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ABSTRACT i

Abstract

Systems that generate transcripts from speech are called automatic speech recognition
systems. The transcripts that are generated by these systems do usually not contain
sound events such as laughing or clapping. However, when using generated transcripts as
subtitles, it might be desirable to include specific sound events inside the transcript. In
this work, we develop a deep learning automatic speech recognition system to generate
transcripts from conversational speech that contain sound events.
We train an encoder-decoder, attention based, long short-term memory model to generate
transcripts that contain breath, clearing throat, cough, laugh, lip smack, noise, and sniff
sound events. Our experiments show that duplicating rare sound events in the training
data significantly improves their detection and classification accuracy. This so-called up-
sampling improves the classification accuracy of breath, clearing throat, cough, lip smack
and sniff sound events. For example, upsampling improves the classification accuracy of
lip smack sounds from 45% to 82%. Additionally, we propose an efficient method to add
sound event labels to popular datasets. These new labels improved the classification of
cough sounds even further from 75% to 87%. However, the new labels also decrease the
classification accuracy of sniff and lip smack sound events by 8% and 7% respectively. The
best performing model detects and classifies clearing throat, laugh and lip smack sounds
with over 80% and breath, cough, and noise sound events with over 70% accuracy.





ZUSAMMENFASSUNG iii

Zusammenfassung

Von Spracherkennungssystemen generierte Transkripte enthalten für gewöhnlich nur die
gesprochenen Worte und keine Geräusche wie Klatschen oder Lachen. Wenn man solche
Systeme zum Generieren von Untertiteln für Filme oder Videos benutzt, dann kann es
jedoch gewünscht sein auch manche Geräusche zu transkribieren. In dieser Arbeit ent-
wickeln wir ein Deep Learning Spracherkennungssystem um Transkripte von natürlicher
Sprache zu erstellen, welche zusätzlich zu den gesprochenen Wörtern auch Geräusche ent-
halten.
Wir trainieren ein auf attention basierendes, encoder-decoder, bidirektionales, long short-
term memory Modell, dessen Transkript Räuspern, Husten, Lachen, Schmatzen, Schniefen
und Atemgeräusche enthält. Um die Geräuschklassifikation zu verbessern, duplizieren wir
seltene Geräusche in den Trainingsdaten und verbessern dadurch die Klassifikationsrate
von Räuspern, Husten, Schmatzen, Schniefen und Atemgeräuschen. Zum Beispiel wird da-
durch die Klassifikationrate von Schmatzgeräuschen von 45% auf 82% gesteigert. Darüber
hinaus entwickeln wir eine Methode um effizient Geräuschklassen zu bestehenden Daten-
sätzen hinzuzufügen. Die hierdurch neu gewonnen Daten verbessern die Klassifikation von
Hustengeräuschen um weitere 12% (von 75% auf 87%). Allerdings verschlechtern die neu
hinzugefügten Daten wiederum die Geräusche Schmatzen und Schniefen um jeweils 7%

und 8%. Das beste System erkennt und klassifiziert Räuspern, Lachen und Schmatzen zu
über 80% und erkennt Husten und Atemgeräusche zu über 70%.
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1 INTRODUCTION 1

1 Introduction

This chapter motivates the generation of transcripts that contain sound events, states the
goal of this thesis and gives an overview of our contribution. Lastly, an outline of future
chapters is given.

1.1 Motivation

Deep neural networks (DNNs) are widely used in the field of automatic speech recogni-
tion (ASR). Recently, sequence to sequence (s2s) models have started to achieve human
performance in some automatic speech recognition benchmarks [20]. To achieve such per-
formance, the DNNs are trained on hundreds of hours of speech data. Popular datasets
include audio data and the corresponding transcript, but usually omit sound events or
merge them into an unknown or noise class. Sound events can be sounds such as laugh-
ter, coughing or clapping. The lack of such sound event labels in conversational speech
datasets makes the classification of sound events in conversational speech difficult. Still,
the detection and classification of such sound events is interesting because the detection
of a yawn or laughter can indicate the emotional state of a human. When humans yawn
they might be tired or bored of a conversation. A laughter might indicate that the speaker
is having a good time. Another application for transcripts that contain such sound events
is the generation of subtitles in movies, videos or audio recordings. When deaf people do
not see the speaker, they can not know whether or not the speaker is laughing unless the
subtitles do include a laugh sound event.

1.2 The goal of this thesis

The goal of this thesis is to develop an ASR system that not only transcribes human
speech, but also transcribes sound events such as laughter, breathing or coughing. A
generated transcript might look something like this:

i totally agree with you <cough> excuse me.

The generated transcript does not include any punctuation or casing.

1.3 Contribution

We train an encoder-decoder, sequence to sequence, attention based, bidirectional, long
short-term memory model to detect and classify breath, clearing throat, cough, laugh,
lip smack, noise and sniff sound events during automatic speech recognition. Our first
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attempt classifies clearing throat, laugh and noise sound events with over 78% accuracy.
However, the model performs significantly worse on sniff, lip smack and cough sound
events which do not occur frequently in the training data. To increase the model’s per-
formance on infrequent sounds, we duplicate utterances that contain rare sounds and
reevaluate the model’s performance. This upsampling of the training data increases the
classification accuracy of cough, lip smack and sniff sounds by 25%, 38% and 15% respec-
tively.
Since there are not many conversational speech datasets that contain a variety of sound
events, we also try to efficiently add sound event labels to existing datasets to improve the
model’s performance even further. First, we use the best performing model to generate a
transcript of the Switchboard and Fisher conversational speech datasets. Then, we use the
attention scores of the model to extract transcribed sound events. Finally, we manually
label these extracted sounds and merge them into the original dataset’s transcript. This
new data improves the classification of cough sounds by another 12%. However, the new
labels also decrease the classification accuracy of sniff and lip smack sound events by 7%

and 8% respectively. The best performing model detects and classifies clearing throat,
laugh and lip smack sounds with over 80% and breath, cough, and noise sound events
with over 70% accuracy.

1.4 Outline

In chapter two, concepts of automatic speech recognition and neural networks are intro-
duced. Chapter three gives an overview of related work published in sound event and
social signal detection. In chapter four, we describe the architecture of our ASR system
and the dataset that is used to train the model’s parameters. This chapter also includes a
description of the data preprocessing and the experimental setup. Chapter five contains
the evaluation of the training and the model’s performance. In chapter six, a review and
an outlook of future work is given.



2 BACKGROUND 3

2 Background

This chapter introduces automatic speech recognition and different neural network (NN)
architectures.

2.1 Automatic speech recognition

X
speech
signal

feature
extraction

Decoder

acoustic
model

language
model

Ŵ
Hypothesis

Figure 1: An ASR system based on [1]. Blue circles are input/output and the orange
rectangles are part of the ASR system.

ASR systems interpret human speech. Figure 1 shows an ASR system’s main compo-
nents. In general, an ASR system’s objective, given an observation X = X1X2...XN , is to
compute the word sequence Ŵ = w1w2...wm that has the maximum posterior probability
P (W |X) [10]:

Ŵ = argmax
W

P (W |X)

= argmax
W

P (W )P (X|W )

P (X)

= argmax
W

P (W )P (X|W ).

