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Abstract

Abstractive long document summarization remains a difficult problem in natural language

processing, yet the use cases - especially for longmeeting summarization - are obvious. Too

often do summaries contain factual inconsistencies. In order to build better summarization

models for long document summarization it is integral to be able to measure the factual

correctness of generated summaries, which itself is by no means a trivial task. In this thesis

I take two promising metrics for factual correctness in summarization and adapt them

specifically for long meeting summarization. As a result the metrics are able to process

longer source documents which increases their performance. To show that reporting on

factual correctness in summarization research is a meaningful addition to standard ROUGE

scores I apply the two adapted metrics to DialogLED - a model specifically trained for long

meeting summarization.
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Zusammenfassung

Abstraktive Zusammenfassung von langen Dokumenten ist weiterhin ein schwieriges

Problem in der Sprachverarbeitung. Gleichzeitig sind die Anwendungsfälle - besonders

für die Zusammenfassung von langen Meetings - leicht zu sehen. Zu häufig enthalten

generierte Zusammenfassungen faktische Fehler. Um bessere Modelle zur Zusammenfas-

sung zu entwickeln ist es wichtig die faktische Korrektheit messen zu können, was an sich

schon keine einfache Aufgabe ist. In dieser Thesis beleuchte ich zwei vielversprechende

Metriken zur faktischen Korrektheit für Zusammenfassung und adaptiere diese speziell

für die Zusammenfassung von langen Meetings. Dadurch können die Metriken längere

Quelldokumente verarbeiten, was ihre Leistung verbessert. Um zu zeigen, dass es eine

sinnvolle Ergänzung zu ROUGE Scores ist in Forschung zu Zusammenfassung auch über

faktische Korrektheit zu berichten, wende ich die zwei Metriken auf das DialogLED Modell

an, welches speziell für Zusammenfassung von langen Meetings trainiert ist.
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1. Introduction

1.1. Motivation

Good Summarization - whether human or machine generated - arguably is the most

powerful method for high speed information gathering. Lots of people spend a lot of time

summarizing content for others, including myself as I wrote the abstract of this thesis.

Similar to other natural language processing tasks like translation or text classification, the

practical applications of a good automatic summarization system are easy to see. Access

to a short and concise summary of a larger body of text will save the reader time or

allow them to get an overview of a greater variety of documents in the same amount of

time. Combined with automatic speech recognition, automatic summarization of meeting

transcripts can provide others easy access to the content of a missed meeting. Additionally,

when training a model for query-based summarization, the summary can be individually

tuned by prepending the input with a query like "What did person A say about topic b?".

This way summaries can become even more specific to the user’s needs. So what’s holding

back widespread use of query-based meeting summarization?

Long meeting summarization is difficult even for today’s state of the art summarization

systems. Research has shown that around 30% of model-generated summaries contain

factual errors [11]. But to create better summarization systems it is essential to be able to

evaluate the goodness or factual correctness of a summary automatically.

In contrast to other natural language processing tasks summarization is very difficult to

evaluate automatically, let alone manually. The evaluation of tasks like the classification

of text into classes of sentiment for example is rather easy, because there is one ground

truth label. In this respect the task of translation is more difficult, because there are a

number of correct translations for a phrase. However translation has the advantage that

it can be divided and conquered at a sentence level. The difficulty with summarization

is that in order to summarize correctly a larger context of the document is needed and a

summarization system also needs to determine what the important parts of a source text are.

Therefore there is a plethora of correct solutions to any particular summarization problem,

which calls for advanced automatic evaluation metrics that take factual correctness into

account.

Another problem for summarization is that lots of current state of the art summarization

models limit their input to 512 or 1024 tokens due to their transformer architecture [22].

This architecture makes heavy use of the attention mechanism whichs space requirement

scales quadratically with the input length, thus prohibiting a practical use of input lengths

above the mentioned limits.
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1. Introduction

To address the latter problem of input length a few methods have been proposed, among

the most popular of which is the longformer [1] which substitutes the attention with a

variant of it that only scales linearly with the input length.

Concerning the first problem, traditionally ROUGE scores [12] are used to evaluate

and report the accuracy or correctness. However these fail to capture factual correctness

well, because they only compare n-gram overlaps between a reference and a generated

summary. Several methods have been proposed to better automatically capture the factual

correctness of generated summaries. These methods often themselves make use of other

natural language processing tasks and models. This has the effect that all of these methods

can also only process inputs of up to 512 or 1024 tokens, since they report their results

usually using standard transformer models like BERT.

1.2. Objective

The objective of this thesis is twofold:

1. Select promising factual correctness evaluation metrics and adapt them to be able

to process long meeting transcript input. Evaluate the evaluation performance

compared to the metric in its standard version.

2. Use the adapted metrics to gain more insight about the DialogLED model [25], which

is a state-of-the-art long meeting and dialogue summarization model. This model

has had special pretraining with transcript-style data, in order to better understand

this type of text.

The remainder of this thesis is organized as follows: chapter 2 goes over fundamentals

in summarization and evaluation metrics for summarization, chapter 3 highlights related

work, chapter 4 and chapter 5 explain the adaptation of two factual correctness metrics for

long meeting summarization and their application to two summarization models. Lastly,

chapter 6 includes conclusion and further work sections.
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2. Fundamentals

2.1. Summarization

Summarization is a sequence-to-sequence task, which means that the input is a sequence

and the output is also a sequence. The sequence that serves as the input to a summarization

model, however, is usually not the plain text, but a sequence of tokens. A token is an

integer that represents a word, a punctuation mark, a subword, or in some cases also a

single character. Therefore the first and last steps of an all encompassing summarization

framework are usually tokenization steps in which a so called tokenizer encodes plain text

to tokens or decodes tokens to plain text.

