
Incremental Learning of Humanoid Robot Behavior
from Natural Interaction and Large Language Models

Leonard Bärmann, Rainer Kartmann, Fabian Peller-Konrad, Alex Waibel, Tamim Asfour∗

Abstract— Natural-language dialog is key for intuitive human-
robot interaction. It can be used not only to express humans’
intents, but also to communicate instructions for improvement
if a robot does not understand a command correctly. Of great
importance is to endow robots with the ability to learn from such
interaction experience in an incremental way to allow them to
improve their behaviors or avoid mistakes in the future. In this
paper, we propose a system to achieve incremental learning of
complex behavior from natural interaction, and demonstrate its
implementation on a humanoid robot. Building on recent advances,
we present a system that deploys Large Language Models (LLMs)
for high-level orchestration of the robot’s behavior, based on the
idea of enabling the LLM to generate Python statements in an
interactive console to invoke both robot perception and action.
The interaction loop is closed by feeding back human instructions,
environment observations, and execution results to the LLM, thus
informing the generation of the next statement. Specifically, we
introduce incremental prompt learning, which enables the system
to interactively learn from its mistakes. For that purpose, the LLM
can call another LLM responsible for code-level improvements of
the current interaction based on human feedback. The improved
interaction is then saved in the robot’s memory, and thus retrieved
on similar requests. We integrate the system in the robot cognitive
architecture of the humanoid robot ARMAR-6 and evaluate our
methods both quantitatively (in simulation) and qualitatively
(in simulation and real-world) by demonstrating generalized
incrementally-learned knowledge.

I. INTRODUCTION

For achieving truly intuitive human-robot interaction (HRI),
a natural language interface is key for a humanoid robot.
Via language, humans can easily communicate tasks and
goals to the robot. However, the robot’s interpretation of such
commands, and thus the resulting execution, might be sub-
optimal, incomplete or wrong. In such cases, it is desirable for
the human to give further instructions to correct or improve
the behavior. In particular, such cases should be memorized
to incrementally learn from them and thus avoid the same
mistake in the future. For instance, consider an interaction as
depicted in Fig. 1. First, the user gives an instruction to the
robot (1). The robot executes some (potentially incomplete
or wrong) actions (2). The user observes the result and gives
instructions for improvement (3), whereupon the robot performs
corrective actions (4). If the desired goal is achieved, the user
can reconfirm the correction (5), which leads to the robot

This work has been supported by the Baden-Württemberg Ministry of
Science, Research and the Arts (MWK) as part of the state’s “digital@bw”
digitization strategy in the context of the Real-World Lab “Robotics AI” and
by the Carl Zeiss Foundation through the JuBot project.

∗ The authors are with the Institute for Anthropomatics and
Robotics (IAR), Karlsruhe Institute of Technology (KIT), Germany.
{baermann, asfour}@kit.edu

Help me clean the top of the fridge

Ok, I will bring a sponge

I also need the ladder

Here is the ladder

Remember

that you  

should always
bring me  
the ladder

when I need  
to reach a

high surface

1

2

3

4

5

6

Fig. 1. ARMAR-6 incrementally learns behavior from natural interaction.
Demonstration video at https://youtu.be/y5O2mRGtsLM

updating its memory appropriately (6), thus incrementally
learning new behavior based on language instructions.

In this paper, we present a system to achieve such behavior
and describe its implementation on the humanoid robot
ARMAR-6 [1]. We build on the capabilities of Large Language
Models (LLMs) [2], [3], [4] emerging solely from massive-
scale next token prediction pretraining, and aim to transfer
their success to HRI. The goal is to utilize the rich world
knowledge contained in these LLMs to allow for embodied
natural-language dialog, thus enhancing the capabilities of
the LLM by integrating robot perception and action. In the
cognitive architecture of our humanoid robot [5], this means
the LLM will be in charge of the high-level planning and
decision-making. Recent works like SayCan [6] and Code
as Policies (CaP) [7] already demonstrate the usefulness of
applying LLMs to orchestrate robot abilities, enabling high-
level task understanding, planning and generalization. Going a
step further, inner monologue [8] feeds back execution results
and observations into the LLM, thus involving the LLM in a
closed-loop interaction.

Inspired by these works, we propose to utilize the code-
writing capabilities of an LLM to directly integrate it into
closed-loop orchestration of a humanoid robot. This is achieved
by simulating an interactive (Python) console in the prompt, and
letting the LLM produce the next statement given the previous
execution history, including results returned or exceptions
thrown by previous function calls. Thus, the LLM can
dynamically respond to unexpected situations such as execution
errors or wrong assumptions, while still leveraging the power
of code-based interaction such as storing results in intermediate
variables or defining new functions.

For utilizing the few- and zero-shot capabilities of LLMs,
it is crucial to design a (set of) prompts to properly bias
the LLM towards the desired output. All of the above works
use a predefined, manually written set of prompts tuned for

their respective use case. In contrast, we propose a novel,
self-extending prompting method to allow incremental learning
of new behaviors. To this end, we move away from a single,
predefined prompt, and instead dynamically construct it based on
a set of interaction examples, populated from prior knowledge
and previously learned behavior. Given a user instruction, we
rank all such interaction examples by semantic similarity to
the input, and select the top-k entries to construct the actual
prompt to the LLM. Crucially, the robot’s prior knowledge
contains specific examples involving the user complaining about
mistakes and correcting the robot, or instructing it on how to
improve its behavior. When the system fails to correctly execute
a task and the user gives such instructions, the LLM is thus
biased to invoke code that inspects the current execution history
and forwards it to another, few-shot-prompted LLM. This LLM
spots the mistakes and produces an improved interaction using
chain-of-thought (CoT) prompting [9]. Finally, this will be
added to the interaction examples, thus enabling the system to
perform better the next time a similar command is called.

We first evaluate our system quantitatively on the scenarios
defined in SayCan [6] to show the effectiveness of our proposed
prompting method. Furthermore, we perform experiments both
in simulation as well as on a humanoid robot, demonstrating
the effect of our incremental prompt learning strategy.

II. RELATED WORK

We start with reviewing works on understanding and learning
from natural language in robotics. Subsequently, we present
works using LLMs for high-level orchestration of robot abilities,
underlining the novelties in our method. Finally, we focus on
dynamic creation of prompts for LLMs, thus comparing our
incremental learning strategy to the related work.

A. Understanding and Learning from Natural Language

Understanding and performing tasks specified in natural
language has been a long-standing challenge in robotics [10].
A main problem is grounding the words of natural language
sentences in the sensorimotor perception and action capabilities
of a robot, which is known as signal-to-symbol gap [11]. Many
works have focused on the grounding of expressions referring to
objects, places and robot actions based on graphical models [12],
[13], language generation [14], or spatial relations [15], espe-
cially for ambiguity resolution [16], [17]. Pramanick et al. [18]
focus on resolving task dependencies to generate execution
plans from complex instructions. However, in these works
the robot does not explicitly learn from language-based
interactions. In contrast, Walter et al. [19] enrich the robot’s
semantic environment map from language, and Bao et al. [20]
syntactically parse daily human instructions to learn attributes
of new objects. In [21], the robot asks for a demonstration if
its current understanding of a spatial relation is insufficient
to perform a given instruction. Other works go further by
learning on the task level. Mohan et al. [22] learn symbolic task
representations from language interaction using Explanation-
based learning. Nicolescu et al. [23] learn executable task
representations encoding sequential, non-ordering or alternative
paths of execution from verbal instructions for interactive

teaching by demonstration. Weigelt et al. [24] consider the
general problem of programming new functions on code level
via natural language. While our goal is similar to these works,
we leverage LLMs for task-level reasoning and learning.

B. Orchestrating Robot Behavior with LLMs

Recently, many works extend the capabilities of LLMs by
giving them access to external models, tools and APIs [25], [26],
[27], [28]. Tool usage can also be combined with reasoning
techniques such as CoT prompting [9] to significantly improve
planning [29]. In particular, orchestrating robot behavior and
thus interacting with the physical environment can be seen as
an embodied special case of LLM tool usage. Huang et al. [30]
initially proposed the idea to utilize world knowledge from
LLM pretraining to map high-level tasks to executable mid-level
action sequences. SayCan [6] fuses LLM output probabilities
with pretrained affordance functions to choose a feasible plan
given a natural language command. Socratic Models [31]
combine visual and textual LLMs to generate instructions in
the form of API calls, which are then executed by a pretrained
language-conditioned robot policy. Both Code as Policies
(CaP) [7] and ProgPrompt [32] demonstrate the usefulness
of a code-generating LLM for robot orchestration, as they
convert user commands to (optionally, recursively defined)
policy code grounded in predefined atomic API calls. While
the generated policies can react to the robot’s perception,
these approaches do not directly involve the LLM in the
online execution of a multi-step task after the policy has
been generated. In contrast, inner monologue [8] feeds back
execution results and observations into the LLM, but does not
rely on code-writing, thus missing its combinatorial power.
Recent technical reports [33], [34] provide guidance on utilizing
ChatGPT [4] for robot orchestration. While TidyBot [35] uses
GPT-3 [2] in a similar way to generate high-level plans for
tidying up a cluttered real-world environment, the authors focus
on personalization by summarizing and thereby generalizing
individual object placement rules.