Here, P (X|W ) is computed by the so-called acoustic model and P (W ) is computed by
the so-called language model. Neural networks that are used for ASR often combine the
acoustic model, language model and decoder instead of modelling them independent of
each other.
The following is a brief introduction to an ASR system’s components.

2.1.1 Feature extraction

A given audio recording that, for example, is supposed to be converted to written text,
has to be preprocessed first. Here, preprocessing is equivalent to the extraction of features
that are relevant for the desired conversion into text. However, before extracting relevant
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Figure 2: A 10-filter Mel-filterbank based on [13].

features it is important to make sure that the sample rate and the resolution of all audio
files is the same.

A common preprocessing step is the conversion of the audio into a frequency represen-
tation by applying the Fourier transform resulting in a so-called power spectrum of the
audio. It is also common to split the audio data into chunks of 20-30 ms length [11] that
have an overlap. One could already use such a representation as input features for an
ASR system, however, Mel Frequency Cepstral Coefficients (MFCC) [4] have proven to
produce even better features.

The following explanation is based on [13]. MFCC emulate the human perception of
frequencies, namely being very sensible at lower frequencies and differentiating less be-
tween higher frequencies. To compute the MFCC, the power spectrum is multiplied by
a filterbank (see figure 2). After that, the energies in each filter are summed up. Since
the human ear does not recognise loudness on a linear scale, the logarithm of the prior
computed energies is taken. Lastly, it is desired to decorrelate the computed energies.
The correlation between the energies stems from the overlap of the triangular filters in
the filterbank. The decorrelation is done by taking the discrete cosine transformation of
the energies. This leaves us with the MFCC of the audio signal as input for an ASR
system (see figure 3 for an example).
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Figure 3: MFCC of an English sentence.

2.1.2 Language models

A neural ASR system is an ASR system that is using neural networks to decode the
input features. Prior to this neural ASR systems, stochastic models have been widely
used to decode the input features. The following briefly introduces stochastic language
models (based on [10]). Stochastic language models estimate the probability P (W ) for a
given word sequence W = w1w2...wn. Good stochastic language models can help an ASR
system to differentiate between good and bad hypotheses to select the final hypothesis
accordingly.
A typical stochastic language model is the so-called n-gram model. Given a string W , an
n-gram model estimates the probability P (W ) of that string occurring in human speech
as follows:

P (W ) = P (w1, w2, ..., wn)

= P (w1)P (w2|w1)P (w3|w1, w2) · · · P (wn|w1, w2, ...., wn−1)

=
n∏

i=1

P (wi|w1, w2, .., wi−1),

where P (w1) is the probability that the string starts with w1 and P (wj|w1, w2, ..., wj−1)

is the probability that wj follows the given j − 1 other words. The n, in n-gram, points
out how many pasts words P (W ) takes into consideration. The unigram, n = 1, takes
only one word into consideration while the bigram, n = 2, takes the last word and the
word before that into consideration. Lastly, a trigram takes the last word and two words
before that into consideration.
A bigram estimates the probability of W ="asr is fun" as follows:

P (asr is fun) = P (asr| < s >)P (is|asr)P (fun|is)P (< /s > |fun),
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where <s> is an extra word to pad the beginning of a sentence and </s> is an extra
word to pad the end of a sentence.
The probabilities are obtained from a training corpus that consists of millions of sentences.
For a trigram, one counts all word pairs C(wi−2, wi−1) and triplets C(wi − 2, wi − 1, wi)

to compute:

P (wi|wi−2, wi−1) =
C(wi−2, wi−1, wi)

C(wi−2, wi−1)
.

2.1.3 Sentencepiece

In order for an ASR system to output words that it has never seen before, one can split
the words in the training corpus into smaller pieces. The ASR system can then output
pieces of words instead of whole words. This enables the ASR system to create new words
from those pieces. Byte pair encoding [6], a string encoding scheme, is frequently used
to create such pieces. Sentencepiece [16] is a language independent subword tokenizer
and detokenizer that is based on BPE. Given a vocabulary size, sentencepiece computes
a vocabulary of that size. Each word in the vocabulary is a common character sequence
of the input string. This allows an ASR system to output words that it has never seen
before.

2.1.4 Word error rate

The word error rate (WER) is a widely used performance metric for ASR systems and
focuses on three errors [10]:

• Substitution: The correct word has been substituted with an incorrect word

• Deletion: The correct word is omitted by the ASR system

• Insertion: An additional word has been added by the ASR system

Once the number of substitutions, deletions and insertions have been computed, the WER
is defined as [10]:

Definition 2.1 (Word error rate).

Word error rate = 100% · #substitutions+#deletions+#insertions

Number of words in the correct sentence
,

where #deletions denotes the number of deletions in the hypothesis.
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2.1.5 Perplexity

The WER of a model is not sufficient to estimate its performance on unseen data. Consider
two models A and B that have the same WER on a specific test dataset T = {x1, ..., xM}.
Model A might be a hundred percent certain about every prediction while Model B might
be very uncertain about every prediction. Model B is expected to generalize worse on
new data. This is why the perplexity, measuring the certainty of a network, is used to
estimate when to stop training a network.

Definition 2.2 (Perplexity [13]).

perplexity(T ) = 2H(T )

H(T ) = − 1

M

M∑

m=1

log (p(xm))

p(xm) denotes the probability that the model assigns to the correct label.

2.2 Artificial neural networks

Artificial neural networks are a popular machine learning technique to classify data [31].
The data to be classified is fed into the neural network and the network computes a pre-
diction of a class that corresponds to the input data. Here, the input data might be an
audio recording and the computed class may be a descriptor of a sound (laughter for ex-
ample). This section introduces different types of neural network architectures and their
differences.

2.2.1 The Rosenblatt perceptron

x1

x2

x3

w1

w2

w3

f(
∑

) y1

Figure 4: A Rosenblatt perceptron with input: x ∈ R3, weights w ∈ R3 and the output
neurons value y1 ∈ R.
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The Rosenblatt perceptron [23] (figure 4) is a small artificial neural network. It consists
of only one output neuron. Not only does the output neuron sum up the products of the
inputs xi and the corresponding weights wi, it also feeds this sum into a function:

y1 = f(x1 · w1 + x2 · w2 + x3 · w3).

In the case of classification, the function f is a threshold function that, for example, might
classify all values greater than 0 to be of one class and all other values to be of another
class. When used for classification, the Rosenblatt perceptron operates as a binary, linear
classifier. However, a Rosenblatt perceptron can also be used as a regressor. In this case,
the function f may be the identity function.
To set up the weights of the Rosenblatt perceptron, or any artificial neural network, we
initialize them to random values. The next section explains how these weights are trained
using Backpropagation.

2.2.2 Gradient Descent and Backpropagation

The Backpropagation algorithm is used to train a neural network, meaning Backpropa-
gation is used to iteratively change the neural network’s weights to improve its output
value when fed specific inputs. To do so, Backpropagation utilizes Gradient Descent to
alter the weights of a neural network [24]. First, we need a function that estimates how
large the error of the network, given a specific input, is. For example, we might want to
train a Rosenblatt perceptron as in figure 4. A typical error function is the sum squared
error [24]:

Definition 2.3 (Sum squared error). Given the outputs of a neural network omn, with
m ∈ {1, 2, ...,M} and n ∈ {1, 2, ..., N}, where N is the number of output neurons of
the neural network and M is the training dataset size. Let lmn be the desired output of
neuron n given input m, then the sum squared error is defined as:

SSE =
M∑

m=1

(
N∑

n=1

(omn − lmn)
2).

