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Abstract

Like many other Natural Language Processing (NLP) tasks, coreference resolution has benefited
massively from new developments in recent years. Deeper and more complex architectures
enabled coreference resolution systems that work end-to-end, needing no additional input
generated by separate models. Contextual word representations from pre-trained language
models such as BERT further enhanced their performance. On the other hand, many of
these new techniques can also be applied directly to downstream tasks like Neural Machine
Translation (NMT), questioning the use of additional coreference information for these tasks.

In this thesis, I evaluated different variants of BERT as a possible foundation for coreference
resolution systems. Some of them promised to increase the performance, while others could
reduce the models’ complexity and cut down the time needed to train the systems.

Since most of the recent developments in the field of coreference resolution took place in the
English language, I applied one of the best-performing models to the German language. Due to
the cross-lingual capabilities of multilingual BERT variants such as M-BERT or XLM-RoBERTa,
I was able to directly apply models trained exclusively on English data to German texts. To
show the benefits transfer learning can bring to coreference resolution in languages with
limited annotated data, I analyzed the cross-lingual models on datasets of different sizes.

I augmented context-agnostic and context-aware NMT systemswith coreference information
and compared their handling of pronouns to prove that coreference information, and thus
coreference resolution, can still play a valuable role for specific downstream tasks.

As part of this thesis, I reimplemented the most common state-of-the-art models in PyTorch
and made them publicly available to give more people the opportunity to participate in the
field of coreference resolution.
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Zusammenfassung

Wie viele andere Natural Language Processing (NLP) Tasks hat auch die Coreference Resolution
in den letzten Jahren massiv von neuen Entwicklungen profitiert. Tiefere und komplexere
Architekturen ermöglichten Coreference Resolution Systeme, die Ende-zu-Ende arbeiten und
keinen zusätzlichen Daten von separaten Modellen benötigen. Contextual Word Representati-
ons von vortrainierten Sprachmodellen wie BERT steigerten ihre Performance noch weiter.
Andererseits können viele dieser neuen Techniken auch direkt auf Aufgaben wie die Neural
Machine Translation (NMT) angewendet werden, wodurch die Verwendung von zusätzlichen
Koreferenz-Informationen für diese Aufgaben infrage gestellt wird.
In dieser Arbeit habe ich verschiedene vortrainierte Sprachmodelle als mögliches Funda-

ment von Coreference Resolution Systemen untersucht. Einige von ihnen versprachen, die
Performance zu steigern, andere waren in der Lage, die Komplexität der Modelle zu reduzieren
und die für das Training der Systeme benötigte Zeit zu verkürzen.
Da die meisten der Entwicklungen im Bereich der Coreference Resolution vorwiegend

für die englische Sprache stattfanden, habe ich eines der besten Systeme in die deutsche
Sprache übertragen. Aufgrund der sprachübergreifenden Fähigkeiten von mehrsprachigen
Sprachmodellen wie M-BERT oder XLM-RoBERTa konnte ich Modelle, die ausschließlich
auf englischen Daten trainiert wurden, direkt auf deutsche Texte anwenden. Um zu zeigen,
welche Vorteile Transfer-Learning für die Coreference Resolution in Sprachen haben kann, die
nur über wenig annotierte Daten verfügen, habe ich die sprachübergreifenden Modelle auf
deutschen Korpora unterschiedlicher Größe analysiert.

Ich habe NMT-Systeme mit und ohne Kontext, mit zusätzlichen Koreferenz-Informationen
trainiert und ihren Umgang mit Pronomen verglichen, um zu beweisen, dass Koreferenz
Informationen und damit Coreference Resolution noch immer für ausgewählte Aufgaben eine
wertvolle Rolle spielen können.

Im Rahmen dieser Arbeit habe ich die gängigsten State-of-the-Art-Modelle mit PyTorch
neu implementiert und öffentlich zugänglich gemacht, um mehr Menschen die Möglichkeit zu
geben, sich an der Forschung zu Coreference Resolution zu beteiligen.
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1. Introduction

Coreference resolution is the task of clustering mentions in texts based on the entities they
refer to. Identifying mentions referring to the same real-world entity can benefit various
downstream tasks like Neural Machine Translation (NMT) [60]. Coreference resolution also
represents an essential part of higher-level natural language processing (NLP) tasks involving
natural language understanding (NLU). It is also part of the Winograd Schema Challenge,
which was proposed by Terry Winograd as an improvement of the Turing test. In order to pass
the challenge, the correct linking between noun phrases and ambiguous pronouns is crucial
[40, Chapter 21].
In recent years neural systems emerged, outperforming existing models based on a broad

range of linguistic features. End-to-end neural coreference resolution systems not only link
mentions but also detect mention boundaries themselves, avoiding cascading errors from a
distinct mention detection system [49]. Besides architectural advances, coreference resolution
systems also profit from the steady improvement of pre-trained word embeddings in recent
years [38][39].

1.1. Motivation

While the benefit of using explicit coreference information to improve context-agnostic NMT
systems was widely approved in the past, the rise of context-aware systems cast doubt on this
benefit [89].
Although context-aware systems indisputably learn some coreference resolution on their

own, they do not stack up with the best, specialized systems, as shown in this thesis. Therefore
coreference resolution is still a critical NLP task, and providing downstream tasks with coref-
erence information can lead to better results than letting those tasks resolve the coreferences
themselves.
Good coreference information from today’s neural end-to-end systems enables us to build

better-performing systems to solve downstream tasks and reduce the complexity resulting in
less resource-hungry and faster to train systems.

1.2. Objectives

This thesis consists of three main contributions to the coreference resolution problem and the
application of coreference information in the field of NMT.
The first contribution is the implementation of three end-to-end coreference resolution

models with PyTorch. These three models build upon each other, with the third model being
one of the best-performing systems today. The original TensorFlow implementations and
pre-trained models are publicly available, but it requires good knowledge of the TensorFlow
framework to make changes to them. With the provided PyTorch implementations from
this work, these models get approachable to a broader range of researchers and facilitate the
induction into the coreference resolution problem.

1



1. Introduction

Secondly, I investigate the cross-lingual capabilities of neural end-to-end coreference systems.
This involves the application of coreference systems on German datasets, although they were
originally designed and tested on English coreference tasks. Besides training themodels entirely
on German data, I also analyze the benefits of transfer learning for the domain of coreference
resolution. Since creating datasets with manually annotated coreference information is time-
consuming and costly, those kinds of datasets, big enough to achieve competitive results,
are available in a few languages only. Pre-training or even training entirely on English data
before applying the system to another language might help to improve the performance
in low-resource languages. In this work, I study and compare multiple ways to transfer
the knowledge gained by pre-training on large English datasets to the problem of German
coreference resolution.
In the final part of this work, I discuss the application of coreference information in NMT

systems. To show the impact of such additional information, I augment context-agnostic
and context-aware NMT systems with coreference information obtained by a state-of-the-art
coreference resolution system. Furthermore, I demonstrate that context-agnostic systems can
surpass even more complex context-aware systems on coreference-based tasks when provided
with explicit coreference information.

2



2. Fundamentals

In this chapter, basic deep learning concepts and specific neural networks important for this
thesis are briefly explained. In addition, coreference resolution terms are defined, different
approaches of coreference resolution systems are outlined, and metrics for evaluating these
systems are described.

2.1. Neural Networks

The Perceptron by Rosenblatt [75] was the first linear model of a neuron that was able to learn
the weights to categorize input examples [27]. Figure 2.1a shows its simple structure. Given
the activation function 𝑓 , which is a step function in this case, the output 𝑦 for the inputs 𝑥𝑖
can be calculated as follows:

𝑦 = 𝑓 (
𝑛∑︁
𝑖=1

𝑥𝑖𝑤𝑖); 𝑥0 = 1

To use 𝑤0 as a bias, the input 𝑥0 is fixed to 1 and appended to the actual input data. The
perceptron is only applicable to binary, linear classification problems. Early on, it was known
that multiple layers of perceptrons with non-linear activation functions like the Multilayer
Perceptron (MLP) in Figure 2.1 were necessary to solve more complex problems [78]. However,
only with the introduction of the backpropagation algorithm [79] it became possible to train
these models using gradient descent efficiently. They defined the sum of the squared distances
between the predictions and desired outputs as an error measure. To update each weight in
the network with the errors’ gradient regarding that specific weight, its gradient is iteratively
propagated back from the output to the input layer by applying the chain rule.
Cybenko [18] could finally prove in 1989 that every continuous function on a closed and

bounded set could be modeled by a network with a single hidden layer and continuous
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(b) Multilayer Perceptron

Figure 2.1.: Note that the view on the MLP structure is from a higher-level perspective than for
the Perceptron. The nodes of the Perceptron refer to data, weights, and functions,
whereas each node in the MLP denotes a complete neuron.
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Figure 2.2.: The LeNet-5 architecture by LeCun et al. [46]

sigmoidal activation functions [27]. Today’s deep neural networks demonstrate the superiority
of a multitude of layers and rectified linear activation functions in praxis [26].

Feed-Forward Neural Network Every neural network whose connections between its nodes
do not form a circle is a Feed-Forward Neural Network (FFNN). Examples of simple FFNNs are
the single and multi-layer perceptrons.

Recursive Neural Network The term Recursive Neural Network (RNN) describes a category of
ANNs that use the output of hidden layers or the network itself as an input for the same or
lower layers in the next step. RNNs reach from simple Elman [23] or Jordan networks [37] to
complex networks such as the Long Short-Term Memory [34].

Convolutional Neural Network Waibel et al. introduced the Time Delay Neural Network
(TDNN) as one of the first convolutional networks in 1987 [91]. TDNNs are shift-invariant
in the time dimension by sharing the weights across that dimension and averaging over the
gradients for each timestep of a context window before updating the network.

The idea of shift-invariance of TDNNs was also applied to computer vision to be invariant
against translations. Unlike time invariance, handling translations in 2D images requires
two-dimensional convolutional neural networks. Today the term CNN primarily refers to the
two-dimensional convolutional neural networks, which benefits have long gone beyond the
field of computer vision.
The convolutional network LeNet-5 was the first of its kind when proposed in 1998 [46].

However, its structure shown in Figure 2.2 can still be found in many CNNs today. Typically, a
CNN consists of an alternating series of convolution and pooling layers followed by a fully
connected FFNN that provides the network’s final output. In the convolution layers, kernels
slide over each input channel, creating the so-called feature maps. The convolution does not
necessarily reduce the input’s size in terms of width and height but might add more channels
when multiple kernels are used. The pooling layers reduce the size of the feature maps by
applying strategies like max pooling or average pooling. Before passing the data into the FFNN,
it is flattened into a one-dimensional vector.

2.1.1. Long Short-Term Memory

The Long Short-Term Memories (LSTM) tackled the shortcomings of previous RNNs [34]. The
main problem of these RNNs was their inability to store information for long and therefore
were unable to learn long-term dependencies. LSTMs approach that issue by not only carrying

4



2.1. Neural Networks

(a) Standard LSTM Cell (b) LSTM Cell with tied Gates

Figure 2.3.: A standard LSTM cell and a variation with tied forget and input gates. Modified
graphics from Olah [62].

a hidden state ℎ𝑡 through time but also a cell state𝐶𝑡 , which can be interacted with exclusively
through three gates.

The input for all gates is the concatenation of the hidden state ℎ𝑡−1 and the current input 𝑥𝑡 .
A visualization of an LSTM cell is given in Figure 2.3a. The forget gate is a sigmoid layer that
creates a vector 𝑓𝑡 where values close to 0 indicate to forget the corresponding values in the
cell state 𝐶𝑡−1 and values close to 1 to keep the values.

To update the cell state𝐶𝑖−1 a new intermediate cell state𝐶𝑡 is calculated by an tanh layer in
the input gate. Similar to the forget gate a vector 𝑖𝑡 is created by an sigmoid layer. 𝑖𝑡 indicates
what parts of 𝐶𝑡 are written to 𝐶𝑡−1.

The output gate consists of another sigmoid layer. The resulting vector 𝑜𝑡 defines what parts
of the new cell state 𝐶𝑡 become part of the new hidden state ℎ𝑡 .

𝑓𝑡 = 𝜎 (𝑊𝑓 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏 𝑓 )
𝑖𝑡 = 𝜎 (𝑊𝑖 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖)
𝑜𝑡 = 𝜎 (𝑊𝑜 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑜)
𝐶𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝐶 · [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝐶)

In order to update to old cell state 𝐶𝑡−1 to the new cell state 𝐶𝑡 the resulting vector of
the forget gate 𝑓𝑡 is multiplied element wise with 𝐶𝑡−1 and the intermediate cell state 𝐶𝑡 is
multiplied with 𝑖𝑡 and added. To create the new hidden state ℎ𝑡 the output gate vector 𝑜𝑡 is
multiplied with the tanh of 𝐶𝑡 .

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡1 + 𝑖𝑡 ⊙ 𝐶𝑡
ℎ𝑡 = 𝑜𝑡 ⊙ tanh𝐶𝑡

A common variation of the LSTM also used in some models in this thesis combines the forget
gate and input gate, as shown in Figure 2.3b. Therefore, forgetting and adding information to
the cell state are mutually dependent. The combination of 𝐶𝑡−1 and 𝑡 into the new cell state 𝐶𝑡
only depends on 𝑓𝑡 .

𝐶𝑡 = 𝑓𝑡 ⊙ 𝐶𝑡1 + (1 − 𝑓𝑡 ) ⊙ 𝐶𝑡
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2.1.2. Transformer Network

The transformer model was proposed in 2017 [87] and facilitated a faster, highly parallel
computation in comparison with previous RNNs and handles long-range dependencies even
better than the LSTM.

Attention Although LSTMs improved upon simple RNNs in handling long-range dependencies
and avoiding vanishing or exploding gradients, when used in a typical encoder-decoder setup
for tasks like NMT, all information of the source sentence has to be squeezed into a single fix-
sized vector. That harms performance, especially on longer input sentences [12]. Bahdanau et al.
introduced the concept of an attention mechanism [2] that should overcome this shortcoming.
They not only pass a single state through the decoder but also provide a context vector 𝑐𝑖 for
every decoding step 𝑖 , which is a weighted sum of the encoder’s hidden states ℎ 𝑗 .

𝑐𝑖 =
∑︁
𝑗

𝛼𝑖 𝑗ℎ 𝑗

The attention weights 𝛼𝑖 𝑗 are obtained by applying the softmax function to the attention
scores 𝑒𝑖 𝑗 . In this case, scoring is done by a feed-forward neural network with the previous
decoder state 𝑠𝑖−1 and the corresponding hidden state ℎ 𝑗 as inputs.

𝛼𝑖 𝑗 =
exp(𝑒𝑖 𝑗 )∑
𝑘 exp(𝑒𝑖𝑘)

𝑒𝑖 𝑗 = ffnn(𝑠𝑖−1, ℎ 𝑗 )

Even though the attention mechanism was widely adopted, in most cases, it was used in
conjuncture with LSTMs or other types of RNNs until the introduction of the transformer
model, which relied entirely on the attention mechanism and allowed highly parallel computing
resulting in fast computation [87].

Transformer Network The transformer network not only uses the attention mechanism
to transfer information between the encoder and decoder components but also within the
components, called self-attention. Figure 2.4 shows a complete overview of the transformer
network.
Since every input word is processed in parallel and there is no state anymore, which is

passed through the time, an additional positional encoding must be added to the encoder’s
and decoder’s input to enable decisions based on the position of the words. A function of
interfering sine and cosine functions is used as positional encoding. The encoder and decoder
consist of six stacked blocks, of which each includes multi-head attention and feed-forward
layers. Residual connections skipping each layer allow the gradient to flow directly through
the network and thereby helping to train the model. A layer normalization is subsequently
applied to the sum of the outputs and inputs provided by the residual connections.

The first layer of an encoder block is a multi-head self-attention layer processing the input
data. The multi-head attention shown in Figure 2.5a has three input matrices - the value 𝑉 ,
key 𝐾 , and query 𝑄 consisting of the input vectors. In the case of a self-attention layer, 𝑉 ,
𝐾 , and 𝑄 are identical. All three are multiplied with the corresponding weight matrices𝑊 𝑘 ,
𝑊 𝑞 , or𝑊 𝑣 , independently learned for each attention-head. The products are used for the
scaled-dot-product attention, and the results for each head are concatenated. In the end, the
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Figure 2.4.: A high-level overview of the complete transformer network [87].

concatenated results are passed into another linear layer in order to squeeze the result into a
matrix with the same dimensionality as the value input matrix.

Figure 2.5b shows the schematic structure of the scaled dot-product attention used in each
attention head. The inputs 𝑄 , 𝐾 , and 𝑉 can be logically split up into the query vectors 𝑞𝑖 , the
key vectors 𝑘𝑖 , and the value vectors 𝑣𝑖 corresponding to the sequence position 𝑖 . The attention
score 𝑎𝑖 𝑗 is the dot product of 𝑞𝑖 and 𝑘 𝑗 and defines how much attention is given to 𝑣 𝑗 for the
resulting vector 𝑧𝑖 . For stability reasons, the score is divided by the square root of the size
of the key vector 𝑑𝑘 , and the softmax is applied to get the probability distribution. The final
vector 𝑧𝑖 is then defined as the sum of 𝑣 𝑗 weighted by the scaled scores 𝑎𝑖 𝑗 for all 𝑗 . In praxis,
𝐾 , 𝑄 , and 𝑉 are not split up, and all steps can be done by matrix operations:

Attention(𝐾,𝑄,𝑉 ) = softmax(𝑄𝐾
⊤

√
𝑑𝑘
)𝑉

The self-attention layer in the encoder block is followed by a feed-forward layer. In the
decoder, the self-attention layer is a masked multi-head layer. Except for the right-shifted
decoder output, all future positions are masked by setting them to negative infinity before
applying the softmax of the scaled-dot-product attention. The decoder block contains an
additional attention layer that uses the output of the encoder as key and value. The last layer of
the block is a feed-forward layer, just as with the encoder’s block. After the repeating decoder
blocks, a linear layer outputs a score vector, and the final probability distribution over the
dictionary is given by a softmax layer.
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(a) Multi-Head Attention (b) Scaled-Dot-Product Attention

Figure 2.5.: Visualization of the multi-head attention mechanism on the left. Detailed view on
the scaled-dot-product attention on the right [87].

2.2. Word Embeddings

To make text digestible for neural networks, words are represented by vectors of real numbers.
Besides general approaches to map categorical features to vectors, word embeddings aim to
reduce the dimensionality and encode semantic information into the vector embeddings.