With our proposed emulated Python console prompting,
we differ from these existing works by (i) formatting and
interpreting all interaction with the LLM as Python code, in
contrast to [6], [8], (ii) closing the interaction loop by enabling
the LLM to reason about each perception and action outcome,
in contrast to [7], [32], [34], [31], [6], (iii) allowing the LLM
to decide itself when and which perception primitives to invoke,
instead of providing a predefined list of observations (usually a
list of objects in the scene) as part of the prompt as in [31],
[8], [32], [7], [35], and (iv) simplifying the task for the LLM
by allowing it to generate one statement at a time, in contrast
to [7], [32], [33].

C. Dynamic Prompt Creation

When prompting an LLM to perform a task, quality and
relevance of the provided few-shot examples are key to the
performance of the system. Thus, several works propose to
dynamically select these examples (e. g., from a larger training
set) for constructing a useful prompt. Liu et al. [36] improve
performance in a downstream question-answering (QA) task by

selecting relevant few-shot samples via k-Nearest-Neighbor
search in a latent space of pretrained sentence embeddings [37]
representing the questions. Ye et al. [38] select not only the
mostly similar, but also a diverse set of samples. Luo et al. [39]
show that this dynamic prompt construction is also applicable
for instruction-fine-tuned language models (LMs) [40] and in
combination with CoT prompting. Similar to that approach, we
apply vector embeddings of human utterances to find the top-k
examples which are most similar to the current situation.

Other works go further by proposing to update the database
of examples by user interaction. In [41], GPT-3 is tasked
with solving lexical and semantic natural language processing
questions few-shot by generating both an understanding of
the question as well as the answer. A user can then correct
an erroneous understanding to improve the answer, and such
correction is stored in a lookup table for later retrieval on
similar queries. Similarly, user feedback can be used to improve
open-ended QA by generating an entailment chain along with
the answer, and allowing the user to then correct false model
beliefs in that entailment chain [42]. Corrections are stored in
memory and later retrieved based on their distance to a novel
question.

In our work, we also propose to construct a database based
on user feedback. However, we go even further by (i) letting the
LM decide itself when such feedback is relevant (by invoking
a certain function), (ii) generating new examples of improved
behavior from the human’s feedback and thus (iii) treating
prior knowledge and instructed behavior in a uniform way by
treating both as interaction examples in the robot’s memory.
The authors of [33] mention that ChatGPT can be used to
change code based on high-level user feedback. However, they
do not combine this with incremental learning to persist the
improved behavior.

III. APPROACH

In this section, we more precisely formulate the considered
problem and explain our approach to intuitive HRI and
incremental learning of humanoid robot behavior using LLMs.

A. Problem Formulation and Concept

In this work, we consider the problem of enabling a robot to
interact with a human in natural language as depicted in Fig. 2.
First, the human gives a natural language instruction to the
robot. Then, the robot interprets the instruction and performs a
sequence of actions. However, the performed actions might be
sub-optimal, incomplete or wrong. In that case, the human
instructs the robot how to improve or correct its behavior. The
robot executes further actions accordingly, and if the human is
satisfied with the result, they can confirm that the robot should
memorize this behavior. Finally, the robot must incrementally
learn from the corrective instructions and avoid similar mistakes
in the future.

We formulate this problem as follows. Consider a robot with a
set of functions F = {F1, . . . , Fn}. A function can be invoked
to query the robot’s perception or execute certain actions.
Further, let M denote knowledge of interactions and behaviors
as part of the episodic memory of the robot which is initialized

Robot system

LLM

SceneHuman

1. Instruction

 3. Correction

 5. Confirmation

2. Execution

Memory6. Memory Update

Observation of Execution Result

Reasoning  
& Control

4. Corrective Actions

Fig. 2. Incremental learning of robot behavior.

by prior knowledge. Based on the initial instruction I0 and
M, the robot must perform a sequence of function invocations
(f1, . . . , fm), where each invocation fi consists of the invoked
function Fi with its corresponding parameters. Executing these
invocations yields a sequence of results (r1, . . . , rm). Overall,
performing the task indicated by I0 results in an interaction
history H of the form

H = ((f1, r1) , . . . , (fm, rm))← perform (I0,M) (1)

Note that we explicitly allow executing a generated invocation
right away (potentially modifying the world state W) and using
the result to inform the generation of the subsequent invocation.
Therefore, the current history Ht = ((f1, r1) , . . . , (ft, rt)) is
available when generating the next invocation ft+1, i. e., for
t ∈ {0, . . . ,m− 1},

ft+1 ← generate (I0,Ht,M) , (2)
(rt+1,Wt+1)← execute (ft+1,Wt) , (3)

Ht+1 ← Ht ◦ ((ft+1, rt+1)) , (4)

where ◦ denotes sequence concatenation. In other words,
invocations are generated auto-regressively by reasoning over
the memory, the instruction as well as the previous actions and
their execution results.

To unify the subsequent notation, we define the human’s
instructions as a special case of perception, i. e., the system
perceives them as a result of invoking the function Fwait ∈ F .
Using that terminology, H0 = ((fwait, I0)), and we can drop I0
as explicit parameter of generate. Similarly, further instructions
are handled as part of the interaction history.

If the human gives an instruction to correct the robot’s
behavior, the robot must be able to learn from this instruction
to improve its behavior in the future. We model this capability
as another function Flearn ∈ F . Its purpose is to update the
robot’s interaction knowledge M to learn from the corrective
instructions and avoid the mistake in the future

M← learn from interaction (M,Ht) (5)

where Ht is the interaction history when Flearn is called.
To address this problem, we propose a system as depicted in

Fig. 3. A humanoid robot is interacting with a human and the
scene. The robot is equipped with a multimodal memory system
containing the following information: First, subsymbolic scene
knowledge, containing information about objects, locations

Memory

SemanticPerception
Interaction Examples

Procedural
Action

 Frozen LLM (e.g. ChatGPT)

Interaction Manager

Linteract

 Python shell environment

Limprove

Robot

Scene

Human

In
te

ra
ct

Query

Execute

Update

Retrieve

Fig. 3. Conceptual view of our system. The robot’s memory system [5] works as a mediator between the interaction manager and the robot system. The
interaction LLM acts in a Python console environment. It can invoke functions to fetch the content of the current scene (as given by perception modules) or
invoke skills and thus perform robot actions. Relevant interaction examples are queried from the memory for few-shot prompting of the LLM. Incremental
learning is performed by an improvement LLM updating the interaction examples memory with new content learned from instruction.

and agents in the world, and symbolic information about
them including their relations in the current scene as part
of the semantic memory of the system. It is populated by
the perception modules of the robot. Second, the procedural
memory of the robot, containing executable skills (in our case
implemented through scripted policies). An execution request
sent to the procedural memory triggers physical robot actions.
The set of available functions F contains functions to query the
semantic and procedural memory. Third, we implement M as
part of the episodic memory of the robot containing interaction
histories H, i. e., short episodes of interactions between the
human and the robot, including the natural language inputs,
the actions executed by the robot, and their results.

The interaction manager is responsible for the high-level
orchestration of the robot’s abilities. It has access to two
instances of LLMs, an interaction LLM Linteract and an
improvement LLM Limprove, as well as a Python console
environment E to execute generated function invocations.
Linteract is prompted by the interaction manager with the
available functions F , the current interaction history Ht, as
well as relevant few-shot examples retrieved from M, and
generates function invocations f . Following the notation of
Eqs. (2) and (3), the function generate is implemented through
Linteract, while the function execute is provided by E. By
generating an invocation of Flearn ∈ F , Linteract can trigger
Eq. (5). We implement the function learn from interaction by
few-shot prompting Limprove. It reasons over Ht and generates
an improved version of the interaction, which is then saved to
the memory M.

