are predicted,
too. For example "der unternehmer" is recognized as "the undernema". Especially ger-
manized words are not recognized.
With mixed English and German LID many utterances are recognized correctly. In some
cases English phrases are predicted. For example for "hast du die best practice[...]" the
system predicts "as to the best practice[...]". Alternatively the system hypothesizes
nonexistent words as "imphirm" for "dem �lm". While the recognition of English words
is better, the Denglish expressions are often predicted wrongly. Here adapting to Ger-
man is more bene�cial.

Table 36 shows the WERs for the trilingual model with gating after each layer, trained
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with English, German and French data. The WER is compared to the results of the
trilingual model without language adaption in Table 31.

Language Model Bpe LID WER WER lc
lc decrease

English all layer mix+ en 8.9% 4.3%
German all layer mix+ ge 17.1% 6.6%
French all layer mix+ fr 17.7% 12.8%

Table 36: Results for the trilingual LSTM encoder-decoder architecture with gating

The WER obtained for English is higher compared to the bilingual model with gating.
However, the system outperforms the multilingual baseline models (see Table 26 and
Table 28 for comparison).
German, on the contrary, bene�ts from the additional language, also compared to the
bilingual model with gating the WER decreases.
Compared to the monolingual models we achieve an average decrease in WER of 12.3%
and compared to the trilingual baseline model we gain 7.9% relative improvement.

We also tested the trilingual model with gating after every layer with the wrong LIDs.
Table 37 shows the WERs.

Language Model Bpe LID WER lc
English all layer mix+ ge 77.4%
English all layer mix+ fr 85.1%
German all layer mix+ en 116.5%
German all layer mix+ fr 104.2%
French all layer mix+ en 111.3%
French all layer mix+ ge 98.2%

Table 37: Results for the trilingual LSTM encoder-decoder architecture with gating with
wrong LID

In general the hypotheses are most often in the language of the given LID. However,
especially when testing with German LID, often not existing words are predicted. Using
the English id the system often predicts a lot more words than available in the refer-
ences, i.e. 7.5% additional words for French and even 14.3% for German. This explains
the high WERs for English LID. Nevertheless, even when taking this into consideration
the recognition seems to be better for German with French id and vice versa. For Ger-
man decoded with French id we achieve 5.5% word accuracy, compared to 4.7% with
English id. For French the di�erence is even higher with 5.4% word accuracy obtained
for German id, compared to 3.0% word accuracy with English id. Since German and
English are related languages, we expected the performance for German to be better
with English LID than with French LID.

For Denglish the results are shown in Table 38. Testing with German id outperforms
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the bilingual model with gating. We achieve 19.9% relative improvement compared to
the monolingual German system and 4.8% compared to the trilingual baseline model.
See Table 31 for comparison. The word accuracy of the system adapted to German and
the trilingual baseline are equal, but using the mixed language vector the word accuracy
increases further.

Language Model Bpe LID WER lc Word accuracy
Denglish all layer mix+ ge 21.8% 46.2%
Denglish all layer mix+ en 103.5% 40.3%
Denglish all layer mix+ fr 96.2% 22.2%
Denglish all layer mix+ ge + en 32.7% 47.4%

Table 38: Results for the trilingual LSTM encoder-decoder architecture with gating for
Denglish

Adapting the system to English leads to mostly English predictions. However, the system
also creates nonexistent words. With French, on the contrary, a lot of nonexistent words
are predicted. An example is shown in Table 39.

LID Utterance
en [...] emback and to stay in integration on donefully automatising
fr [...] une beckhinthestine integrienne on dan fallautomatisienne

Table 39: Hypotheses made by the "all layer"-model with English and French id for the
utterance "[...] die backend systeme integrieren und dann voll automatisieren"

The word accuracy considering only English and Denglish words is clearly higher using
the English LID than inserting the French id during inference. This is as expected,
since the Denglish data consists of English or English-based words in a large part. The
French system only recognizes English, but no Denglish words. Nevertheless the system
adapted to French seems to bene�t of the German and English data, since not all of the
correctly predicted words showed up in the French training data.

Independent of LID, the trilingual model has again, in particular, problems recognizing
the Denglish words. Using the mixed LID vector representing English and German,
words as "stylische", abgelost" or "committen" are recognized, in contrast to the system
adapted to only one language. The overall WER increases, but using the mixed LID
vector leads to a better recognition of the Denglish words.