Vector Encodings One of the simplest ways to represent categorical features as a vector are
vector encodings like the one-hot-encoding or the dummy-encoding. Besides every kind of
categorical data, vector encodings are applicable to text as well. For a dictionary of 𝑁 words
𝑤 the one-hot-encoding results in a vector 𝑣 of size 𝑁 with all elements being zero except
for 𝑣𝑖 representing the actual word𝑤𝑖 . Dummy-encoding is very similar but additionally also
assigns the zero vector to a word, resulting in a vector size of only 𝑁 − 1. However, these
vector encodings are impractical for most problems with text input since dictionaries are large,
and the model is suffering from the curse of dimensionality [5].

2.2.1. Static Word Embeddings

Vector encodings like the one-hot-encoding enforce equally distanced representations. How-
ever, it is evident that some words are semantically closer than others. Word embeddings aim
to learn vector representations encoding the semantics of the words rather than just mapping
them to equally distanced unique identifiers. Therefore the embeddings of similar words or
words used in the same context are closer than others. Static word embeddings are trained
once on vast amounts of text data and assign a single fixed-sized vector to each word in the
training corpus. Two of the best-known representatives of these kinds of embeddings are
Word2Vec [57] and GloVe [63].

Word2Vec was proposed in two different flavors: The skip-gram model and the continuous
bag of words model (CBOW). While the CBOW model tries to predict a target word based
on the surrounding context, the skip-gram model predicts context words for the given target
word. A simple neural network is used for prediction for both models and simultaneously
learns the word representations.
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In contrast to the predictive Word2Vec model, GloVe is a count-based model using global
statistics. The objective of GloVe is to learn a factorization of the global word-to-word co-
occurrence matrix into two embedding matrices, the target, and the context matrix. Since
the role of target and context is arbitrary in this model, either matrix represents a valid word
embedding, and due to performance reasons, the final embedding is given by the sum of both.

2.2.2. Contextual Word Embeddings

One significant downside of static word embeddings is that each word is mapped to a single
vector no matter its context. Especially words with different meanings based on the context
suffer from this limitation. Contextualized word embeddings overcome this problem by
providing an encoding model taking the actual context into account rather than a static vector
representation. That model is applied during interference and outputs an embedding based on
the word itself as well as its context.

ELMo The Embeddings from Language Model (ELMo) are based on a multi-layered bi-
directional LSTM and trained on the language modeling (LM) objective [64]. The forward
LSTM predicts the next word in a word sequence based only on the previous words, while the
backward LSTM conversely predicts the previous word based on the following sequence. The
LM objective maximizes the log-likelihood of the predicted sequence in both directions:

𝑁∑︁
𝑘=1

[
log𝑝 (𝑡𝑘 | 𝑡1, . . . , 𝑡𝑘−1;Θ𝑥 ,

−→
Θ𝐿𝑆𝑇𝑀 ,Θ𝑠) + log𝑝 (𝑡𝑘 | 𝑡𝑘+1, . . . , 𝑡𝑁 ;Θ𝑥 ,

←−
Θ𝐿𝑆𝑇𝑀 ,Θ𝑠)

]
The parameters of the token representation Θ𝑥 and the softmax layer Θ𝑠 are shared between

the forward and backward LSTMs while the parameters of both are independent.
The context-independent initial embedding 𝑥𝑘 for token 𝑘 is derived from other neural

language models either by token embeddings or by a character-based CNN helping the model
to handle unknown words. To form the ELMo embedding, the outputs of the hidden LSTM
layers of both LSTMs and the initial embeddings are combined. Let

−→
h 𝐿𝑀
𝑘,𝑗

be the output of layer

𝑗 of the forward LSTM for the token 𝑘 and let
←−
h 𝐿𝑀
𝑘,𝑗

the corresponding output in the backward
LSTM, then the outputs of the hidden layers of the bi-directional LSTM are defined as the
concatenation h𝐿𝑀

𝑘,𝑗
= [−→h 𝐿𝑀

𝑘,𝑗
;
←−
h 𝐿𝑀
𝑘,𝑗
] with h𝐿𝑀

𝑘,0 = 𝑥𝑘 . The combination of these outputs into the
final ELMo embedding of token 𝑘 is defined as follows:

ELMo𝑡𝑎𝑠𝑘
𝑘

= 𝛾 𝑡𝑎𝑠𝑘
𝐿∑︁
𝑗=0

𝑠𝑡𝑎𝑠𝑘𝑗 h𝐿𝑀
𝑘,𝑗

With s𝑡𝑎𝑠𝑘 being task-specific softmax weights to collapse the representations from each layer
into a single weighted sum and 𝛾 𝑡𝑎𝑠𝑘 being a task-specific scalar scaling the whole embedding.

BERT In contrast to ELMo, Devlin et al. [20] utilized the transformer model [87] to pre-train
their language model. The Bidirectional Encoder Representations from Transformer (BERT)
are derived from the hidden states from the last of multiple stacked encoder blocks identical to
those used in the transformer model. While ELMo obtains its bidirectionality by concatenating
the layer outputs of a forward and backward LSTM, BERT inherits that property from the
transformer models encoder. However, since the encoder processes the whole sentence at once,
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the LM objective of ELMo is not suitable. The encoder’s self-attention is not masked, and all
input tokens are known to the network.
While ELMo and other approaches like the OpenAI GPT [70], which relied on the trans-

formers decoders, trained on the LM objective simply predicting the next word in a text, BERT
introduces two new pre-training tasks. The Masked Language Modeling (MLM) objective
requires to predict the original tokens, given tokens masked in the input. 15% of the tokens are
chosen to be masked before being fed into the model. However, only 80% of these are actually
replaced with the [MASK] token. The remaining tokens are replaced by other random tokens
or not replaced at all to solve the mismatch between the pre-training and the fine-tuning on
the downstream task during which no masked tokens are involved.

Many downstream tasks require an understanding of the relation of multiple sentences. That
is why BERT is pre-train on the Next Sentence Prediction (NSP) task as well. Two sentences
separated by a [SEP] token are fed into the BERT model. The encoder’s output for the [CLS]
token, which is added in front of every input sequence, is used to decide whether or not the
two sentences are next to each other in the original document.

2.3. Coreference Resolution Terminology

For the sake of simplicity and comprehensibility, coreference resolution and many other
linguistic terms are often used ambiguously, interchangeably, or inaccurately, especially in the
context of NLP. In the following, these terminologies are put into the linguistical context, and
subsequently, rules for their meaning in this thesis are defined.

Mentions Linguistic expressions referring to a discourse entity are called mentions [40].
Mentions can reach from single words to longer spans of text containing multiple mentions
themselves.

Coreference and Coreference Resolution Mentions that refer to the same discourse entity are
coreferent [40]. In Example (1) the trophy and it refer to the same entity while the suitecase
describes a different entity. Therefore the former two mentions corefer.

(1) The trophy does not fit into the suitcase because it is too big.

Coreference Resolution describes the task of determining which mentions in a text are corefer-
ent [60]. It can also be perceived as a clustering task, grouping the mentions according to the
entities they refer to.

Singletons An entity referenced by only a single mention is called a singleton [40]. Singletons
often form an edge case in the build of up coreference clusters. Reported performances of
coreference resolution systems depend heavily on whether or not singletons were annotated
in the corpora and how they were handled during evaluation.

Anaphora and Antecedent Anaphora describes the reference to a precedent expression, the
so-called antecedent. The referring anaphor or anaphoric expression can be a pro-form or any
kind of deictic [40]. In Example (2), the anaphor it refers back to the antecedent the trophy.

(2) The trophy does not fit into the suitcase because it is too big.
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The term anaphora is often used in a broader sense, including references to succeeding expres-
sions.

Cataphora and Postcedent When used in a narrower role, cataphora is the opposite of the
anaphoric reference. The cataphoric expression refers to a succeeding expression that intro-
duces the entity to the discourse. In that case, the antecedent is sometimes called postcedent
[83]. In Example (3) the postcedent his refers to the cataphor Peter later in the sentence.

(3) With his speech, Peter tried to convince the people.

Due to its rare use in written and spoken language, most approaches do not consider cataphora
or handle it by supposing the broader sense of anaphora.

Anaphora and Coreference resolution Often anaphora resolution and coreference resolution
are used synonymously; other times, the former is referred to as a subcategory of the latter
or vice versa. Sukthanker et al. argue that neither assumption is correct, albeit there is
a reasonable larger intersection of both concepts [83]. While coreference partially includes
cataphora and therefore is no subset of anaphora, Example (4) gives an example of an anaphoric
reference that is not coreferent. In the case of coreference, every scientist would have to do his
own research and the research for every other scientist.

(4) Every scientist does his research.

In this thesis, I focus on coreference resolution rather than anaphora resolution. However, as
Sukthanker et al. mention, many publications are not precise on the terminology and what
kind of references they consider coreferent. This includes the CoNLL-2012 shared task, the
standard benchmark for coreference resolution [83].
In line with recent work on coreference resolution like the end-to-end model by Lee et

al. [49], I will term every preceding mention a possible antecedent or antecedent candidate,
whether it is an anaphoric or cataphoric reference.

2.4. Coreference Resolution Approaches

Over the years, a large variety of different coreference resolution systems have been introduced,
yet many of them share the same basic concepts. Therefore, many surveys about coreference
resolution try to work out a systematic overview of the different approaches. While some
authors break them down into several subcategories [40], others display various aspects in
which these systems differ in a single list [60]. In the following, I classify the approaches into
three different categories:

• The method describes in which way knowledge about coreference resolution is gathered
and integrated into the model. This reaches from entirely manually created rules to
self-learning systems.

• The model type summarizes the ideas on how to evaluate single coreference candidates
and how to cluster the coreferent mentions.
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• The aspect of mention detection divides systems into the ones depending on dedicated
systems and those that combine mention detection and coreference resolution in a single
system.

2.4.1. Methods

Rule-based Coreference Resolution Rule-based coreference resolution systems were the start-
ing point for automated coreference detection. Hobbs algorithm [33] in 1978 was one of the
first approaches to resolving pronoun references. A breadth-first search through the syntactic
parse tree of a sentence, led by simple rules regarding the number, gender, and person of
the found nouns. Nevertheless, it was not too long ago that rule-based systems played a
competitive role in coreference resolution. One of the best-known examples is the Stanford
resolver consisting of 12 sieves, which consecutively search for coreferences, starting with the
sieves with the most robust rules [47]. Since other approaches outperform rule-based systems
today, they only play a relevant role in languages with no large coreference annotated corpora
[83].

Feature-based Coreference Resolution Also called sometimes statistical or machine learning
approach. Particularly earlier feature-based systems did not rely solely on statistical or learning
models but still incorporated hand-crafted rules in many cases. Learning systems were enabled
by emerging annotated coreference corpora, which were not needed for rule-based systems
[83]. The performance of these systems is heavily dependent on the quality of the manually
created features. Different types of features are supposed to reflect the essential characteristics
of the anaphor, the candidate antecedent, and their relationship. Additional types were used
for entity-based models or to describe the document genre [40]. Feature-based coreference
resolution systems were the leading systems up to the emergence of deep learning models
making use of pre-trained word embeddings.

Deep Neural Coreference Resolution Today’s best-performing coreference systems are based
on deep neural networks that depend on at most a few manually engineered features such
as mention distance or the document genre. Powerful contextual word embeddings and big
annotated corpora enable these systems to find coreferences directly from the text.

2.4.2. Model Types

Model types differ in the way they decide on mentions being coreferent or not and how they
build up clusters of coreferent mentions. Although models can find possible coreference
candidates in different manners, for the sake of clarity, I assume a uniform strategy common
today. The system goes through the mentions from the beginning of the text to the end
and considers every preceding mention being possibly coreferent or an antecedent candidate.
Figure 2.6 visualizes how the three most common model types decide over the coreference of
the antecedent candidates found this way. Besides the correct solution process for each model
type, common problems of different types are also demonstrated, motivating more advanced
approaches.

Mention-Pair Model The mention-pair model is one of the most straightforward approaches,
yet it is also one of the most widely used models. It is based on a binary classifier that classifies
each mention pair as coreferent or not, independently of other mentions, mention pairs, or
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The trophy does not fit into the suitcase because it is too big.

-1

12 9
Mention-Rank ModelMention-Pair Model Mention-Pair Model

(a) Different models types applied on an anaphoric relation

Because it is too big, the trophy does not fit into the suitcase .

Mention-Rank Model

12

9 -1
Entity-Mention Model

(b) Different models types applied on a cataphoric relation

Figure 2.6.: Visualization of the decision making of different coreference resolution model
types. The models go through the mentions in the sentence (rows) and evaluate
possible coreferences towards the preceding mentions (columns). Mistakes made
by the models are highlighted in red.

earlier decisions only given local information about both mentions and their relation. Many
mention-pair approaches use explicit clustering algorithms to build up coreference chains
from the independent decisions on the individual mention pairs. Well-known clustering
algorithms are the closest-first clustering, which simply uses the first antecedent found, or the
best-first clustering, which introduces simple rules to decide which of the found antecedent is
chosen to continue the coreference chain [40]. Since coreference is an equivalence relation
and therefore transitive, the final clusters are given by the transitive closer of relations found
by the mention-pair model or the clustering algorithms.

Mention-Ranking Model Due to its independent evaluation of each antecedent candidate the
mention-pair model is prone to wrongly resolve coreferences as shown in Figure 2.6a. Mention-
ranking models on the other hand do not evaluate mention pairs independently but assign a
score to all candidate antecedents that indicate how likely a coreference relation between the
candidate and the given mention is. Only the highest ranked candidate is considered to be the
correct antecedent, making a dedicated clustering algorithm obsolete. The final clusters are
formed by the transitive closure of the coreferences found as described above. However, the
ranking algorithm does not inherently cover non-anaphoric mentions, which are not coreferent
to any of the preceding mentions. One solution to solve this problem is the introduction of a
dummy antecedent or a lower bound for the score, which prevents the mention from being
assigned to an antecedent candidate despite a low score [40]. Another option is to apply an
independently trained anaphoricity classifier before ranking [60].

Entity-Based Model Entity-based models aim to overcome the shortcomings of evaluating
every mention pair individually, like the mention-pair model, as well as selecting the best
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antecedent without consideration of earlier decisions like the mention-ranking model. There-
fore, it does not try to find coreferences between a mention and a single antecedent but to
link every mention to a discourse entity - a cluster of antecedents. The current discourse
entities are given by the transitive closures of the coreferences found so far. In Figure 2.6b
the model decides that the first two mentions are coreferent. Hence, a possible coreference
between the third mention and the first or second is not considered individually. Instead, the
third mention is considered as part of the discourse entity formed by the first and second
mentions. Entity-based models based on binary classifiers like mention-pair models are called
entity-mention models, whereas entity-based models that act like mention-ranking models are
called entity-ranking or cluster-ranking models [60][40].

2.4.3. Mention Detection

Pipeline Approach Especially older feature-based approaches rely on dedicated mention
detection systems since it is not feasible to consider every span of text as a possible mention,
and they are unable to find good mention candidates by themselves. These coreference systems
can be trained with manually annotated or automatically detected mention boundaries but
have to be evaluated on the latter ones to be comparable with the end-to-end models.

End-To-End Model In contrast to approaches based on pipelines, end-to-end systems combine
mention detection and coreference resolution in a single model. That eliminates the risk of
cascading errors introduced by the previously trained mention detection mistakes. Instead,
mention detection and coreference resolution are trained simultaneously, and mistakes made
by either of the two functions should lead to weight changes at the responsible layers. Even
though not the first, one of the most common end-to-end models is the end-to-end neural
coreference system by Lee et al. [49].

2.5. Coreference Resolution Metrics

Despite newer metrics like BLANC [72] and LEA [58, 54], which overcome some shortcomings
of their predecessors, the scorer used in the CoNLL-2012 Shared Task [69] is still the most
used and widely accepted benchmark to compare coreference resolution systems. Therefore I
will apply this very scorer for the evaluation of my implementations. The final score is defined
as the mean of the F1 scores of the three metrics MUC [88], B-CUBED [1], and CEAF [53].
This approach is based on the MELA metric [19] and only differs from MELA by using the
entity-based version of CEAF instead of the mention-based version.

In the context of these coreference resolution scoring schemes, the gold clusters and the
predicted clusters are referred to as key 𝐾 and response 𝑅. Often a total order of the mentions
in the entities𝐾𝑖 or 𝑅𝑖 is assumed. Therefore the clusters are also called key-chain and response-
chain. However, since the following metrics only take the number of links or mentions within
a key entity, response entity, or an intersection of both into account, no total order is required.

2.5.1. MUC

The MUC scoring scheme was proposed as a scoring metric for the shared task of the Sixth
Message Understanding Conference in 1995 [88]. It is a link-based metric and therefore defines
the precision and recall as the ratio between correct links found by the system and the minimum
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number of links to recreate the key chain, respectively the total number of links predicted by
the system:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑖 |𝑅𝑖 | − |𝑝′(𝑅𝑖) |∑

𝑖 |𝑅𝑖 | − 1

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑
𝑖 |𝐾𝑖 | − |𝑝 (𝐾𝑖) |∑

𝑖 |𝐾𝑖 | − 1
The key and response entities are given by 𝐾𝑖 and 𝑅𝑖 . Obviously, their cardinality equals the

number of links in that very entity plus one. The function 𝑝 (𝐾𝑖) maps a key entity to a set
of partitions induced by the intersection of 𝐾𝑖 with the response entities. Conversely, 𝑝′(𝑅𝑖)
maps a response entity to a set of partitions induced by the intersection of 𝑅𝑖 with the key
entities. The cardinality |𝑝 (𝐾𝑖) | − 1 corresponds to the number of missing links in the response
whereas |𝑝 (𝑅𝑖) | − 1 equals the number of false links in it.