In Meeting summarization the process usually begins one step earlier with automatic

speech recognition (ASR) to create a transcript. Like in summarization, ASR methods also

make use of different types of neural networks, starting with TDNNs in 1989 [23].

2.1.1. Extractive and Abstractive Summarization

Summarization can be extractive or abstractive. Extractive summarization is a method

which selects specific sentences from the source text and concatenates them to form

a summary. This can formally be defined as follows. Let the source text 𝑇 be a list of

sentences: 𝑇 = (𝑠1, 𝑠2, . . . , 𝑠𝑁 ). Let 𝑆𝑐𝑜𝑟𝑒 (𝑇 ) = (𝑣1, 𝑣2, . . . , 𝑣𝑁 ) be the scores of the sentences
according to the scoring function 𝑆𝑐𝑜𝑟𝑒 . The next step is to select the 𝑘 sentences with the

highest scores and concatenate them to form a summary. Potentially there might come

additional clean up steps after the concatenation to resolve pronouns for example. The

source text might also be split with a different granularity than sentence-wise. Extractive

summarization has the advantage that the output contains grammatically correct sentences,

with the reasonable assumption that the source text is grammatically correct. However it

is not possible to introduce new words or to summarize some information in a shorter

way than its shortest description in the source document. Moreover, this is not typically

the way humans create summaries or expect summaries to look and read like. Especially

in the meeting and dialogue domain extractive summarization is inadequate, because of

the structure of transcript-style texts.

In abstractive summarization the generated summary can be any sequence of words

and is produced by the summarization system and not by selecting parts of the source

text. Examples of such summarization systems are described in the next section. This

method for summarization opens up the opportunity for novel words and sentences in the

generated summaries and for possibly more natural sounding paraphrases and summaries.

However the guarantee of grammatical correctness is lost. But more problematic is the

challenge of factual correctness. While it is possible to create pathological examples in

3



2. Fundamentals

which even an extractive summary may contain factual errors, this problem is much more

prevalent in abstractive summarization. This is one major reason which is holding back

the widespread use of current state-of-the-art abstractive summarization systems [28].

Nevertheless abstractive summarization has the greater potential and has benefitted a

lot from recent developments in natural language processing (NLP), which is why the

remainder of this thesis only concerns itself with abstractive summarization.

2.1.2. Query-Based Summarization

The task of query-based summarization sits between summarization and question answer-

ing. An input text for summarization is prepended with a query that can be a question

(e.g. "What was the group’s decision concerning X?") or a request (e.g. "Summarize the

presentation of person Y"). This is especially useful when summarizing long documents,

because it offers the possibility to adjust the summary to specific requests from the reader.

2.2. Summarization Systems

Currently most state-of-the-art NLP models are based on the transformer architecture

which was introduced in 2017 [22]. Nevertheless it is worth to take a look at the history

and to see what its differences are to previous state-of-the-are models.

2.2.1. RNNs

Figure 2.1.: Scheme of a Recurrent Neural Network [6]

A simple Multi-Layer-Perceptron (MLP) [17] is quite rigid in the sense that cannot really

handle input or produce outputs of varying lengths. A Recurrent Neural Network (RNN)

[3] builds on the MLP to be able to solve sequence-to-sequence problems. At each step the

RNN takes one word from the input sequence and a so called hidden state and returns an

output and an updated hidden state. This updated hidden state and the next word from the

input sequence then serve as the input for the RNN in the next step. This can be described

mathematically in the following way, where 𝑏 and 𝑐 are biases:

4



2.2. Summarization Systems

ℎ𝑡+1 = 𝑈𝑥𝑡 +𝑊ℎ𝑡 + 𝑏 (2.1)

𝑜𝑡 = 𝑉ℎ𝑡 + 𝑐 (2.2)

The central problem of RNNs is that of the vanishing gradient. Backpropagation of

RNNs propagates the loss through several instances of the Network all the way back to

the first word of the input sequence. Because of this the same derivative functions are

applied multiple times, which can cause the effect of the words at the beginning of the

sequence on the overall gradient to be very small. As a result a RNN is bad at learning

connections of words which are far apart in a longer sequence.

2.2.1.1. LSTMs

LSTMs (Long Short TermMemory) [8] address this problem by introducing a more complex

way to process the input and the hidden state with multiple gates which serve different

purposes such as to forget or keep specific information. This makes it possible to put more

focus on specific tokens in the hidden state or minimize the focus on insignificant tokens.

2.2.2. Transformers

The Transformer architecture is in large parts very different from the RNN architecture. It

makes heavy use of the attention mechanism and processes the input sequence as a set

rather than a sequence which makes it highly parallelizable. It consists mainly of encoder

and decoder blocks as can be seen in Figure 2.2. Let’s go through the architecture in detail.

Word and Embeddings and Positional Encodings

Even before embedding, a sequence of words needs to be converted to tokens. To create a

useful input for the transformer each word or subword is mapped to an integer. Then for

each token an embedding is created which is a learned vector representation of that token.

These vectors already contain information about the similarity and relation of tokens with

each other.

Since the transformer does not process tokens in a sequential manner, but rather all

at the same time, their positional information (their order) is lost. To reintroduce this

information a positional encoding is calculated for each token. The positional encoding is

not dependent on the token itself, but is calculated from specific sine and cosine functions.

For each word its embedding and positional encoding are added to form the input vector

to the first encoder of the transformer.

The Encoder

The encoder block consists of a Multi-Headed Self-Attention block, a feed forward neural

network and two residual connections and normalization steps.

The attention mechanism is an integral part of the transformer. Its purpose is to

determine which tokens of the input sequence to associate with which other tokens. Self

5



2. Fundamentals

Figure 2.2.: Transformer Architecture. Left gray box: Encoder, right gray box: Decoder

[22]

Figure 2.3.: Transformer Attention [22]

attention determines which tokens are most associated with which other tokens of the

same sequence. This is done as follows. For each input vector of a token three vectors are

generated, which are called the query, key and value vectors.