All in all the results suggest that gating based on the LID enables the model to adapt to
the given language and leads to a reduced WER. In addition the recognition is further
improved by adding another language. This was also observed in [6].
Also using gating, the recognition rate of Denglish words is low and furthermore com-
parable to the multilingual baseline models. However, the mixed language vector, rep-
resenting English and German, provides improvements in the word accuracy.
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4.3.4 Gating of Output Embedding

We applied gating after the embedding of the decoder's input before it is fed into the
�rst LSTM layer. In this way we hope the model learns language speci�c representation
of the text output. To refer to the LSTM based encoder-decoder model with gating of
the decoder's embedding we use "dec emb".
We experiment with English and German and use a vocabulary size of 4000 as before in
a �rst step. In this vocabulary many tokens can be uniquely assigned to one language.
Later we reduced the vocabulary size to create a vocabulary with more shared tokens.
A vocabulary size of 300 was chosen, because no tokens could be clearly associated with
a language.

We concatenate the bidirectional outputs of biLSTM cells in the encoder. The num-
bers of trainable parameters are shown in Table 40 for the model with gating of the
output's embedding and compared to the baseline "LSTM" in Table 25.

Model Bpe Number of Number of Parameter
size languages parameters increase

dec emb 4, 000 2 163, 882, 243 1.3%
dec emb 300 2 160, 089, 743 −1.0%

Table 40: Parameter increase due to gating of decoder's embedding in the LSTM
encoder-decoder architecture

Table 41 shows the WERs for the model trained with the large vocabulary of size 4, 000.
The WERs are compared to the WERs of the bilingual baseline in Table 26. The
negative sign means that the WER increases, the performance worsens.

Language Model Bpe LID WER WER lc
lc decrease

English dec emb mix en 11.0% −22.2%
German dec emb mix ge 19.9% −7.6%

Table 41: Results for the LSTM encoder-decoder architecture with gating of the output
embedding for a vocabulary of size 4, 000

Table 42 shows the results for the model trained using the smaller vocabulary size of 300.
It contains tokens of short lengths, mostly of only one ore two letters. In the column
"Bpe" this setup is denoted by "mix 300". We also trained a model without gating for
comparison. The WERs are similar to our bilingual baseline with larger vocabulary.
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Language Model Bpe LID WER WER lc
lc decrease

English LSTM mix 300 en 9.4% -
German LSTM mix 300 ge 18.3% -
English dec emb mix 300 en 9.4% 0.0%
German dec emb mix 300 ge 18.1% 1.1%

Table 42: Results for the LSTM encoder-decoder architecture with gating of the output
embedding for a vocabulary of size 300

The gating of the output embedding works clearly better for the smaller vocabulary.
The model trained with 300 tokens even outperforms the baseline model with small vo-
cabulary slightly. For the large vocabulary the WERs obtained for the "dec emb"-model
increase for both languages.

We visualize the e�ect of gating the embedding of the outputs by plotting the em-
bedded and gated tokens using t-SNE, explained in Chapter 2.5.
Figure 13 shows the projection into the two-dimensional space of all tokens, included in
the large vocabulary, after gating of their embedding for English and German. Analog
Figure 14 shows the projection of the tokens in the small vocabulary.
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Figure 13: t-TSNE projection of token's embedding after gating using a vocabulary of
size 4, 000

In both plots projection centers can be located for each language. However, especially
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Figure 14: t-TSNE projection of token's embedding after gating using a vocabulary of
size 300

for the large vocabulary the projections can not be separated by LID, which indicates
that the features of the embedded tokens are not language speci�c. Outside the centers
most token get projected to similar points with English and German id. The coordinates
are not exactly equal, but very close to each-other.
For the tokens of the small vocabulary with more shared tokens, the separation is more
clear. Eventually reducing the vocabulary size further would lead to further improve-
ments.
We conclude that gating of the output's embedding is more helpful for a smaller vocab-
ulary. If the vocabulary can be split in almost disjunct sets of language speci�c tokens
anyway, the network probably learns to not predict them for the respective other lan-
guage, either way. The weights in the gating mechanism corresponding to one language
are only trained using tokens from this language. Thus we probably don't generate
added value using gating after the output embedding.