To use Gradient Descent, we first compute the derivative of the SSE with respect to a
specific weight, using the chain rule:

∂SSE

∂wj

=
∂SSE

∂o
· ∂o

∂wj

,

then we update the weights:

wj = wj − δ
∂SSE

∂wj

.

δ is the so-called learning rate and is used to scale the update speed of the weights.
The Backpropagation algorithm helps to efficiently apply Gradient Descent updates to a
neural network.
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2.2.3 Optimizer

When the training dataset is very large, it takes a long time to compute the network’s
error on the whole training set. This means that during training, it could take a long
time until the network’s weights can be updated using Backpropagation. Since it can take
many updates to train a network, stochastic Gradient Descent is widely used.

Stochastic Gradient Descent works by sampling a minibatch from the training dataset,
computing the error of the network over that minibatch and then updating the weights
using Backpropagation [8]. This leads to more frequent updates of the network’s weights
per iteration over the training dataset. One iteration over the training dataset is called
an epoch.

Adaptive learning rate optimization algorithms use a separate learning rate for each pa-
rameter of the network [8]. During training, each parameter is automatically adapted.
The specific optimization algorithm determines how the parameters are automatically
adapted. Adam, for example, is an optimization algorithm that estimates the first-order
moment of the gradient to update the learning parameters [8].

2.2.4 Multioutput perceptron

x1

x2

x3

w11

w21

w31

w12

w22

w32

f(
∑

)

f(
∑

)

y1

y2

Figure 5: Multioutput perceptron with input: x ∈ R3, weights w ∈ R3×2 and the output
neuron’s values y ∈ R2.

There are multiple limitations to the Rosenblatt perceptron when it comes to solving clas-
sification tasks. Since a binary classifier can only predict two classes, a single Rosenblatt
perceptron is insufficient to solve tasks with more than two classes. However, if one uses
multiple Rosenblatt perceptrons, then one can solve classification tasks with an arbitrary
amount of classes. If there are N classes, then one can merge N Rosenblatt perceptrons
into one neural network (see figure 5 for an example with two classes). Now, one could
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select the Rosenblatt perceptron with the highest value and output its corresponding class
as the classification result. However, taking the maximum of the network prevents Gra-
dient Descent since the max function is not differentiable. To compute a differentiable
probability distribution over all the possible output classes, a softmax layer is added to
the end of the NN:

Definition 2.4 (Softmax layer). A softmax layer takes the N outputs of a neural net-
work’s output layer and computes:

softmax(o)j =
exp(oj)∑N
n=1 exp(on)

, with j ∈ {1, ..., N}

as the new outputs of the network.

The softmax function ensures that all outputs are between 0 and 1 and add up to 1. If
the desired output class l ∈ {1, ..., N} of input i is given, then we can compute the SSE

using the to l corresponding one hot vector [8].

Definition 2.5 (One-hot vector). Let h ∈ RN be a one-hot vector that corresponds to
a task with N classes and a label l ∈ {1, ..., N}. Then the one-hot vector h is defined as
the l-th unit vector.

Given the one-hot vector h of label l, we can now compute the SSE of the neural network
with the softmax layer’s values s ∈ RN :

SSE =
N∑

n=1

(sn − hn)
2.

Instead of the SSE, which is mostly used for regression tasks, the cross entropy loss is
frequently used for classification tasks:

CEL = −
N∑

n=1

hn · log(sn).

This allows us to train a perceptron with multiple outputs using Backpropagation.

Another limitation of a Rosenblatt perceptron is that it is a linear classifier and hence
can not solve non-linear classification problems. In order to solve non-linear classification
problems, we introduce multilayer perceptrons.
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2.2.5 Multilayer perceptrons

x1

x2

x3

f1

f1

f2

f2

f3

f3

f3

W1 W2 W3 y1

y2

y3

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 6: Multilayer perceptron with input: x ∈ R3, weight matrices W1 ∈ R3×2, W2 ∈
R2×2 and W3 ∈ R2×3 and the output neurons’ values y ∈ R3.

The limitations of the Rosenblatt perceptron led to the development of the multilayer
perceptron [17] (figure 6). A multilayer perceptron that consists of three layers can classify
arbitrary decision surfaces. However, in order for the multilayer perceptron to decide non-
linear decision surfaces, the functions, computed in the neurons, have to be non-linear.
These functions are called activation functions. A classic example of an activation function
is the so-called logistic sigmoid function.

Definition 2.6 (Logistic sigmoid).

σ(x) =
1

1 + exp(−x)
, with x ∈ R.

Another activation function is the Swish activation function [21]. The Swish activation
function includes the sigmoid function.

Definition 2.7 (Swish).

f(x) = x · σ(βx), with x, β ∈ R.

Even though three-layer multilayer perceptrons can, in theory, compute any decision sur-
face, adding even more layers has been proven to be useful in practice.
One drawback of multilayer perceptrons is that they are not shift-invariant under trans-
lation in time and frequency [29]. For ASR systems, the input data might be an audio
recording of conversational speech. The recording might start a few seconds before the
subject started vocalizing the first words of the sentence. If the training has been done
with examples where the recorded subject always started vocalizing the first word in the
first second of the recording, then the network may be unable to transcribe the speech of
slightly delayed sentences. Time-delay neural networks (TDNNs) [29], widely known as
convolutional neural networks (CNNs), introduce shift-invariance in time and frequency
dimension.
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2.2.6 Convolutional neural networks (Time-delay neural networks)

TDNNs [29], also known as CNNs, are introducing shift-invariance in time and frequency
dimension. Let Figure 7 be an input to a neural network. A trained network may have
found that all training data has a pattern in the upper left corner that allows the network
to predict the training label. If the layer is not a convolutional one, then the network
will only recognise such patterns in the upper left corner. However, if a person has a
significantly lower voice, then the same pattern could occur in the lower left corner (see
figure 8). Additionally, if the speaker pauses for a few seconds (see figure 9), then the
pattern may occur further to the right. A 2d-convolutional layer is shift-invariant in both
time and frequency, meaning that a convolutional layer could find the pattern in all three
cases. In figure 10, each rectangle represents the application of a so-called convolutional
filter.

Figure 7: MFCC input features where a
NN searches for a pattern in the rectangle.

Figure 8: MFCC input features with lower
frequency input.

Figure 9: MFCC input features where
the input is delayed.

Figure 10: MFCC input on which a
convolutional filter is applied 4 times.

Applying the filter four times leads to four neurons in the next layer. The rectangle size
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is determined by the filter size and the shift between two applications of the same filter
is determined by the so-called stride. In figure 10, the stride is equal to the height of the
rectangle in y-direction and equal to the width of the rectangle in x-direction. If a filter
is shifted to the right (according to the stride of the convolutional layer) it could exceed
the input width. That’s why the input is usually padded with zeros to ensure a perfect
fit of the filter.
Although convolutional neural networks are an improvement to regular multilayer per-
ceptrons, they are hardly used to map sequences to sequences [27]. Recurrent neural
networks (RNNs) are widely used to map sequences to sequences.