6



2.2. Summarization Systems

The dot product of the query vector of token𝐴 and the key vector of token 𝐵 denotes how

important 𝐵 is when considering 𝐴 in the given sequence. Doing this for all combinations

of tokens in the sequence can be formulated as a matrix multiplication of the keys matrix

and the transposed queries matrix where each row in either matrix is the respective key or

query vector. This results in a quadratic matrix with the dimension of the sequence length.

The values of this score matrix are then scaled based on the dimension of the key and

query vectors which allows for more stable gradients to alleviate an exploding gradient

effect. Finally the score matrix is put through a softmax function. The score matrix is then

used to select so to say the values of the tokens which should be attended to the most by

multiplying it with the value matrix. This gives us the output vectors of the attention layer

for each token. These output vectors contain encoded information on how each word

in the sequence should attend to other words in the sequence. Formally, the attention

mechanism can be described as follows, with 𝑑𝑘 being the dimension of the key and query

vectors:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾
𝑇

√
𝑑𝑘

)𝑉

Attention in the transformer is multi-headed. This means that there are in the order of 8

heads which all generate their own query, key and value vectors and perform attention as

described above. Their outputs are concatenated and then projected to the correct output

dimensions. The reason for this is that different heads can learn different associations.

The attention output vectors are added to the original input vectors and put through a

normalization layer, before going through a feed forward neural network with another

residual connection as can be seen in Figure 2.2. The output of one encoder block are

context sensitive word embeddings.

Multiple of these can be stacked on top of each other, each taking the output of the

previous block as their input. The output of the last encoder block serves as part of the

input to the decoder blocks.

The Decoder

The decoder has similar components as the encoder. However the attention layers of the

decoder have slight differences to the one used in the encoder.

The input to the decoder is the sequence of tokens which it has already generated in

the previous time steps. These are also embedded using token embeddings and positional

encodings.

During training where the output sequence is known it is necessary to prevent tokens

to attend to future tokens. This is achieved by masking the corresponding triangular half

of the query-key-matrix.

To incorporate the information from the encoder the encoder outputs are used to create

the key and value vectors for the encoder-decoder attention, which is also called cross-

attention. The resulting output vectors encode information about which words of the

input sequence to attend to given the current state of the output sequence.

The rest of the decoder is analogical to the encoder.

7



2. Fundamentals

Transformer Output

The transformer uses the output of the last decoder to generate the next token in the

output sequence. This is done through a linear layer which maps the decoder output to

the vocabulary. Lastly a softmax layer produces actual probabilities for each token in the

vocabulary. The token with the highest probability is chosen as the output token.

Training

The most successful transformer models have been trained on large text corpuses. The

training task usually is some kind of masking task, also called denoising. Single tokens

from a text are masked and the model makes a prediction as to what the masked token is.

Since this is unsupervised very large amounts of texts can be used for this pretraining.

These pretrained models can then be finetuned with other datasets for specific downstream

tasks like text classification or summarization.

Advantages and Limitations

The two major advantages that the transformer has over the RNN are its parallelizability

and its theoretically infinite attention span. Because the transformer does not process

words in sequence, but as a set it is highly parallelizable. The transformer also does not

suffer from the vanishing gradient problem like the RNN does. The attention span is only

limited by the practicality of the query-key-matrix multiplication in the attention layer.

This matrix multiplication however also limits the length of the input sequence that a

transformer can process. Lots of transformer models therefore currently limit their input

length to 512 or 1024 tokens.

2.2.2.1. BERT

BERT is a pretrained transformer model that was released by Google in 2019 [5]. BERT

was pretrained with the "masked language model" (MLM) task and a "next sentence pre-

diction" (NSP) task and achieved new state-of-the-art results on multiple natural language

processing datasets. The MLM task takes a text and masks out random tokens which the

model predicts. The NSP task lets the model predict the next sentence after a text prompt

out of two given choices.

2.3. Evaluation Metrics

To be able to evaluate the performance of sequence-to-sequence models, metrics which can

be automatically calculated are needed. Human evaluation is very expensive, but because

automatic metrics are not perfect, human judgements are nevertheless an important

benchmark.

Let’s take a look at two popular automatic evaluation metrics.
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2.3. Evaluation Metrics

2.3.1. ROUGE

By far the most popular and most reported metric when it comes to summarization

are ROUGE scores. ROUGE (Recall-Oriented Understudy for Gisting Evaluation) were

introduced in 2004 [12]. There are multiple ROUGE scores which all compare n-gram

overlaps between a generated text and a reference text. As an example, consider the

following reference text 𝑅 and the generated text 𝐺 :

𝑅 = ”𝑇ℎ𝑒 𝑡𝑒𝑎𝑚 𝑑𝑖𝑠𝑐𝑢𝑠𝑠𝑒𝑑 𝑡ℎ𝑒𝑖𝑟 𝑜𝑏 𝑗𝑒𝑐𝑡𝑖𝑣𝑒.”

𝐺 = ”𝑇ℎ𝑒 𝑡𝑒𝑎𝑚 𝑡𝑎𝑙𝑘𝑒𝑑 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒𝑖𝑟 𝑝𝑙𝑎𝑛.”