Testing with the wrong LID worsens the results for both models, as Table 43 shows.
However the WERs are clearly higher for the model trained with the larger vocabulary.
For English with German LID most predictions are in English with a high recognition
rate. By the model trained with the large vocabulary, single German words are pre-
dicted, e.g."hört" instead of "hurt", "liest" instead of "list" or "sie" instead of "see".
The main errors of the model, trained with the small vocabulary, are typing errors, e.g.
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"someon" instead of "someone".
For German with English id both models make English predictions for some German
references. The model trained with the large vocabulary for example predicts "rome"
instead of "räume" or "we're none" instead of "wir nennen". One error that occurs
very often for both models when decoding German with englisch id, is the prediction of
"under" instead of "und".

Language Model Bpe LID WER lc
English dec emb mix ge 17.0%
German dec emb mix en 45.3%
English dec emb mix 300 ge 12.1%
German dec emb mix 300 en 30.3%

Table 43: Results for the LSTM encoder-decoder architecture with gating of output em-
bedding with wrong LID

Larger tokens are embedded using vectors of the same size as used for shorter tokens.
This could mean that more language information needs to be represented by the same
number of features. Maybe tokens of the given LID are preferred during alignment and
small di�erences in the pronunciation, as e.g. in "hört" and "hurt" are ignored.

As shown in Table 44, the performance using a smaller vocabulary improves for Denglish
compared to the results obtained by the bilingual baseline using the larger vocabulary
(Table 29).
Gating of the output embedding does not lead to further improvements, on the contrary
it's clearly worse.
However the di�erences using English or German id during inference are only small,
the word accuracy even increases using the English id. All models have again mostly
problems with Denglish words.

Language Model Bpe LID WER WER lc Word
lc decrease accuracy

Denglish LSTM mix 300 - 19.3% - 50.9%
Denglish dec emb mix 300 ge 22.2% −15.0% 45.0%
Denglish dec emb mix 300 en 23.7% - 49.7%
Denglish dec emb mix 300 ge + en 22.2% −15.0% 48.0%

Table 44: Results for the LSTM encoder-decoder architecture with gating for Denglisch

The hypotheses created by the systems with German, English LID or mixed language
vector, are very similar. Table 45 shows an selection of words predicted by all systems,
but containing errors, made by at least one model.
Words that are recognized correctly by all systems are, for instance, "brainstormen",
"twittern" and words that exist equally in both languages or are commonly used, e.g.
"computer", "party" or "meeting".

54



4 Experiments

Ref/ Hyp LID
Reference - assets gecrasht lohngedumt bottleneck fashion
Hypothesis ge essetz gecrash lohn gedammt botte neck fasshion
Hypothesis en essitz gecrashed lohn gedankt bottleneck fashion
Hypothesis ge + en essitz gecrashed lohn gedankt bottelneck fashion

Table 45: Comparison of Denglish words decoded with German, English id or mixed LID

4.3.5 Modulation

Modulation with neural language codes was described in Chapter 3.1. We experiment
with a much more simple form and modulated the hidden states of the LSTM layers
with the embedded one-hot vector, describing the LID. Since gating after each layer
performed well in previous experiments, we also apply modulation after each layer. The
one-hot vector dl representing LID is embedded by V ∈ Rdmodel×L, when L is the number
of languages, and a bias b ∈ Rdmodel is added. The sigmoid function is applied to the
embedded LID vector as

dlang = σ(V dl + b).

The hidden states h ∈ Rdmodel are multiplied element-wise with dlang. This should enable
the model to learn features depending on language id.
In contrast to gating treated in Chapter 4.3.3, modulation is only based on the LID. For
gating we modulate the hidden state with a vector based on the hidden state itself and
LID. Furthermore for gating we later concatenate hidden state and LID before the new
hidden state is inputted into the next layer.
We use element-wise addition of the bidirectional hidden states in the encoder. Table
46 shows the total number of trainable parameters in the LSTM architecture with mod-
ulation. Compared to the number of parameters in our baseline "LSTM with addition"
in Table 25 the increase is negligible.

Model Number of Number of Parameter
languages parameters increase

Modulation 2 119, 877, 891 0.04%

Table 46: Parameter increase due to modulation in the LSTM based encoder-decoder
architecture

Table 47 shows the results obtained for English and German using modulation. The
WERs are compared to the results of the bilingual baseline in Table 30.

Language Model Bpe LID WER WER lc
lc decrease

English Modulation mix en 9.6% 7.7%
German Modulation mix ge 17.1% −1.1%

Table 47: Results for the LSTM encoder-decoder architecture with modulation

55



4 Experiments

While the model performs well for English, the WER increases slightly for German.