2.5.2. B-CUBED

The mention-based B-CUBED overcame some flaws of MUC, like the inability to handle
singletons or the uniform penalization of linking errors without considering the impact on
the resulting clusters [1]. The idea of B-CUBED is to average over the precision and recall
calculated for each mention. Therefore, the number of common mentions |𝐾𝑚𝑖

∩ 𝑅𝑚𝑖
| between

the key entity 𝐾𝑚𝑖
and the response entity 𝑅𝑚𝑖

, which contain the mention𝑚𝑖 , is put in relation
with the total number of mentions in 𝐾𝑚𝑖

and 𝑅𝑚𝑖
. When precision and recall are calculated

over all mentions, the resulting averages can be simplified as follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑖

∑
𝑗
|𝐾𝑖∩𝑅 𝑗 |2
|𝑅 𝑗 |∑

𝑗 |𝑅 𝑗 |

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑
𝑖

∑
𝑗
|𝐾𝑖∩𝑅 𝑗 |2
|𝐾𝑖 |∑

𝑖 |𝐾𝑖 |

2.5.3. CEAF

The CEAF metric aligns the key and response entities before calculating precision and recall
so that each entity is only used once since Luo’s main criticism of B-CUBED was its multiple
use of single entities [53]. The alignment is based on a similarity metric for two entities 𝜙
in which the two variants of CEAF differ. For the entity-based version of CEAF, used for the
CoNLL-2012 shared task [68] and in this thesis, that metric is given by:

𝜙 (𝐾𝑖, 𝑅 𝑗 ) =
2|𝐾𝑖 ∩ 𝑅𝑖 |
|𝐾𝑖 | + |𝑅 𝑗 |

To find the actual mapping between key and response entities the Kuhn-Munkres algorithm
is applied with the goal of maximizing the similarity over all entity pairs. According to this
mapping, 𝑔∗(𝐾𝑖) maps 𝐾𝑖 to an response entity 𝑅 𝑗 in the following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑖 𝜙 (𝐾𝑖, 𝑔∗(𝐾𝑖))∑
𝑖 𝜙 (𝑅𝑖, 𝑅𝑖)

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑
𝑖 𝜙 (𝐾𝑖, 𝑔∗(𝐾𝑖))∑
𝑖 𝜙 (𝐾𝑖, 𝐾𝑖)
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2.5.4. BLANC

The BiLateral Assessment of Noun-phrase Coreference metric (BLANC) is an adaptation of
the RAND index to the coreference resolution problem [72]. RAND is a similarity measure
for general clusters. Since it is related to the accuracy, it is not suitable for highly imbalanced
data and, therefore, not applicable to this problem. The precision and recall are calculated by
averaging over the independent scores of coreferent and non-coreferent mention-pairs:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1
2

[ 𝑟𝑐

𝑟𝑐 +𝑤𝑐 +
𝑟𝑛

𝑟𝑛 +𝑤𝑛

]
𝑅𝑒𝑐𝑎𝑙𝑙 =

1
2

[ 𝑟𝑐

𝑟𝑐 +𝑤𝑛 +
𝑟𝑛

𝑟𝑛 +𝑤𝑐

]
with 𝑟𝑐 and 𝑟𝑛 as the number of correctly predicted coreferent and non-coreferent pairs

as well as 𝑤𝑐 and 𝑤𝑛 as the number of mention pairs wrongly predicted as coreferent or
non-coreferent.

2.5.5. LEA

Moosavi and Strube showed flaws in the interpretability of B-CUBED, CEAF, and BLANC
[58]. By manipulating the key and response in various ways, the evaluation score of those
metrics changed counterintuitively. Since MUC, the only metric robust against these flaws,
lacks discriminative power, they introduced the interpretable and discriminative Link-based
Entity-Aware evaluation metric (LEA).
LEA assigns a score to each key and response entity based on how well it is resolved and

weighted by its importance. The importance is given by the size |𝐾𝑖 | or |𝑅 𝑗 | of each entity. The
second part of the numerator describes the resolution by counting the number of unique links
in the intersection with a corresponding key or response entity. The precision is defined as
the sum of the scores for all response entities, whereas the recall is derived from the scores of
all key entities.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑖

∑
𝑗 |𝑅 𝑗 | ×

𝑙𝑖𝑛𝑘 (𝑅 𝑗∩𝐾𝑖 )
𝑙𝑖𝑛𝑘 (𝑅 𝑗 )∑

𝑗 |𝑅 𝑗 |

𝑅𝑒𝑐𝑎𝑙𝑙 =

∑
𝑖

∑
𝑗 |𝐾𝑖 | ×

𝑙𝑖𝑛𝑘 (𝑅 𝑗∩𝐾𝑖 )
𝑙𝑖𝑛𝑘 (𝐾𝑖 )∑

𝑖 |𝐾𝑖 |
With 𝑙𝑖𝑛𝑘 (𝑒) = 𝑛 × (𝑛 − 1)/2 being the number of unique coreference links in the entity 𝑒

consisting of 𝑛 mentions.
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3.1. Coreference Resolution

Coreference resolution is a long-established task in the field of machine learning. Compre-
hensive summaries of the last decades of coreference resolution research can be found in [61]
and [60]. Fundamental terminology and concepts of coreference resolution are defined in [40,
Chapter 21], which additionally gives a brief overview of the linguistic background. More
linguistic context and a discussion about the differences between anaphora and coreference
resolution, which details are often suppressed for the sake of simplicity, are provided in [83].
Its outline of different coreference systems ranges from very early approaches to the first
neural end-to-end coreference resolution system by Lee et al. [49], which is the starting point
for this thesis.

The end-to-end model by Lee et al. [49] and the models based on it - the higher-order model
[48] and the BERT-based model [38] - form the basis of the experimental part of this thesis.
To the best of my knowledge, there is one PyTorch implementation of the BERT-based model
with corresponding scientific work [99]. Other PyTorch implementations of that model and its
two predecessors lack a sufficient reporting of their performances and are not described in the
scientific context.1

3.2. German Coreference Resolution

As for English, there are also large German corpora with annotated coreference information
[84], and therefore the problem of coreference resolution has been treated for a long time in
German as well. Historically German coreference resolution systems were oftentimes adapted
versions of English systems. A brief overview of German coreference resolution is described
in [82].

More recent German models are the IMS HotCoref DE model [76] and the model proposed
by Schröder et al. [81], a version of the BERT-based model [38] with multilingual and German
embeddings similar to what is done in this work.

3.3. Multi- and Cross-lingual Coreference Resolution

While multilingual coreference resolution primarily refers to training the same model on
multiple languages, cross-lingual coreference resolution describes the problem of applying a
model on a language different from the language it was initially trained on. Although both
approaches lead to a model suitable for multiple languages, they serve different purposes.
The multilingual approach aims to improve the performance of a model trained on a single
language only, whereas the cross-lingual approach is used to apply knowledge learned on a
resource-rich language onto other languages with fewer or no annotated training data. Various
1https://github.com/search?q=coref+pytorch&type=Repositories
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past tasks emphasized multilingual coreference resolution like the SemEval-2010 Task 1 [73] as
well as the CoNLL-2012 Shared Task [68]. However, in this work, I will focus on cross-lingual
coreference resolution.

In general cross-lingual coreference resolution can be divided into two kinds of approaches
[24]. On the one hand, the projection-based approaches, which need to be trained on parallel
corpora to transfer their knowledge into another language, on the other hand, approaches
relying on a common multilingual feature space like my proposal in this thesis.

Using the multilingual, static word embedding FastText [28], Cruz et al. create a neural end-
to-end coreference system for Spanish, which also delivers compelling results on a Portuguese
test set [17]. FastText is utilized in [86] as well to create a coreference resolution system for
Basque by training on larger English corpora. Kundu et al. [44] use word2vec [57] to achieve
competitive results on Spanish and Chinese with their entity-mention model trained on English
data.
Similar to this work a "first study on cross-lingual transfer learning for event coreference

resolution" leveraging XLM-RoBERTa [15] and domain-adversarial training [25] is conducted
in [65].

3.4. Machine Translation and Coreference Resolution

Coreference information was undoubtedly valuable in order to improve context agnostic
NMT systems. However, with the upcoming of modern context-aware systems, the benefit
of augmenting these systems with coreference information is in question. Multiple works
try to enhance context-agnostic and context-aware MT systems with the help of corefer-
ence information, while others try to show that context-aware systems implicitly consider
coreferences.
In [94] a re-rank and post-edit algorithm was introduced in order to improve the accuracy

of the pronoun translation of a phrase-based statistical machine translation system. Only the
post-edit approach shows a significant improvement, however. For each mention, multiple
translation hypotheses are created. The combination of translation hypotheses that is most
likely to be a coreference cluster on the target side is chosen as the translation for each cluster
on the source side.
Hwang et al. use automatically detected coreferences to create contrastive examples by

corrupting the coreferences [35]. By leveraging contrastive learning, they create multiple
Transformer-based, context-aware NMT systems with better sentence representations regard-
ing coreferences. Their systems improve over their counterparts not trained on contrastive
examples in terms of BLEU score as well as in accuracy on the ContraPro test set [59].
Besides explicitly incorporating coreference information into MT systems, much work

is done to push context-aware systems to make better use of the contextual information
provided without focusing on a single discourse phenomenon. One example is the hierarchical
attention network [95], which includes document-level contextual information and is reported
to improve the noun and pronoun translation compared to a context-aware NMT Transformer.
The CADec model proposed by Voita et al. [90], which I use to show the impact explicit
coreference information can still have, is another example of such a system. The authors claim
to improve translation consistency by implicitly considering different phenomena like deixis,
ellipsis, and lexical cohesion - problems multiple other context-aware systems struggle with.
Different LSTM-based, context-aware architectures are compared with a context-agnostic

baseline in [3]. Though most of their models performed close to the baseline, two context-
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aware models clearly outperformed the baseline. Since these two models could disambiguate
pronouns, the authors conclude that these models must be able to use linguistic context. To
show what context-aware systems are capable of, Voita et al. created a system, which they used
to analyze the flow of information from the extended context to the context-aware translation
model [89]. They were able to improve the BLEU score on sentences containing ambiguous
pronouns over a context-agnostic and a simple context-aware baseline and showed that the
model made use of anaphora relations.
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4. Coreference Resolution with Pre-trained
Language Models

In this chapter, I describe three of the most important models for coreference resolution in
recent years. They build upon each other, starting with the first competitive neural end-to-end
model, over the proposal of advanced pruning strategies, and finally leveraging pre-trained
language models to further improve its performance. I provide a PyTorch implementation for
each of these models and conduct experiments with a series of different language models as
the foundation of the coreference system.

4.1. English Coreference Resolution

In 1995 the Sixth Message Understanding Conference (MUC-6) offered the first shared task
tackling coreference resolution in order to standardize the evaluation of coreference systems
[30]. The MUC evaluation metric introduced for that very first task is still used today. A
second coreference task was presented for MUC-7. As part of the ACE program, multiple
coreference datasets were released in the early 2000s [22]. They contained various languages
and were more extensive than the MUC datasets. Therefore they were the de facto standard
for coreference resolution in the 2000s, even though they restricted the task to specific entity
types [60]. Today almost all coreference systems for English are trained and evaluated on the
OntoNotes 5.0 corpus [93]. The CoNLL 2012 shared task defined the splitting into train, test,
and validation data [68]. Its predecessor, the CoNLL 2011 shared task, introduced the CoNLL
scoring scheme consisting of the MUC, B3, and CAFE metrics [67].

4.1.1. End-to-end Neural Coreference Resolution

The end-to-end model (e2e-model) by Lee et al. [49] was proposed as the first state-of-the-art
neural coreference resolution model, which was trained in an end-to-end manner. Instead of
relying on predefined mention boundaries, the idea is to consider every span of text up to a
certain length as a possible mention. However, due to computational limitations, pruning has
to be applied to the spans and the span pairs. The model can be divided roughly into two parts.
The first one deals with single spans or mentions and the second one with pairs of mentions,
trying to find the best antecedent.

Figure 4.1 shows the first part of the model, which generates an encoding for all spans that
are potential mentions, and assigns a mention score to all of them. Depending on that score,
the spans are ranked, and the top𝑀 spans are considered to be mentions in the following.

The initial word embedding 𝑥 is a concatenation of a 300-dimensional GloVe with a windows
size of 10 and a 50-dimensional Turian embedding, as well as a small character embedding
generated by a CNN trained simultaneously with the coreference resolver. The character
embedder is a simple convolutional network that is jointly trained with the e2e-model. In
order to contextualize 𝑥 , a bidirectional LSTM is applied, which outputs the contextual word
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General Electric said the Postal Service contacted the company

General Electric

+

Electric said the

+

the Postal Service

+

Service contacted the

+

the company

+

Mention score (sm)

Span representation (g)

Span head (x̂)

Bidirectional LSTM (x∗)

Word & character
embedding (x)

Figure 4.1.: Lower layers of the e2e-model encoding span representations and scoring mentions.

embedding 𝑥∗. This specific LSTM version works without an explicit input gate but derives its
output from the forget gate so that no information is forgotten without replacing it with new
data:

𝑓𝑡,𝛿 = 𝜎 (𝑊𝑓 [𝑥𝑡 , ℎ𝑡+𝛿,𝛿 ] + 𝑏𝑖)
𝑜𝑡,𝛿 = 𝜎 (𝑊𝑜 [𝑥𝑡 , ℎ𝑡+𝛿,𝛿 ] + 𝑏𝑜)
𝐶𝑡,𝛿 = tanh(𝑊𝑐 [𝑥𝑡 , ℎ𝑡+𝛿,𝛿 ] + 𝑏𝐶)
𝐶𝑡,𝛿 = 𝑓𝑡,𝛿 ⊙ 𝐶𝑡,𝛿 + (1 − 𝑓𝑡,𝛿 ) ⊙ 𝐶𝑡+𝛿,𝛿
ℎ𝑡,𝛿 = 𝑜𝑡,𝛿 ⊙ tanh(𝐶𝑡,𝛿 )
𝑥∗𝑡 = [ℎ𝑡,1, ℎ𝑡,−1]

The direction of each LSTM is given by 𝛿 = {−1, 1}. By using this bidirectional LSTM, the
newly computed word representation 𝑥∗ contains contextual information from previous words
in the first and contextual information of the following words in the second half. The final
span representation 𝑔𝑖 of span 𝑖 is given by:

𝑔𝑖 = [𝑥∗start(𝑖), 𝑥
∗
end(𝑖), 𝑥𝑖, 𝜙 (𝑖)]

It is a concatenation of the contextual embedding of the first word 𝑥∗start(𝑖) and the last
word oft the span 𝑥∗end(𝑖) , a head word representation 𝑥𝑖 and 𝜙 (𝑖), which encodes the width of
the span. Many traditional coreference resolution systems rely on syntactical head words to
represent mentions. Lee et al. introduce an attention mechanism to circumvent the need for a
syntactical parser:

𝛼𝑡 = 𝑤𝛼 · ffnn𝛼 (𝑥∗𝑡 )

𝑎𝑖,𝑡 =
exp(𝛼𝑡 )∑end(𝑖)

𝑘=start(𝑖) exp(𝛼𝑘)

𝑥𝑖 =

end(𝑖)∑︁
𝑡=start(𝑖)

𝑎𝑖,𝑡 · 𝑥𝑡

Their experiments show that the mechanism assigns high attention weights to words, such
a parser would choose as head words [49]. To assign the mention score 𝑠𝑚 (𝑖) to span 𝑖 , a
standard feed-forward neural network ffnn𝑚 is applied to the span representation 𝑔𝑖 :

𝑠𝑚 (𝑖) = 𝑤𝑚 · ffnn𝑚 (𝑔𝑖)
𝑠𝑎 (𝑖, 𝑗) = 𝑤𝑎 · ffnn𝑎 ( [𝑔𝑖, 𝑔 𝑗 , 𝑔𝑖 ⊙ 𝑔 𝑗 , 𝜙 (𝑖, 𝑗)])
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General Electric the Postal Service the company

s(the company,
General Electric)

s(the company,
the Postal Service)

s(the company,ǫ) = 0

Softmax (P (yi | D))

Coreference
score (s)

Antecedent score (sa)

Mention score (sm)

Span
representation (g)

Figure 4.2.: Antecedent score between the anaphor and all antecedent candidates is together
with the mention score combined into the final coreference score.

Before calculating the antecedent scores 𝑠𝑎 between each mention and its preceding an-
tecedent candidates, due to computational constraints, the spans are pruned considering 𝑠𝑚 ,
and the number of antecedent candidates per mention is limited as well. For a document of
length 𝐷 , the number of spans considered as mentions in the following computations is pruned
to 𝜆𝐷 with 𝜆 ∈ [0, 1]. The maximal number of antecedents candidates for each span is limited
to 𝐾 . For the antecedent score 𝑠𝑎 (𝑖, 𝑗) between the spans 𝑖 and 𝑗 the span representations of
both 𝑔𝑖 and 𝑔 𝑗 , the element-wise similarity 𝑔𝑖 ⊙ 𝑔 𝑗 and an additional vector 𝜙 (𝑖, 𝑗) encoding
the genre, the distance between both spans and if they were expressed by the same speaker
are fed into a feed-forward neural network ffnn𝑎 .
Figure 4.2 shows how the mention and antecedent scores are combined into a probability

distribution over all antecedent candidates 𝑦𝑖 for span 𝑖 . In praxis, the softmax is dismissed,
and the antecedent candidate with the highest coreference score is chosen. This final score
𝑠 (𝑖, 𝑗) for each span-pair is defined as the sum of the mention scores 𝑠𝑚 (𝑖) and 𝑠𝑚 ( 𝑗) of both
spans as well as the antecedent score 𝑠𝑎 (𝑖, 𝑗) between both. In order to be able to handle the
first mention of an entity, non-anaphoric mentions and spans that are no mentions at all, a
dummy antecedent 𝜖 with a fixed score of zero is introduced.

𝑠 (𝑖, 𝑗) =
{
0 𝑗 = 𝜖

𝑠𝑚 (𝑖) + 𝑠𝑚 ( 𝑗) + 𝑠𝑎 (𝑖, 𝑗) 𝑗 ≠ 𝜖

To train the model, the log-likelihood of all antecedent candidates 𝑦𝑖 , which are also in the
same gold cluster as 𝑖 , is optimized. The probability distribution 𝑃 (𝑦𝑖) is given by the softmax
over the coreference scores of between 𝑖 and 𝑦𝑖 :

log
𝑁∏
𝑖=1

∑︁
𝑦∈Y(𝑖)∩GOLD(𝑖)

𝑃 (𝑦)

The model achieved a record-breaking average F1 score on the CoNLL-2012 metric of 67.2,
leading to the breakthrough of neural end-to-end coreference resolvers.

4.1.2. Higher-order Coreference Resolution with Coarse-to-fine Inference

With their higher-order model with coarse-to-fine inference (c2f-model) Lee et al. [48] improved
their own e2e-model in mainly two points. First, they reduce the errors due to the independent
scoring of each span pair by introducing a higher-order architecture and secondly by allowing
to link spans of any distance thanks to the replacement of the simple antecedent pruning by a
more advanced pruning strategy utilizing a coarse but fast antecedent scoring.
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(1) [It] is too big. [The trophy] does not fit into [the suitcase].

Higher-order Coreference Resolution Sentence (1) shows an example first-order coreference re-
solvers can struggle with. That system might find the links [it, the trophy] and [it, the suitcase].
Even though it is clear for a human that the second one is wrong, it might be hard for a machine
system to decide that the suitcase is non-anaphoric. On the other hand, it should be obvious
to the system that the mention pair [the trophy, the suitcase] is not coreferent. By defining
the coreference clusters as the transitive hull of its initial decisions, however, the trophy and
the suitcase would end up in the same cluster.

