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ABSTRACT

Conventional multi-speaker text-to-speech synthesis (TTS)
is known to be capable of synthesizing speech for multiple
voices, yet it cannot generate speech in different accents. This
limitation has motivated us to develop SYNTACC (Synthe-
sizing speech with accents) which adapts conventional multi-
speaker TTS to produce multi-accent speech. Our method
uses the YourTTS model and involves a novel multi-accent
training mechanism. The method works by decomposing
each weight matrix into a shared component and an accent-
dependent component, with the former being initialized by
the pretrained multi-speaker TTS model and the latter be-
ing factorized into vectors using rank-1 matrices to reduce
the number of training parameters per accent. This weight
factorization method proves to be effective in fine-tuning
the SYNTACC on multi-accent data sets in a low-resource
condition. Our SYNTACC model eventually allows speech
synthesis in not only different voices but also in different
accents.

Index Terms— Speech synthesis, accent adaptation,
multi-speaker TTS, weight factorization, weight decomposi-
tion

1. INTRODUCTION

Deep learning approaches have significantly advanced text-
to-speech systems in recent years [1][2]. Most TTS systems
are trained from a single speaker’s voice, but there is contem-
porary interest in synthesizing voices for any speakers which
is known as multi-speaker TTS [3]. Although multi-speaker
TTS allows synthesizing speech of any single voice, it can-
not produce speech with a specific accent at the same time.
Therefore, it could be necessary to use a synthesis system that
can handle a variety of accents. In practice, the capability to
change an accent is one of the top desired features in TTS sys-
tems, particularly by users and communication devices that
want to have the TTS voice as their own to communicate with
others from different parts of the world. In theory, we also
need to generate more non-native accented speech to train
augmented speech recognition models [4] [5] or to produce
paired audios of the same voice in different accents to train
accent conversion models [6]. It is possible for each accent

to be processed by a TTS model, only that it requires a lot of
training data for each accent. To address this issue, our paper
utilizes a multi-accent TTS that can generate many regional
accents through a single model. Our proposed system can be
fine-tuned from the conventional multi-speaker TTS without
a high demand in accented-speech data. The model perfor-
mance is then evaluated on 4 accents such as Indian accent,
Spanish accent, Chinese accent and Vietnamese accent.1.

Over the years, Transformer-based TTS has become in-
creasingly popular in the research community due to its
advantage in long-range context dependencies [7]. Further-
more, Transformer featuring an adaptive weight component
is proved to be efficient in various multilingual models, such
as for speech recognition, machine translation and speech
translation [8]. Hence, our research on SYNTACC aims to
contribute to the current literature by investigating the effec-
tiveness of such adaptive component on multi-accent TTS
problems. We experiment this method on YourTTS [3], the
advanced version of VITS model [9]. As long as matrix-
vector multiplication is the primary operation, this method
can be applied in any neural architecture and therefore, can
be also deployed in an arbitrary TTS neural architecture such
as FastSpeech [2] and GlowTTS [1].

2. METHODOLOGY

2.1. Multi-accent adaptive weight component

The idea of adaptive weight is motivated by the belief that
there are features shared between accents that must be selec-
tively represented, and networks are expected to switch be-
tween different "modes" depending on the input accent being
processed. In a multi-accent scheme, the phoneme set, the
character set and the word set are the same for every accent.
Meanwhile, accents may differ in various aspects such as pho-
netics (acoustic realisation of the same phoneme), prosody,
and pronunciation. From a phonological point of view, accent
differences may be reflected in their letter-to-sound mapping
[10]. These differences can consist of substitution of some
phonemes. For example ‘bath’ in British English /b a: T/

1This research was supported in part by a grant from Zoom Video Com-
munications, Inc. The authors gratefully acknowledge the support.IC
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versus in General American English (GA) /b æ T/ ; or in in-
sertions/deletions of some phones, for example in ‘herb’ / E:
b/ vs /h E: b/. Therefore, if we can change the "mode" of the
letter-to-sound component of a TTS model, we can expect the
accent to alter accordingly. In this paper, the adaptive weight
that adds scales and biases to each weight matrix of the letter-
to-sound component is selected for investigation.

Adaptive weight factorization is proposed based on the
fact that the core operator of neural networks is matrix multi-
plication [11]. Therefore, it is possible to separate the weight
matrix into a shared component WS and an accent-dependent
adaptive scale WML and bias WBL. The simple matrix mul-
tiplication Y =WX becomes:

Y = (WS ·WML +WBL)
TX (1)

The added weight in this case includes a multiplicative
term WML and a biased term WBL. The term WML is sup-
posed to directly change the magnitude and direction of the
shared weightsWS while the termWBL provides the network
with a content-based bias based on the input featuresX . Each
accent retains its distinctive set of WML and WBL, resulting
in a semi-shared architecture.