Table 48 shows the WERs obtained for the LSTM based encoder-decoder model with
modulation using the wrong LID. Even when inserting German LID when recognizing
English, large parts are recognized correctly. Others parts, with German predictions,
even have only low acoustic similarity. For example the utterance "[...]outside the familiy
unit and as[...]" is recognized as "[...]hauptsahl bisher molynit andreas[...]". Only low
acoustic similarity can be observed for German references and English LID, as well.
However the majority of hypotheses is made in English in this case, which might explain
the high WER.

Language Model Bpe LID WER lc
English Modulation mix ge 62.5%
German Modulation mix en 118.5%

Table 48: Results for the LSTM encoder-decoder architecture with modulation with
wrong LID

For the Denglish data set the results are shown in Table 49. We obtain a relative wors-
ening of 0.8% compared to the bilingual baseline model in Table 30. The word accuracy
is computed for the English and Denglish words in the utterances.

Language Model Bpe LID WER lc Word accuracy
Denglish Modulation mix ge 23.9% 43.9%
Denglish Modulation mix en 105.1% 34.5%
Denglish Modulation mix ge + en 33.0% 48.0

Table 49: Results for the LSTM encoder-decoder architecture with modulation with
wrong LID

Words that exist in both languages as "computer", "manager", "event" or "service" are
mostly recognized correctly independent of LID.
When decoding with German LID, Denglish words are often replaced by German ones,
e.g. "followen" becomes "verloren" or "performt" is recognized as "befreundet". How-
ever, in some cases Denglish words as "brainstormen" or "outsourcen" are also recognized
correctly with the German LID.
Using English LID gives English predictions for almost each utterance, as already ob-
served for German decoded with English LID. English words are recognized correctly
very often. However, the model has problems with the germanized words.
The predictions made by the system for the mixed language vector with German and
English id are also correct in large parts. Especially the Denglish words seem to bene�t
from the combination of both LIDs, since English and Denglish words are both recog-
nized better. For wrongly recognized Denglish words the confusion is often small. For
example "produktion" is predicted instead of "production" or "gerated" instead of "ger-
atet". The word accuracy is higher than using only one language id, but overall the
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recognition is worse, as to see in the higher WER. In general the predictions are either
German, English or neither of them in the same extent.

Modulation by vectors, that carry more information than simply language identity, as
done in [38] might lead to further improvements. The results of Denglish show, that
adaption might even work too good in some cases, and the network cannot switch to
English if necessary.

4.3.6 Language Adaption in MHA for LSTM

In [7] the authors integrated Language Embedding Concatenation (LEC) and Language
Speci�c Attention Heads (LSAH) into the MHA layers of the audio encoder in a RNN-T
architecture. We apply both, LEC and LSAH, to the MHA layer in our LSTM based
encoder-decoder architecture. The underlying attention mechanism is as explained in
2.7.3. For an introduction of LEC see Chapter 3.6, LSAH was explained in Chapter 3.7.
We use one language speci�c attention head for each language and eight heads in total,
as in the baseline.
We trained bilingual models with English and German. For two languages the network
has the following numbers of learnable parameters, shown in Table 50. In the encoder the
bidirectional outputs are concatenated, thus the numbers are compared to the number
of parameters in the "LSTM" baseline in Table 25. The di�erences to the number of
parameters in the baseline are small.

Model Number of Number of Parameter
languages parameters increase

LEC 2 161, 787, 139 0.01%
LSAH 2 161, 646, 851 −0.08%

Table 50: Parameter increase due to language speci�c MHA in the LSTM based encoder-
decoder architecture

The WERs obtained for English and German are presented in Table 51. For both
methods and their combination, the results are comparable to the baseline bilingual
LSTM encoder-decoder model, shown in Table 26.

Language Model Bpe LID WER WER lc
lc decrease

English LEC mix en 8.6% 4.4%
German LEC mix ge 18.5% 0.0%
English LSAH mix en 8.8% 2.2%
German LSAH mix ge 18.8% −1.6%
English LSAH + LEC mix en 8.9% 1.1%
German LSAH + LEC mix ge 18.7% −1.1%

Table 51: Results for the LSTM based encoder-decoder architecture with language adap-
tion in MHA layer
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LEC yields the best results and improves the recognition rate of English slightly, while
for German it's equal.
For LSAH the di�erence in WERs to the bilingual baseline model are even smaller. In-
stead of eight heads as in the baseline, we only use seven heads for each language with
LSAH. Further investigations could show if an increased number of heads might give
additional improvements.