2.2.7 Recurrent neural networks and sequence to sequence systems

Recurrent neural networks [25] can be applied to long sequences of variable length, while
that would be impractical for networks like the multilayer perceptrons or CNNs [8]. Re-
current neural networks allow for connections that form a loop (see figure 11).

Xt

Yt

Ht−1

Figure 11: A recurrent neural network. Xt is the input at timestep t, Yt is the output at
timestep t and Ht−1 consists of the value of hidden neurons at timestep t− 1.

It is not obvious how to use Gradient Descent in a NN that contains a loop. However,
when we use recurrent neural networks in a s2s model, as in figure 12, we do not see loops
anymore.

X1 X2 X3 < EOS > Y1 Y2 Y3 Y4

Y1 Y2 Y3 Y4 < EOS >

Figure 12: s2s model based on [27]. Orange parts form the encoder and the blue parts
form the decoder. <EOS> is a special token and stands for end of sequence.
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The encoder’s RNN has been rolled out over time, meaning that each rectangle is a copy
of the encoder’s RNN. Each copy propagates its hidden state to the next timestep’s RNN
copy instead of having a self loop. Once a sequence is finished, the encoder’s RNN is
no longer rolled out. Since each rectangle is a copy of the same RNN, the weights in all
RNNs are the same. However, when computing a gradient, the derivation could differ
between the RNN copies. To avoid this, all RNN weights are considered to be shared.
When updating the weights, the same update is applied to every weight, assuring that
they will keep the same value. For example, this could be done by averaging all the
computed updates of a shared weight. This procedure is called Backpropagation through
time. When training a network on a long sequence, the computed gradients for the weights
early in the model are harder to learn because they can get close to zero and hence hardly
ever change. Long short-term memory neural networks (LSTMs) are used to increase the
encoder’s capability of learning long-distance dependencies.

2.2.8 Long short-term memory neural networks

× +

×

σ σ tanhσ

tanh

×σc

ft
it

c̃t

ot

c

concatenation

×
point-wise product forget input output

gates

ct−1

ht−1

xt

ct

ht

ht

Figure 13: An LSTM cell based on [32]. ct−1 and ct are the cell states. ht−1 and ht are
the outputs of the LSTM. xt is the input to the cell.

LSTMs [9] are used in s2s networks that are supposed to learn long-distance dependencies.
LSTMs prevent the gradient from becoming very close to zero (vanishing) or becoming
very large (exploding). An exploding gradient leads to large changes in the weights of a
NN during training. This can lead to large jumps on the decision surface and can inhibit



2 BACKGROUND 15

efficient training. On the other hand, vanishing gradients lead to very little change in the
weights of a NN. This can lead to insignificant jumps on the decision surface and hence
to a very long training duration.
The connections through time in an LSTM are gated, changing the multiplied factors in
each time step [8]. This helps to prevent the gradient from vanishing or exploding. The
cell state of the LSTM cell is also called a memory cell. It is this cell state that allows the
LSTM to maintain information over a long sequence. Overall, an LSTM cell does include
three gates (see figure 13). The σ in figure 13 denotes a sigmoid activation function
that also includes a bias addition and matrix multiplication, leading to the following
computations [32]:

ft = σ(Ufxt +Wfht−1 + bf )

it = σ(Uixt +Wiht−1 + bi)

c̃t = tanh(Uc̃xt +Wc̃ht−1 + bc̃)

ct = ft × ct−1 + it × c̃t

ot = σ(Uoxt +Woht−1 + bo)

ht = ot × tanh ct,

where × denotes the element-wise product.

2.2.9 Bidirectional and multilayer LSTMs

The information in an unidirectional LSTM can only flow from left to right. This means
that when cell t computes ht, it can not use any information about inputs of later
timesteps. When an LSTM is used to translate a sentence then this limitation is un-
necessary, if the whole sentence is given right away. Here, the knowledge of words that
occur later in the sentence might lead to better hidden state representations. This is
where bidirectional LSTMs can help. Bidirectional LSTMs compute ht twice and inde-
pendently, once from left to right and once from right to left. Both ht are later combined
and used as the hidden state representation of timestep t.
Multilayer LSTMs consist of multiple LSTM cells stacked on top of each other. The hid-
den state of a prior layer is fed into the next layer and the last layer forms the output of
the LSTM.

2.2.10 Attention

The decoder of a sequence to sequence model computes a fixed size representation of the
input sequence. Bahdanau et al. (2014) [2] suggest that this fixed size representation is a
bottleneck of the encoder-decoder approach to neural machine translation. To overcome
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... ... ...
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X1 X2 XN < EOS > Yt

Yt+1

at1
at2

atN

ct

st

Figure 14: Attention at time step t+1 based on [2].

this bottleneck the authors suggest the use of an attention layer (see figure 14). Here, each
encoder hidden representation hn influences Yt+1 explicitly through the context vector ct:

ct =
N∑

n=1

αtnhn.

The weight αtn is defined as

αtn =
exp(etn)∑N
k=1 exp(etk)

,

with
etn = a(st, hn).

a is a so-called alignment model which can be computed by its own neural network.
Computing the weighted sum over the encoder hidden states is also called soft attention.
Hard attention would be the selection of the hidden state that has the highest attention
score.

2.2.11 Beam-search

At each decoder timestep in a s2s system the probability of each class in the output
vocabulary is computed. Computing all possible hypotheses would lead to an exponential
growth in computation compared to always picking the most probable class. Using beam-
search, the B most likely hypotheses are kept for the next decoding step. Once the
< EOS > token is appended, the sequence is no longer part of the partial hypotheses.
Instead, such a sequence is now part of the completed hypotheses [27]. Once all hypotheses
are finished, one can pick the most likely one as a final prediction.



2 BACKGROUND 17

2.2.12 Generalization, regularization and dropout

A model that performs well on previously unseen inputs is said to generalize well [8].
Any modification to the network that is intended to improve generalization, instead of
the training error, is called a regularization technique [8]. Dropout is a regularization
technique that, during training, randomly removes non-output units from a model [8]. If,
for example, the dropout is set to 20% and dropout is applied to the input units, the
dropout is a random noise that is applied to the training data and (on average) deletes
20% of it. To drop out a unit in a multilayer perceptron, it is multiplied by zero.

2.2.13 Dropconnect

Dropout removes neural network units by multiplying them with zero. Dropconnect
removes neural network weights by setting them to zero [30].

2.2.14 Early stopping

In theory, the training of a network is only finished when the error of a network is zero
or at least very close to it. However, this might lead to bad generalization of the model.
When a model performs very well on the training dataset, but performs poorly on a test
dataset, the model is said to have overfit to the training data. To avoid this overfitting,
a third dataset is introduced, the so-called validation dataset. When the error on the
validation dataset stops improving, the training is stopped to avoid overfitting. This is
called early stopping.

2.2.15 Finetuning and freezing layers

If a model has been successfully trained for a specific task like the recognition of animals
in a picture, one could try to use the same model architecture for the recognition of cats
in a picture. However, training the model might take a very long time if the model is
trained from scratch. To reduce training time, one could use the already trained animal
recognition model, change the output classes from animal to cat and start training with
the weights of the already trained model. Taking another model as a starting point for
training is called finetuning.
During finetuning, the weights that are used as a starting point are changed. When it
is not desired to change the weights of one layer, then the weights of that layer can be
frozen. A frozen layer’s weights are not changed during training and hence always remain
the same. This is done when one thinks that the model that is used as a starting point
already computes useful features and hence should not be changed.
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3 Related Work

When it comes to the detection and classification of sound events that occur in human
speech, there has been research that solely focuses on sound events and research that
combines automatic speech recognition and social signal detection.