This problem can be overcome by entity-mention models, as shown in Section 2.4.2. Lee et al.
solve that problem by introducing a higher-order inference to the mention-ranking e2e-model.
Therefore the span representation 𝑔𝑖 is being refined in 𝑁 iterations with 𝑔𝑛𝑖 denoting the
representation of span 𝑖 at iteration 𝑛. As a result, the probability distribution 𝑃 (𝑦𝑖) differs in
each iteration:

𝑃𝑛 (𝑦𝑖) =
exp(𝑠 (𝑔𝑛𝑖 , 𝑔𝑛𝑦𝑖 ))∑

𝑦∈Y(𝑖) exp(𝑠 (𝑔𝑛𝑖 , 𝑔𝑛𝑦))

While 𝑔1𝑖 is identical to 𝑔𝑖 in the e2e-system, the span representations 𝑔𝑛+1𝑖 for the following
iterations are defined as the interpolation of the previous representation 𝑔𝑛𝑖 and the expected
antecedent embedding 𝑎𝑛𝑖 . The expected antecedent embedding is defined as the sum of the
embeddings 𝑔𝑦𝑖 of all antecedent candidates 𝑦𝑖 for span 𝑖 weighted by the probability 𝑃𝑛 (𝑦𝑖).

𝑎𝑛𝑖 =
∑︁

𝑦𝑖∈Y(𝑖)
𝑃𝑛 (𝑦𝑖) · 𝑔𝑛𝑦𝑖

For the element-wise interpolation, a layer-independent forget gate𝑊𝑓 is trained. The
concatenation of the representations of the span 𝑔𝑛𝑦 and its expected antecedent 𝑎𝑛𝑖 is used as
input to the forget layer.

𝑓 𝑛𝑖 = 𝜎 (𝑊𝑓 [𝑔𝑛𝑖 , 𝑎𝑛𝑖 ])
𝑔𝑛+1𝑖 = 𝑓 𝑛𝑖 ⊙ 𝑔𝑛𝑖 + (1 − 𝑓 𝑛𝑖 ) ⊙ 𝑎𝑛𝑖

Coarse-to-fine Inference In the e2e-model at most 𝐾 previous mentions were considered as
candidate antecedents for each mention, yet the distance between coreferent mentions in a
text can become fairly large. However, considering all𝑀 mentions as possible antecedents is
not feasible. Consequently, Lee et al. introduce the coarse-to-fine inference for pruning the
candidate antecedent without relying on the distance and, therefore, theoretically enabling the
system to handle coreference over an infinite distance. Before calculating the actual antecedent
scores 𝑠𝑎 (𝑖, 𝑗) between the span 𝑖 and 𝑗 , a less accurate but much faster to compute coarse
score 𝑠𝑐 (𝑖, 𝑗) is calculated for all span-pairs:

𝑠𝑐 (𝑖, 𝑗) = 𝑔⊤𝑖 𝑊𝑐𝑔 𝑗

𝑊𝑐 is a learned weight matrix of the size |𝑔 | × |𝑔 |. During the computation of the coarse
scores, two matrices are manipulated. The interim result of 𝑔⊤𝑊𝑐 is of the dimension𝑀 × |𝑔 |
for𝑀 being the number of all possible mentions, and the final matrix of coarse scores is of the
size 𝑀 ×𝑀 . This is a significant improvement in comparison to the 𝑀 ×𝑀 × (3 ∗ |𝑔 | + |𝜙 |)
input tensor which would be needed to calculate the antecedent score 𝑠𝑎 (𝑖, 𝑗) for all span-pairs
right away. Together with the mention scores 𝑠𝑚 (𝑖) and 𝑠𝑚 ( 𝑗) the coarse score sums up to
the fast score 𝑠 𝑓 (𝑖, 𝑗) by which the antecedent candidates are ranked for each mention and

24



4.1. English Coreference Resolution

subsequently pruned. The final score 𝑠 (𝑖, 𝑗) of the e2e-model is made up of 𝑠 𝑓 (𝑖, 𝑗) and the
more accurate antecedent score 𝑠𝑎 (𝑖, 𝑗) calculated after pruning:

𝑠 𝑓 (𝑖, 𝑗) = 𝑠𝑚 (𝑖) + 𝑠𝑚 ( 𝑗) + 𝑠𝑐 (𝑖, 𝑗)
𝑠 (𝑖, 𝑗) = 𝑠𝑚 (𝑖) + 𝑠𝑚 ( 𝑗) + 𝑠𝑐 (𝑖, 𝑗) + 𝑠𝑎 (𝑖, 𝑗)

Even though the scoring in this higher-order model is computed in every iteration based on
the changing span embeddings, the coarse score is only computed once and is fixed during
the iteration, just like the mention scores. Therefore only 𝑠𝑎 (𝑖, 𝑗) has to be calculated again in
each iteration and added to the fixed fast score 𝑠 𝑓 (𝑖, 𝑗) in order to update the overall score.
Besides the higher-order inference and the coarse-to-fine antecedent pruning, a few more

changes were added to the original implementation of the e2e-model. The Turian embedding
as one part of the concatenated word embedding used as input to the LSTM is replaced by an
extracted ELMo embedding. For the embedding of the head word of each span, a different,
much smaller embedding is now used. Besides the same character embedding used in the
LSTM input embedding, it contains a GloVe embedding with a smaller window size of two.
Instead of a single-layer bidirectional LSTM, the c2f-model is based on a bidirectional highway
LSTM with three layers and coupled gates. Due to the advanced pruning strategy, the number
of antecedent candidates per span can be reduced from 250 down to only 50 without making
sacrifices in performance. On the other hand, the maximal length for a span can be increased
from 10 to 30.

The c2f-model achieves an F1 score on the Onto Notes 5.0 test set of 73 and outperforms
its predecessor by almost six percentage points.

4.1.3. BERT for Coreference Resolution

For their BERT-based model (bert-model), Joshi et al. [38] reused large parts of the e2e-model
as well as the higher-order approach and the coarse-to-fine inference of the c2f-model but
replaced the initial embedding and the complete LSTM structure with a BERT-encoder which
is fine-tuned on the coreference task during training.

The text must be split up during the preprocessing to match the chosen segment size, which
is limited by the BERT model’s configuration. Because of the possible lack of context at the
end and the beginning of those segments, Joshi et al. introduce two different approaches to
obtaining the contextual embeddings. The independent version uses non-overlapping segments
and accepts the drawbacks of the lacking context. To tackle that problem, the overlapping
version creates segments that overlap with each other, resulting in two embeddings for each
token. A jointly trained feed-forward neural network combines both embeddings into one.
However, experiments showed that the overlapping model showed no improvement over the
independent.
Results are reported for the cased versions of BERTBASE and BERTLARGE. Even though

both language models are able to digest segments of up to 512 tokens, they perform best for
segments of 128 or 384 tokens. To limit GPU memory usage, the training examples are pruned
to 11 segments for BERTBASE and three segments for BERTLARGE. The bert-model achieves an
F1 score on the Onto Notes 5.0 test set of 73.9 with the base sized language model and 76.9
with the large version.
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SpanBERT By replacing the BERT language models with SpanBERTBASE and SpanBERTLARGE
the performance increases to 77.7 F1 for the base1 and 79.6 F1 for the large version. SpanBERT
is pre-trained on masked spans of text rather than single words and, therefore, is better suited
for the task of coreference resolution than other BERT variants [39].

During the pre-training, continuous randomly sampled input tokens (𝑥𝑠, ..., 𝑥𝑒) are masked.
The objective function consists of the MLM objective and a newly introduced span boundary
objective (SBO), which predicts the span tokens 𝑥𝑖 given the contextualized embeddings 𝑥∗𝑠−1
and 𝑥∗𝑒+1 of the tokens before and after the span as well as a positional embedding 𝑝𝑖−𝑠+1 of the
token relative within the span:

L(𝑥𝑖) = LMLM(𝑥𝑖) + LSBO(𝑥𝑖)
= − log 𝑃 (𝑥𝑖 |𝑥∗𝑖 ) − log 𝑃 (𝑥𝑖 |𝑥∗𝑠−1, 𝑥∗𝑒+1, 𝑝𝑖−𝑠+1)

The SBO encourages the transformer model to include as much information about the
span as possible into the embeddings of the tokens before and after the span. Since the span
representations 𝑔𝑖 of the previously described coreference systems are partially defined by
the first and last tokens of the spans, it is plausible to ascribe the performance gains on the
coreference task to the SBO objective.

4.1.4. Recent Coreference Resolution Approaches

Xu and Choi achieved with their implementation without the higher-order inference slightly
better results for BERTLARGE and SpanBERTLARGE [99]. Their best model with cluster merging,
which makes the bert-model a truly entity-ranking model, reaches an F1 score on the Onto
Notes 5.0 test set of 80.2 and 79.9 (±0.2) as a mean average over five runs.

In order to create a lightweight coreference system without handcrafted features and with
less pruning, Kirstain et al. replace the span representations of the bert-model by solely relying
on representations of the start and end token of each span [43]. Lightweight bilinear functions
are applied to the start and end token representations to calculate the scores for the mention
and antecedent candidates. They use the implementation of Xu and Choi [99] without the
higher-order inference. The Longformer [4] is used as the pre-trained language model to avoid
the segmentation described in [38]. Besides reducing the memory footprint of the bert-model
the start-to-end model (s2e) also accomplishes a higher performance of 80.3 F1.

Another completely different approach for a lightweight model is the word-level coreference
resolution system (wl-coref) by Dobrovolskii [21]. Instead of evaluating coreferences on a
pruned subset of all possible mentions, the wl-coref evaluates coreferences between words
and creates spans for coreferent words subsequently. Even though the author provides their
own implementation, the model does not rely on higher-order inference as well. The wl-coref
achieves an F1 score of 81 on the Onto Notes 5.0 test set.

CorefQA represents the current state-of-the-art systemwith its score of 83.1 F1 [97]. However,
it is a very compute-intensivemodel, even in comparison to the bert-modelwith SpanBERTLARGE,
and uses additional data. The coreference resolution is formulated as a question answering
problem using a single sentence with a highlighted mention as the question and expecting
all coreferent mentions in the input text as the answer. The transformation into a question
answering problem enables the model to be pre-trained on question answering corpora which
are typically larger than coreference annotated corpora.
1The performance of SpanBERTBASE is not evaluated in [39]. In the SpanBERT repository a score of 77.4 F1 is
reported (https://github.com/facebookresearch/SpanBERT) in the repository of [38] the score is stated to
be 77.7 F1 (https://github.com/mandarjoshi90/coref).
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4.2. PyTorch Implementation

All three models explained in detail above were originally implemented with TensorFlow [55].
With PyTorch [96] becoming the standard deep learning framework for research, the need for
PyTorch implementations of the most important models regarding coreference resolution is
inevitable.2 Providing models implemented with different frameworks can also enable more
people to step into the field of coreference resolution.

I implemented the e2e-model, c2f-model, and bert-model building up on each other and with
a common structure.3 In the following implementation details are given and the performance
in comparison with the original implementations is reported.

4.2.1. Other Implementations

Multiple PyTorch implementations of the three models exist without corresponding scientific
work or properly reported performances.4 Xu and Choi [99] provide an implementation of the
bert-model with different configurations of which they report the performances. One of them
is equivalent to the original bert-model with SpanBERTLARGE.

4.2.2. Implementation Details

Noticeable changes from the original implementation are a different ELMo embedding and
the use of the HuggingFace transformer API [96]. Instead of the ELMo embedding from
the TensorFlow Hub, I use another embedding from AllenNLP for my implementation of
c2f-model.5 However, further experiments showed no effect on the performance regarding the
used embedding. Building the bert-model on top of the HuggingFace transformer API enables
a quick exchange of the underlying pre-trained language model and makes it far easier to
conduct experiments with several different language models.
In order to reduce the GPU memory footprint of all three models, the implementations

include the option for mixed precision training [56]. Half-precision is used for operations that
do not need the precision of a 32 bit floating point number, reducing the memory consumption
and speeding up the computation without sacrificing performance. The models can also
be used with gradient checkpointing [10] to further reduce the GPU memory requirements.
However, in contrast to mixed precision training, gradient checkpointing is a trade-off between
computation time and memory consumption. During the forward pass, activation values are
only saved at specific checkpoints in the computational graph. Omitting most activation values
saves memory, but since they are needed to calculate the gradient, the forward-pass has to be
performed again on the model’s segments between the checkpoints during backpropagation.

4.2.3. Comparison to the Original Implementation

Table 4.1 shows the performance of my reimplementation of the e2e-model, the c2f-model and
the bert-model variants in comparison with the original reported CoNLL-2012 scores on the
OntoNotes 5.0 test set. All hyper-parameters are identical to the original implementation. For
the e2e-model and the bert-modelwith BERTLARGE and SpanBERTLARGE I was able to match the
2http://horace.io/pytorch-vs-TensorFlow/
3The code is available under: https://github.com/jfhetzer/e2e-coref
4https://github.com/search?q=coref+pytorch&type=Repositories
5https://allenai.org/allennlp/software/elmo
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4. Coreference Resolution with Pre-trained Language Models

Model TensorFlow PyTorch
e2e-coref 67.2 67.2
c2f-coref 73.0 70.9
BERTBASE 73.9 73.4 / 74.2†
BERTLARGE 76.9 76.9
SpanBERTBASE 77.71 77.1 / 77.6†
SpanBERTLARGE 79.6 79.7

Table 4.1.: Comparison of my PyTorch implementation to the original TensorFlow implemen-
tation on the OntoNotes 5.0 test set. † denotes results obtained by training for 30
epochs instead of 20. A more detailed breakdown of the PyTorch implementations
scores can be found in Appendix A.1.

reported results. For the base versions of the bert-model, I could not quite reach the results but
managed to do better by training for 30 epochs instead of 20. Despite many efforts, I was not
able to match the c2f-models performance and clearly lack behind with my implementation.

4.3. Experiments and Analysis

Besides BERT and SpanBERT, there is a vast amount of other language models and BERT vari-
ations. These modifications of the original BERT embedding should either lead to performance
gains or be computational more efficient. The embedding used in the bert-model model can be
easily switched thanks to the HuggingFace transformer framework. In this section, I evaluate
the bert-model using different BERT variations on the English portion of the OntoNotes 5.0
dataset.

4.3.1. Pre-trained Language Models

RoBERTa The Robustly optimized BERT approach (RoBERTa) was introduced by Liu et al.
in 2019 [52]. RoBERTa brings multiple modifications to the pre-training of BERT in order
to improve its performance in various downstream tasks. Dynamic masking ensures that
a new randomly selected mask is applied to the input sequence in every training step. In
contrast, BERT creates the masks during data preprocessing and tries to limit that downside by
duplicating the training data multiple times beforehand. The Next Sentence Prediction (NSP)
loss is dropped so that the MLM is the only objective during pre-training. Consequently, the
input format changes from a pair of segments to contiguously complete sentences of one or
more documents. RoBERTa also leverages larger batches and a more extensive BPE vocabulary.

Besides the improvements above, RoBERTa is trained on a vastly larger set of training data
than BERT (16GB to 160GB) and trained for much longer (100K training steps to 500K). As a
result, RoBERTa outperforms BERT clearly on the GLUE [92] and SQuAD [71] tasks.

DistilBERT and DistilRoBERTa DistilBERT by Sanh et al. is a version of BERT distilled into a
smaller model to reduce its size by 40% compared to the original BERT transformer [80]. The
authors also claim the pre-trained model to be 60% faster at inference while preserving 97% of
its language understanding capabilities.

For distilling a larger teacher model𝑚𝑡 into a smaller student model𝑚𝑠 , the student model
is trained to behave like the teacher model. In the case of DistilBERT a triple loss is used for
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training the student model consisting of the masked language modelling loss L𝑀𝐿𝑀 , a cosine
embedding loss L𝑐𝑜𝑠 between the students’ and teachers’ hidden states, and the distillation loss
L𝑐𝑒 =

∑
𝑖 𝑡𝑖 · log 𝑠𝑖 with 𝑡𝑖 being the probability given by𝑚𝑡 and 𝑠𝑖 the probability given by𝑚𝑠 .

Besides DistilBERT, Hugging Face published a distilled version of RoBERTa as well, dubbed
DistilRobERTa.6 It is reported to outperform the cased DistilBERT on all GLUE tasks and the
uncased version on all but one.

TinyBERT TinyBERT is another language model distilled from BERTBASE [36]. In contrast to
DistilBERT, not only the number of layers is reduced but also their size. Besides the general
distillation, the authors also propose a distillation and data augmentation step during fine-
tuning on the downstream task. This second distillation step requires the larger teacher model
to be previously fine-tuned on the downstream task as well.
The distillation loss is composed of the MSE losses between the embeddings, attention

matrices and hidden states of the student and teacher model. To compare the embeddings
and hidden states of different sizes, learned matrices scale up the students’ embeddings and
hidden states before calculating the loss. The prediction loss on the resulting logits vectors,
which is similar to the distillation loss of DistilBERT, is used only for the distillation during
the fine-tuning.
The model comes in two different sizes. The bigger TinyBERT6 has the same size as

DistilBERT with 6 transformer layers, an embedding size of 768, and a hidden size of 3,072.
The smaller TinyBERT4 makes use of its capability to scale down the teachers’ layer sizes. It
contains four layers and an embedding and hidden size of 312. With both steps of distillation
and data augmentation, the authors claim to reach 96.7% of the performance of BERTBASE on
the GLUE tasks while being 7.5 times smaller and 9.4 times faster. They also report to match
the performance BERTBASE with TinyBERT6.

ELECTRA Efficiently Learning an Encoder that Classifies Token Replacements Accurately
(ELECTRA) differs from all other language models covered in this thesis by proposing a new
pre-training task called replaced token detection [13].
Instead of a single model, two transformer models, a generator and a discriminator, are

trained in a non-adversarial way. The generator is a small language model trained on the
MLM task that creates corrupted input tokens by predicting the previously masked tokens.
The discriminator has to decide for each token if it was corrupted. Since it learns from the
decision on every token and not just from the masked ones, the training is computationally
more efficient than the MLM-based training.
After pre-training, the generator is discarded, and the discriminator is fine-tuned on the

downstream tasks. Due to its efficient training, the authors claim to outperform BERT-based
models on the GLUE tasks given the same model size, data, and compute.