Rouge-1

The ROUGE-1 score measures the matching unigrams and is calculated as follows:

𝑅𝑂𝑈𝐺𝐸1 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅,𝐺) = 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝐺 𝑡ℎ𝑎𝑡 𝑎𝑙𝑠𝑜 𝑎𝑝𝑝𝑒𝑎𝑟 𝑖𝑛 𝑅

# 𝑜 𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝐺
= 3/6 = 0.5

𝑅𝑂𝑈𝐺𝐸1 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅,𝐺) = 𝑢𝑛𝑖𝑔𝑟𝑎𝑚𝑠 𝑖𝑛 𝑅 𝑡ℎ𝑎𝑡 𝑎𝑙𝑠𝑜 𝑎𝑝𝑝𝑒𝑎𝑟 𝑖𝑛 𝐺
# 𝑜 𝑓 𝑤𝑜𝑟𝑑𝑠 𝑖𝑛 𝑅

= 3/5 = 0.6

𝑅𝑂𝑈𝐺𝐸1 𝐹1 𝑆𝑐𝑜𝑟𝑒 (𝑅,𝐺) = 2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 = 0.55

Rouge-2

The ROUGE-2 score is calculated in the same way, but with bigrams. In the given example

𝑅 has 4 bigrams, 𝐺 has 5, and there is one overlapping bigram.

Rouge-L

The ROUGE-L score calculates the ration between the longest common (not necessarily

consecutive) subsequence and the number of unigrams of two texts. In the given example

the longest common subsequence is "The team their". Precision and Recall are calculated

as follows:

𝑅𝑂𝑈𝐺𝐸 − 𝐿 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅,𝐺) = 3

6

= 0.5

𝑅𝑂𝑈𝐺𝐸 − 𝐿 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅,𝐺) = 3

5

= 0.6

In general, when using ROUGE scores, the ROUGE F-1 scores are calculated and reported.
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2.3.2. BLEU

The BLEU (Bilingual Evaluation Understudy) score [16] also uses the n-gram overlap

precision calculation like the ROUGE score, but goes a bit further.

First, overlapping n-grams are only counted as often as they appear in the reference text,

preventing something like "The the the the the" to receive a perfect score in the running

example.

Then the geometric mean is taken over the precision scores based on 1-grams, 2-grams,

3-grams and 4-grams to reward more correct word order.

Lastly a brevity penalty is introduced which punishes texts like "The team" which would

otherwise receive a perfect score.

In contrast to ROUGE scores which are more recall oriented (Which n-grams of the

reference text appear in the generated text?), the BLEU score is more precision oriented

(Which n-grams of the generated text appear in the reference text?).

2.3.3. Advantages and Shortcomings

The big advantage of the ROUGE and BLEU scores is that they are easy and fast to calculate

and do correlate with human judgments [24]. However they fail to capture synonyms

and paraphrases well. Chapter 3.2 gives examples of more advanced metrics which better

capture factual correctness.
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3.1. Long Dialogue and Meeting Summarization

The input length limit which transformer models impose due to the memory consump-

tion of the attention mechanism begs the question: How can good summaries for long

documents be produced? Additionally, with the obvious use cases in mind, the following

questions pose themselves: How can good summaries of dialogue or meeting transcripts be

produced? How well can standard summarization models handle the differently structured

text? That is, a normal text has the structure "[sentence]. [sentence]." while a dialogue or

meeting transcript has the structure "[speaker]: [utterance]. [speaker]: [utterance]."

3.1.1. Data

To be able to train and evaluate long texts or transcripts, appropriate datasets are needed.

Like for short text summarization there are datasets which leverage existing text sources.

While the popular CNN/DailyMail summarization dataset [15] takes short news articles

and their highlights as summaries, the PubMed dataset [21] for example takes biomedical

research papers which are rather long as source texts and their abstracts as summaries.

PubMed is an example of a large long document summarization dataset. There are also

some large short dialogue summarization datasets like SAMSum [7] and DialogSum [2].

The most interesting datasets for the objective of this thesis are long meeting or dialogue

summarization datasets, of which there do not exist many.

QMSum

Figure 3.1.: QMSum statistics. Top half: existing datasets, bottom half: QMSum. [26]

QMSum was published very recently and contains transcripts of different kinds of long

meetings [26]. It includes the transcripts from the AMI [14] and ICSI [10] Datasets, and
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from committee meetings in the Welsh and Canadian parliament. According to the authors

it is the first meeting dataset that includes query-based summarization. For each meeting

between 3 and 12 query-based summaries are given in addition to the general summary of

the meeting. The advantages of QMSum are that the meetings are for the most part held

in a rather private setting which makes people speak more naturally, and the summaries

are human generated. The disadvantage is that the dataset is very small.

MediaSum

Figure 3.2.: MediaSum statistics [29]

MediaSum is a collection of transcripts with abstractive summaries from interview

segments on CNN and NPR [29]. The meetings are not as long as the ones in QMSum,

but still on average definitely longer than 512 tokens. In contrast to QMSum this dataset

is very large, which is an advantage. On the other hand, the summaries - while human

generated - are very short and I believe they also need to serve the purpose of getting a

reader or listener interested in the interview, rather than summarizing everything that is

said.

3.1.2. Models

HMNet

HMNet was introduced my Microsoft Research in 2020 [27]. It is specifically designed

for transcript summarization and specifically encodes speaker information. It is able to

summarize long transcripts by employing a hierarchical approach which first encodes

individual turns into one embedding and then processes these turn embeddings in a second

step.

DialogLED

DialogLED [25] is a Longformer-Encoder-Decoder (short LED) model with additional

pretraining. A LED is a transformer model with an adapted attention mechanism that

scales only linearly with the input length if it exceeds 512 tokens (see section 4.1). The

authors use a window-based denoising task on meeting transcript data for this pretraining.

A specific window containing multiple turns of a transcript is selected and then different

kinds of noise are introduced inside this window. Specific words or speakers might be

12
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masked or turns are splitted or merged. Then the model is tasked with recovering the

original content. The authors state that this pretraining lets the model better understand

the structure of meeting or dialogue transcripts, while not being specifically trained for a

downstream task. They verify their idea by reporting a small improvement of DialogLED

over LED in summarization. The model also outperforms HMNet.