B. Procedure Overview

To start, we populate the memory M with both prior
knowledge (i. e., predefined interaction examples) and previously
learned interaction examples. The interaction manager sets
up E including F , and then invokes an initial Fwait =
“wait for trigger()” inside that environment. This call
waits for dialog input and returns when the human gives an
initial instruction. The interaction manager handles any function
return value by inserting its textual representation into the
current interaction history, thus extending Ht. Thereby, it
emulates the look of a Python console (Section III-C). In the
following, a prompt is constructed (Section III-D) based on F ,
the most relevant examples from M, and Ht. This prompt
is passed to Linteract to produce the next command(s). The
generated code is executed within E, and both the code and

its return values are again inserted into Ht. The interaction
manager repeats this process as the high-level behavior-driving
loop of the robot (see Fig. 4). Note that Linteract can listen to
further user utterances by generating “wait for trigger()”
again. Our proposed prompt-based incremental learning strategy
(Section III-E) is also invoked by Linteract itself when it calls
Flearn = “learn from interaction()”.

C. LLM interacting with an Emulated Python Console

The left of Fig. 4 shows an interaction example using our
proposed prompting scheme emulating a Python console. All
commands entered into the emulated console (lines starting
with “>>>” or “...”) are to be generated by the LLM, while
the function return values are inserted below each invocation.
The proposed syntax enables a closed interaction loop so that
the LLM can dynamically react to unexpected situations and
errors, while also keeping the flexibility of coding non-trivial
statements. We achieve this by setting “>>>” to be the stop
token when prompting the LLM. This means that the LLM can
generate continuation statements (including control flow and
function definitions) by starting a new line with “...”. Since
generation stops at the beginning of the next statement, the
LLM’s output will also include the expected outcome of its
own command, which we discard for the scope of this work.

During our experiments, we observed that it is important
for functions to provide semantically rich error messages,
including hints on how to improve. This leads to self-correcting
behavior [43]. For instance, when calling “move to” with
an invalid or underspecified location such as “counter,” we
pass the error message “Invalid location. Use one of

the locations returned by list locations()” to
the LLM. In this example, the error message guides the
LLM to query a list of possible locations which are then
used to correctly ground the natural language request to the
name “inFrontOf mobile-kitchen-counter 0” that the
“move to” function understands.

D. Dynamic Prompt Construction

We dynamically construct the prompt for Linteract depending
on the current interaction history Ht (i. e., the code statements,
execution results and user inputs observed so far). We start
with some predefined base prompt, stating the general task and
“importing” all defined names and functions. These imports are
generated dynamically given the symbols defined in E, i. e., the
available functions F . The second part of the prompt consists

Interaction examples
memory

Can you please  
get me some tea?

Prompt

>>> import ...
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'can you please bring me some water'}
>>> say('Ok, I am going to get you some water.')
... detect_object_states()
[('bottle', 'counter'), ('cup', 'table'), ('fork', 'table'), ('knife',
'table'), ('person', 'table')]
>>> bring_object_to_location('bottle', 'table')
'success'
...
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'can you please get me some tea?’}
>>>

similarity

LLM

Output

say('Ok, I am going to get you some
tea.’)
... detect_object_states()

Few-Shot Examples

Improvement LLM

Perception

Dialog

Action

Imports

Current interaction history

Fig. 4. Overview of our method for incremental learning of robot behavior. We use an LLM (in our experiments, ChatGPT [4]) to control robot perception and
action given a prompt of few-shot examples (bottom, Section III-C). Prompts are constructed dynamically based on the similarity to the current user request (top
left, Section III-D). The interaction examples memory is initialized with prior knowledge, and then incrementally enriched by LLM-improved problematic
interactions to learn from mistakes (top right, Section III-E).

of few-shot examples. For this, we make use of a memory M
of coding interaction examples, where each entry follows the
Python console syntax defined in Section III-C.M is initialized
with hand-written prompts, but later extended dynamically as
explained in Section III-E. Given the current interaction history
Ht, we define a similarity measure S(H,Ht), see below, for
each H ∈ M and choose the top-k H to become part of
the actual prompt. Afterwards, Ht itself is inserted into the
prompt to provide the LLM with the current context. Finally,
the prompt is completed by inserting a syntax trigger for the
LLM to correctly generate the next command, i. e., “>>>”. An
example can be seen on the left of Fig. 4.

To implement the similarity function S(H,Ht), we assume
that examples with comparable natural language instructions are
helpful. Therefore, we extract all such instructions from Ht and
each H ∈M. Let Iit with i = 1, . . . , N denote the N most
recent instructions in Ht (where I1t is the most recent one), and
IjH with j = 1, . . . ,MH all the MH instructions found in each
H ∈M. We make use of a pretrained sentence embedding
model [37] to measure the semantic similarity sim (a, b) =
E (a) · E (b) between two natural language sentences a, b by
the dot product of their latent space embeddings E (·). First,
we compute a latent representation of Ht as

et =

N∑
i=1

γi−1E
(
Iit
)

(6)

where γ = 0.6 is an empirically chosen decay factor. Then, we
determine a score αj

H for each instruction IjH of each history
H ∈M as given by

αj
H = et · E

(
IjH

)
(7)

The final similarity score is given by S(H,Ht) = maxj α
j
H,

and we pick the top-k such H as the few-shot examples for
the prompt.

E. Incremental Prompt Learning

To enable our system to learn new or improved behavior
from user interaction, we propose to make M itself dy-
namic. For this purpose, we introduce a special function
“learn from interaction()”. This function is always
“imported” in the base prompt, and there are predefined code

interaction examples Hlearn ∈ M involving this call. These
Hlearn will be selected by dynamic prompt construction if
semantically similar situations occur. They involve failure
situations, where the user has to tell the robot what and how
to improve, and that it should do better next time. Thus, when
a mistake occurs and the user complains, these examples will
be selected for the prompt and Linteract is biased towards
invoking the “learn from interaction()” call.

To implement learning from an erroneous interaction Ht, we
query Limprove in a CoT-manner to identify and fix the problem.
Specifically, we provide Ht and first ask for a natural language
description of the problem in this interaction. Subsequently,
we request Limprove to explain what should be improved
next time. Finally, Limprove is asked for an improved version
H∗

t of the interaction (in the given Python console syntax),
and H∗

t is added to the memory M. That way, the next
time a similar request occurs, H∗

t will be selected by dynamic
prompt construction, and Linteract is biased towards not making
the same mistake again. An example LLM transcript of such
“learn from interaction()” implementation can be found
in Listing 1. For robustness, there are two cases where we
discard the generated H∗

t : First, we abort the learning if the
response to the first CoT request is that there is no problem.
Second, if H∗

t is equal to the input interaction Ht, we discard it.

IV. EXPERIMENTAL DEMONSTRATION

We first present quantitative results to evaluate our code-based
LLM prompting, and then focus on qualitative demonstrations
of our incremental learning strategy. All experiments were
performed with the “gpt-3.5-turbo-0301” model of the
OpenAI API [4] as both Linteract and Limprove.

A. Quantitative Evaluation

To evaluate the performance of our proposed approach
quantitatively, we apply our method on the scenarios defined
in SayCan [6]. We pick these scenarios as they involve robot
commands that work on a similar abstraction level as our
system implementation, in contrast to e. g. the lower-level
RoboCodeGen benchmark defined in Code As Policies [7].
Moreover, while the method of SayCan is very different to
ours, we are interested in the resulting robot behavior given a
user command, thus making this dataset suitable for evaluation

Prompt: I had the following interaction with the robot:
>>> wait_for_trigger()
{'type': 'dialog',
'text': 'help me clean the top of the fridge'}

>>> list_object_locations()
[...]
>>> say('Ok, I will bring you the sponge')
... list_locations()
[...]
>>> move_to(get_location_coordinates(

'inFrontOf_hund-square-table-80x80_0'))
'succeeded'
>>> grasp('bauhaus-sponge_0')
'succeeded'
>>> move_to(get_location_coordinates('handover_to_human'))
'succeeded'
>>> say("Here is the sponge.")
... handover_object_to_human('bauhaus-sponge_0')
'succeeded'
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'I will also need the ladder'}
>>> bring_object_to('ladder_0', 'handover_to_human')
'succeeded'
>>> say("Here is the ladder. [...]")
... wait_for_trigger()
{'type': 'dialog', 'text': 'thank you, but remember to always'

' bring me the ladder when I need to reach a high surface'
' without me having to ask for it'}
>>> learn_from_interaction()