The results of the three investigated methods obtained for Denglish are shown in Ta-
ble 52 and compared to the baseline results, shown in Table 29. The word accuracy is
computed separately for the English and germanized words.

Language Model Bpe LID WER WER lc Word
lc decrease accuracy

Denglish LEC mix ge 22.9% 0.0% 43.9%
Denglish LSAH mix ge 22.1% 3.5% 49.7%
Denglish LSAH + LEC mix ge 22.1% 3.5% 49.7%
Denglish LEC mix en 22.6% 1.3% 45.6%
Denglish LSAH mix en 22.3% 2.6% 49.7%
Denglish LSAH + LEC mix en 21.6% 5.7% 50.3%

Table 52: Results for the LSTM based encoder-decoder architecture with language adap-
tion in MHA layer for Denglish

Except for LEC with German id, all methods, independent of inserted LID, outper-
form the monolingual and bilingual baseline regarding WER and word accuracy of the
Denglish words. In contrast to the recognition rates of English and German, the combi-
nation of LEC and LSAH, yields the highest improvements for Denglish.
However, we don't observe general di�erences between the correctly recognized words,
comparing the di�erent methods. The systems all have problems with the same - mostly
Denglish - words. No system recognizes, e.g. "stalken", "outgesourced" or "getaggt".
Words that are recognized correctly by all systems are for example "brainstormen" or
"outsourcen" and English words as "resources", "manager" or "global".
The combination of LEC and LSAH with English id results in the best recognition rate.
Denglisch words are often either recognized correctly or replaced by German words. The
same system adapted to German often predicts German or nonexistent words.

Although the obtained improvements for English and German are small, the methods
might be worth further investigation. Especially Denglisch seems to bene�t. The WER
of 21.6 obtained for the LSTM based encoder-decoder model with LSAH and LEC is
the best WER we obtain with bilingual data and a vocabulary size of 4, 000.

4.3.7 Combining Methods

In a last step we combined gating after each layer (see Chapter 4.3.3) and the language
adaption methods in the MHA layer (see Chapter 4.3.6). This results in architectures
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with language adaption in or after almost every part of the network. Solely output
embedding and the Linear and Softmax layers as last layers are not language speci�c.
We compare the combination of gating after each layer with LEC (LEC + all layer) and
gating after each layer together with LSAH (LSAH + all layer). Furthermore we trained
a bilingual model with combination of all three methods (LEC + LSAH + all layer).
All three models were trained with English and German data. Additionally the combined
model with gating , LEC and LSAH was trained with trilingual data of English, German
and French.
The outputs of the biLSTM layers are element-wise added as done before in the network
with gating after every layer. The numbers of parameters are shown in Table 53 and
compared to the number of parameters in our baseline "LSTM with addition" in Table
25.

Model Number of Number of Parameter
languages parameters increase

LEC + all layer 2 174, 470, 403 45.6%
LSAH + all layer 2 174, 330, 115 45.5%

LEC + LSAH + all layer 2 174, 338, 179 45.5%
LEC + LSAH + all layer 3 174, 236, 931 45.4%

Table 53: Parameter increase due to language adaption in the LSTM based encoder-
decoder architecture

The WERs of the bilingual models for English and German are presented in Table 54.
The decrease in WER shown, is relative to our bilingual baseline in Table 30.

Language Model Bpe LID WER WER lc
lc decrease

English LEC + all layer mix en 8.6% 16.5%
German LEC + all layer mix ge 17.0% −0.6%
English LSAH + all layer mix en 8.2% 20.4%
German LSAH + all layer mix ge 17.6% −4.1%
English LEC + LSAH + all layer mix en 8.2% 20.4%
German LEC + LSAH + all layer mix ge 17.0% −0.6%

Table 54: Results for the LSTM based encoder-decoder architecture with language adap-
tion in MHA layer and gating

All methods outperform the bilingual baseline for English. For German the WERs are
comparable to the bilingual baseline, except for "LSAH + all layer", which yields an
increased WER. The combination of LEC, LSAH and gating after each layer yields the
highest improvement overall. In average we achieve a relative decrease in WER of 9.9%.
Compared to the monolingual models the decrease in WER is even higher with 12.6%
in average, see Table 26 for comparison. The combination of the bidirectional outputs
in the encoder is di�erent in the monolingual models and the combined model, which
makes an exact comparison di�cult.
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Especially the combination of all three methods gives even slightly better results than
gating after each layer with an average improvement of 2.1%.