3.2. Factual Summary Evaluation Metrics

Popular evaluation metrics like ROUGE can not capture factual correctness of summaries

very well. A variety of methods have been proposed to improve in this area, most of which

themselves make use of transformer models.

3.2.1. Entailment

factCCwas introduced in 2019 [11] and has been used as an evaluationmetric in a number of

other papers ([19], [28], [9]). The authors formulate factual consistency as a classification

task. They use a BERT transformer model which takes the concatenation of a source

text and a claim sentence and makes a binary classification of either CONSISTENT or

INCONSISTENT. A good and factually correct summary will then receive high consistency

probabilities for each sentence of the summary. To train the sequence classification model

a dataset was created by applying a set of rule-based transformations on sentences of

source documents. These were taken from the CNN/DailyMail dataset. The metric and

data generation are explained in detail in chapter 4.

3.2.2. Question Generation and Question Answering

QuestEval [20] improves on previous work in factual correctness evaluation through

question generation and question answering. The authors use T5 [18] transformer models

to generate questions from the source document and the generated summary and measure

the similarity between the answers when conditioned on either the source document or the

generated summary. A higher similarity suggests a higher factual consistency. The authors

conclude that their framework improves evaluation performance because it combines

recall and precision oriented question generation and question answering applications.

3.2.3. Counterfactual Estimation

FactualCoCo [24] is a metric that determines factual correctness via counterfactual estima-

tion. The idea is that a summary is more factually consistent if its words were generated

more reliant on the source document than reliant on the language prior. For example a text

might mention purple bananas (they exist!) and a summarization model might hallucinate

about yellow bananas when generating the summary. This is probably because its general

knowledge about bananas outweighed the specific case of purple bananas in this particular

source text. In this case the words were generated more reliant on the language prior than

on the source document. How this is quantified is explained later in subsection 4.2.2. The
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authors also find that their evaluation metric correlates better with human judgments,

especially when compared to ROUGE metrics, and it also performs better than QuestEval.

Like all other previously mentioned evaluation metrics, however, the authors report and

publish their scores and models only for short text summarization.
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In the DialogLED paper the authors only report ROUGE scores when comparing it with

the standard longformer transformer model. But how do the two compare when looking at

factual correctness? Possibly there are differences that the ROUGE scores do not capture.

Applying factual correctness metrics here can give more insight into the effect of the

meeting specific pretraining, which is supposed to set DialogLED apart.

At the same time it is worth to explore if it even brings a significant advantage to adapt

these metrics to handle longer inputs.

4.1. The Longformer

The longformer [1] is a variant of the transformer with an attention mechanism which

scales only linearly with the input length. This allows the longformer to process more

input tokens. It is otherwise based on RoBERTa [13], which refines the pretraining from

BERT and uses different pretraining and hyperparameters than BERT.

Figure 4.1.: Longformer Attention [1]

The longformer computes only a part of the query-key matrix in the attention layer

using a sliding window approach. The window size however is usually 512 tokens, so the

linear growth really only begins when the length of tokens is reached where standard

transformers would start to truncate the input. Different attention heads can also attend

to differently dilated windows to enlarge the context. Lastly global attention can be

assigned to specific tokens and is symmetric. This is useful for example in query-based

summarization where global attention would be set for the query tokens. Formally the

memory requirements of the longformer attention can be written as follows with sequence

length 𝑛, window size𝑤 and 𝑠 tokens with global attention:

𝑀𝑒𝑚𝑜𝑟𝑦 = (𝑛 ∗𝑤) + (2 ∗ 𝑛 ∗ 𝑠)
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4.2. Evaluation Metrics for long inputs

4.2.1. long FactCC

Model

The factCC metric classifies document-sentence pairs as consistent or inconsistent and

therefore the model is given the entire source document together with the claim sentence as

input. The BERT model which is published together with the paper truncates its input after

512 tokens. To build a long version of a factCC model I choose a longformer model. Since

this is a classification task, it is an encoder only longformer model with a classification

head at the top. This is a linear layer which maps the last encoder’s output to the two

classes CONSISTENT and INCONSISTENT.

Data Generation

Figure 4.2.: factCC data generation process

The data used to train a factCC model is generated by applying rule-based transforma-

tions to sentences from the source text. These are:

• Backtranslation: A sentence is translated into other languages and then back to

English using google translate. These are positive (i.e. consistent) examples.

• Pronoun swap: A random pronoun in the claim sentence is swapped. This - like all

other swap operations - produces a negative (i.e. inconsistent) example.

• Date swap: A random date in the claim sentence is swapped with one that appears

in the source text.

• Number swap: A random number in the claim sentence is swapped with one that

appears in the source text.

• Entity swap: A random entity name in the claim sentence is swapped with one that

appears in the source text.

• Negation: The meaning of the claim sentence is negated. This produces a negative

example

• Noise: A random word in the claim sentence is either removed or duplicated. This

is applied to both positive and negative examples.
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Sentences are randomly selected from the source texts and transformations are applied

if possible. Some transformations rely on named-entity recognition (NER) tagging, so that

words are not swapped at random, but according to the specific category.

Provided Data

The authors of the factCC Paper provide a dataset with around 1.8 million examples created

from the CNN and DailyMail stories using this method. They also provide a subset of this

dataset containing around 1 million examples where the claim sentence appears within

the first 512 tokens of the source text. They call this subset the clipped version of the

entire dataset.

I use these datasets to reproduce a factCC BERT model as it was presented in the paper

and to train two variants of a longformer with different input length limits, in order to be

able to compare them.

Additionally, the authors provide a small dataset which they annotated themselves.