Prompt: What is the problem in this interaction? Answer with a single
sentence.
LLM: The problem is that the robot did not bring the ladder automatically
when the human asked for help cleaning the top of the fridge.
Prompt: How can the robot do better next time? Answer with a single
explanation sentence, no code.
LLM: Next time, the robot should automatically bring the ladder when the
human asks for help cleaning a high surface, without the human having to
explicitly request it.
Prompt: Provide an improved version of the interaction transcript. [...]
LLM:
>>> wait_for_trigger()
{'type': 'dialog',
'text': 'help me clean the top of the fridge'}
[...] identical to above
>>> handover_object_to_human('bauhaus-sponge_0')
'succeeded'
>>> bring_object_to('ladder-closed_0', 'handover_to_human')
'succeeded'
>>> say("Here is the ladder. [...]")
... wait_for_trigger()
{'type': 'dialog', 'text': 'No, thank you'}

Listing 1. Example of the LLM-transcript generated by a “learn from interaction()” call. The parts starting with LLM are generated by the LLM, while
the Prompt parts are fixed prompts (and the input code snippet to improve). Full prompt including few-shot examples in the appendix.

of our system. For a comparable setup, we first translate their
prompt into our coding syntax, using a similar set of actions
(grab, move to, put down, . . .). However, our method acts in
a closed interaction loop setting instead of forward planning of
actions, thus we also allow the LM to make use of return values
of functions (especially for perception, e. g., detect objects,
. . .) and allow it to ask clarification questions. Note that SayCan
also makes use of perception by co-optimizing LLM and image-
conditioned value function probabilities. Interactive incremental
learning is not used in this type of scenario to remain comparable
to SayCan, and as it requires a human in the loop. For dynamic
prompt construction, k is set to 8. The evaluation is performed
in a predicate world, where symbolic states of the agent, objects
and locations are simulated. After performing the task, symbolic
goal conditions are checked automatically for each scenario if
possible, otherwise the interaction is evaluated by hand.

Table I shows the results of these experiments. Each row
represents an instruction family as defined in [6], for instance
“Natural Language (NL) queries focused on abstract nouns.”
SayCan reports plan success rate, which measures whether the
generated plan can solve the instruction regardless of execution,
as well as execution success rate (where we compare to their
results of execution in the real kitchen). As explained above,
our method is evaluated in a simulated world, which means

TABLE I
RESULTS OF SAYCAN SCENARIO EXPERIMENTS

SayCan Ours
Instruction family # plan execute simulated

NL Single Primitive 15 93% 87% 93%
NL Nouns 15 60% 40% 93%
NL Verbs 15 93% 73% 80%
Structured 15 93% 47% 93%
Embodiment 11 64% 55% 64%
Crowd Sourced 15 73% 60% 93%
Long-Horizon 15 73% 47% 27%
Drawer 3 100% 33% 100%

that the difficulty of our task roughly lies between their plan
and execute settings. Our method cannot be evaluated in a
“plan-only” manner, as it reasons step-by-step, observing the
previous action’s execution results.

Overall, we reach equal or better performance compared to
SayCan. Only for their long-horizon tasks such as “bring
me a coke, an apple and a banana,” our method suffers
as the generated code interaction becomes lengthy, and
the LLM loses track of its task. This problem is not as
expressed for SayCan, since they only generate plain text,
thus resulting in much shorter token sequences. However,
this issue could be circumvented by giving the LLM access
to hierarchical functions (e. g., bring object to location

instead of grab, move to, put down) and thereby reducing
code complexity. Similarly, introducing more explicit CoT
reasoning (e. g., using comments) in the prompts might help.
We did not apply these techniques to keep the experiments
comparable to those used in SayCan. Nevertheless, note that
the results of our simulated symbolic-world evaluation are not
completely comparable, since we need to define initial world
state details (such as object placement) which are part of the
scene but not explicitly mentioned in [6], and sometimes need
to define answers to clarification questions the LLM asked.

B. Qualitative Evaluation

To demonstrate the utility of our proposed prompt-based
incremental learning technique, we perform experiments on
the humanoid robot ARMAR-6 [1] both in simulation and
real world. We first provide challenging commands which
the LLM initially solves incompletely or wrong. Then, the
human interactively provides feedback and tells the robot
how to improve. Afterwards, we not only provide the same
command again to check for improved behavior, but – in order
to study generalization capability – also try similar commands
that initially (i. e., without interactive learning) led to similar
mistakes. We evaluated three scenarios, Room Tour, Drink
& Cup, and Ladder, which are explained in the following.

Quantitative evaluation of our incremental learning method,
e. g. via a user study, is left for future work.

1) Room Tour: In this scenario, we instruct the robot to
give a commented tour of all the locations it knows. There
is no comparable instruction in the prior knowledge prompt
database. The initial interaction

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'give me a commented tour of '

'all the locations you know.'}
>>> locations = get_all_locations()
>>> for location in locations:
... say(f"This is {location}. It is located at "
... f"{get_location_coordinates(location)}.")
... wait_for_trigger()

lets the robot list all locations and their subsymbolic positions
(e. g., (1.0, 2.5, 0.0)) in global coordinates verbally. Since this
answer does not reflect the intention of the initial command,
we give the instruction “you should actually move there and
then say the name, not tell me the coordinates,” which leads to:

>>> for location in locations:
... move_to(get_location_coordinates(location))
... say(f"This is {location}.")
... wait_for_trigger()

Finally, we ask the robot “can you learn that for next time?”
which triggers the “learn from interaction()” function.
The improved code is equal to the second part of the interaction,
i. e., the erroneous for-loop of the first interaction is removed
and no further correction is necessary. Afterward, asking “Can
you give me a room tour?” leads to the correct behavior.

2) Drink & Cup: In this scenario, we ask the robot to bring
juice to the table. The task of bringing the juice to the table
is executed successfully, however, since the user needs a cup
to drink the juice, we further instruct the robot “thanks, but
I will also need a cup to drink,” which causes the robot to
additionally bring a cup to the table. Afterwards, we ask the
robot to remember this behavior using “Learn to always bring
a cup with a drink, without me having to ask for it.” The LLM
generates the following improved interaction example:

>>> wait_for_trigger()
{'type': 'dialog',
'text': 'bring some juice to the square table'}

>>> say('Ok, I will bring the juice to the square table')
... list_object_locations(affordance='grasp')
[<...>]
>>> bring_object_to('multivitamin-juice_0',

'hund-square-table-80x80_0')
'succeeded'
>>> bring_object_to('cup_0', 'hund-square-table-80x80_0')

Bringing the cup with the drink without the
user having to ask for it

'succeeded'
>>> say('Here is your juice and cup. '

'Can I help you with anything else?')
... wait_for_trigger()
{'type': 'dialog', 'text': 'No, that will be all'}

When giving the same initial command again, the cup is
brought to the table without further asking. However, we do
not observe good generalization in this scenario, although we
tried to enrich the prompt of Limprove with comments for
generalization, as shown above. For instance, when asking
for milk, the LLM does not generate the code to bring a cup.
This indicates that it is still challenging to robustly generalize
from specific examples (i. e., juice) to categories (i. e., drinks).
Improving this generalization capability should be a focus of
future work.

3) Ladder: As shown in Fig. 1, in this scenario we ask the
robot to assist in cleaning the top of the fridge. The memoryM
contains predefined comparable examples for cleaning the table
and kitchen counter, which guide the LLM to only handing
over the sponge to the human. However, since the top of the
fridge is higher than the table or the kitchen counter, we require
a ladder to reach it so we additionally ask for it. The robot then
successfully places the ladder in front of the fridge. Eventually,
we again instruct the robot to always bring the ladder when
working on high surfaces. Listing 1 shows the transcript of the
“learn from interaction()” call, including the resulting
improved interaction. Afterwards, when we perform a similar
request (e. g., “clean on top of the dishwasher”), the robot
brings both the sponge and the ladder successfully, while for
lower surfaces (e. g., kitchen counter) the robot still brings only
the sponge.

V. CONCLUSION & DISCUSSION

We present a system for integrating an LLM as the central
part of high-level orchestration of a robot’s behavior in a
closed interaction loop. Memorizing interaction examples from
experience and retrieving them based on the similarity to the
current user request allows for dynamic construction of prompts
and enables the robot to incrementally learn from mistakes
by extending its episodic memory with interactively improved
code snippets. We describe our implementation of the system
in the robot software framework ArmarX [44] as well as on
the humanoid robot ARMAR-6 [1]. The usefulness of our
approach is evaluated both quantitatively on the SayCan [6]
scenarios and qualitatively in simulation and in the real world.