4.3.2. Results and Analysis

Table 4.2 shows the results of the comparison on the English part of the OntoNotes 5.0 dataset.
The results for BERTBASE and SpanBERTBASE are the scores of the original implementation
reported by the authors and discussed in more detail in Section 4.1.3. While evaluation of
RoBERTaBASE and ELECTRABASE aims to find language models which canmatch or outperform

6https://huggingface.co/distilroberta-base
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the ones originally used, the goal for the other language models examined in this experiment
is to create a more lightweight coreference resolution system.
Most hyperparameters used in this experiment are the same as in [38]. The learning rates,

segment size, and number of segments during the training can be found in the Appendix A.3 for
each model. Since the goal of using TinyBERT is the reduction of GPU memory consumption
and execution time during the training and not the pursuance of coreference systems for
inference on low-resource devices, the used TinyBERT models are distilled from a general
BERT model and the second distillation step during fine-tuning is omitted.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
BERTBASE 80.2 82.4 81.3 69.6 73.8 71.6 69.0 68.6 68.8 73.9
SpanBERTBASE - - - - - - - - - 77.71
RoBERTaBASE 82.2 83.4 82.8 72.9 75.7 74.3 72.4 70.8 71.6 76.2
ELECTRABASE 83.0 85.0 84.0 73.6 78.1 75.8 73.6 72.5 73.0 77.6
ELECTRASMALL 82.2 76.6 79.3 72.2 65.7 68.8 69.3 61.0 64.9 71.0
DistilBERT (cased) 82.1 76.2 79.0 72.2 64.8 68.3 69.0 62.1 65.4 70.9
DistilBERT (uncased) 82.4 76.9 79.6 72.9 66.5 69.5 70.0 62.8 66.2 71.8
DistilRoBERTa 80.6 79.7 80.1 70.5 69.9 70.2 69.2 65.0 67.0 72.4
TinyBERT4 79.8 70.8 75.1 69.5 58.4 63.4 65.3 53.2 58.7 65.7
TinyBERT6 81.5 77.5 79.5 71.9 67.3 69.5 69.6 63.6 66.5 71.8

Table 4.2.: Comparison of the bert-model using different language models on the English part
of the Onto Notes 5.0 dataset.

Performance Gains The bert-model with RoBERTaBASE clearly outperforms its counterpart
with BERTBASE, while ELECTRABASE even matches the performance of the SpanBERTBASE, a
language model specialized for problems like coreference resolution and only available for
the English language. On the other hand, are far more pre-trained versions of RoBERTa and
ELECTRA publicly available on the HugginFace model hub.7 Therefore, both language models
might be great candidates to improve coreference resolution on languages other than English.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
BERTLARGE [38] 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
SpanBERTLARGE [39] 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
SpanBERT w/o HOI + CM [99] 85.9 85.5 85.7 79.0 78.9 79.0 76.7 75.2 75.9 80.2
s2e + Longformer [43] 86.5 85.1 85.8 80.3 77.9 79.1 76.8 75.4 76.1 80.3
wl-coref + RoBERTa [21] 84.9 87.9 86.3 77.4 82.6 79.9 76.1 77.1 76.6 81.0
CorefQA [97] 88.6 87.4 88.0 82.4 82.0 82.2 79.9 78.3 79.1 83.1
ELECTRALARGE 85.6 87.0 86.3 78.2 81.1 79.6 77.6 76.3 77.0 81.0

Table 4.3.: My implementation of the bert-model with ELECTRA Large in comparison with the
current state-of-the-art coreference resolution systems briefly described in 4.1.4

For the best performing pre-trained model ELECTRABASE I also trained the coreference
system with its larger counterpart - the ELECTRALARGE - for 40 epochs. Table 4.3 shows
7https://huggingface.co/models
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its performance in comparison with the original bert-model as well as with more recent
work, including the current state-of-the-art. While it can not match the performance of the
computationally much more expansive and with additional question answering data trained
CorefQA [97], it matches the word-level coreference approach [21] and outperforms any
other model based on the bert-model. This result reassures the capabilities of ELECTRA and
indicates that it might be an even better pre-trained model for coreference resolution than the
Longformer and RoBERTa which were used in recent work.

LM Steps / Sec #Parameters
BERTBASE 1.42 153m
SpanBERTBASE 1.75 153m
RoBERTaBASE 1.66 169m
ELECTRABASE 1.83 153m
ELECTRASMALL 2.88 25m
DistilBERT (cased) 2.06 110m
DistilBERT (uncased) 2.08 111m
DistilRoBERTa 1.74 127m
TinyBERT4 3.19 29m
TinyBERT6 1.88 111m

Table 4.4.: Efficiency of various pre-trained language models used in the bert-model.

Efficiency Enhancement Table 4.4 compares the distilled and smaller language models with
their bigger counterparts in terms of training timemeasured in steps per second and the number
of parameters of the complete coreference resolver. While the bert-model has about the same
number of parameters for DistilBERT and TinyBERT6 and only slightly more parameters for
RoBERTaBASE, the much smaller TinyBERT4 and ELECTRASMALL stand out with only a quarter
of the parameters. The training speed partially depends on the segment size and the number
of segments used during training. Since the segments are sequentially processed, longer and
fewer segments, which also add up to slightly fewer tokens overall, tend to be faster. Despite
being larger, the RoBERTaBASE, for example, is faster than the BERTBASE for that reason. The
hyperparameters for each model can be found in Appendix A.3.
Table 4.2 shows that the smaller models suffer in terms of performance compared to their

larger counterparts. The DistilRoBERTa, which is the best performing smaller model, is also
the slowest and biggest model among the smaller ones. It is also slower than the ELECTRABASE,
which makes it an option only if the focus is on fewer parameters. A slight increase in speed is
provided by the DistilBERT model. However, the only model not distilled - the ELECTRASMALL
- seems to be the best trade-off. While being the smallest model and the second fastest, it
maintains an F1 score of 71, which is more than five F1 points above the slightly faster
TinyBERT4.
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Resolution

In this chapter, I cover German coreference resolution as well as cross-lingual coreference res-
olution. The latter is evaluated on German as well, yet additionally to the German coreference
annotated data, it leverages knowledge from English coreference resolution systems described
in Chapter 4 in order to improve its performance.

5.1. German Coreference Resolution

Besides English, which was the foundation for most of the developments in coreference
resolution, German coreference resolution is also an active field of research. The SemEval-2010
Shared Task 1 [73] and the CORBON-2017 Shared Task [29] involve German coreference
resolution. Furthermore, various German coreference annotated corpora exist - up to a similar
size of the English corpora used in the CoNLL-2012 Shared Task.

5.1.1. German Corpora

While I conduct all experiments for German coreference resolution on the large Tüba-D/Z
corpus, I use two smaller datasets as well to evaluate the capabilities of cross-lingual coreference
resolution on lower resource languages. A detailed comparison regarding the size of the three
German corpora and the English OntoNotes 5.0 dataset can be found in Appendix A.2.

TüBa-D/Z The "Tübinger Baumbank des Deutschen / Zeitungskorpus" (TüBa-D/Z) is a German
syntax annotated corpus consisting of almost four thousand newspaper articles in its latest
version [84]. Multiple versions were released over the years. In this thesis, the 10th version
of the TüBa-D/Z is used for training and evaluating German coreference resolution systems.
The newer 11th version is slightly larger, but there are no coreference scores reported on that
version yet.

SemEval-2010 The SemEval-2010 shared task on coreference resolution defined a standard
for training and evaluating coreference systems on many languages [73]. The German portion
of the provided coreference annotated dataset is the 8th version of the TüBa-D/Z corpus. To
make it easier to distinguish between the corpora used in this thesis, this dataset is referred to
as SemEval-2010 in the following. With just above 1,200 documents and is the second largest
German corpus used in this thesis.

DIRNDL The Discourse Information Radio News Database for Linguistic analysis (DIRNDL)
[7] is a corpus of German news broadcasts with coreference and prosodic annotations. In the
following DIRNDL refers to the version used by Rösinger et al. [77]. That version consists of
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just under 500 documents, which are much shorter than the documents of the two corpora
described above. That makes DIRNDL the smallest German dataset in this thesis by far.

5.1.2. German Coreference Resolution Systems

Most German coreference resolvers are rule-based or feature-based systems leveraging simple
machine learning frameworks to learn coreference resolution in a data-driven manner. Two of
the most common systems are the IMS HotCoref DE and the CorZu system.

Even though the research in coreference resolution progressed unceasingly for the English
language, developments of German systems seemed to stall in the last years until the recent
adaptation of deep learning models to the German language [81].

IMS HotCoref DE The IMS HotCoref DE [76] is an adaptation of the IMS Higher-Order Tree
Coreference system (IMS HOTCoref) that was proposed as a resolver for Arabic, Chinese, and
English [6]. The IMS HOTCoref is a feature-based system that models coreferences at the
document level as a directed rooted tree. Every mention refers to a node in that tree with
a dummy node at the root. Arcs reaching from the antecedent nodes to the anaphor nodes
indicate the coreferences. All subtrees under the root node correspond with entity clusters.

A structured perceptron [14] is trained by updating the predicted tree against a latent tree
that is also inferred by the perceptron given constrained antecedent candidates. The candidates
are restricted so that only trees can be found, which subtrees indicate the gold coreference
clusters. The latent tree should help the model to build correct trees in terms of its induced
coreference clusters by pushing it to structure the root’s subtrees in a simple way to learn.
Making a left to right pass and incrementally building up the tree gives the possibility to
include not only local features like mention type, distance, syntax, and lexical features but also
non-local features like the shape or size of the clusters defined by the partially built tree.

Rösiger and Kuhn adapted the IMS HOTCoref to German [76]. Therefore, they tackled some
problems specific to the German language, including grammatical gender, richer inflections,
and compounds that are single words in German, by modifying and extending data handling
and the model itself. They also tried to incorporate world knowledge by leveraging GermaNet
[32]. Besides the features inherit
Besides the features inherited by the IMS HOTCoref system and features specific to the

German language, the IMS HotCoref DE was also used to augment coreference resolution with
prosodic information on the DIRNDL dataset [77]. For this purpose, a CNN acts as a prosodic
event detector. The detected events can then be used as additional features to benefit the
coreference resolution.

CorZu The Coreference Resolver for German from Zurich (CorZu) [85] is an incremental
entity-mention system that does not validate the relation between single mentions and entity
clusters like other entity-mention models, but between two mentions, one of which represents
its entity cluster. Each mention is sequentially evaluated to be coreferent with all previous, not
yet matched, antecedent candidates as well as with the last mention of each already formed
entity cluster. To prevent morphological disagreements with other mentions of the cluster,
morphological properties of former mentions are projected onto the last mention.

CorZu is a hybrid between a rule-based and a feature-based system. For selecting antecedent
candidates, deterministic rules are applied. To select the best antecedent among those candi-
dates, a Markov Logic Network [74] is used to learn weights assigned to constraints regarding
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the relation between the two mention pairs like distance, syntax, or properties of the possible
antecedent.

German c2f Recent, concurrent work by Schröder et al. tackled the application of the
bert-model on German data [81]. Referring to the coarse-to-fine pruning approach of the
c2f-model they dub their model German c2f. By replacing the English BERT model with Ger-
man or multilingual language models, they follow the same approach used in this chapter, and
their work partially overlaps with the experiments I conducted and described in the following.
Their best-performing base and large model are both based on pre-trained German ELECTRA
models.
While I use my own implementation exactly replicating the original bert-model for all

experiments, theGerman c2f is based on the implementation of Xu and Choi [99]. Consequently,
the authors omit the higher-order inference as originally proposed and reduce the size of the
feed-forward layers in order to further reduce the memory consumption as well.

5.2. Cross-lingual Coreference Resolution

Many supervised NLP systems require large, manually annotated corpora. These corpora
are only available for a few languages in which research is mainly done. However, real-
world applications derived from this research should often times serve more languages, but
creating corpora for all of them is just not feasible. Cross-lingual language understanding can
circumvent this problem by building systems trained on a single language and applying it on
many others [16]. Transfer learning, which describes the transfer of knowledge learned in
one domain to another, is essential for this task. In the context of two different languages,
cross-lingual transfer learning aims to transfer a system trained on a source language to a
target language on which the final evaluation takes place.
Today’s deep learning coreference resolution systems rely on large coreference annotated

corpora as well. These are available just for a couple of languages, and research is mainly done
for the English language. Since coreference resolution can be an important factor for various
downstream tasks, including machine translation, as shown in Chapter 6, its application on
a wide variety of languages is essential. This emphasizes the importance of the experiments
described in the following, evaluating cross-lingual coreference resolution between English
and German for multiple settings with different sized target language corpora.

5.2.1. Multilingual Embeddings

In recent years with new, advanced word embeddings changing NLP in many aspects, multi-
lingual word embeddings have become a common way to build multilingual and cross-lingual
systems. Even though many of them are not trained with the objective of mapping different
languages to a common feature space and only focus on representing each language on its
own as good as possible, they work surprisingly well for cross-lingual transfer learning and
even for zero-shot learning.

Multilingual BERT Although BERT was originally proposed as a single language model [20], a
multilingual model (M-BERT) trained on monolingual corpora of 104 languages was released
alongside other variants.1 The M-BERT model is of the size of BERTBASE and case-sensitive,
1https://github.com/google-research/bert
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replacing an earlier uncased version trained on 102 languages. Even though M-BERT is pre-
trained without any objective assuring generalization across multiple languages, it was found
to perform surprisingly well on zero-shot cross-lingual model transfers [66].

XLM Since M-BERT was initially not designed with the idea in mind of serving as a mul-
tilingual embedding, the cross-lingual language model (XLM) was specifically adapted for
multilingual use cases [45]. The original vocabularies are replaced with a single shared vocabu-
lary created through Byte-Pair Encoding (BPE). Besides the MLM objective used by BERT, XLM
introduces two additional objectives. The Casual Language Modelling (CLM) task challenges
the model to predict the probabilities for the next word given the previous ones. The Transla-
tion Language Modelling (TLM) uses parallel data and allows for training the embedding in a
supervised fashion. Instead of a single sentence, a pair of the same sentence in both languages
is used as input. Words in both sentences are selected and masked randomly. In order to predict
the masked words, the model can leverage not just the context in the same language but also
the translation. This should enforce the model to align the embeddings in both languages.

Embeddings are pre-trained with the MLM and CLM objectives for multiple language pairs,
including German to English. Additional one embedding is pre-trained with MLM and TLM
together.

XLM-Roberta In contrast to XLM, the XLM-RoBERTa (XLM-R) embedding relies solely on
the MLM objective [15]. It is argued that using only data obtained from Wikipedia results in
poor performance, especially on low-resource languages. Instead, the XLM-R is trained on a
substantially larger dataset of 2.5TB of CommonCrawl data. They observe a trade-off between
the cross-lingual performance for low-resource languages and the overall monolingual and
cross-lingual performance when adding more languages to the embeddings but can overcome
that trade-off by increasing the model size. The final model covers 100 languages. Similar to
what RoBERTa did to improve BERT, Conneau et al. can further boost the performance of their
embedding by tuning training parameters. They state that XLM-R does not just outperform
M-BERT and XLM but can also compete with monolingual models on the XNLI and GLUE
benchmarks.

5.2.2. Cross-lingual Learning Settings

Given labeled source and target language data at training time, various training strategies can
be applied. Three basic settings are used in the following experiments to assess the benefits
of cross-lingual coreference resolution. Additionally, a more advanced, adversarial method
aiming to improve the language models’ mapping between the source and target language is
evaluated.

Training on the Target Language A baseline is trained directly on the target language data,
not using the source language data at all. This baseline is used for comparison with systems
leveraging the source language data and, therefore, to evaluate the benefit cross-lingual training
can bring to coreference resolution. The system’s performance depends on the quantity and
quality of the target language corpora.

Zero-Shot Learning In the zero-shot learning setting, no target language data is available
during training. The system is trained on the source language and evaluated on the target
language without seeing a single example in that language before. In the context of coreference
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Figure 5.1.: BERT-based coreference resolver and the discriminator layer for adversarial learn-
ing. Possible flows of English and German data through the network are indicated
in red and green.

resolution, this setting is especially relevant for languages without any coreference annotated
corpora.

Fine-Tuning on Target Language Equally to the zero-shot learning setting, the model is first
trained on the source language. Subsequently, however, it is further fine-tuned on the target
language data. The hyperparameters differ between training on the source and target language.
In particular, the number of training steps is less during fine-tuning. Fine-tuning the coreference
resolution system is vital for many languages with an only very limited amount of coreference
annotated data.

Adversarial Cross-lingual Learning Language adversarial techniques aim to map both lan-
guages, the source and target language, to a common feature space in order to improve the
performance on the target language despite training mostly or even explicitly on the source
language. The adversarial cross-lingual learning approach in this thesis is based on the proposal
for text classification and named entity recognition (NER) by Keung et al. [42].

Besides training the system on a downstream task for a high resource source language, they
introduced another adversarial task. For that task, the language model acts as the generator
creating the output embeddings. An additional layer, projecting the mean pooled output
embedding to a single score, acts as the discriminator trying to distinguish between documents
of the source and target language. Figure 5.1 shows the different modules of such a setup
applied to the BERT-based coreference resolver and the use of English and German training
data in the network. While the coreference task is only trained on English data, the generator
and discriminator losses rely on documents of both languages. The generator loss L𝐺 and the
discriminator loss L𝐷 are defined as follows:

L𝐺 (𝑦𝐴;𝑥) = −(1 − 𝑦𝐴) log𝑝 (𝐸 = 1|𝑥) − 𝑦𝐴 log𝑝 (𝐸 = 0|𝑥)
L𝐷 (𝑦𝐴;𝑥) = −(1 − 𝑦𝐴) log𝑝 (𝐸 = 0|𝑥) − 𝑦𝐴 log𝑝 (𝐸 = 1|𝑥)

The binary label𝑦𝐴 is 1 for English documents and 0 for German documents, while 𝑝 (𝐸 = 1|𝑥)
is the probability that the input document 𝑥 is in English, estimated by the bert-model with the
discriminator head. The coreference loss, as well as the generator and discriminator losses, are
calculated alternatingly, and the corresponding parts of the model are updated immediately.
The batch size to compute all three losses is one document. For a more detailed explanation of
the algorithm, see [42].
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5.3. Experiments and Analysis

For all experiments, I use my implementation of the bert-model by Joshi et al. [38]. To adapt
that coreference system to German, the underlying pre-trained language model is replaced by
German or multilingual language models. The same CoNLL-2012 metric and scorer used in
Section 4.3.2 is used for the evaluation on German as well.
As a contribution to the German coreference resolution, I analyze the performance of the

bert-model with various German versions of BERT and ELECTRA on the large TüBa-D/Z
v10 dataset. To explore how cross-lingual coreference resolution can benefit languages with
different amounts of coreference annotated data, I evaluate the settings described in Section
5.2.2 on the TüBa-D/Z v10, the SemEval-2010, and the DIRNDL dataset.

5.3.1. German Coreference Resolution with Pre-trained Language Models

Various German adaptions of BERT and ELECTRA are available via the Hugging Face model
hub2. If available, I choose the cased version in the base size of each model. For the most
promising model, I evaluated the larger version as well. The following gives a detailed overview
of the German pre-trained language models used in this experiment.

deepset BERT The deepset BERT has the same architecture and size as the original BERTBASE
model. It is case-sensitive and trained on 12GB of German text data.3

DBMDZ BERT The later released DBMDZ BERT was trained on 16GB of data and is said to
slightly outperform the deepset BERT on downstream tasks. A cased and an uncased base-sized
version were released.4

GBERT TheGBERTmodel is a joint work of the authors of the deepset BERT andDBMDZ BERT
[9]. In contrast to those two models, it uses whole word masking rather than masking single
tokens. Besides a cased base-sized model, a larger model of the size of BERTLARGE was released
as well.