It contains CNN/DailyMail stories as source texts and summary sentences created from

several different models as claims. It includes 441 positive and 62 negative examples. I call

this dataset MAT (Manually Annotated Testset).

Created Data

Figure 4.3.: factCC data generation process using summary sentences

I further create a similar dataset using the data generation methods from factCC on the

basis of the MediaSum dataset. For this dataset I do not select sentences from the source

text as claims, because the source text of MediaSum is an interview transcript. Instead

I select sentences from the provided summaries as claims, because these are sentences

which would potentially appear in a summary, as opposed to a "speaker: utterance" type

of expression from the transcript. These sentences which I use as claims also are quite

abstractive with regard to their source text, which is why in the data generation I do not

need the backtranslation transformation.

I use the this generated dataset based on MediaSum to further train the factCC Model

variants, in order to potentially improve their performance on transcript-style source texts.

GitHub Contributions

While using the resources provided in the factCC GitHub repository I spotted two typing

errors for which I have submitted pull requests. One of them caused an error in a training
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script and the other one was in the set of pronouns for the pronoun swap operation. It is

thinkable that this might have cost the authors a very small percentage in the performance.

4.2.2. factualCoCo with a long scoring model

Figure 4.4.: Schematic description of the factualCoCo metric with an example

The factualCoCo metric quantifies how reliant on the source text a summary was

generated as compared to reliant on the language prior. In order to determine this difference

a few relevant key tokens from the generated summary are selected and are masked out in

the source document. Then a standard summarizationmodel is used to give the probabilities

of the selected key tokens inside the summary when given the original document as the

source text and when given the masked document as the source text. A good and factually

consistent summary will result in higher differences of these probabilities. In order to be

able to process longer input sequences I use different longformer models as the scoring

model for factualCoCo.

4.3. Summarization Models and Evaluation Application

I use the created variants of factCC to evaluate a DialogLED and a LED model on the

query-based summarization task with the QMSum dataset. This serves two purposes:

1. Comparison of the evaluation metrics among each other

2. Comparison of DialogLED and LED

To these ends I fine-tune both a DialogLED and a LED model on QMSum and evaluate

their outputs of the dataset’s test split with the various evaluation models.

I define the factCC score of a summarization model as follows: Let 𝑇 = (𝑇1, . . . ,𝑇𝑛)
be the source texts and 𝑆 = (𝑆1, . . . , 𝑆𝑛) the corresponding generated summaries. Each

summary 𝑆𝑘 is a list of sentences 𝑠
1

𝑘
, . . . , 𝑠

𝑙𝑘
𝑘
. The score of a summary is the average of

the individual sentence scores and the score of the model is the average of the individual

summary scores. 𝑆𝑀 denotes a factCC score model.
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𝑓 𝑎𝑐𝑡𝐶𝐶 𝑆𝑐𝑜𝑟𝑒 (𝑆𝑀,𝑇 , 𝑆) = 1

𝑛

𝑛∑︁
𝑘=1

1

𝑙𝑘

𝑙𝑘∑︁
𝑗=1

𝑆𝑀 (𝑇𝑘 , 𝑠 𝑗𝑘)

I define the CoCo score of a summarization model as well as the average of the scores

of the individual summaries.
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5.1. Generated Datasets

5.1.1. MediaSum for factCC

The data generation based on the MediaSum dataset (see section 4.2.1) with summary

sentences as claims yielded enough data to create a dataset of 600 000 examples, 100 000 of

which contain noise, balanced between positive and negative examples.

5.2. FactCC Variants

5.2.1. Provided Checkpoint and Reproduction

There is an official factCC checkpoint which is reported to have a 74 % balanced accuracy

on MAT (the manually annotated testset). This checkpoint was trained from an uncased

base BERT model checkpoint on the provided clipped dataset for 10 epochs. I reevaluated

it and got the accuracies shown in Table 5.1, which results in a balanced accuracy of 73 %.

The balanced accuracy is balanced by class, which in all cases here is the mean of correctly

identified positive and the correctly identified negative examples.

MAT
pos neg

official
checkpoint

pos 0.901 0.452

neg 0.099 0.548

Table 5.1.: Accuracy scores of the official factCC checkpoint on the manually annotated

testset

Interestingly the official checkpoint performs much better at detecting positive examples

than at detecting negative examples.

To further have a model which can better be compared to other factCC models I trained

an uncased base BERT model checkpoint in the same way, but for only 3 epochs. This

model is hereafter called BERT-512. The resulting accuracies are shown in Table 5.2.

The resulting balanced accuracy for the BERT-512 model is 67 % and it has the same

imbalance in the capability to detect positive and negative examples. This difference is not

mentioned in the factCC paper, and neither is the imbalance of positive (441) and negative

(62) examples in the MAT.
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MAT
pos neg

BERT-512 pos 0.918 0.581

neg 0.082 0.419

Table 5.2.: Accuracy scores of BERT-512 on the manually annotated testset

5.2.2. FactCC Longformer Models

To create a factCC model that can process longer inputs I trained a base longformer model

with an input limit of 2048 tokens for one epoch on the entire provided CNN/DailyMail-

based dataset. Even though input length limits of up to 16384 would be possible, the

compromise of 2048 was needed to avoid really long training times. In order to better

understand the difference that the longer input length limit makes, I also trained a base

longformer model with an input length limit of 512 (like the baseline BERT-512 model) on

the clipped dataset for 3 epochs. The accuracies of both models on the MAT are shown

in Table 5.3 and Table 5.4. Their balanced accuracies are 54 % (longformer-512) and 61%

(longformer-2048).