While the proposed method, in particular the incremental
prompt learning strategy, shows promising results, there are
still many open questions for real-world deployment. First of
all, the performance of LLMs is quite sensitive to wording in
the prompt, thus sometimes leading to unpredictable behavior
despite only slight variations of the input (e. g., adding “please”
in the user command). This might be addressed by using more
advanced models like GPT-4 [45] and further investigating
the effect and performance of example retrieval in dynamic
prompt construction. Furthermore, our incremental prompt
learning strategy should be expanded to involve additional
human feedback before saving (potentially wrong) interaction
examples to the episodic memory. However, it is unclear how
this can be accomplished if the user is not familiar with robotics
or programming languages. Further work should also focus
on abstraction of similar and forgetting of irrelevant learned
behavior. Moreover, although we provide the LLM with access
to perception functions and examples of how to use them,
it sometimes comes up with non-grounded behavior (e. g.,
referring to non-existing objects or locations). This may be
improved by adding further levels of feedback to the LLM,
or using strategies like Grounded Decoding [46]. Finally, our
system inherits biases and other flaws from its LLM [47],
which may lead to problematic utterances and behaviors. In
future work, we will try to address some of these challenging
questions to further push the boundaries of natural, real-world
interactions with humanoid robots.

REFERENCES

[1] T. Asfour, L. Kaul, M. Wächter, S. Ottenhaus, P. Weiner, S. Rader,
R. Grimm, Y. Zhou, M. Grotz, F. Paus, D. Shingarey, and H. Haubert,
“ARMAR-6: A Collaborative Humanoid Robot for Industrial Environ-
ments,” in IEEE-RAS Int. Conf. Humanoid Robots, 2018, pp. 447–454.

[2] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-
Voss, et al., “Language models are few-shot learners,” in Int. Conf.
Neural Inf. Process. Syst., vol. 33, 2020, pp. 1877–1901.

[3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix,
B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin,
et al., “LLaMA: Open and efficient foundation language models,”
arXiv:2302.13971, 2023.

[4] OpenAI. (2023) ChatGPT. [Online]. Available:
https://openai.com/blog/chatgpt/

[5] F. Peller-Konrad, R. Kartmann, C. R. G. Dreher, A. Meixner, F. Reister,
M. Grotz, and T. Asfour, “A memory system of a robot cognitive
architecture and its implementation in ArmarX,” Rob. Auton. Sys., vol.
164, p. 20, 2023.

[6] M. Ahn, A. Brohan, N. Brown, Y. Chebotar, O. Cortes, B. David, C. Finn,
C. Fu, K. Gopalakrishnan, K. Hausman, A. Herzog, D. Ho, et al., “Do
as i can, not as i say: Grounding language in robotic affordances,” in
Annu. Conf. Rob. Learn., 2022.

[7] J. Liang, W. Huang, F. Xia, P. Xu, K. Hausman, B. Ichter, P. Florence, and
A. Zeng, “Code As Policies: Language Model Programs for Embodied
Control,” in IEEE Int. Conf. Robot. Automat., 2023, pp. 9493–9500.

[8] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar, P. Sermanet, T. Jackson, et al.,
“Inner monologue: Embodied reasoning through planning with language
models,” in Annu. Conf. Rob. Learn., 2022.

[9] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. H. Chi,
Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in
large language models,” in Int. Conf. Neural Inf. Process. Syst., 2022.

[10] S. Tellex, N. Gopalan, H. Kress-Gazit, and C. Matuszek, “Robots That
Use Language: A Survey,” Annu. Rev. Control Rob. Auton. Sys., vol. 3,
no. 1, pp. 25–55, 2020.

[11] N. Krüger, C. Geib, J. Piater, R. Petrick, M. Steedman, F. Wörgötter,
A. Ude, T. Asfour, D. Kraft, D. Omrčen, A. Agostini, and R. Dillmann,
“Object-Action Complexes: Grounded Abstractions of Sensorimotor
Processes,” Rob. Auton. Sys., vol. 59, pp. 740–757, 2011.

[12] S. Tellex, T. Kollar, S. Dickerson, M. R. Walter, A. G. Banerjee, S. Teller,
and N. Roy, “Understanding Natural Language Commands for Robotic
Navigation and Mobile Manipulation,” in AAAI, ser. 1, vol. 25, 2011, pp.
1507–1514.

[13] D. K. Misra, J. Sung, K. Lee, and A. Saxena, “Tell me Dave: Context-
sensitive grounding of natural language to manipulation instructions,” Int.
J. Rob. Research, vol. 35, no. 1-3, pp. 281–300, 2016.

[14] M. Forbes, R. Rao, L. Zettlemoyer, and M. Cakmak, “Robot Programming
by Demonstration with Situated Spatial Language Understanding,” in
IEEE Int. Conf. Robot. Automat., 2015, pp. 2014–2020.

[15] S. Guadarrama, L. Riano, D. Golland, D. Göhring, Y. Jia, D. Klein,
P. Abbeel, and T. Darrell, “Grounding Spatial Relations for Human-
Robot Interaction,” in IEEE/RSJ Int. Conf. Intel. Rob. Syst., 2013, pp.
1640–1647.

[16] J. Fasola and M. J. Matarić, “Using semantic fields to model dynamic
spatial relations in a robot architecture for natural language instruction
of service robots,” in IEEE/RSJ Int. Conf. Intel. Rob. Syst., 2013, pp.
143–150.

[17] M. Shridhar, D. Mittal, and D. Hsu, “INGRESS: Interactive visual
grounding of referring expressions,” Int. J. Rob. Research, vol. 39, no.
2-3, pp. 217–232, 2020.

[18] P. Pramanick, H. B. Barua, and C. Sarkar, “DeComplex: Task planning
from complex natural instructions by a collocating robot,” in IEEE/RSJ
Int. Conf. Intel. Rob. Syst., 2020, p. 8.

[19] M. Walter, S. Hemachandra, B. Homberg, S. Tellex, and S. Teller,
“Learning semantic maps from natural language descriptions,” in Rob.:
Science and Systems, 2013.

[20] J. Bao, Z. Hong, H. Tang, Y. Cheng, Y. Jia, and N. Xi, “Teach robots
understanding new object types and attributes through natural language
instructions,” in IEEE Int. Conf. Robot. Automat., vol. 10, 2016.

[21] R. Kartmann and T. Asfour, “Interactive and Incremental Learning of
Spatial Object Relations from Human Demonstrations,” Frontiers in
Robotics and AI, vol. 10, no. Rob. Learn. Evol., 2023.

[22] S. Mohan and J. Laird, “Learning Goal-Oriented Hierarchical Tasks from
Situated Interactive Instruction,” AAAI, vol. 28, no. 1, 2014.

[23] M. Nicolescu, N. Arnold, J. Blankenburg, D. Feil-Seifer, S. B. Banisetty,
M. Nicolescu, A. Palmer, and T. Monteverde, “Learning of Complex-
Structured Tasks from Verbal Instruction,” in IEEE-RAS Int. Conf.
Humanoid Robots, 2019, pp. 770–777.

[24] S. Weigelt, V. Steurer, T. Hey, and W. F. Tichy, “Programming in Natural
Language with fuSE: Synthesizing Methods from Spoken Utterances
Using Deep Natural Language Understanding,” in Annu. Meeting Assoc.
Comput. Linguistics, 2020, pp. 4280–4295.

[25] G. Mialon, R. Dessi, M. Lomeli, C. Nalmpantis, R. Pasunuru, R. Raileanu,
B. Roziere, T. Schick, J. Dwivedi-Yu, A. Celikyilmaz, E. Grave, Y. LeCun,
and T. Scialom, “Augmented language models: a survey,” Trans. Mach.
Learn. Research, 2023.

[26] A. Parisi, Y. Zhao, and N. Fiedel, “TALM: Tool augmented language
models,” arXiv:2205.12255, 2022.

[27] Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui, Z. Zeng, Y. Huang,
C. Xiao, C. Han, Y. R. Fung, Y. Su, et al., “Tool learning with foundation
models,” arXiv:2304.08354, 2023.

[28] Z. Wang, G. Zhang, K. Yang, N. Shi, W. Zhou, S. Hao, G. Xiong,
Y. Li, M. Y. Sim, X. Chen, Q. Zhu, Z. Yang, et al., “Interactive natural
language processing,” arXiv:2305.13246, 2023.