3.1 Sound event detection without ASR

Sound event detection has been studied for single events like breathing or laughter. In
2018 the authors of [5] stated that there has been almost no research on breath event
detection for spontaneous speech. Instead of focusing on spontaneous speech, previous
studies focused on read speech or songs. In [5] the authors focus on the detection of
inhaled breath events in Japanese telephone conversations. They specifically analyse the
waveforms and spectrograms of breath events and propose a breath event detection algo-
rithm that is based on a Guassian Mixture Model (GMM) and a Support Vector Machine
(SVM).

Compared to breath events, there has been more research conducted on the detection
of laughter events in spontaneous speech. The dataset that is used in this thesis is the
ICSI Meeting Corpus [19] and it has been used in several studies that focus on detecting
laughter events. Here, Support Vector Machines (SVMs) [14], Guassian Mixture Models
(GMMs) [28], Hidden Markov Models (HMMs) [3] and neural networks [15] have been
used. Studies on other datasets also use multimodal models to detect laughter [22][26].
Multimodal meaning the use of both an audio and a video stream as input to the sound
event detection system.

When it comes to the detection and classification of many different sound events, the
audioset dataset is one of the largest datasets [7]. The dataset consists of over 2 mil-
lion Youtube videos which are labeled with 527 labels. There are labels like music, car,
bird, speech, but also breathing, sniff and laughter. However, google research provides a
quality estimate for each sound class and sounds like sniff or throat clearing only have an
estimated quality of 38 and 33 percent respectively. This quality estimation is based on
random samples that have been manually labeled by humans. The data mostly consists of
the labels music and speech which both have a quality estimation of 100 percent. Googles
yamnet is a CNN based classifier that is trained on the audioset dataset and labels 960

millisecond long audio chunks of a given wavefile as one of 521 classes.
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3.2 Social signal detection combined with ASR

In [12] an end-to-end BILSTM approach for social signal detection and automatic speech
recognition has been proposed. Here, social signals are split into four events: laughter,
fillers, backchannels and disfluencies. Fillers are vocalizations like "ah", "eh", "uhm" and
are used by the speaker when he needs time to think. Backchannels are vocalizations like
"yeah", "right", "sure" and "okay". They are used by the speaker to communicate to the
listener that the speaker pays attention and, in some cases, agrees with what they were
saying. Disfluencies describe repetitions, corrections and false starts. In the proposed
system, fillers, disfluencies, backchannels and even laughter are describing the transcribed
speech[12]:

Dstart Tha Dend Fstart uh you know Fend Lstart that
′s like ... Lend.

Dstart and Dend denote the start and end of a disfluency (Fstart corresponds to filler and
Lstart corresponds to laughter). Notably, the additional detection of laughters, fillers,
backchannels and disfluencies did not impact the performance of the ASR significantly.
Meaning that the social signals neither helped nor inhibited the transcription of vocalized
words.

This thesis combines sound detection/classification with ASR, but without focusing on
social signals. Instead, the classified sounds laughter, breath, cough, sniff, throat clearing
and lip smack are treated like new words in the transcript and do not describe transcribed
words.
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4 Approach

This chapter describes the network architecture of the model and the data that is used
in the experiments.

4.1 Data

We used the International Computer Science Institute Meeting Corpus [19] as the dataset
for our experiments. The data consists of 70 hours of 75 recorded meetings between
ICSI members in 2001. The meeting rooms were equipped with distant and close-talking
microphones. Each audio channel and its transcript are given. Not only does the data
include transcribed text, but also transcribed noises such as different kinds of laughters,
breathing, microphone noise or paper noise.

4.1.1 Detailed information about the data

Meetings have been recorded in different environments. One meeting room was set up
at Columbia University, one at SRI International and one at the University of Washing-
ton. Each participant had one separate microphone. In addition to that, six far-field
microphones were set up. Also, the connection type of each microphone is given, namely
whether or not it is wired or wireless. The data is available, either merged into one single
channel or separated into up to 15 different channels. Each file has a sampling rate of 16
kHz. The length of each utterance is determined by "the first longer audible pause" in a
channel’s recording. The data is available in XML format and includes identifiers for the
speakers and microphones. Furthermore, the individual speakers have short descriptions
including sex, education, ethnicity and their native language.

4.2 Data preprocessing

4.2.1 Audio data preprocessing

The audio data has been converted into wavfiles with a sampling rate of 16 kHz. The
resulting files consist of a single channel. The MFCCs of the wavfiles are used as the input
features of the model.

4.2.2 Transcript data preprocessing

The whole transcript has been transformed into a lower case transcript. Words that end
with "-" correspond to words that have not been finished by the speaker. This happens, for



4 APPROACH 22

Figure 15: Number of utterances in the original data that contain a specific sound event.

example, when a speaker gets interrupted or is thinking while speaking. Those unfinished
words are deleted from the transcript. Since the original transcript’s sound event labels
are a textual description, there exist a lot of different descriptions. Descriptions that
contain "emphasis", "uncertain", "pronounce", "pause" or "foreign" have been ignored.
All sounds that occurred less than 50 times have been merged into the noise sound class.
In the end, all microphone noises, drinking, gasping, sneezing, door, clicking, sighing,
hiccups, whistles and click noises have been included in the noise class. Figure 15 shows
the sound events that are left in the transcript after preprocessing.

4.2.3 Data split

We created two datasets. One dataset contains all utterances and one dataset only con-
tains utterances that consist of one word or one sound.

Sentence-level dataset: Two hours of the data are used as test data and one hour
is used as validation data. The two datasets contain two and three complete meetings
respectively and are selected to have a similar sound event distribution as the original
data. Figure 16 shows the sounds that are contained in the training set. Figure 17 shows
the sounds that are contained in the two validation meetings. Figure 18 shows the sounds
that are contained in the three test meetings.

Word-level dataset: This dataset only consists of utterances that contain either one
word or one sound. Each word has been replaced with a <word> class. Figures 19-21
show the training, validation and test data distribution. Most sounds occur over 50% in
isolation.
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Figure 16: Number of utterances in the sentence-level training data that contain a specific
sound event.

Figure 17: Number of utterances in the sentence-level validation data that contain a
specific sound event (Meetings Bmr024, Bmr006).

Figure 18: Number of utterances in the sentence-level test data that contain a specific
sound event (Meetings Bmr031, Bmr023, Bmr028).
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Figure 19: Number of utterances in the word-level training data that contain a specific
sound event.

Figure 20: Number of utterances in the word-level validation data that contain a specific
sound event (Meetings Bmr031, Bmr022, Bro005).

Figure 21: Number of utterances in the word-level test data that contain a specific sound
event (Meetings Bmr027, Bed014, Bmr028).
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4.3 Model

The experiments have been conducted using a sequence to sequence encoder-decoder
neural network (see figure 22). The encoder consists of a bidrectional multilayer LSTM.
The decoder consists of a unidirectional multilayer LSTM with an attention layer. Note
that the encoder and decoder are not directly connected. Instead, the decoding vector is
used as the query vector of the attention over the encoder hidden states.
Before the MFCC parameters are fed into the encoder LSTM, two 2d-CNN (TDNN) layers
are applied. These two layers detect frequency and time-invariant patterns in the MFCC
input parameters of the encoder.