MAT
pos neg

longformer-
512

pos 0.830 0.740

neg 0.170 0.260

Table 5.3.: Accuracy scores of longformer-512 on the manually annotated testset

MAT
pos neg

longformer-
2048

pos 0.952 0.740

neg 0.048 0.260

Table 5.4.: Accuracy scores of longformer-2048 on the manually annotated testset

Both models perform very bad at detecting negative examples, compared to the BERT

models. Interestingly the longformer-512 model has the same input length limit and was

trained for the same time on the same dataset as the reproduced BERT-512 model. This

warrants a closer look at the 62 negative examples of the manually annotated test set.

5.2.3. A closer look at negative examples

Even though the examples of the MAT were generated from models that performed

abstractive summarization, an empirical analysis of the 62 negative examples shows that

they are highly extractive. In most cases large parts of the claims appear exactly the same

in the source text as well, with the exception of one or two words. A few examples are
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provided in Table A.1. This might lead models to falsely assume that these claims are

correct.

Another aspect to look at is the distribution of correctly identified negative examples. I

find that three quarters of the negative examples correctly identified by the longformer

models are also correctly identified by the official BERT checkpoint.

5.2.4. Transfer to MediaSum-based data

In the end the objective is to evaluate meeting summarization data which is not exactly

the domain of the CNN/DailyMail-based training data of the previously mentioned models.

Therefore it is relevant to explore how the models trained on the CNN/DailyMail-based

data transfer their performance to a test set based on meeting transcript type data.

MediaSum-based factCC test data

I have created a test dataset based on MediaSum as described in section 4.2.1, which

contains 5000 positive and 5000 negative examples, and also 1000 positive examples with

noise and 1000 negative examples with noise. In contrast to the MAT this testset does not

have claim sentences which were generated by summarization models. This would be the

ideal case, however creating such a dataset takes a prohibitively large labeling effort. Still

the claim sentences are very abstractive and the source texts are transcripts, which is the

data domain of interest for this thesis.

To increase the meaningfulness of the results on the MediaSum-based test set, I created

a shuffled version of it as described in Figure 5.1. A model which has truly learned to

predict the factual consistency of a claim with the source document should receive an

accuracy score around 50% on this shuffled version. If the model does as well on the

shuffled version as it does on the non-shuffled version, then it must have somehow learned

whether a positive, negative or no transformation has been applied to the claim, which is

not useful.

Figure 5.1.: MediaSum-based factCC data shuffle

Model Performance

Table 5.5, Table 5.6, Table 5.7, and Table 5.8 show the accuracies of the four previously

mentioned models on the test dataset based on MediaSum. Their balanced accuracies are

listed in Table 5.9.

The balanced accuracies show that the longformer models perform better than the BERT

models. The major difference is that both BERT models perform very poorly at detecting
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MediaSum-based testset
pos neg

official
checkpoint

pos 0.314 0.024

neg 0.686 0.976

Table 5.5.: Accuracy scores of the official factCC checkpoint on theMediaSum-based testset

MediaSum-based testset
pos neg

BERT-512 pos 0.366 0.041

neg 0.634 0.959

Table 5.6.: Accuracy scores of BERT-512 on the MediaSum-based testset

MediaSum-based testset
pos neg

longformer-
512

pos 0.792 0.398

neg 0.208 0.602

Table 5.7.: Accuracy scores of longformer-512 on the MediaSum-based testset

MediaSum-based testset
pos neg

longformer-
2048

pos 0.892 0.451

neg 0.108 0.549

Table 5.8.: Accuracy scores of longformer-2048 on the MediaSum-based testset

Model MediaSum-based testset Shuffled
Balanced Accuracy

official factCC checkpoint 64.5 % 55.4 %

BERT-512 66.2 % 55.3 %

longformer-512 69.7 % 66.0 %

longformer-2048 72.1 % 57.5 %

Table 5.9.: Balanced Accuracies of factCC Models on the MediaSum-based testset

positive examples, while the opposite was the case on the MAT. The longformer models

on the other hand are better at detecting positive examples, although the difference is not

as great as in the case of the BERT models. The likely reason for this is that because the

claim sentences are so abstractive, the BERT models overwhelmingly predict them to be

inconsistent with the source text. Consequently it appears that the longformer models are

better at generalizing and transferring to other datasets. Among the longformer models

the longformer-2048 outperforms the longformer-512, which is as expected, because it

can process more input tokens of the source text. This advantage is also supported by the

balanced accuracies of the shuffled dataset, which show that the longformer-512 improves
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only by less than 4 % compared to the shuffled dataset while the longformer-2048 improves

by almost 15 %.

5.2.5. Meeting-specific Models

To explore what advantages it might bring to specificly train factCC models on long

meeting-style data I took the 1-epoch-checkpoints from the reproduced BERT-512 model

and the longformer-2048 model and trained them for 2 epochs on the MediaSum-based

training dataset. Their balanced accuracies are shown in Table 5.10. The "MS" suffix stands

for MediaSum.

Balanced Accuracies
annotated test set MediaSum-based testset

Model BERT-512-MS 59.8 % 90.8 % (81.5 % shuffled)

longformer-2048-MS 60.6 % 89.7 % (69.6 % shuffled)

Table 5.10.: Balanced accuracy scores of BERT-512-MS and longformer-2048-MS

While both models perform similarly on both datasets, there is a 10 point difference in

the improvement over the shuffled version of the MediaSum-based testset. This suggests

that the BERT-512-MS model relies on the claim sentence itself to a greater extend than

the longformer-2048-MS model does. This again supports the advantage of the longformer

model of being able to process a longer input.

Additionally the longformer model’s performance on the MAT did not worsen as it did in

the case of the BERT model, which supports the better generalizability of the longformer.

5.3. FactualCoCo Variants

To build a long version of factualCoCo I use three different longformer models as scoring

models. I use each with different input length limits for comparison. How they perform at

evaluating summaries is described in the next section.