[29] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. R. Narasimhan, and Y. Cao,
“ReAct: Synergizing reasoning and acting in language models,” in Int.
Conf. Learn. Repr., 2023.

[30] W. Huang, P. Abbeel, D. Pathak, and I. Mordatch, “Language models
as zero-shot planners: Extracting actionable knowledge for embodied
agents,” in Int. Conf. Mach. Learn., vol. 162, 2022, pp. 9118–9147.

[31] A. Zeng, M. Attarian, b. ichter, K. M. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. S. Ryoo, V. Sindhwani, J. Lee, V. Vanhoucke,
and P. Florence, “Socratic models: Composing zero-shot multimodal
reasoning with language,” in Int. Conf. Learn. Repr., 2023.

[32] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox,
J. Thomason, and A. Garg, “ProgPrompt: Generating situated robot task
plans using large language models,” in IEEE Int. Conf. Robot. Automat.,
2023, pp. 11 523–11 530.

[33] S. Vemprala, R. Bonatti, A. Bucker, and A. Kapoor, “ChatGPT
for robotics: Design principles and model abilities,” 2023. [Online].
Available: https://www.microsoft.com/en-us/research/publication/chatgpt-
for-robotics-design-principles-and-model-abilities/

[34] N. Wake, A. Kanehira, K. Sasabuchi, J. Takamatsu, et al., “ChatGPT
empowered long-step robot control in various environments: A case
application,” 2023. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/chatgpt-empowered-long-step-robot-control-in-
various-environments-a-case-application/

[35] J. Wu, R. Antonova, A. Kan, M. Lepert, A. Zeng, S. Song, J. Bohg,
S. Rusinkiewicz, and T. Funkhouser, “TidyBot: Personalized robot
assistance with large language models,” arXiv:2305.05658, 2023.

[36] J. Liu, D. Shen, Y. Zhang, B. Dolan, L. Carin, and W. Chen, “What
makes good in-context examples for GPT-3?” in Deep Learning Inside
Out: Worksh. Knowl. Extr. Integr. Deep Learn. Arch., 2022, pp. 100–114.

[37] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings
using siamese BERT-networks,” in Conf. Emp. Meth. Nat. Lang. Proc.,
2019, pp. 3982–3992.

[38] J. Ye, Z. Wu, J. Feng, T. Yu, and L. Kong, “Compositional exemplars
for in-context learning,” arXiv:2302.05698, 2023.

[39] M. Luo, X. Xu, Z. Dai, P. Pasupat, M. Kazemi, C. Baral, V. Imbrasaite,
and V. Y. Zhao, “Dr.ICL: Demonstration-retrieved in-context learning,”
arXiv:2305.14128, 2023.

[40] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin,
C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, et al.,
“Training language models to follow instructions with human feedback,”
in Int. Conf. Neural Inf. Process. Syst., vol. 35, 2022, pp. 27 730–27 744.

[41] A. Madaan, N. Tandon, P. Clark, and Y. Yang, “Memory-assisted prompt
editing to improve GPT-3 after deployment,” in Conf. Emp. Meth. Nat.
Lang. Proc., 2022, pp. 2833–2861.

[42] B. Dalvi Mishra, O. Tafjord, and P. Clark, “Towards teachable reasoning
systems: Using a dynamic memory of user feedback for continual
system improvement,” in Conf. Emp. Meth. Nat. Lang. Proc., 2022, pp.
9465–9480.

[43] M. Skreta, N. Yoshikawa, S. Arellano-Rubach, Z. Ji, L. B. Kristensen,
K. Darvish, A. Aspuru-Guzik, F. Shkurti, and A. Garg, “Errors are useful
prompts: Instruction guided task programming with verifier-assisted
iterative prompting,” arXiv:2303.14100, 2023.

[44] N. Vahrenkamp, M. Wächter, M. Kröhnert, K. Welke, and T. Asfour,
“The robot software framework ArmarX,” it - Information Technology,
vol. 57, 2015.

[45] OpenAI, “GPT-4 Technical Report,” arXiv:2303.08774, 2023.
[46] W. Huang, F. Xia, D. Shah, D. Driess, A. Zeng, Y. Lu, P. Florence,

I. Mordatch, et al., “Grounded decoding: Guiding text generation with
grounded models for robot control,” arXiv:2303.00855, 2023.

[47] E. M. Bender, T. Gebru, A. McMillan-Major, and S. Shmitchell, “On the
dangers of stochastic parrots: Can language models be too big?” in Conf.
Fairness, Accountability, Transparency, 2021, pp. 610–623.

[48] H. Touvron, L. Martin, K. R. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale, D. M. Bikel, L. Blecher,
et al., “Llama 2: Open foundation and fine-tuned chat models,”
arXiv:2307.09288, 2023.

APPENDIX

A. Additional Experiments on SayCan scenarios

TABLE II
ADDITIONAL RESULTS FOR SAYCAN SCENARIO EXPERIMENTS

SayCan Ours, gpt-3.5-turbo-0301 Ours, Llama2-chat-13b
Instruction family # plan execute k = 4 k = 8 k = |M| k = 8

NL Single Primitive 15 93% 87% 73% 93% 93% 53%
NL Nouns 15 60% 40% 80% 93% 100% 73%
NL Verbs 15 93% 73% 60% 80% 87% 47%
Structured 15 93% 47% 93% 93% 80% 73%
Embodiment 11 64% 55% 27% 64% 73% 0%
Crowd Sourced 15 73% 60% 73% 93% 93% 40%
Long-Horizon 15 73% 47% 47% 27% 47% 20%
Drawer 3 100% 33% 100% 100% 100% 66%

We did some further experiments on the effect of top-k example selection for dynamic prompt construction. Table II shows the
result of using k = 4, k = 8 or k = |M|, i.e. using all available examples (16 for all instructions families except Drawer, 19 for
Drawer). Note that, in the k = |M| case, dynamic prompt construction still determines the order of the individual examples
(most similar is closest to the current query). The table shows that there is some trend of improving with the number of examples.
Especially, k = 8 clearly outperforms k = 4 (except for Long-Horizon tasks). Most numbers also increase when using all
available examples.

However, we note that using a larger k increases response time and computation cost (i.e. API usage cost) significantly, thus
making it (currently) impractical for real-world deployment. Furthermore, our prompt-based incremental learning strategy (which
is not tested in this SayCan evaluation) depends on dynamic prompt construction. During our qualitative experiments, we did
sometimes observe that a lower k is helpful for achieving the desired behavior, as the LLM can get side-tracked by irrelevant
examples.

To mitigate privacy concerns and increase autonomy of a humanoid robot system, it is desirable to run involved models locally.
Therefore, we did some preliminary tests with Llama2-chat-13b [48]. However, the numbers show that there is still much room
for improvement, and further research is needed to deploy our system without depending on external APIs.

B. SayCan Prompt Example

The following is an exemplary full prompt of our SayCan evaluation, given the command “put the coke can down on the
second counter”. It starts with an instructive base prompt, followed by a list of available APIs generated from the execution
environment. Then, there are eight examples for in-context learning, which are dynamically selected from the full set of 16
examples based on the current query. Finally, the command is inserted as return value of the “wait for trigger()” function,
and the LLM is prompted to generate the next function call(s).