MFCC input features

CNN

Bi-LSTM

Output1, ..., Outputt−1

Embedding layer

LSTM

Multi-head Attention

+

Projection layer

Linear layer

Log-Softmax

Outputt

Figure 22: Computation of the t-th output of the s2s model.

4.3.1 BPE

Instead of training the model to predict whole words, the sentencepiece tokenizer was
used to create a byte pair encoding of the transcript. The sound classes have been added
after the byte pair encoding. Sound classes are directly predicted by the network.
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4.4 Experimental setup

In the following, a description of the model’s hyperparameters is given.

4.4.1 Model parameters

Encoder parameters: The MFCC vectors of dimension 40 get fed into a TDNN layer.
The encoder contains two consecutive TDNN layers. Both layers have a kernel size of 3 in
the time and frequency dimension. The stride of both layers is 2 in the time and frequency
dimension. Both layers use the Swish activation function. The first layer consists of 1
input channel and 32 output channels. The second layer consists of 32 input and 32 output
channels. The encoder BILSTM consists of 6 layers, has a hidden vector dimension of
1024 and has its dropout and dropconnect set to 0.3.
Decoder parameters: The embedding vector dimension is 512 and the embedding is
scaled by

√
512. The embedding layer includes a dropout layer with the dropout set to

0.15. The LSTM has two layers and a hidden vector dimension of 1024 with its a dropout
and dropconnect set to 0.2. The attention layer consists of one attention head. The
attention layer also includes a dropout layer with the dropout set to 0.2. The projection
layer is a fully-connected layer and projects the vector of size 1024 to a vector of size 256.
The linear layer is a fully connected layer with an output size of 4000 BPE vocabulary
tokens plus the sound class tokens.
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5 Evaluation

The evaluation of our approach consists of three parts: First, we evaluate the model using
the sentence-level training data and an upsampled version of the sentence-level training
data. Then, we train and evaluate the model on the word-level dataset where the model
only has to differentiate between the sound event class and a word class. Finally, the
model is evaluated using new data which is generated by a prior iteration of the model
and then labeled by two persons.

5.1 Training the model on the sentence-level training data

We used the sentence-level training data to train the BILSTM in four different ways. We
trained the model from scratch and finetuned a baseline model that has been trained on
the datasets: Common Voice, Europarl, Fisher, How2, Hub4, Libri, MustC, Switchboard,
Tedlium and Voxforge (roughly 4000 hours of data). This baseline model has an WER
of 5.5% on the Tedlium test dataset. We also tried finetuning the model with a frozen
encoder or with a frozen decoder. The embedding and the linear layer of the decoder are
not frozen.

Since we combine ASR and sound detection/classification, we evaluate the model’s per-
formance on both tasks. To evaluate the ASR accuracy, the WER of each model is shown
in table 1. Transcribed sounds are ignored during the WER computation. The sound
event detection/classification accuracy of the four models is shown in figures 25, 45, 46
and 47. We added the nothing class for utterances where a sound occurs either only in
the hypothesis or only in the transcript. The training accuracy is shown in figure 23
and includes the transcribed sounds. Figure 24 shows the training perplexity of the four
models.

Model WER

from scratch 26.6%
baseline model 28.1%

finetuning 16.3%
finetuning freeze decoder 16.8%
finetuning freeze encoder 21.7%

Table 1: Word Error Rate of models that are trained on the sentence-level training data
and the WER of the baseline model.
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Figure 23: Accuracy of models that are
trained on the sentence-level data.

Figure 24: Perplexity of models that are
trained on the sentence-level data.

Figure 25: Sound classification accuracy of the finetuning model which is trained on the
sentence-level training data.

The finetuning model is the model with the lowest WER and classifies the sounds with
a similar accuracy as the model that has been trained from scratch and the finetuning
model with the frozen decoder. The model with the frozen encoder did miss a lot more
of the annotated sounds compared to the other models (see figures 25, 45, 46 and 47).
Laugh, noise and clearing throat sound events are classified with the highest accuracy.
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Breath, sniff and lip smack sound events are often not labeled at all (29%, 34% and 23%

respectively). Also, many breath and laugh sounds events have been predicted by the
models even though there was no such sound in the transcript (47% and 36% respectively).

5.2 Upsampling the training data

Since the finetuning model is the best-performing model, we choose it as the model that
we train for the next experiments. Figure 25 shows that sniff, lip smack and cough
sound events are classified with an accuracy smaller or equal to 50%. These sound events
occur significantly less often than frequent ones like laugh or breath. To test if this under
representation of some sound events is the reason for their poor classification accuracy, the
following experiment has been conducted. Sentences that contain a throat clearing, cough,
lip smack or sniff sound are multiplied so that each sound roughly occurs 10000 times.
This leads to all the sounds, except breath and noise, occurring similarly often (see figure
26). Noise and laugh are not upsampled because their classification accuracy is already
over 80%. We call this upsampled training set: ’upsampled training data v1’ to distinguish
it from other upsampled training datasets. The WER of the model that is trained on this
dataset does not change significantly (see table 2) since the sounds are ignored during the
WER calculation. Figure 27 shows the change in the sound classification accuracy that
is caused by upsampling (see figure 25 for the original and figure 48 for the upsampled
accuracies).

Figure 26: Number of utterances in the upsampled training data v1 dataset that contain
a specific sound event.
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Model WER

Finetuning upsampled training data v1 16.7%

Table 2: Word Error Rate of the model trained on the upsampled training data v1 dataset.

Figure 27: Improvement in sound event prediction accuracy by training the finetuning
model on the upsampled training data v1 dataset.

The model that was trained on the upsampled training data v1 dataset performs signifi-
cantly better on the sounds: Clearing throat, cough, lip smack and sniff.
After showing that upsampling the sounds increases the sound classification performance,
we want to analyse if further upsampling the sounds always leads to even better perfor-
mance. Specifically, we double the amount of upsampled sniffs since the sniff classification
has the most room to improve. Figure 49 shows that an 8% improvement in the classifi-
cation accuracy of sniff sounds is offset by a 2%, 3% and a 2% worse prediction of breath,
clearing-throat and laughter sounds. Simply upsampling sniffs further does not seem to
be sufficient to improve the model’s overall classification accuracy.
After experimenting with different upsampled datasets, the best-performing model was
trained on the training data distribution depicted in figure 28 and has the accuracy shown
in figure 29 and table 3.
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Figure 28: Number of utterances in the upsampled training data v2 dataset that contain
a specific sound event.

Figure 29: Sound classification accuracy of the finetuning model which is trained on the
upsampled training data v2 dataset. This is the overall best performing model.
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Model WER

Finetuning upsampled training data v2 16.8%

Table 3: Word Error Rate of the finetuning model trained on the upsampled training data
v2 dataset.

5.3 Word-level classifier

If we could segment an utterance’s input features into the individual words and sounds
then we could assign the sound label with a word-level classifier. We trained the same
sequence to sequence model on the word-level dataset to classify individual words and
sounds. We changed the output vocabulary from 4000 plus the sound labels to the sound
labels plus one word class. Figure 30 shows the accuracy of the word-level classifier.