5.4. DialogLED vs. LED

5.4.1. Training

I trained a longformer-encoder-decoder (LED) model and a DialogLED model on the QM-

Sum dataset for query-based summarization. Both models were initialized from pretrained

checkpoints from hugginface. Because the dataset is not very large I can afford to set the

input length limit for both models to 5120 tokens. The training lasts for 10 epochs and the

best checkpoints are chosen from the validation dataset.
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5.4.2. Evaluation

To gain a full picture I evaluate the summarization models’ performance on the test set

which contains 279 examples using all previously trained variants of factCC models. I

also calculate the ROUGE scores. Since I do not have the capacity to manually label the

generated summaries I cannot report the correlation of the factCC models with human

judgments. The relevant aspect to look at then is the difference in scores between the two

summarization models. The evaluation results are shown in Table 5.11. The scores are

calculated as described in section 4.3.

Metric / factCC Model Reference LED DialogLED
ROUGE-1 - 30.515 31.786

ROUGE-2 - 8.620 8.895

ROUGE-L - 18.440 19.067

official factCC checkpoint 0.421 0.410 0.418

BERT-512 0.406 0.349 0.374

longformer-512 0.787 0.724 0.723

longformer-2048 0.825 0.740 0.747

longformer-2048-MS 0.825 0.758 0.755

BERT-512-MS 0.788 0.755 0.747

Table 5.11.: ROUGE and factCC scores of LED and DialogLED on QMSum

The ROUGE scores are in alignment with what was reported in the DialogLED paper

in that they show a slight improvement of DialogLED over LED. The fact that all factCC

models give a higher score to the reference summaries than to the ones generated from LED

and DialogLED indicates that they do in fact work, because it is to be expected that both

LED and DialogLED perform worse than the gold reference. However, none of the factCC

models show a significant difference between LED and DialogLED as summarization

models.

factualCoCo Model Reference LED DialogLED
LED-512 0.027 - -

DialogLED-512 0.147 - -

LED-arxiv-512 0.052 - -

LED-16384 0.094 0.218 0.170

DialogLED-16384 0.207 0.293 0.316

LED-arxiv-16384 0.075 0.144 0.140

Table 5.12.: factualCoCo scores of LED and DialogLED on QMSum

To evaluate LED and DialogLED with the factualCoCo metric three models were used

as scoring models. The first thing to note in Table 5.12 is that all three models give higher

scores to the reference summaries in their longer versions (bottom half) than in their

shorter versions (top half). This shows that it is advantageous if the scoring model is able

to process longer inputs if the inputs exceed 512 tokens.
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5.4. DialogLED vs. LED

The ideal scoring model would be a very similar one to the model that generated the

summaries. However these twomodels should not be too similar. The first two factualCoCo

scoring models are the LED and DialogLED models that were used for the summarization,

just here with a different input length limit of 16384 (top two rows in the bottom half

of Table 5.12). These two factualCoCo variants prefer "themselves" as summarization

models. This kind of situation should be avoided, so the third factualCoCo variant has an

LED model as a scoring model which was fine-tuned for long document summarization

with the arxiv [4] dataset. This more neutral factualCoCo variant does again not find a

significant difference between LED and DialogLED.
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6. Discussion

6.1. Conclusion

I have taken two promising summarization metrics that focus on factual correctness,

namely factCC and factualCoCo, and adapted them for long meeting summarization. Then

I used these metrics to find out more about the way DialogLED differs from its baseline

LED.

In the case of factCC it turns out that using a longformer as the classification model

instead of BERT improves the metric performance on the MediaSum-based data, which

is meeting-style and more abstractive. On the other hand the BERT version of factCC

performs better for more extractive claims. As abstractive summarization hopefully

becomes less extractive this is a step in the right direction. The reason for this difference

between the two models likely lies in the difference between BERT and RoBERTa, because

the longformer is based on RoBERTa.

Both metrics factCC and factualCoCo showed improved performance when being able

to process longer input. Therefore it is advantageous to make use of the Longformer in

these metrics, when the input sequence would otherwise be truncated earlier.

With factualCoCo it is important to make sure the scoring model is not biased for or

against a summarization model that it is evaluating.

Neither factCC nor factualCoCo showed a significant difference in the performance of

LED versus DialogLED, although ROUGE scores suggest a slight advantage for DialogLED.

This indicates that when looking at factual correctness DialogLED does not improve over

LED, while the improvement picked up by the ROUGE scores may only be in fluency.

Although there are currently lots of different options for factual correctness metrics

and there is no clear standard metric like ROUGE has been until today, future research

into summarization should report results with this kind of metric more often to give a

greater picture of the results.

6.2. Further Work

More different datasets could be used to explore which classification models for factCC

perform better at which types of data. This thesis only looks at the MediaSum dataset and

meeting summarization.

In order to evaluate the preformance of factual correctness metrics better, the creation of

a labeled dataset of long source texts with abstractive model generated summaries would

be very helpful.

Another approach for a long version of factCC would be to use a standard transformer

loke BERT and to classify a claim segmentwise with potentially overlapping segments of
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6. Discussion

the source text. These classifications could then be combined per an OR operation to get

the final classification.

An improvement to the training of summarization models could maybe be made by

finding a way to incorporate metrics such as the ones used here into the training process

or models themselves.
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A. Appendix

A.1. Data examples

Claim Relevant part in source text
"hundreds of migrants on board may

have capsized"

"The boat that sank in the Mediterranean

over the weekend with hundreds of mi-

grants on board may have capsized after

being touched or swamped by a cargo

ship that came to its aid"

"fda recommends anyone who has con-

sumed a listeria-laden food should let

their physician know."

"Dr. Swartzberg recommends anyone

who has consumed a listeria-laden food

should let their physician know."

Table A.1.: Negative examples from the factCC manually annotated testset (MAT)
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