Complete the following interaction with a robot operating in an office kitchen.
Always wait for user commands by calling wait_for_trigger() when there is nothing else to do.
Generate syntactically correct python code only, no explanations or other natural language statements.

```
# Python 3.9.7
# Welcome to interactive Python console. Enter syntactically correct Python code only.
>>> from runtime import learn_from_interaction, import_robot_util_functions
... import_robot_util_functions()
Imported definitions:

def ask(question: str)
def detect_object_locations() -> List[Tuple[str, str]]
def get_all_locations() -> List[str]
def get_location_coordinates(location_name: str) -> np.ndarray
def get_obj_pos(obj_name: str) -> np.ndarray
def get_object_in_hand(hand: Literal['left', 'right', None] = None) -> Optional[str]
def grab(object_name: str, hand: Literal['left', 'right', None] = None)
def handover_object_to_human(object_name: str)
def is_object_at_location(object_name: str, location_name: str) -> bool
def move_to(position: np.ndarray)
def put_down(object_name: str, position: np.ndarray)
def receive_object_from_human(object_name: str)
def say(text: str)
def wait_for_trigger() -> Dict[str, str] # always call this to wait for next command or end the interaction

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'I finished my drink, can you throw it away and bring me a mountain dew?'}
>>> detect_object_locations()
[('bowl', 'counter2'), ('sprite', 'person'), ('twix', 'counter1'), ('oatmeal', 'counter2'), ('orange', 'table'),
('mountain_dew', 'table')]



>>> get_all_locations()
['table', 'counter1', 'counter2', 'trash_can', 'person']
>>> say('Ok, I am going to put the sprite in the trash and bring the mountain dew to you')
... move_to(get_location_coordinates('person'))
'success'
>>> say('Can I take the sprite, please?')
... receive_object_from_human('sprite')
'success'
>>> move_to(get_location_coordinates('trash_can'))
'success'
>>> put_down('sprite', get_location_coordinates('trash_can'))
'success'
>>> move_to(get_location_coordinates('table'))
'success'
>>> grab('mountain_dew')
'success'
>>> move_to(get_location_coordinates('person'))
'success'
>>> handover_object_to_human('mountain_dew')
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'put a water bottle and an oatmeal next to the microwave'}
>>> say('Ok, I am going to put a water bottle and an oatmeal next to the microwave')
... detect_object_locations()
[('coke', 'table'), ('bowl', 'counter1'), ('water', 'table'), ('snickers', 'counter2'), ('oatmeal', 'counter2'),
('cheese', 'counter2'), ('coffee', 'counter2')]

>>> get_all_locations()
['table', 'counter1', 'counter2', 'trash_can', 'microwave', 'person']
>>> move_to(get_location_coordinates('table'))
'success'
>>> grab('water')
'success'
>>> move_to(get_location_coordinates('microwave'))
'success'
>>> put_down('water', get_location_coordinates('microwave'))
'success'
>>> move_to(get_location_coordinates('counter2'))
'success'
>>> grab('oatmeal')
'success'
>>> move_to(get_location_coordinates('microwave'))
'success'
>>> put_down('oatmeal', get_location_coordinates('microwave'))
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'place a knife and a banana to the table'}
>>> say('Ok, I am going to place a knife and a banana to the table')
>>> detect_object_locations()
[('bowl', 'counter2'), ('knife', 'counter1'), ('oatmeal', 'counter2'), ('orange', 'counter1'), ('banana', 'counter1'),
('mountain_dew', 'table')]

>>> get_all_locations()
['table', 'counter1', 'counter2', 'trash_can', 'person']
>>> move_to(get_location_coordinates('counter1'))
'success'
>>> grab('knife')
'success'
>>> move_to(get_location_coordinates('table'))
'success'
>>> put_down('knife', get_location_coordinates('table'))
'success'
>>> move_to(get_location_coordinates('counter1'))
'success'
>>> grab('banana')
'success'
>>> move_to(get_location_coordinates('table'))
'success'
>>> put_down('banana', get_location_coordinates('table'))
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'get a sponge from the counter and put it in the sink'}
>>> say('Ok, I am going to get a sponge from the counter and put it in the sink')
... detect_object_locations()
[('bowl', 'table'), ('water', 'table'), ('sponge', 'counter2'), ('cheese', 'counter1'), ('orange', 'counter2')]
>>> get_all_locations()
['table', 'counter1', 'counter2', 'sink', 'microwave', 'person']
>>> move_to(get_location_coordinates('counter2'))
'success'
>>> grab('sponge')
'success'
>>> move_to(get_location_coordinates('sink'))
'success'
>>> put_down('grapefruit', get_location_coordinates('sink'))
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'put the grapes in the bowl and then move the cheese to the table'}
>>> say('Ok, I am going to put the grapes in the bowl and then move the cheese to the table')
... detect_object_locations()
[('mountain_dew', 'table'), ('bowl', 'table'), ('water', 'table'), ('grapes', 'counter1'), ('orange', 'counter2'),
('cheese', 'counter2'), ('dried_fruit', 'table')]

>>> move_to(get_location_coordinates('counter1'))
'success'



>>> grab('grapes')
'success'
>>> move_to(get_location_coordinates('table'))
'success'
>>> put_down('grapes', get_obj_pos('bowl'))
'success'
>>> move_to(get_location_coordinates('counter2'))
'success'
>>> grab('cheese')
'success'
>>> move_to(get_location_coordinates('table'))
'success'
>>> put_down('cheese', get_location_coordinates('table'))
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'put a grapefruit from the table into the bowl'}
>>> say('Ok, I am going to put a grapefruit from the table into the bowl')
... detect_object_locations()
[('coke', 'table'), ('bowl', 'counter1'), ('water', 'table'), ('snickers', 'counter2'), ('grapefruit', 'table'),
('orange', 'counter2')]

>>> move_to(get_location_coordinates('table'))
'success'
>>> grab('grapefruit')
'success'
>>> move_to(get_location_coordinates('counter1'))
'success'
>>> put_down('grapefruit', get_obj_pos('bowl'))
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'deliver a can of coke to me'}
>>> say('Ok, I am going to bring you a can of coke')
... detect_object_locations()
[('bowl', 'counter2'), ('coke', 'counter2'), ('twix', 'counter1'), ('oatmeal', 'counter2'), ('orange', 'table')]
>>> get_all_locations()
['table', 'counter1', 'counter2', 'trash_can', 'microwave', 'person']
>>> move_to(get_location_coordinates('counter2'))
'success'
>>> grab('coke')
'success'
>>> move_to(get_location_coordinates('person'))
'success'
>>> handover_object_to_human('coke')
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'move the water bottle from the table to the counter'}
>>> say('Ok, I am going to move the water bottle from the table to the counter')
... detect_object_locations()
[('bowl', 'table'), ('water', 'table'), ('sponge', 'counter'), ('cheese', 'counter')]
>>> move_to(get_location_coordinates('table'))
'success'
>>> grab('water')
'success'
>>> move_to(get_location_coordinates('counter'))
'success'
>>> put_down('water', get_location_coordinates('counter'))
'success'

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'put the coke can down on the second counter'}
>>>

The LLM continues by generating the following:

say('Ok, I am going to put the coke can down on the second counter')
... detect_object_locations()

The resulting final interaction after four generate-execute cycles (each of which involve a full prompt as shown above):

>>> wait_for_trigger()
{'type': 'dialog', 'text': 'put the coke can down on the second counter'}
>>> say('Ok, I am going to put the coke can down on the second counter')
... detect_object_locations()
[('7up', 'counter2'), ('apple', 'counter2'), ('coke', 'righthand'), ('energy_bar', 'table'), ('grapefruit_soda', 'counter1'),
('jalapeno_chips', 'counter2'), ('red_bull', 'table'), ('rice_chips', 'table'), ('sponge', 'counter1'), ('sprite', 'table'),
('water', 'table')]

>>> move_to(get_location_coordinates('counter2'))
'success'
>>> put_down('coke', get_location_coordinates('counter2'))
'success'
>>> wait_for_trigger()



C. Learning from Interaction

The following is a full trancript of the “learn from interaction()” call in the Ladder scenario. It starts with two
pre-defined examples. Then, a list of available APIs follows. Finally, the current interaction is inserted, and Chain-of-Thought
prompting is used to generate an improved interaction.

System: You are a helpful assistant that improves python console transcripts used to control a humanoid household robot, given the requests or corrections provided by a user.
Human: I had the following interaction with the robot:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'Can you prepare a pizza for me?'}
>>> list_object_locations()
[('spoon', 'table'), ('ginger tea', 'cupboard'), ('boiler', 'counter'), ('freezer', 'freezer'), ('oven', 'oven')]
>>> say('Ok, I am going to check the freezer for a pizza')
... open_door('freezer')
'success'
>>> bring_object_to('pizza', 'counter')
'success'
>>> open_door('oven')
'success'
>>> bring_object_to('pizza', 'oven')
'success'
>>> close_door('oven')
'success'
>>> turn_device_on('oven')
'finished'
>>> open_door('oven')
'success'
>>> bring_object_to('pizza', 'table')
'success'
>>> say('Here is your pizza. Anything else I can do for you?')
... wait_for_trigger()
{'type': 'dialog', 'text': 'You forgot to close the freezer'}
>>> close_door('freezer')