GELECTRA The GELECTRA was proposed alongside the GBERT in [9]. A base and large
version of the same size as the GBERT variants were made publicly available. While the
authors report the GELECTRALARGE to outperform its BERT-based counterpart on all tested
downstream tasks, the ELECTRABASE lags behind the GBERTBASE.

GNG-ELECTRA Another ELECTRA model pre-trained on German was published by the Ger-
man NLP group.5 It is dubbed GNG-ELECTRA in the following and is only available in a
base-sized, uncased version.

All language models were used with a segment size of 512 as I find that longer segments
result in better performances, congruent with [81]. To match the number of steps trained for in
Section 4.3.2, the number of epochs is increased to 26 except for the ELECTRA-based models,
2https://huggingface.co/models
3https://deepset.ai/german-bert
4https://github.com/dbmdz/berts
5https://huggingface.co/german-nlp-group/electra-base-german-uncased
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which further improve by training for even 40 epochs. The remaining hyperparameters are
identical to those used for BERT in [38].

Table 5.1 shows the coreference resolution performance on the TüBa-D/Z v10 corpus using
the different German pre-trained language models and compares them to the IMS HotCoref DE
and the recently proposed German c2f systems.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
IMS HotCoref DE [76] - - 52.57 - - 45.13 - - 64.79 48.54
German c2f Base [81] 81.92 79.90 80.90 77.41 73.52 75.41 75.16 75.50 75.33 77.21
German c2f Large [81] 82.85 81.61 82.23 78.41 75.73 77.05 76.75 77.44 77.09 78.79
deepset BERT 71.23 76.13 73.60 63.94 68.97 66.36 65.08 70.85 67.84 69.27
DBMDZ BERT 76.46 73.35 74.87 69.66 66.76 68.18 71.12 67.34 69.18 70.74
GBERTBASE 77.47 80.28 78.85 70.09 74.74 72.34 73.82 72.78 73.30 74.83
GNG-ELECTRABASE (40 Epochs) 78.99 83.88 81.36 72.27 79.53 75.73 75.78 76.85 76.31 77.80
GELECTRABASE (40 Epochs) 77.04 83.77 80.26 69.61 79.32 74.15 73.52 75.46 74.48 76.30
GELECTRALARGE (40 Epochs) 80.77 85.82 83.22 75.01 81.78 78.25 77.71 79.84 78.76 80.08

Table 5.1.: Performance of German Coreference Systems on the TüBa-D/Z v10 test data.

As expected, all BERT-based coreference systems were able to clearly outperform the feature-
based IMS HotCoref DE by up to over 30 points. The German c2f Base and German c2f Large
which use the exact same pre-trained GNG-ELECTRA and GELECTRALARGE, fall short of
the performance of my own implementation with both language models. This might be due
to the different implementation of the bert-model used or the omission of the higher-order
coreference. Another reason could be the adjustment of hyperparameters in order to save GPU
memory usage and computation time as well as the number of epochs which is not reported in
[81]. It is noticeable that the performance differences narrow down on the development set.
Whether the parameter tuning on the development set helped to limit the differences on the
test set or hindered generalization is questionable considering these results.
The DMBDZ BERT slightly improves upon the deepset BERT. This result is consistent

with previously reported results on other downstream tasks like NER and POS tagging.6 The
GBERT outperforms both by wide margin as suggested in [9]. Contrary to the results on
offensive language detection and NER [9], the GELECTRABASE achieves better results than
the GBERTBASE. The uncased GNG-ELECTRA performs even better as reported in [81].

5.3.2. Cross-lingual Coreference Resolution with Pre-trained Language Models

To emulate the problem of training a coreference resolution system on a low-resource language
or a language without any coreference annotated corpus, I use the three German corpora from
Section 5.1.1 to train or fine-tune the system on. The extensive TüBa D/Z v10 dataset is mainly
used as a reference, whereas the much smaller DIRNDL and the midsize SemEval-2010 corpus
are used to evaluate the benefits cross-lingual learning can bring to coreference resolution and
for which amount of target language data it is useful.
All cross-lingual experiments are conducted with the base versions of the pre-trained

language models and a segment size of 128 to the reduced GPU memory consumption and
because just a moderate drop in performance for shorter segments.

Table 5.2 shows the performance of the multilingual language models trained and evaluated
on the English portion of the OntoNotes 5.0 corpus. All hyperparameters are identical to
6https://github.com/stefan-it/fine-tuned-berts-seq
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𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
Multilingual BERT 82.6 79.1 80.8 73.4 69.2 71.3 71.2 65.2 68.1 73.4
XLM-RoBERTa 79.3 79.2 79.3 67.0 69.4 68.1 69.1 62.0 65.3 70.9

Table 5.2.: Evaluation ofmultilingual pre-trained languagemodels on theOntoNotes 5.0 dataset.

those used for BERTBASE in [38]. These trained models are applied to German datasets for
zero-shot evaluation and fine-tuned with additional German annotated data in the following
experiments.

Zero-Shot Learning and Fine-tuning on German On all of the three German corpora, the
bert-model with M-BERT and XLM-R is evaluated after training directly on the training set of
the same corpus, after training on the English OntoNotes 5.0 dataset, and after training on
English and fine-tuning on German data. For comparison, a setting with the best performing
German base model GNG-ELECTRA is directly trained on each dataset as well. Since that
language model suffers significantly from shorter segments, I report results for segment sizes
of 128 and 512. For training directly on the German datasets, the number of epochs is chosen
to match the number of steps in 4.3.2. However, it must be taken into account that the update
of the model for each step is based on a different number of coreference examples. While the
TüBa-D/Z v10 contains almost as many tokens as the OntoNotes 5.0 dataset, even though
it has significantly fewer documents, the SemEval-2010 and especially the DIRNDL dataset
consist of much shorter documents. For a detailed comparison, see Appendix A.2.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
IMS HotCoref DE - - - - - - - - - 47.93
+ prosodic information - - - - - - - - - 48.88
GNG-ELECTRA 128 66.60 47.85 55.69 66.55 44.97 53.67 67.35 45.50 54.31 54.56
GNG-ELECTRA 512 68.90 51.28 58.80 68.76 48.80 57.08 73.22 47.34 57.50 57.79
Multilingual BERT 66.51 42.85 52.12 66.18 40.41 50.18 67.70 38.77 49.30 50.53
zero-shot (from English) 68.19 51.14 58.44 67.05 48.47 56.27 67.05 51.00 57.93 57.55
+ fine-tuning (1 Epoch) 74.26 61.00 66.98 73.46 57.73 64.66 76.27 56.82 65.12 65.59
+ fine-tuning (5 Epochs) 73.35 65.28 69.08 71.66 62.38 66.70 72.97 62.20 67.15 67.64
+ fine-tuning (10 Epochs) 76.85 63.57 69.58 76.24 60.43 67.42 75.67 60.26 67.09 68.03
+ fine-tuning (20 Epochs) 77.75 66.42 71.64 76.53 63.13 69.19 74.96 62.55 68.20 69.68

XLM-RoBERTa 56.87 52.00 54.32 54.26 50.19 52.15 59.70 45.27 51.49 52.65
zero-shot (from English) 67.48 55.14 60.69 65.92 52.46 58.43 70.00 52.14 59.77 59.63
+ fine-tuning (1 Epoch) 71.87 62.42 66.81 70.84 60.33 65.16 74.13 57.71 64.90 65.62
+ fine-tuning (5 Epochs) 73.39 65.42 69.18 71.13 62.20 66.37 73.03 59.96 65.85 67.13
+ fine-tuning (10 Epochs) 72.63 63.71 67.88 70.77 60.74 65.38 73.65 57.67 64.69 65.98
+ fine-tuning (20 Epochs) 71.47 63.00 66.97 70.83 60.92 65.50 72.77 59.91 65.72 66.06

Table 5.3.: Evaluation of the bert-model for various cross-lingual settings on the DIRNDL
corpus.

Table 5.3 shows the evaluation on the tiny DIRNDL dataset. The bert-model is able to outper-
form the IMS HotCoref DE as expected for every languagemodel. Although the GNG-ELECTRA
performs better than the multilingual language models when directly trained on DIRNDL, the
latter profit enormously from pre-training on English data. Even the zero-shot setting with a
model, which has never seen a German sentence during training, matches the GNG-ELECTRA
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with a segment size of 512 in the case of M-BERT or performs even better in the case of XLM-R.
Both multilingual language models further improve after fine-tuning the zero-shot model on
the German dataset. Most of the gains are made during the first five epochs of fine-tuning,
and the XLM-R cannot improve further. The M-BERT, however, reaches a score of 69.68 F1 by
fine-tuning for 20 epochs and outperforms the GNG-ELECTRA by over 12 percentage points.
The gap to the directly on DIRNDL trained M-BERT is even larger with almost 20 percentage
points. These results prove that cross-lingual coreference resolution can massively benefit
low-resource languages.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
IMS HotCoref DE - - 52.11 - - 45.55 - - 48.17 48.61
CorZu - - - - - - - - - 45.82
GNG-ELECTRA 128 73.11 71.60 72.34 66.48 64.92 65.69 67.90 67.62 67.76 68.60
GNG-ELECTRA 512 74.65 76.30 75.46 68.27 70.41 69.32 69.66 72.79 71.19 71.99
Multilingual BERT 73.23 67.80 70.41 66.76 61.05 63.78 67.92 64.73 66.29 66.83
zero-shot (from English) 61.91 51.09 55.98 53.51 41.53 46.76 54.05 41.96 47.24 49.99
+ fine-tuning (1 Epoch) 71.18 64.74 67.81 64.08 56.51 60.06 63.62 58.94 61.19 63.02
+ fine-tuning (5 Epochs) 71.62 71.84 71.73 64.95 64.74 64.85 66.14 67.20 66.67 67.75
+ fine-tuning (10 Epochs) 72.38 72.93 72.66 64.62 66.40 65.50 67.23 66.76 67.00 68.39

XLM-RoBERTa 66.78 66.32 66.55 58.61 60.07 59.33 63.61 61.07 62.31 62.73
zero-shot (from English) 57.67 50.63 53.92 47.76 41.30 44.30 51.41 38.32 43.91 47.38
+ fine-tuning (1 Epoch) 68.56 63.07 65.7 62.52 55.46 58.78 63.09 60.44 61.73 62.07
+ fine-tuning (5 Epochs) 69.20 69.87 69.53 61.46 63.21 62.33 64.50 64.46 64.48 65.45
+ fine-tuning (10 Epochs) 69.64 70.44 70.04 61.97 63.74 62.85 64.51 65.46 64.99 65.96

Table 5.4.: Evaluation of the bert-model for various cross-lingual settings on the SemEval-2010
corpus with excluded singletons.

On the larger SemEval-2010 dataset, the directly trained BERT-based systems significantly
improve upon their performance on the DIRNDL dataset, as shown in Table 5.4. The zero-shot
models are clearly lagging behind but can still match or slightly exceed the performance of
the IMS HotCoref DE and CorZu. Fine-tuning the zero-shot model leads to better results than
directly training on the German dataset with the same language model. However, unlike
on the DIRNDL dataset, the fine-tuned multilingual language models cannot outperform
the GNG-ELECTRA directly trained on the SemEval-2010 dataset. Nevertheless, the results
of the cross-lingual settings are still encouraging for languages with similar-sized corefer-
ence annotated corpora and without language-specific language models comparable to the
GNG-ELECTRA.
The trend observed from the small DIRNDL corpus to the bigger SemEval-2010 continues

on the comparatively large TüBa-D/Z v10 dataset. Table 5.5 shows that the performance gap
between the deep learning models directly trained on the German dataset and the zero-shot
setting widens. However, the zero-shot models are able to outperform the IMS HotCoref DE,
whose performance is reported in Table 5.1. The IMS HotCoref DE performs similarly on all
three datasets despite their enormous difference in size, suggesting that the system is not able
to utilize the additional data. On the other hand, the score of the zero-shot models increased
from the SemEval-2010 to the TüBa-D/Z v10 dataset, although the very same checkpoints
of those models were used for evaluation on all German corpora. That might result from
the similarity between the TüBa-D/Z v10 and the OntoNotes 5.0 dataset. Even though the
SemEval-2010 dataset is a predecessor of the TüBa-D/Z v10 dataset, the document sizes and
sentence lengths of the latter are closer to the English dataset. Also, the number of mentions
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per entity and entities per document are similar according to [81]. The zero-shot models further
fine-tuned on German can improve upon their counterparts directly trained on the TüBa-D/Z
v10, although the improvement for the M-BERT is marginal. The fine-tuned M-BERT can
match the performance of the GNG-ELECTRA for the shorter segments, but both multilingual
language models cannot keep up with the longer segments. The experiments on the TüBa-D/Z
v10 dataset show that for languages with large coreference annotated corpora, cross-lingual
coreference can lead only to a minimal improvement. At the same time, however, they also
indicate that for languages without any coreference data, a zero-shot transfer from English
promises a performance that matches shallow feature-based models or is even slightly higher.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
GNG-ELECTRA 128 76.75 80.28 78.48 69.62 74.79 72.11 73.19 72.45 72.82 74.47
GNG-ELECTRA 512 78.99 83.88 81.36 72.27 79.53 75.73 75.78 76.85 76.31 77.80
Multilingual BERT 79.76 75.86 77.76 74.03 69.57 71.73 74.63 71.09 72.82 74.32
zero-shot (from English) 63.97 56.64 60.08 55.44 47.51 51.17 53.90 46.06 49.67 53.64
+ fine-tuning (1 Epoch) 79.19 74.67 76.87 74.22 67.46 70.68 72.00 71.93 71.97 73.17
+ fine-tuning (5 Epochs) 78.15 78.65 78.40 72.44 72.58 72.51 72.86 74.31 73.58 74.83
+ fine-tuning (10 Epochs) 78.02 78.27 78.15 72.32 72.22 72.27 72.79 73.65 73.22 74.55

XLM-RoBERTa 76.33 70.90 73.51 69.50 63.82 66.54 71.33 64.79 67.90 69.32
zero-shot (from English) 58.49 56.79 57.63 47.18 47.97 47.57 51.30 41.13 45.65 50.28
+ fine-tuning (1 Epoch) 75.48 72.20 73.80 67.82 65.26 66.51 69.29 65.55 67.37 69.23
+ fine-tuning (5 Epochs) 75.18 76.27 75.72 67.51 70.05 68.76 70.73 68.80 69.75 71.41
+ fine-tuning (10 Epochs) 73.45 78.07 75.69 65.54 72.40 68.80 70.17 69.11 69.64 71.38

Table 5.5.: Evaluation of the bert-model for various cross-lingual settings on the TüBa-D/Z v10.

Adversarial Cross-lingual Learning To increase the zero-shot capabilities of the bert-model
even further, I apply the adversarial cross-lingual learning approach described in Section
5.2.2. For this experiment, I use the M-BERT since it outperforms the XLM-R throughout
the previous experiments. The model is trained on the English portion of the OntoNotes 5.0
corpus and evaluated on the TüBa-D/Z v10 test set for the coreference task. To train the
language model acting as the generator and the discriminator layer on the adversarial task,
the model is provided with English and German data from the training sets of the OntoNotes
5.0 and TüBa-D/Z v10 datasets. The hyperparameters of the model and the coreference task
are identical to the hyperparameters used for the M-BERT in Table 5.2. The learning rates for
the adversarial task are set to 3e-7 for the generator and 2e-4 for the discriminator.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
Performance on OntoNotes 5.0

Multilingual BERT 82.56 79.14 80.81 73.42 69.2 71.25 71.23 65.19 68.08 73.38
+ Adversarial CL Learning 82.84 78.51 80.61 73.81 68.28 70.94 71.09 64.95 67.88 73.14

Zero-Shot Performance on TüBa-D/Z v10
Multilingual BERT 63.97 56.64 60.08 55.44 47.51 51.17 53.90 46.06 49.67 53.64
+ Adversarial CL Learning 65.90 56.79 61.01 57.61 47.48 52.06 56.25 46.54 50.93 54.67

Table 5.6.: Evaluation of the adversarial cross-lingual learning approach on the English
OntoNotes 5.0 and the German TüBa-D/Z v10 dataset via zero-shot transfer.
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Table 5.6 shows the performance of the bert-model trained with and without the adversarial
task on the English and German test sets. Despite being optimized against an additional
objective, the model can almost retain its performance on the English test set. For the zero-
shot application on German, the performance increases by 1 F1 point, suggesting that the
adversarial cross-lingual learning does, indeed, benefit the cross-lingual coreference resolution
capabilities.

Appendix A.5 shows that the adversarial task brought the English and German embeddings
closer together as intended. However, it also indicates that the language model is not improved
by learning a mapping between English and German but instead squeezes the embeddings
into a smaller feature space.
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6. Context-Aware Neural Machine Translation

One common field of application for coreference information is machine translation [60].
However, with recent developments in context-aware Neural Machine Translation (NMT), the
benefit of incorporating coreference information into those systems is in question. Earlier work
showed that the pronoun translation of context-agnostic models can be improved by finding
the best combination of translation hypotheses regarding the induced coreference clusters
[94]. Hwang et al. slightly improve two of the context-aware models originally evaluated
on pronoun resolution in [59], but do not report results for training the best performing
models with their contrastive learning approach [35]. Contrary, it is shown in [3] and [89]
that context-aware models inherit coreference resolving capabilities and even learn some form
of anaphora resolution.

6.1. Context-Aware Systems learn Discourse Phenomena

After demonstrating the coreference resolving capabilities earlier [89], Voita et al. proposed
another context-aware model in 2019, achieving improvements over a context-agnostic baseline
on deixis, ellipsis, and lexical cohesion [90]. They argue that context-awaremodels are generally
developed with a metric not sensitive to these discourse phenomena, of which at least deixis
and lexical cohesion are strongly tied to coreference resolution.
Their model is closely related to the deliberation networks [98]. As shown in Figure 6.1,

it consists of two parts: A context-agnostic encoder-decoder model called base model and a
context-aware decoder called CADec. However, for the sake of simplicity, the entire model
consisting of the context-agnostic base model and the context-aware decoder is referred to as
CADec in this thesis. Moreover, the context-agnostic base model is called base-model when
used as a standalone model in the following experiments.