Table 55 shows the WERs for English and German for the "LEC + LSAH + all layer"-
model.

Language Model Bpe LID WER lc
English LEC + LSAH + all layer mix ge 90.2%
German LEC + LSAH + all layer mix en 115.4%

Table 55: Results for the LSTM based encoder-decoder architecture with language adap-
tion and gating with wrong LID

The WERs are very similar to the "all layer"-gating bilingual LSTM architecture eval-
uated in Chapter 4.3.3. Furthermore, also the hypotheses and errors are comparable.

For Denglisch the results, using German LID and English LID during inference, are
shown in Table 56. Compared to the bilingual baseline (see Table 30 for comparison) we
achieve a relative improvement of 8.4% for the model adapted to German. Compared
to the monolingual German model the WER decreases by 20.2%, see Table 29 for the
results of the monolingual baseline.

Language Model Bpe LID WER lc Word accuracy
Denglish LEC + LSAH + all layer mix en 102.8% 42.1%
Denglish LEC + LSAH + all layer mix ge 21.7% 46.2%

Table 56: Results for the LSTM based encoder-decoder architecture with language adap-
tion and gating for Denglish

For both LIDs the results, also regarding hypotheses, are similar to those of the LSTM
based encoder-decoder model with gating after each layer. The models also have prob-
lems with the recognition of the same words. The WER of the system adapted to
German gives a lower WER as the system using only gating after each layer. This, at
least partly, might also come from predicting more compound words. The "all layer"-
gating bilingual model splits many words, which results in a higher WER.
The system adapted to English recognizes English words, but is not able to predict
Denglish words correctly. When adapting to German most Denglish words are not rec-
ognized either, only few as "relaxen", "twittern", or "abgelost" are predicted correctly.

To see if the combined model yields further imrovements with an additional language
we repeated the training using data of English, German and French. We concentrated
on the model with gating after each layer, LEC and LSAH, since this performed best in
the bilingual setup. The results are shown in Table 57 and compared to the trilingual
baseline results in Table 31.
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Language Model Bpe LID WER WER lc
lc decrease

English LEC + LSAH + all layer mix+ en 9.0% 3.2%
German LEC + LSAH + all layer mix+ ge 15.9% 13.1%
French LEC + LSAH + all layer mix+ fr 17.0% 16.3%

Table 57: Results for the trilingual LSTM based encoder-decoder architecture with lan-
guage adaption in MHA layer and gating

Compared to the trilingual baseline we achieve an average decrease in WER of 10.9%.
Compared to the monolingual baseline we achieve 15.3% relative improvement in aver-
age and the trilingual model with combined language adaption method also outperforms
the "all layer"-gating trilingual system by 6.4%.
Especially German and French bene�t of the additional language data, but also the
WER for English decreases.

For Denglish the combination of language adaption methods outperforms the trilingual
baseline by 8.3% relative decrease in WER, see Table 31 for comparison. The results of
the monolingual systems are shown in Table 31. With German LID the WER is reduced
by 22.8% for the combined model.

Language Model Bpe LID WER lc Word accuracy
Denglish LEC + LSAH + all layer mix+ ge 21.0% 52.0%
Denglish LEC + LSAH + all layer mix+ en 100.3% 41.5%

Table 58: Results for the trilingual LSTM based encoder-decoder architecture with lan-
guage adaption in MHA layer and gating for Denglish

The occurring errors are very similar to those done by the LSTM encoder-decoder net-
work with gating after each layer, as we could already observe for the bilingual models.
However, in particular the word accuracy of the English and Denglish words increases
for the trilingual combined model adapted to German. With 52% word accuracy it out-
performs the bilingual combined model and the trilingual model with gating adapted to
German by 12.5%.

In general the combined model yields similar results as the models with gating in Chapter
4.3.3 regarding hypotheses and recognition rate. However the WERs decrease further,
when using language adaption in the MHA layer additionally to gating. We also showed
that the performance can improve by adding another language.