'success'
>>> say('I am sorry for that mistake. Anything else I can do for you?')
... wait_for_trigger()
{'type': 'dialog', 'text': 'No, now it is fine'}
>>> learn_from_interaction()

Human: What is the problem in this interaction? Answer with a single sentence.
AI: The problem is that the robot did not close the freezer and the oven after taking something out of it.
Human: How can the robot do better next time? Answer with a single explanation sentence, no code.
AI: Next time, the robot should close the freezer and the oven after taking something out of it.
Human: Provide an improved version of the interaction transcript. Your output should be a copy of the above interaction (including the python shell syntax) with only slight modifications to adjust
the behavior appropriately. Do not include another learn from interaction call. Remember to fix the identified problem.
AI:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'Can you prepare a pizza for me?'}
>>> list_object_locations()
[('spoon', 'table'), ('ginger tea', 'cupboard'), ('boiler', 'counter'), ('freezer', 'freezer'), ('oven', 'oven')]
>>> say('Ok, I am going to check the freezer for a pizza')
... open_door('freezer') # Important to close it after getting the pizza out of it
'success'
>>> bring_object_to('pizza', 'counter')
'success'
>>> close_door('freezer')
'success'
>>> open_door('oven')
'success'
>>> bring_object_to('pizza', 'oven')
'success'
>>> close_door('oven')
'success'
>>> turn_device_on('oven')
'finished'
>>> open_door('oven') # Important to close it after getting the pizza out of it
'success'
>>> bring_object_to('pizza', 'table')
'success'
>>> close_door('oven')
'success'
>>> say('Here is your pizza. Anything else I can do for you?')
... wait_for_trigger()
{'type': 'dialog', 'text': 'No thanks'}

Human: I had the following interaction with the robot:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'could you make a salad for me?'}
>>> list_objects()
['fridge', 'oven', 'microwave', 'spoon', 'apple', 'plate', 'oil']
>>> say('Ok, I am going to check the fridge for a salad')
... open_door('fridge')
'success'
>>> bring_object_to('salad', 'counter')
'success'
>>> close_door('fridge')
'success'
>>> bring_object_to('salad', 'plate')
'success'
>>> bring_object_to('plate', 'table')
'success'
>>> say('Here is your salad. Anything else I can do for you?')



... wait_for_trigger()
{'type': 'dialog', 'text': 'There is no dressing on it. I dont want to have plain salad'}
>>> say('I am sorry for that mistake')
... wait_for_trigger()
{'type': 'dialog', 'text': 'Now please get me some dressing'}
>>> bring_object_to('oil', 'plate')
'failure'
>>> say('I am sorry, I cannot pour the oil into the plate. Can you assist?')
... wait_for_trigger()
{'type': 'dialog', 'text': 'please just bring the oil to me and I will do it myself'}
>>> bring_object_to('oil', 'table')
'success'
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'Thanks. Next time please serve the oil with the salad rightaway'}
>>> learn_from_interaction()

Human: What is the problem in this interaction? Answer with a single sentence.
AI: The problem is that the robot offered only plain salad without a dressing.
Human: How can the robot do better next time? Answer with a single explanation sentence, no code.
AI: Next time, the robot should serve the oil on the table with the salad right away.
Human: Provide an improved version of the interaction transcript. Your output should be a copy of the above interaction (including the python shell syntax) with only slight modifications to adjust
the behavior appropriately. Do not include another learn from interaction call. Remember to fix the identified problem.
AI:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'could you make a salad for me?'}
>>> list_objects()
['fridge', 'oven', 'microwave', 'spoon', 'apple', 'plate', 'oil']
>>> say('Ok, I am going to check the fridge for a salad')
... open_door('fridge')
'success'
>>> bring_object_to('salad', 'counter')
'success'
>>> close_door('fridge')
'success'
>>> bring_object_to('salad', 'plate')
'success'
>>> bring_object_to('plate', 'table')
'success'
>>> # The user earlier asked me to always serve oil with the salad, so let's do that
... bring_object_to('oil', 'table')
'success'
>>> say('Here is your salad and oil. Anything else I can do for you?')
... wait_for_trigger()
{'type': 'dialog', 'text': 'Fine for now'}

Human: These are the available APIs:

def ask(question: str)
def bring_object_to(object_name: str, destination_object_name: str) # full pick and place method. assumes that the object is

# already detected. Assure that using list_objects() before calling this
def close_door(object_name: str)
def get_location_coordinates(location_name: str) -> np.ndarray
def get_obj_pos(obj_name: str) -> np.ndarray
def get_object_in_hand(hand: Literal['left', 'right', None] = None) -> Optional[str]
def grasp(object_name: str, hand: Literal['left', 'right', None] = None)
def handover_object_to_human(object_name: str)
def is_object_at_location(object_name: str, location_name: str) -> bool
def list_locations() -> List[str]
def list_object_locations(affordance: Literal[None, 'grasp', 'place_something_on_top', 'open'] = 'grasp') -> List[Tuple[str, str]]
def list_objects(affordance: Literal[None, 'grasp', 'place_something_on_top', 'open'] = 'grasp') -> List[str]
def move_to(position: np.ndarray)
def open_door(object_name: str)
def place_object(object_in_hand_name: str, destination_object_name: str) # place the already grasped object on top of

# the destination object
def receive_object_from_human(object_name: str)
def say(text: str)
def wait_for_trigger() -> Dict[str, str] # always call this to wait for next command or end the interaction

Human: I had the following interaction with the robot:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'help me clean the top of the fridge'}
>>> list_object_locations()
[('cup_large_0', 'on_mobile-kitchen-counter_0'), ('multivitamin-juice_0', 'on_mobile-kitchen-counter_0'),
('bauhaus-sponge_0', 'on_square-table-80x80_0'), ('ladder-closed_0', None)]
>>> say('Ok, I will bring you the sponge')
... # The sponge is on the square table. check the correct name for navigation:
... list_locations()
['inFrontOf_square-table-80x80_0', 'inFrontOf_mobile-dishwasher_0', 'inFrontOf_mobile-fridge_0',
'inFrontOf_mobile-kitchen-counter_0', 'handover_to_human', 'room_center']
>>> move_to(get_location_coordinates('inFrontOf_square-table-80x80_0'))
'succeeded'
>>> grasp('bauhaus-sponge_0')
'succeeded'
>>> move_to(get_location_coordinates('handover_to_human'))
'succeeded'
>>> say("Here is the sponge.")
... handover_object_to_human('bauhaus-sponge_0')
'succeeded'
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'I will also need the ladder'}
>>> list_objects()
['cup_large_0', 'multivitamin-juice_0', 'bauhaus-sponge_0', 'ladder-closed_0']
>>> bring_object_to('ladder-closed_0', 'handover_to_human')
'succeeded'
>>> say("Here is the ladder. Anything else I can do for you?")



... # The ladder is now in front of the human, no need for any further actions
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'thank you, but remember to always bring me the ladder when I need to reach a high surface without '

'me having to ask for it'}
>>> learn_from_interaction()

Human: What is the problem in this interaction? Answer with a single sentence.
AI: The problem is that the robot did not bring the ladder automatically when the human asked for help cleaning the top of the fridge.
Human: How can the robot do better next time? Answer with a single explanation sentence, no code.
AI: Next time, the robot should proactively bring the ladder when the human asks for help cleaning a high surface, without the human having to explicitly ask for it.
Human: Provide an improved version of the interaction transcript. Your output should be a copy of the above interaction (including the python shell syntax) with only slight modifications to adjust
the behavior appropriately. Do not include another learn from interaction call. Remember to fix the identified problem.
AI:
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'help me clean the top of the fridge'}
>>> list_object_locations()
[('cup_large_0', 'on_mobile-kitchen-counter_0'), ('multivitamin-juice_0', 'on_mobile-kitchen-counter_0'),
('bauhaus-sponge_0', 'on_square-table-80x80_0'), ('ladder-closed_0', None)]

>>> say('Ok, I will bring you the sponge and the ladder')
... # The sponge is on the square table. check the correct name for navigation:
... list_locations()
['inFrontOf_square-table-80x80_0', 'inFrontOf_mobile-dishwasher_0', 'inFrontOf_mobile-fridge_0',
'inFrontOf_mobile-kitchen-counter_0', 'handover_to_human', 'room_center']

>>> move_to(get_location_coordinates('inFrontOf_square-table-80x80_0'))
'succeeded'
>>> grasp('bauhaus-sponge_0')
'succeeded'
>>> move_to(get_location_coordinates('handover_to_human'))
'succeeded'
>>> say("Here is the sponge.")
... handover_object_to_human('bauhaus-sponge_0')
'succeeded'
>>> bring_object_to('ladder-closed_0', 'handover_to_human')
'succeeded'
>>> say("Here is the ladder. Anything else I can do for you?")
... # The ladder is now in front of the human, no need for any further actions
>>> wait_for_trigger()
{'type': 'dialog', 'text': 'No, that\'s all. Thank you for bringing the ladder without me having to ask for it.'}