The base model is a reimplementation of the original transformer [87] and translates every
source and context sentence independently. It is trained on single sentences and fixed before
training the compound model, including the context-aware decoder. The objective is to
maximize the sentence-level log-likelihood, where 𝑥𝑖 denotes the source and 𝑦𝑖 the target
sentences. ∑︁

(𝑥𝑖 ,𝑦𝑖 )∈𝐷𝑠𝑒𝑛𝑡

log 𝑃 (𝑦𝑖 |𝑥𝑖,Θ𝐵)

The context-aware decoder is a modification of the transformers decoder. It must take into
account not only the encoder’s output like in the standard encoder-decoder setting but also
the output of the context-agnostic decoder, resulting in an additional multi-head attention
layer. The translation of the source sentence by the base model is used as input to the very
first self-attention layer of the context-aware decoder. The states from the last layer of the
base model’s encoder for the source and all source-side context sentences are fed together
with a sentence distance embedding into the next attention layer. The output of the base
model’s decoder is concatenated with the embedding of the sampled, target-side tokens and
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Figure 6.1.: Context-agnostic encoder-decoder baseline translates each sentence independently
before the CADec-decoder corrects the source sentence translation [90].

an additional sentence distance embedding. The complete concatenation is fed into the last
attention layer of the context-aware decoder. Dependent on the translation 𝑦𝐵𝑗 sampled from
the base, the context-aware decoder is trained to maximize the following log-likelihood and
therefore correct the mistakes made by the base:∑︁

(𝑥 𝑗 ,𝑦 𝑗 )∈𝐷𝑑𝑜𝑐

log𝐸𝑦𝐵
𝑗
∝𝑃 (𝑦 |𝑥𝑖 ,Θ𝐵)𝑃 (𝑦 𝑗 |𝑥 𝑗 , 𝑦

𝐵
𝑗 , 𝑐 𝑗 ,Θ𝐶)

During training, either the translation of the source sentence by the base model or a corrupted
version of the reference translation is used as input to the context-aware decoder. Moreover,
reference translations are used for the context sentences.

6.2. Augmenting NMT Systemswith Coreference Information

To prove that coreference information can still benefit today’s NMT systems, I augment the
context-awareCADecwith coreference cluster information predicted by a dedicated coreference
resolver. In the following, two different methods are proposed to provide the model with this
information.
However, not only the CADec is a promising candidate for coreference augmentation -

the context-agnostic base-model on which the CADec is built, can be trained with additional
coreference information as well. Training the initial base-model is almost seven times faster
per step than training the CADec itself. On the OpenSubtitles2018 dataset [51], however, the
base-model is on par with the CADec regarding the BLEU score. Translating from English
to Russian, both models reach a score of 32.4, according to Voita et al. [90]. Providing the
base-model with explicit coreference information might lead to an improved pronoun handling
like the CADec is capable of but without the significant increase in training time.
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(a) Augmented input embedding of context-agnostic encoder

(b) Augmented encoder output before fed into the CADec-decoder

Figure 6.2.: Two different approaches to augmenting the context-agnostic encoder and CADec-
decoder with coreference cluster labels.

6.2.1. Coreference Cluster Labels

Each source token 𝑡 𝑗 belonging to a coreferent word can be associated with one or more
coreference clusters 𝐶𝑖 . Coreference cluster labels 𝑐 𝑗𝑖 are one-hot encoded vectors in which
each dimension 𝑖 relates to a coreference cluster.

𝑐
𝑗

𝑖
=

{
1 if𝑤𝑜𝑟𝑑 (𝑡 𝑗 ) ∈ 𝐶𝑖
0 otherwise

The base-model and CADec can be augmented with coreference cluster labels at various places
where an assignment with the source tokens is possible.

Baseline with Coreference Clusters Labels One way of augmenting the base-model and indi-
rectly the CADec with coreference cluster labels is to add them to the input embedding of
the encoder. This should lead to a better translation by the context-agnostic model regarding
coreference-related phenomena. Since the translation of the base-model is used as the candi-
date translation, which is only refined by the context-aware part of the CADec, a better initial
translation should benefit the CADec as well.
The input embedding of each token of the source sentence and each token of the source-

context sentences, when used in the CADec, is augmented with a coreference cluster label as
shown in Figure 6.2a. Due to the residual connections of the transformer network, the hidden
state size is increased by the same amount. This further enlarges the key and value matrices in
the CADec-decoder and also results in larger key and value matrices in the context-agnostic
decoder. Overall the number of parameters is only slightly increased in comparison with the
original CADec.
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CTX1: My hand is quite steady and the story soon comes to an end.

CTX2: My friend suffered from her heart since her youth.

CTX3: All too often it would beat too passionately and sometimes she felt as if a merciless
hand clutched at the twitching thing and squeezed it, dreadful and aching,

SRC: so that it may come to rest!

so that [START] her heart [SPLIT] the twitching thing [SEPERATOR] it [END]may come
to rest!

(a) Simple example of text-level coreference annotation

CTX1: Alright, who is it?

CTX2: It’s your little brother Charlie.

CTX3: Well, for goodness’ sake!

SRC: It’s my brother Charlie.

It’s [START] your little brother charlie [SEPERATOR] [START] your [SEPERATOR]my
[END] brother Charlie [END] .

(b) Recursive example of the text-level coreference annotation

Figure 6.3.: Two examples from the ContraPro test set [59] of different complexity with text-
level coreference annotation provided by the bert-model using SpanBERTLARGE

CADec with Coreference Cluster Labels Another option to specifically augment the CADec-
decoder with coreference information is to add the coreference cluster labels to the context-
agnostics encoder’s output along with the sentence distance embedding, as shown in Figure
6.2b. The combined embedding is fed into every layer of the CADec-decoder as key and value
into a multi-head attention layer. Due to the additional information, the corresponding key
and value weight matrices are slightly larger than in the original CADec leading to a marginal
increase in the overall number of parameters.

6.2.2. Text-level Coreference Annotation

Instead of altering the base-model and CADec, coreference information can also be provided by
incorporating it into the input sentences. Figure 6.3a shows a simple example of how the pro-
noun in the source sentence is augmented with coreferent mentions from the context sentences.
The [START] and [END] tokens surround each mention and its coreferent mentions, while the
[SEPERATOR] token separates the original mention from the provided coreferent mentions. In
the case of multiple coreferent mentions, the [SPLIT] token separates the coreferent mentions
from each other. Since mentions can contain other mentions and the bert-model is able to
resolve those recursions, it has also to be modeled by the annotation logic. Figure 6.3b gives
an example of the annotation of recursive mentions. The above examples show how a single
sentence is augmented. This is sufficient for the context-agnostic base-model. However, for the
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CADec the context sentences have to be augmented as well - not just with coreferent mentions
from preceding context sentences, but also from succeeding sentences, including the source
sentence to cover cataphoric relations.

6.3. Experiments

6.3.1. Datasets

Performance boosts in NMT due to context information in general and coreference information,
particularly, are challenging to measure since the commonly used BLEU metric is unlikely to
show any significant improvements [59]. Therefore various test suites emerged, focusing only
on specific words or single phenomenons [31][41][90].

ContraPro The models used in this experiment are evaluated on the ContraPro test set to
assess the impact of explicit coreference information [59]. ContraPro is a comparatively large
contrastive set of English to German translations focusing on pronouns. It contains 12,000
samples automatically extracted from the OpenSubtitles corpus [50] by searching for the
English pronoun it, aligned with the German pronouns er, sie and es. The test set consists of
4,000 samples for each German pronoun.

Each sample consists of the source sentence, source context sentences, the target sentence,
and target context sentences. Additionally, contrastive target sentences are given, in which
the German pronoun is replaced by a wrong pronoun. The NMT systems translate the English
source sentence and calculate the score of that translation given the correct one or one of the
contrastive German target sentences like it is done with the target sentence during training.
If the best score is assigned to the target sentence with the correct pronoun, the sample is
considered to be solved correctly.

WMT17 Like the models in the evaluation done by the authors of ContraPro, the augmented
models are trained on the English to German part of the training corpus for the WMT 2017
shared task on news translation [8]. This includes the Europarl v7, the Common Crawl corpus,
the News Commentary v12, and the Rapid corpus of EU press releases. Together they consist of
∼5.85 million sentence pairs - enough to create ∼1.46 million sentence pairs with three context
sentences. All models based on the base-model are trained on all of the single sentence pairs,
including the sentences used for context training the CADec-based models. These numbers
also come close to the number of the English to Russian dataset used by the authors of the
CADec [90].
For evaluating the BLEU score of the trained models I use a development set consisting of

the newstest2014, newstest2015 and newstest2016 data provided by the WMT 2017 shared
task. They consist of 8,171 sentence pairs resulting in 2,042 sentence pairs with context.
The already preprocessed data downloaded from the official website1 is further prepared

by the pipeline described for the CADec.2 Subsequently the single sentence pairs are split
into groups of four sentences to train the context-aware models. Since the training data does
not contain any document boundaries, there is a small number of sentences with random
context sentences. As discussed in [59], the models should be robust against these anomalies.

1http://statmt.org/wmt17/translation-task.html
2https://github.com/lena-voita/good-translation-wrong-in-context/blob/master/README.md
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Even though the development data is provided with document boundaries, the contextualized
samples are created in the same manner as the training data.

6.3.2. Coreference Resolution

The coreference clusters were created by my PyTorch implementation of the model by Joshi
et al. [38] utilizing SpanBERTLARGE as the pre-trained language model [39]. It was trained
on the Onto Notes 5.0 dataset as described in 4.3.2 and applied to the English portion of the
WMT17 corpus. The data was split into the same documents of four sentences as it was done
during the NMT preprocessing. Each document was tokenized by the SpanBERT tokenizer
and split into segments of 512 tokens, including the classification and separator token at the
start and end of each segment. The resulting coreference clusters were aligned with the data
preprocessed by the NMT pipeline, translated into coreference cluster labels, and used to
annotate the source-side text with the text-level coreference annotations explained in Section
6.2.

The number of dimensions of the coreference cluster labels is given by the maximal number
of clusters in a single document of the corpus. For the WMT17 data, the coreference system
resolved up to 18 coreference clusters for a single document. Since the vast majority of
documents contain far less clusters, the one-hot encoded coreference cluster labels of each
document are randomly permuted before training. Thereby all indices are equally likely to
imply a coreferent relation. For the context-agnostic models, the labels are cleaned so that
mentions in the source sentence are only assigned to a cluster if it contains another mention
in the same sentence.
For the text-level coreference annotations, the coreferent mentions are sorted by their

occurrence in the document from early to late. Each coreferent mention in the context and
source sentence is then annotated with the other sorted mentions. Unlike the coreference
cluster labels, the annotations are not cleaned for the context-agnostic models. The source
sentences of the single sentence pairs do contain mentions from context sentences even though
they are used with a context-agnostic model.

6.3.3. Models

Besides the base-model and CADec as described in [90], I train both of the models with multiple
modifications. If not stated otherwise, all configurations are trained with the hyperparameters
originally used.

Input Cluster Labels The input embedding of the context-agnostic encoder is augmented with
coreference cluster labels as described in Section 6.2.1 and shown in Figure 6.2a.

Output Cluster Labels The output of the context-agnostic encoder is augmented with corefer-
ence cluster labels before being fed into the context-aware decoder as described in Section
6.2.1 and shown in Figure 6.2b.

Text-level Annotation Mentions in context and source sentences are annotated with other
coreferent mentions as described in Section 6.2.2 and shown in Figure 6.3.

Larger Base Model #1 The number of layers in the context-agnostic transformer is increased
from 8 to 12.
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Figure 6.4.: Comparison of the different NMT approaches regarding their performance on the
ContraPro test set and the speed measured in steps per second during the training.
Additionally, the BLEU score on the WMT17 development set is visualized by
the size of each mark. The exact numbers this plot is based on can be found in
Appendix A.6.

Larger Base Model #2 The embedding and hidden state sizes of the context-agnostic trans-
former are increased from 512 to 768.

Larger Base Model #3 The embedding and hidden state sizes of the context-agnostic trans-
former are increased from 512 to 768. Additionally, the number of attention heads is increased
from 6 to 12, and the dropout of the attention layers, residual layers, and fully-connected layers
from 0.1 to 0.2.

6.4. Results and Analysis

The trained NMT systems are evaluated regarding three different metrics. The ContraPro score,
the BLEU score, and the speed measured during training in steps per second. The base-model
configurations were trained for about 150k steps except for the bigger models, which were
trained for an additional 50k steps. The CADec configurations were trained for about 130k
steps. The snapshots for evaluation were chosen by the best ContraPro scores.
With an accuracy of 60.87% on the ContraPro test set, the CADec is on par with the best

performing model reported in [59] and clearly outperforms the previously proposed model
by Voita et al. [89]. That makes the CADec an excellent candidate to measure the gains from
explicit coreference information provided by a dedicated system.
Figure 6.4 draws the big picture, visualizing the performance of all configurations on all

three metrics. It clearly shows the dominance of the CADec-based models over the base-model
and how the base-model with more parameters and text-level coreference annotations can
overtake the by design context-aware models in terms of pronoun resolution and speed while
matching them regarding the BLEU score.
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6.4.1. Analysis of Coreference Cluster Labels

Table 6.1 shows that the models augmented with coreference cluster labels achieve a slight but
constant improvement over their baselines for the pronoun translation on the ContraPro test
set. The CADec with additional coreference cluster labels in the context-agnostic encoder’s
input further improves upon the configuration with only output cluster labels.

CONTRAPRO SCORE
base-model 47.82
+ Input Cluster Labels 49.78
+ Text-level Annotation 64.42
+ Larger Base Model #1 66.17
+ Larger Base Model #2 65.36
+ Larger Base Model #3 66.81

CADec 60.87
+ Output Cluster Labels 61.76
+ Input Cluster Labels 62.61

+ Text-level Annotation 62.58

Table 6.1.: Overall scores on the ContraPro dataset evaluated on all 12,000 contrastive samples.

The base-model with input cluster labels outperforms its baseline as well but is still far
away from the performance of the CADec configurations. This could be expected since the
input cluster labels only provide coreference information regarding the source sentence but
no information about the context sentences. Unlike the CADec variants, it is also significantly
slower than its baseline, as shown in 6.4.

6.4.2. Analysis of Inline Coreference Augmentation

#Parameters BLEU Score
base-model 128m 31.00
+ Input Cluster Labels 129m 31.09
+ Text-level Annotation 128m 30.58
+ Larger Base Model #1 172m 31.61
+ Larger Base Model #2 206m 31.08
+ Larger Base Model #3 287m 31.82

CADec 191m 31.70
+ Output Cluster Labels 191m 31.76
+ Input Cluster Labels 192m 31.84

+ Text-level Annotation 191m 31.87

Table 6.2.: Comparison of the NMT systems in terms of model size and BLEU score

The base-model with text-level coreference annotations and its bigger variants clearly out-
perform every other model regarding the overall accuracy on the ContraPro test set. In terms
of the BLEU score, however, the standard-sized base-model falls short of the context-aware
models. The result is contrary to the findings of the authors of the CADec [90]. They claim
that the context-agnostic and context-aware models do not differ in BLEU score. This dis-
crepancy might occur due to the different language pairs used. While this experiment was
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conducted on English to German, the original CADec was trained on an English to Russian
corpus. Moreover, the genre of the data differs as well. The WMT17 data mainly contains news
texts and transcripts from the European parliament, the originally used OpenSubtitles dataset,
in contrast, consists entirely of movie subtitles.
Table 6.2 shows that the model size could be a limiting factor hindering the base-model

configurations from matching the BLEU score of the CADec. The larger base-model #3 proves
that increasing the number of parameters can help to close that gap, though it is even 50%
larger than the CADec models. The larger base-model #1 comes close to those BLEU scores
and shows in comparison with the larger base-model #2 that increasing the number of layers
in the transformers encoder and decoder has a more significant impact than increasing the
layer and embedding sizes. As shown in Figure 6.4, all context-agnostic models are faster than
the context-aware models. That makes the larger base-model #3 with text-level coreference
annotation a better performing, faster to train model without any sacrifices regarding the
BLEU score.
Even though the configurations with text-level coreference annotations can clearly out-

perform the configurations with coreference cluster labels for the base-model, the CADec
with text-level coreference annotations cannot improve the overall performance of its coun-
terpart with coreference cluster labels on the ContraPro test set. In the case of the CADec,
both approaches encode the same coreference information in different ways, whereas for the
base-model, the text-level coreference annotations contain additional contextual information
in comparison to the coreference cluster labels.

6.4.3. Analysis of Pronoun Resolution

The ContraPro test set does not only provide an overall score for pronoun translation but
allows for analyzing the systems regarding different German pronouns and distances between
pronoun and antecedent as well.

PRONOUN ACCURACY
er es sie

base-model 21.45 87.63 34.38
+ Input Cluster Labels 23.90 88.93 36.53
+ Text-level Annotation 50.00 88.18 55.08
+ Larger Base Model #1 49.68 88.68 60.15
+ Larger Base Model #2 50.43 90.18 55.48
+ Larger Base Model #3 51.60 90.93 57.90

CADec 42.00 90.58 50.03
+ Output Cluster Labels 46.33 91.20 47.75
+ Input Cluster Labels 48.45 91.55 47.83

+ Text-level Annotation 45.63 92.53 49.60

Table 6.3.: Accuracy of the NMT systems on the ContraPro test set broken down by German
pronouns. For each pronoun ContraPro contains 4,000 contrastive samples.

Pronouns The pronoun distribution in the WMT17 training data is clearly reflected by the
models’ performances on the different German pronouns, as shown in Table 6.2. About one
third of the English pronouns it refer to the German pronoun es while only ∼8% refer to sie
and ∼6% to er [59].
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Since the base-model seems to translate it mostly to es leaving much room for improvement
on the pronouns er and sie, its variants with explicit coreference information improve especially
on these two pronouns. The CADec configurations on the other hand can not outperform their
baseline for the pronoun sie but manage to increase accuracy on er and slightly on es.

Distances Table 6.4 shows the performance of all configurations regarding the sentence
distance between the pronoun and its antecedent. The base-model does perform strongly for
distance 0 (pronoun and antecedent are in the same sentence). Due to its lack of context
information, the accuracy drops for inter-sentence coreference. However, it seems to suffer
less the greater the sentence distance becomes. This phenomenon is explained in [59] by the
greater share of the German pronoun es for longer distances.

DISTANCE ACCURACY
0 1 2 3 >3

base-model 75.42 36.86 48.81 50.09 66.97
+ Input Cluster Labels 77.96 38.95 47.75 53.93 71.72
+ Text-level Annotation 78.29 59.84 62.58 64.57 68.33
+ Larger Base Model #1 80.96 61.27 65.17 65.45 68.55
+ Larger Base Model #2 79.83 60.38 64.83 63.18 71.04
+ Larger Base Model #3 83.17 61.12 65.76 68.24 70.81

CADec 68.17 55.90 63.64 67.36 82.81
+ Output Cluster Labels 71.50 56.57 62.91 67.71 80.32
+ Input Cluster Labels 71.50 58.06 62.52 67.54 81.00

+ Text-level Annotation 74.04 56.66 64.64 70.16 78.28

Table 6.4.: Accuracy of the NMT systems on the ContraPro test set broken down by sentence
distance between the pronoun and its antecedent. ContraPro contains 2,400 con-
trastive samples of intra-sentence coreferences. With 7,075 samples most data exist
for the distance of a single sentence. With longer distances the number of samples
declines from 1,510 to 573 to 442.