Figure 30: Sound classification accuracy of the finetuning model on the word-level data.

The model recognises words with a 92% accuracy. At a sentence-level, sniff sounds have
been classified with an accuracy of 54% while the word-level model classifies sniffs with
an accuracy of 84%.
We tried segmenting the input utterances into the individual sounds and words using a
CNN. We output a word or sound class for every 50ms of input data. However, we were
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not able to obtain a model that creates a high quality segmentation. Instead, our CNN
model outputs are alternating between many different labels which does not lead to a
good segmentation.

5.4 Data generation

The goal of the following experiments is to label more data by using the trained model
to label sounds from datasets that do not have labels such as cough and sniff.
First, we tried to generate new training data from the Switchboard dataset to decrease
the WER of the model. We used the best performing model so far to label all utterances
in the Switchboard dataset. Then we took all utterances that had no sound in their
hypothesis and added such utterances to the training dataset. However, finetuning the
model on this dataset did not improve the WER of the model. This might be because
the baseline model was trained on the Switchboard dataset.
To generate transcripts for new utterances that contain sound events, we could listen to
labeled utterances and then correct them manually. However, sounds like sniff and lip
smack are very short. Simply listening to a sound and assigning it to one of a few classes
would be way faster than listening to whole sentences. This motivated the data generation
strategy depicted in figure 31.

BILSTM
Map transcribed
sounds to part of

the utterance audio

Extract sounds
from utterance

audio

Manually listen to sounds
and label them as one of

a few classes

Merge labeled
sounds and original

transcript

New training
transcripts

utterance
audio

sounds

attention
scores &
transcript

start &
end times
of sounds

labeled
sounds

Figure 31: Labeling pipeline.

5.4.1 Mapping transcribed sounds to the utterance audio

In machine translation, the attention scores of a single attention layer have been used
to find an alignment between the source and the target sentence [18] (see figure 32 for
an example). The attention score for a particular word in the hypothesis is usually
higher for the words that directly influence its translation. The example shows that the
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hypothesis word "Ich" has the highest attention score for its direct translation into the
source language "I". However, it is not guaranteed that the attention score always aligns
the hypothesis words with their direct translation.

Figure 32: Attention score alignment in machine translation.

We use the attention scores to align the model-generated transcript and the utterance
audio. First, we take a look at the attention score distribution of different sounds to
determine whether or not it makes sense to implement similar extraction strategies for
different sound types. Figures 33-38 suggest that the attention score distribution for
different sounds is similar. Hence, we try a unified sound extraction strategy to extract
transcribed sounds.

Figure 33: Attention score distribu-
tion of a cough sound.

Figure 34: Attention score distribu-
tion of a clearing throat sound.
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Figure 35: Attention score distribu-
tion of a lip smack sound.

Figure 36: Attention score distribu-
tion of a sniff sound.

Figure 37: Attention score distribu-
tion of a breath sound.

Figure 38: Attention score distribu-
tion of a laugh sound.

Since the extracted sounds have to be labeled manually (which is expensive), we decided
to only extract the rarest sounds. Labeling 252 cough sounds would already double the
number of labeled coughs in the training data. Cough, clearing throat, lip smack and sniff
are the sounds that occur least frequently in the training data (see figure 16).
To compare different extraction methods, we manually labeled 100 sounds in the ’extraction-
test-dataset’. Meaning that we listened to utterances where there was a sound in its tran-
script and transcribed its start and end time manually. We labeled all cough, clearing
throat, and sniff sounds in the test dataset. Then we labeled lip smack sounds until we
reached 100 sounds (see table 4). There were some utterances in the test dataset where
we could not easily identify the start and end time of the transcribed sound. We omitted
such sounds.
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sound number of occurrences

lip smack 66
clearing throat 21

sniff 8
cough 5

Table 4: Sounds in the ’extraction-test-dataset’.

Max attention extraction: When the BILSTM transcript of an utterance u contains
a sound s, we use the attention scores of the BILSTM to extract that sound from the
original utterance audio. Let x1, ...., xn be all hidden encoder states that correspond to u

and let att[xi] be the attention score of xi (the attention scores correspond to the sound
s).
We extract sound s by first computing imax = argmaxi∈{1,..,n}(att[xi]). Then, we deter-
mine the to s corresponding start and end hidden encoder state in the following way
(k ∈ R):

istart = min({i ∈ {1, ..., imax}|∀j ∈ {i, ..., imax} : att[xj] ≥
att[ximax ]

k
})

iend = max({i ∈ {imax, ..., n}|∀j ∈ {imax, ...i} : att[xj] ≥
att[ximax ]

k
}).

Here, 1
k
· att[ximax ] is the minimum attention score that is required for a hidden encoder

state xi to still be considered part of the sound s. The start and end of the audio that
corresponds to xistart , ..., xiend

is then used to extract the sound s from the utterance au-
dio.
Evaluation of the extraction method: To determine the parameter k, we use the
extraction-test-dataset to compare the extractions that are computed by different values
of k. To automate this comparison, we need to compare the generated interval [t′kstart; t′kend]
of a specific value of k with the correct interval [tstart; tend], where t′kstart, t

′
kend, tstart and

tend are timesteps in the utterance audio. It is desired to extract the whole sound, mean-
ing that [tstart; tend] ∈ [t′kstart; t

′
kend]. However, if k → ∞ this would always be the case,

since all attention scores are ≥ 0. This means that sufficiently large k extract the whole
utterance and hence always contain the whole interval [tstart; tend]. To reward large over-
laps of [tstart; tend] and [t′kstart; t

′
kend] and to punish large values of k, we introduce the

overlap_percentage and the extracted_length_percentage:

[ostart; oend] =




[tstart; tstart], if [tstart; tend] ∩ [t′kstart; t

′
kend] = ∅

[tstart; tend] ∩ [t′kstart; t
′
kend], else

extracted_length_percentage =
oend − ostart
t′kend − t′kstart
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overlap_percentage =
oend − ostart
tend − tstart

The overlap_percentage and the extracted_length_percentage should both be as large
as possible. We combine these two metrics to compute the score of an extraction which
should be as close to 1 as possible:

score = overlap_percentage · extracted_length_percentage.

Since we want to evaluate the extraction method and not the model performance, we
ignore sounds that are not detected. Figure 39 shows that k = 5 leads to the best average
score.

Figure 39: Average score of the max attention extraction method on the extraction-test-
dataset.

5.4.2 Extracting and labeling sounds from other datasets

We used the max attention extraction method to extract cough, lip smack, throat clearing
and sniff sound events from the Switchboard and Fisher dataset. We added 40 milliseconds
of context before and after each extracted sound because otherwise some sounds were too
short to be labeled manually. Each such extracted sound has been labeled by two persons
on a website shown in figure 40. We created this website to maximize the efficiency of each
labeling person. A person that wants to label an utterance can click on its timestamp to
listen to the extracted sound. Then, the person that labels the sound has to choose the
best fitting label. We added the labels unknown and nothing for extracted sounds that
the labeling person can not classify or for extracted silence. Additionally, we added the
hesitation class since hesitations like "mhhh" and "ahhhm" were often falsely extracted.
Even though we only extracted the rarest sounds, we still included a laugh and breath
label.
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The external labeling process took around 3 months. This long delay between the data
extraction and data labeling is one reason why data scarcity is a problem in sound event
detection. Additionally, the external labeling of the data is expensive so it is not feasible
to label unlimited amounts of new data for research purposes.