4.3.8 Conclusion

For the LSTM based encoder-decoder architecture language adaption leads to an im-
proved recognition rate. The highest improvement was obtained when using a gating
algorithm after every layer of the encoder and decoder together with language speci�c
attention heads.
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Applying all before discussed methods solely, gating, applied after every layer in encoder
and decoder, yields the highest improvement. The language adaption methods in the
MHA layer, LEC and LSAH, only give a minor decrease in the WER, but perform well
when being combined with gating. Applying language adaption to every part of model
seems to be most e�cient for the LSTM based encoder-decoder architecture.
Language speci�c attention layers might be especially useful for Denglish or in general
utterances with mixed languages. The WER decreased, while the word accuracy in-
creased. Although the model seems to adapt to the language, given by LID, it is able
to handle code-switching if necessary and bene�ts from the di�erent language data.
Modulation, which is based on a similar principle as gating, also leads to a reduced
WER. We modulated the outputs of the layers with the embedded language identity
vectors. Using a vector that carries more language properties than the identity alone,
might enable the model to learn more language property related features. This could
help the model in using similarities and di�erences of languages and lead to further
improvements. Besides, modulation is easier than gating and adds less trainable param-
eters to the architecture. In our bilingual setup the recognition rate was not as good as
achieved by the model with gating, but also outperformed the bilingual baseline.
The idea of gating of the output embedding was to learn language dependent representa-
tions of the output tokens. We trained two models with di�erent vocabulary sizes. The
baseline models for the large and small vocabulary are comparable, for Denglish using a
reduced vocabulary size even outperforms the model trained with the larger vocabulary.
We obtained clearly better results using gating of the output embedding with the small
vocabulary. Nevertheless the improvements are small.

The exact comparison of the evaluated methods is di�cult, since we used two di�er-
ent ways of combining the bidirectional outputs of the biLSTM layers. Comparing the
results of the multilingual baselines, element-wise addition of the bidirectional outputs
performs better slightly, and furthermore leads to a decreased number of learnable pa-
rameters.
The results of the baseline also show that the multilingual models without language
adaption yield comparable results as the monolingual models. Also when adding French
as third language, the WERs decrease only slightly compared to the bilingual baseline.
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5 Future Work

We investigated multiple language adaption methods for the Transformer and a LSTM
based encoder-decoder architecture. For most of our experiments we used English and
German data, for the LSTM based model we also experimented with a trilingual setup
and added French data. Experimenting with more than two or three languages could
be very interesting with and without language adaption. Especially if adding languages,
that have less shared properties, as e.g. English and German.
We obtained good results for the model consisting of LSTM layers, but for the Trans-
former the performance decreased compared to the baseline without adaption techniques.

The results obtained for the Transformer suggest that the gating method and language
speci�c attention layers lead to language adaption, but the WERs increase. Additional
investigation is needed to �nd out why those methods do not improve the results. Even-
tually adjusting the gating algorithm to be better suited for the Transformer leads to
improvements.

Since the evaluated methods improve the results for the LSTM based encoder-decoder
model, further investigation and re�nement of these methods, might lead to an addi-
tional decrease in WER.
Instead of using a one-hot vector to represent LID, a language feature vector can be
inserted. Thus the model might learn features depending on properties of languages.
Furthermore, instead of applying gating or modulation after every layer of the encoder
and decoder, their application after speci�c layers could be investigated. For instance a
comparison of gating in the encoder with gating in the decoder could show if language
speci�c features of the acoustics or language lead to a higher improvement.
For LSAH a di�erent number of shared and language speci�c heads can be investigated
in the future.

In our experiments we experimented with three languages English, German and French
and observed that in the multilingual model German and French seem to be highly ben-
e�cial for each-other. For better comparison testing the monolingual models with the
respective other language is necessary, as well as training a bilingual model for French
and German.

Even if we could also improve the recognition of Denglish, in particular the german-
ized English words are not recognized. The highest word accuracy of the English and
Denglish words we could achieve is 52%. The word accuracy of the words that are nei-
ther correct English nor German words, is signi�cantly lower.
We therefore want to investigate the combination of language vectors. The experiments
with mixed language vector during inference improved the word accuracy of the Denglish
words towards inserting only German or English id. In Training a combination of mixed
and single language vectors could be tried.
Regarding LSAH the combination of German and English heads might also lead to
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improvements for Denglish. At the moment we can only use one LID during inference.
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