The base-model with coreference cluster labels improves upon its baseline for intra-sentence
coreferences. Although the labels do not provide any information about inter-sentence coref-
erences, the model does improve for most greater sentence distances as well. One reason could
be that the labels prevent the model from mistakenly recognizing coreferences in the source
sentence. Another possibility is that some coreferences in the source sentence were missed or
not considered to be a nominal antecedent during the automatic creation of the ContraPro test
set. Appendix A.7 provides an evaluation of those coreference relations.
As described in Section 6.4.2 the base-model with text-level coreference annotations and

its bigger variants clearly outperform the base-model variants, which were not augmented
with context information. This observation is particularly evident for shorter inter-sentence
coreferences, while for distances over three sentences, the other models can catch up due to
the skewed pronoun distribution previously mentioned. The bigger variants can also improve
their intra-sentence pronoun translation.

AllCADec-basedmodels performworse than the base-model configurations for inter-sentence
coreferences. Whereas the latter are provided with a single sentence, which most probably
contains all necessary information needed to correctly translate the pronouns, the former
need to identify that information in an input of four sentences making the problem more
difficult. For distances of one and two sentences, the CADec falls short of the bigger base-models
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with text-level coreference annotations but can outperform them for longer dependencies.
Several factors could play a role here: For longer distances, the annotations might suffer
from longer coreference chains resulting in more useless mentions in the augmented source
sentence between the pronoun and the nominal antecedent. This problem could be overcome
by reversing the annotated mentions’ order or removing the non-nominal mentions from
them. Alternatively, the coreference clusters automatically defined by the coreference resolver
might worsen for wider coreference distances. This would be consistent with the observation
that coreference resolution systems struggle with larger documents [38]. The fact that the
CADec with output cluster labels and the configurations with additional input cluster labels
improve upon their baseline only for short distances as well strengthens this thesis. Contrary
to the results of the other models augmented with coreference information, the CADec with
annotations outperforms its baseline for a distance of three sentences but falls short for longer
distances of not only the CADec but also the configurations with coreference cluster labels.
This might result from a generally greater impact on the translation of the text-level corefer-
ence annotation compared to the cluster labels and a systematic problem of the coreference
resolver for distances greater than four sentences. For those pronouns, the nominal antecedent
is not even part of the context sentences the coreference resolver considers. Since the resolver
trains almost entirely on complete documents, it might expect a nominal antecedent for every
pronoun to exist within the boundaries of the input text and therefore tends to assign the
pronoun to an antecedent candidate, even though the correct antecedent is not part of the text
excerpt.
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7.1. Conclusion

In the scope of this thesis, I published a PyTorch implementation of three of the most important
models in the recent years, whose implementations were originally done with TensorFlow:
The e2e-model and c2f-model by Lee et al. [49][48] and the bert-model by Joshi et al. [38]. I
used the bert-model to analyze how different pre-trained language models other than BERT
or SpanBERT can increase the performance of coreference systems or improve their time
and memory efficiency. For German coreference resolution, I could confirm the latest results
of German neural end-to-end coreference systems [81] and reported a new state-of-the-art
performance. Further experiments with multilingual language models demonstrated that low-
resource languages or languages without any coreference annotated corpora can immensely
profit from cross-lingual coreference resolution. Finally, I could also show how today’s context-
aware NMT systems can still benefit from explicit coreference information, proving that
coreference resolution is still an imported field of research.

By replacing the originally used language models with ELECTRALARGE, the bert-model
reached a CoNLL-2012 score of 81.0 F1 on the OntoNotes 5.0 only beaten by the massive
CorefQA [97] which utilizes additional question answering corpora. I reported the perfor-
mance, size, and training speed for various smaller and distilled language models making an
informed decision on the trade-off between them possible. With ELECTRASMALL, the number
of trainable parameters of the bert-model is six times lower than with the originally used
BERTBASE while still maintaining a score of 71 F1.

For the German coreference resolution, ELECTRA seems to be the best language model as
well. By using an ELECTRALARGE model pre-trained on German, I achieved an F1 score of 80.08
on the TüBa-D/Z v10, which is, to the best of my knowledge, the highest score ever reported on
that dataset. The findings of the evaluation of multiple German BERT and ELECTRA variants
were mainly congruent with the contemporary work of Schröder et al. confirming their results
[81].

I evaluated cross-lingual coreference systems on three German datasets of different sizes
to emulate low-resource languages or languages without any coreference annotated data. I
successfully transferred knowledge learned on a large English coreference annotated corpus to
German by using multilingual language models together with the bert-model. The evaluation
on the small DIRNDL dataset showed that cross-lingual coreference resolution can enormously
benefit low-resource languages by outperforming the best model only trained on DIRNDL
by about 12 F1 points. The same experiment on two larger corpora demonstrated that the
cross-lingual approach can also be valuable to languages with more coreference annotated data
if no better pre-trained language model specifically for that very language exists. A zero-shot
transfer from English to German could match or outperform the scores of older feature- and
rule-based systems on all three datasets and thus represents a valid option for languages with-
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out any coreference annotated corpora. The application of adversarial cross-lingual learning
to a coreference resolution system to improve its cross-lingual capabilities slightly increased
the zero-shot performance.

I proved that today’s context-aware NMT systems still benefit from providing explicit
coreference information, even though they do have some coreference resolution capabilities
inherently. By adding coreference cluster labels to each token or by annotating coreferent
mentions in the input text, the context-aware CADec [90] did improve on the translation of
pronouns. However, an even more significant improvement and even better translation of
pronouns were achieved by the actually context-agnostic baseline when annotating the input
sentence with coreferent mentions from the context sentences. The faster baseline with the
same BLEU score and better pronoun translation shows that explicit coreference information
can not only improve context-aware models but can also help to replace themwith less complex
and more efficient systems. I analyzed the pronoun translation in detail, showing the strengths
and weaknesses of different NMT systems, which can be used as a starting point for future
work.

7.2. Future Work

Combining the ELECTRALARGE, which performed best with the bert-model in my English
coreference experiments, with the changes to the bert-model proposed in [99] and [43] is a
promising option for future work and might further increase the bert-models performance.
This could lead to a new state-of-the-art system for coreference resolution without relying on
massive question answering corpora and an highly computational expensive training.

To obtain even more meaningful and general insights into the benefits of cross-lingual coref-
erence resolution, further experiments on more languages not as closely related as English
and German, are necessary. But not just experiments with a single source language are of
interest. Pre-training a single BERT-based coreference system on many languages might take
even greater advantage of the capabilities of the multilingual language model and might lead
to an improved cross-lingual performance of the coreference system.

In this thesis, I used the M-BERT and XLM-R language models as the foundation for the
cross-lingual experiments. However, many more multilingual word embeddings exist, which
may perform even better. Given the good performance of the different ELECTRA models used
for English and German coreference experiments, an ELECTRA-based, multilingual language
model like the XLM-E [11] is an exciting option for further investigations. Another possibility
to further increase the cross-lingual performance is tuning additional hyperparameters like
the segment size or emphasizing regularization by increasing the dropout rates.

Future work on coreference information in NMT could further elaborate the inline corefer-
ence annotation. With longer context and more coreferent mentions, the annotated source
sentence gets harder to translate due to longer annotations. One approach to circumvent
these problems is to include only the mentions head words in the annotations or utilize the
headword embeddings learned by the bert-model for the mention representation. Head words
contain a lot of information like gender or the grammatical number necessary for coreference
resolution. Omitting the remaining parts of the mention would lead to shorter annotations
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7.2. Future Work

and make it easier for the model to focus on important information. Another problem of more
coreferent mentions is the higher percentage of repeating pronouns, especially later in the
document, which do not offer additional information. Trying to remove those pronouns from
the annotation or reversing the order of the mentions in the annotation so that the annotated
mention and more meaningful coreferent mentions from the beginning of the document are
closer together could be interesting as well.

Exploring other approaches to augment an NMT system with coreference resolution could
also be the subject of future work. Leveraging the mention embeddings learned by the corefer-
ence system rather than annotating the input on the text-level could provide more context
information. The coreference cluster labels provide a linking between embeddings learned by
the NMT system but are limited to the context that system uses for translation.
Further optimization of the models I used in my experiments could be worthwhile as well.

The performance of the largest variant of the base-model trained with text-level coreference
annotations might be possible with fewer parameters and shorter training time by not increas-
ing the hidden layer sizes. Also, the BLEU score of the CaDEC can possibly be improved by
using the larger base models for the context-agnostic agnostic part of the model.
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A. Appendix

A.1. PyTorch Implementation Performance

Table A.1 shows the detailed coreference score on the English portion of the OntoNotes 5.0 test
set [93] achieved by the PyTorch implementation discussed in Section 4.2. Besides the results
obtained by following the original training procedures of the models described in Section 4.1 I
also report the results for training the e2e-model as well as the bert-model with BERTBASE and
SpanBERTBASE for longer.

𝑀𝑈𝐶 𝐵3 𝐶𝐴𝐸𝐹

P R F1 P R F1 P R F1 Avg. F1
e2e-model 78.4 73.3 75.8 68.8 61.4 64.9 62.6 59.6 61.0 67.2
+ 500k Steps 78.7 73.2 75.9 69.1 61.5 65.1 63.0 59.4 61.2 67.4
c2f-model 82.4 76.7 79.4 72.8 65.4 68.9 68.6 61.4 64.8 71.0
BERTBASE 82.5 79.8 81.1 72.5 69.8 71.1 70.0 65.9 67.9 73.4
+ 30 Epochs 82.6 80.2 81.4 73.6 70.7 72.1 71.2 66.9 69.0 74.2
BERTLARGE 84.2 82.8 83.5 76.1 74.4 75.2 73.7 70.5 72.0 76.9
SpanBERTBASE 83.6 83.1 83.4 75.1 75.5 75.3 74.0 71.2 72.6 77.1
+ 30 Epochs 84.3 83.4 83.9 76.2 75.8 76.0 74.9 71.3 73.0 77.6
SpanBERTLARGE 85.5 85.0 85.3 78.4 78.0 78.2 76.3 74.9 75.6 79.7

Table A.1.: Coreference scores of the PyTorch implementation on the OntoNotes 5.0 test set.

A.2. Comparison of Coreference Corpora

Table A.2 shows the sizes of the different coreference annotated corpora used in this thesis.
The values for the OntoNotes 5.0 corpora [93] refer to the English portion of that dataset. For
splitting the TüBa-D/Z v10 corpus [84] into training, development, and test set, I follow the
boundaries described in [76]. SemEval-2010 describes the split of the TüBa-D/Z v8 defined
in the coreference resolution shared task [73]. The DIRNDL corpora [7] used in this thesis is
identical to the version used in [77].

𝑇𝑅𝐴𝐼𝑁𝐼𝑁𝐺 𝐷𝐸𝑉𝐸𝐿𝑂𝑃𝑀𝐸𝑁𝑇 𝑇𝐸𝑆𝑇

Docs Sents Tokns Docs Sents Tokns Docs Sents Tokns
OntoNotes 5.0 2,802 73,629 1,299,312 343 9,308 163,104 348 9,386 169,579
TüBa-D/Z v10 2,190 65,416 1,258,512 727 15,593 276,635 727 14,586 252,652
SemEval-2010 900 19,233 331,614 199 4,129 73,145 136 2,736 50,287
DIRNDL 294 1,492 22,408 55 238 3,570 132 753 12,656

Table A.2.: Sizes of English and German coreference corpora
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A. Appendix

A.3. Hyperparameters for English Coreference Resolution

In order to obtain results on the OntoNotes 5.0 comparable to the results in [38] and [39],
I tuned the hyperparameters in a similar way. For the segment sizes of 128 and 512, I tried
the BERT and task learning rates suggested in [39]. That includes the values {1e-5, 2e-5} as
BERT learning rates and {1e-4, 2e-4, 3e-4} as task-specific learning rates. Table A.3 shows
the best parameters for the bert-model with different pre-trained language models. For the
ELECTRALARGE, I took over the learning rates from its base-sized counterpart.

Segments Learning Rates
NUM SIZE BERT TASK

RoBERTaBASE 3 512 1e-5 2e-4
DistilBERT (cased) 11 128 2e-5 3e-4
DistilBERT (uncased) 11 128 2e-5 3e-4
DistilRoBERTa 11 128 1e-5 2e-4
TinyBERT4 11 128 2e-5 3e-4
TinyBERT6 11 128 1e-5 3e-4
ELECTRASMALL 3 512 1e-5 3e-4
ELECTRABASE 3 512 1e-5 2e-4
ELECTRALARGE 11 512 1e-5 2e-4

Table A.3.: Number of segment and their sizes as well as BERT and tasks learning rates of the
bert-model for different language models.

In general, changing the learning rates within the specified scope only has a minor impact
on the performance on the OntoNotes 5.0 development set, whereas the segment size has a
much greater influence.

A.4. Hyperparameters for Cross-Lingual Coreference Resolution

Learning rates were optimized for fine-tuning cross-lingual coreference resolution systems
on German after previously training them on English. For various numbers of epochs, the
best learning rate for the underlying language model and the coreference layers on top were
determined on all three German corpora. Table A.4 shows the parameters which were found.
Interestingly the language model learning rate is pretty similar for each dataset and language

TüBa-D/Z v10 SemEval-2010 DIRNDL
LR BERT LR TASK LR BERT LR TASK LR BERT LR TASK

M-BERT (1 Epoch) 1e-5 2e-4 2e-5 2e-5 1e-5 2e-5
M-BERT (5 Epochs) 1e-5 2e-4 2e-5 2e-5 1e-5 2e-6
M-BERT (10 Epochs) 1e-5 2e-4 1e-5 1e-4 1e-5 1e-4
M-BERT (20 Epochs) - - - - 1e-5 2e-6
XLM-R (1 Epoch) 1e-5 2e-7 1e-5 2e-5 4e-6 2e-6
XLM-R (5 Epochs) 9e-6 2e-5 2e-5 2e-5 9e-6 2e-5
XLM-R (10 Epochs) 1e-5 2e-6 1e-5 2e-6 1e-6 2e-5
XLM-R (20 Epochs) - - - - 1e-6 2e-5

Table A.4.: BERT and tasks learning rates for fine-tuning English model on German datasets.
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A.5. Adversarial Cross-Lingual Learning

model, whereas the task learning rate varies over a broader range and does not seem to be very
sensitive. Overall the learning rates on the larger TüBa-D/Z v10 corpus are more consistent
than on smaller datasets and are almost identical to the learning rates used in [38].

A.5. Adversarial Cross-Lingual Learning

To evaluate if the adversarial task had the intended effect on the language model, Keung et al.
measured the cosine similarity of the mean pooled embeddings on parallel data before and
after training the language model simultaneously on the downstream and adversarial task
[42]. Table A.5 shows the cosine similarity between the English and German embeddings on
parallel and non-parallel data. While the parallel data consists of 10,000 documents randomly
sampled from the WMT17 dataset [8], the non-parallel data are randomly joint documents
from the English OntoNotes 5.0 [93] and the German TüBa-D/Z v10 [84] datasets.

Parallel Data Non-Parallel Data
Multilingual BERT 0.75408 0.66266
+ Fine-tuned on Coreference-Task 0.86427 0.77595
+ Adversarial CL Learning 0.91110 0.82981

Table A.5.: Comparison of the cosine similarities of English and German embeddings, using
M-BERT with and without adversarial cross-lingual learning. The similarities are
evaluated on parallel and non-parallel data.

The adversarial cross-lingual learning does, indeed, lead to a higher cosine similarity on the
parallel data as intended and similar to what was reported in [42]. However, the similarity
for non-parallel data also increases, despite the English and German sentences being no
translations of each other and completely independent. Also noteworthy is that most of
the increase in similarity is already achieved by fine-tuning the general M-BERTBASE on the
coreference resolution task without the adversarial task. This suggests that the adversarial
cross-lingual learning forces the model to squeeze the embeddings into a smaller vector space
rather than learning a meaningful mapping between English and German.

Steps / Sec ContraPro Score BLEU Score
base-model 0.4613 47.82 31.00
+ Input Cluster Labels 0.3593 49.78 31.09
+ Text-level Annotation 0.4551 64.42 30.58
+ Larger Base Model #1 0.2821 66.17 31.61
+ Larger Base Model #2 0.3160 65.36 31.08
+ Larger Base Model #3 0.1707 66.81 31.82

CADec 0.0645 60.87 31.70
+ Output Cluster Labels 0.0643 61.76 31.76
+ Input Cluster Labels 0.0660 62.61 31.84

+ Text-level Annotation 0.0660 62.58 31.87

Table A.6.: Speed, ContraPro and BLEU Score of NMT Systems
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A. Appendix

A.6. Performance of NMT Systems

Table A.6 shows the exact values used for Figure 6.4 in Section 6.4. The speed is defined as
steps per second during the training. Detailed information about how the batch sizes are
calculated for the base-model and the CADec can be found in the corresponding repository.1
The pronoun score is evaluated on the complete 12,000 examples of the ContraPro test set. For
the BLEU score, the performance on the WMT17 [8] development data described in Section
6.3.1 is reported. The snapshot for each configuration is picked by the highest ContraPro score.

A.7. Coreferences in ContraPro Test Set

The ContraPro test set was created with the help of a coreference resolution system to find
suitable samples from a much larger parallel corpus automatically. Therefore not all coreferent
mentions of the pronoun in question may have been detected, and the distance information
provided for each sample might be incorrect. Missed intra-sentence coreferences are of
particular interest since they could be exploited by a context-agnostic model even though the
incorrect distance information suggests otherwise. Table A.7 shows howmany coreferences for
the pronoun it in the source sentence were found by my coreference system despite ContraPro
stating greater sentence distances. A manual random evaluation indicates that in many of
these cases, the coreferent mention can actually provide additional information helpful for
translating the pronoun.

DISTANCE
1 2 3 >3

total samples 7,075 1,510 573 442
found coreferences 940 218 91 62
filtered coreferences 130 31 8 12

Table A.7.: Number of intra-sentence coreferences not considered in the ContraPro test set,
but detected by my coreference resolver. For the filtered coreferences the mentions
it, its and itself were excluded, since they most probably do not provide additional
information for the NMT system.

1https://github.com/lena-voita/good-translation-wrong-in-context#batch-size
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