Figure 40: Labeling website.

It turns out that the people labeling sounds have a hard time assigning the correct label
to short sounds. Short microphone noises are often labeled as lip smack sounds. This
might be because the unknown class is not fitting for microphone noises that sound
similar to a lip smack. The addition of a microphone noise class might resolve this issue.
Another problem is that a lip smack sound often occurs at the beginning of a sentence
when the speaker inhales. This inhaling sound event is sometimes falsely labeled as
a sniff sound event. Even though listening to perfectly extracted sound events might be
faster, providing the labeling persons with more context might increase the labels’ quality.
However, if too much context is extracted then the labeling person might be confused in
cases where there are multiple sound events in one utterance.
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5.4.3 Merging labeled sounds and the original transcript.

We keep only the sounds that have the same label assigned by both labeling persons.
Then we compute an alignment as in the computation of the WER between the hypoth-
esis and the transcript. When the manually labeled sound is labeled as an insertion and
the surrounding words of the hypothesis are labeled as correct then we merge the labeled
sound into the original transcript. This leads to new training data which distribution is
shown in figure 41. Note that only the rarest sound events have been extracted and then
labeled. Hence the low increase in breath, laugh and noise sounds.

The original sentence-level training data contains 252 cough sound events. This means
that adding the new coughs to the training data increases the number of coughs in the
training data by 80%. The addition of the newly labeled sniff sounds increases the number
of sniffs by 118%. The increase in training data for all sounds is shown in table 5.

Figure 41: Number of utterances in the new labeled data from the Switchboard and Fisher
dataset that contain a specific sound event.

Sound event Percentage increase

breath 0.3%
clearing throat 60.5%

cough 80.6%
laugh 4.1%

lip smack 66.4%
noise 0%
sniff 118.6%

Table 5: Increase in training data by adding the newly labeled data to the training dataset.
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5.5 Training the finetuning model on the original and newly la-

beled sentence-level training data

We retrain the finetuning model on the original plus the newly labeled sentence-level
training data to see if the new data increases the model’s performance. Figure 42 shows
that adding the new training data leads to very few changes. The WER of the model is
shown in table 6. The model that was only trained on the original sentence-level training
data has a WER of 16.3% while the new model has a WER of 16.4%.

Figure 42: Improvement in sound event prediction accuracy by adding the newly labeled
data to the sentence-level training dataset.

Model WER

Finetuning model 16.4%

Table 6: Word Error Rate of the finetuning model which is trained on the original sentence-
level training data and the newly labeled data.

Finally, we also retrain the finetuning model by adding the newly labeled data to the
sentence-level training dataset and then upsampling it. We upsample the data similarly to
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the upsampled training data v1 dataset (see figure 43). Figure 44 shows the improvement
of the system on the new upsampled training data.

Figure 43: Number of utterances in the new upsampled sentence-level training data that
contain a specific sound event.

Figure 44: Improvement in sound event prediction accuracy by adding the newly labeled
data to the sentence-level training dataset and upsampling it.

Table 7 shows that the WER did not change compared to the upsampled training data
v1 dataset.
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Model WER

Finetuning model 16.7%

Table 7: Word Error Rate of the finetuning model trained on the new upsampled training
dataset.

Adding the manually labeled training data to the sentence-level dataset, before upsam-
pling it, improves the classification of cough sounds by 12%. However, the classification
accuracy of short sound events like lip smack and sniff decreased by 7% and 8% respec-
tively. Listening to the new data shows that short sound events are more difficult for the
labeling persons to classify. Some inhaling sounds were falsely classified as sniff and some
microphone noises were falsely classified as lip smack. However, all the labeled cough
sounds that we listened to were indeed cough sound events. This suggests that adding
lower quality labels can decrease the system’s performance while adding high quality labels
increases the system’s performance. As described in section 5.4.2, adding more context to
short sound events or adding more labels to the labeling website might improve the label
quality.
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6 Review and Future Work

6.1 Review

We trained an attention based, bidirectional, sequence to sequence, long short-term mem-
ory model to generate transcripts from conversational speech that contain sound events.
The sound events in our training data are: breath, clearing throat, cough, laugh, lip
smack, noise and sniff sound events.

Upsampling the training data significantly increases the system’s performance so that
all sound events, except sniff, are detected and classified with over 70% accuracy.
Extracting and labeling new training data from the Switchboard and Fisher dataset did
not change the model’s WER, but increases the model’s cough classification accuracy by
12%. However, adding the new training data also decreases the sound event classification
accuracy of sniff and lip smack sound events by 8% and 7% respectively. Listening to the
extracted sounds and comparing them to the assigned labels shows that the sound events
sniff and lip smack are shorter and that their new labels are of lower quality than the
other sound events. This lower quality data might be the reason for the decrease in sniff
and lip smack sound event classification accuracy.

We also trained a word-level classifier which classifies words with 92% accuracy and per-
forms significantly better on sniff sound events (from 54% accuracy to 84% accuracy).
However, this model relies on the sentence being segmented into the individual words and
sounds before inference.

6.2 Future Work

In order to increase the model’s sound event classification accuracy, more utterances that
contain sound events have to be labeled. Labeling new data by two labeling persons did
not lead to very high quality labels for short sound events. Getting more persons to label
the extracted sounds might lead to better labels. Also, the addition of a microphone
noise label on the labeling website might increase the quality of the labels since some mi-
crophone noises have been falsely labeled as a lip smack sound event. Lastly, extracting
sound events without context might not be sufficient for a labeling person to identify the
correct label. One could use the best performing model to extract utterances that contain
a sound event and have the labeling persons label whole utterances. This would ensure
that, during the labeling process, the whole context is taken into consideration, but would
increase the labeling time, and hence the cost, significantly.
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Instead of training an end-to-end ASR system, one could also try to segment the input
utterance into the individual sounds and words to use the better performing word-level
classifier for sound event detection and classification. Then, one could merge transcribed
sounds into a transcript that does not contain sound events. This would also allow the
ASR model to be trained on conversational speech datasets that do not contain sound
events.
Lastly, one could try optimization techniques that go beyond upsampling rare sound
events to deal with the imbalances in the training data.
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A Appendix

A.1 Evaluation

Figure 45: Sound classification accuracy of the model that is trained from scratch on the
sentence-level training data.
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Figure 46: Sound classification accuracy of the finetuning model with a frozen decoder
that is trained on the sentence-level training data.
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Figure 47: Sound classification accuracy of the finetuning model with a frozen encoder
which is trained on the sentence-level training data.
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Figure 48: Sound classification accuracy of the finetuning model which is trained on the
upsampled training data v1 dataset.
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Figure 49: Improvements by doubling the amount of sniffs in the upsampled training data
v1 dataset.
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Figure 50: Sound classification accuracy of the finetuning model which is trained on the
dataset that is obtained by adding the newly labeled data to the sentence-level training
dataset.
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Figure 51: Sound classification accuracy of the finetuning model which is trained on the
dataset that is obtained by adding the newly labeled data to the sentence-level training
dataset and upsampling it.
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