To encourage the model to share parameters while keep-
ing them efficient, the adaptive weight is factorized as 1-rank
matrices that can be represented compactly as a dot-product
between two vectors. This factorization can be formed us-
ing k vectors per accent, resulting in k independent weight
factors, followed by a summation that raises the rank of the
additional weight matrices:

W =
∑k

i
ris

T
i (2)

2.2. Adaptive multi-accent speech synthesis

YourTTS serves as the backbone of our SYNTACC which
brings in an adaptive component for accents [3]. YourTTS
is essentially an improved version of VITS with a number of
novel modifications and improvements for zero-shot multi-
speaker and multilingual instruction. It is one of the few TTS
models that are fully end-to-end, non-autoregressive, and of
high-fidelity. Raw text is used as input for YourTTS, in con-
trast to phonemes being fed to VITS, because this produces
more realistic results for many languages, for which there
are no grapheme-to-phoneme converters available. The raw
text input is also highly suitable for our SYNTACC since the
grapheme-to-phoneme for different accents are very different
from one another; and in a multi-accent context, it can be
challenging to develop grapheme-to-phoneme models in re-
spect to the target accents. The original YourTTS is trained in
three languages (English, Portugese and French) but in our
experiment, we only focus on English with a multi-accent
training setup.

Like YourTTS, our SYNTACC is a conditional variational
autoencoder augmented with normalizing flow (Fig 1). In

terms of architecture, it basically includes 3 modules: A pos-
terior encoder, a prior decoder and a waveform generator,
each encoding the distributions qθ(z|x), pψ(z|c) and pϕ(x|z)
respectively. qθ(z|x) and pψ(z|c) are the posterior and data
distributions, parameterized by neural posterior encoder’s pa-
rameters θ and Hifi-GAN [12] waveform generator’s pareme-
ter ψ respectively, where x is the speech input and z is the la-
tent variables. The Posterior Encoder receives linear spectro-
grams and speaker embeddings as input and predicts a latent
variable z. This latent variable and speaker embeddings are
then used as input to the Hifi-GAN vocoder generator which
generates the waveform. The prior of z is defined as pψ(z|c),
where the latents are conditioned on input texts c, the prior
distribution is parameterized by text encoder combined with a
normalizing flow decoder f . The Flow-based decoder aims to
condition the latent variable z and speaker embeddings with
respect to a prior distribution. To align the output of flow-
based decoder with the output of the text encoder, we use the
Monotonic Alignment Search (MAS). The stochastic duration
predictor receives speaker embeddings as inputs and the du-
ration d obtained through MAS. During training, the model
aims to maximize the conditional distribution of x given c,
denoted as p(x|c) by maximizing its evidence lower bound
(ELBO):

log p(x|c) > Eqθ(z|x)[log pϕ(x|z)]−DKL(qθ(z|x)||pψ(z|c))
(3)

As in previous works, we use a text encoder based on a
Transformer. For multi-accent training, we combine the em-
beddings of each input character with 16-dimensional train-
able accent embeddings. In addition, we set the number of
Transformer blocks to 10 and the number of hidden channels
to 196. We can consider it as a baseline model. An adap-
tive factorized weight with rank 2 is then added to form our
proposed model. This has the advantage in directly influenc-
ing each layer function, such as the QKV-projection layer
in self-attention. The key difference between the baseline
model and our proposed model is the text encoder component,
since it is considered as a letter-to-sound component. The
flow-based decoder comes after the Transformer-based text
encoder, which allows an invertible transformation of a sim-
ple distribution into a more complex distribution following
the rule of change-of-variable. The remaining components,
such as a flow-based decoder, Monotonic Alignment Search,
a speaker encoder, a posterior encoder, a duration predictor
and a waveform generator are inherited from the original pa-
per [3].

3. EXPERIMENTS

3.1. Data and training description

First step, we train YourTTS model with VCTK corpus which
contains 44 hours of speech and 109 speakers, sampled at
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Fig. 1. Multi-accent TTS architecture

48kHz. All audios are sampled at 16kHz before training.
The training setting is established in a similar way as in the
original implementation [3]. After 150k training steps, this
pretrained YourTTS can be used as initialized weights for all
experiment models.

Second step, our multi-accent TTS experiments are con-
ducted using L2-Arctic public data set, including Hindi-
accented corpus, Spanish-accented corpus, and Vietnamese-
accented corpus [13]. These corpuses have 12 speakers in
total, thereof 4 native English speakers and 4 Indian accented
speakers. Each of them is featured in their respective au-
dios of the same 1152 sentences. To ensure uniformly loud
samples and to eliminate extended pauses, pre-processing is
performed on all corpuses. Every training audio is normal-
ized to -27dB using the RMS-based normalization from the
Python package ffmpeg-normalize and sampled at 16kHz. As
a result, we get around 3 hours of Chinese-accented audio, 3
hours of Spanish-accented audio, 3 hours of Indian-accented
audio and 3 hours of Vietnamese-accented audio, which can
be considered as a low-resource condition.

Third step, we train 4 TTS models - each with a specific
accent - and compare their performance with the results of
our multi-accent model. To do so, we fine-tune the pretrained
YourTTS model in the first step on the accented-speech data
processed in the second step. Subsequently, we get 4 single-
accent TTS models, namely Indian Accent TTS, Spanish Ac-
cent TTS, Chinese Accent TTS and Vietnamese Accent TTS.

The weights of the baseline model and our proposed
SYNTACC are both initialized by the pretrained YourTTS.
So as not to impair the multi-speaker synthesis capability,
we combine the aforementioned accented-speech data with
audios of Indian speakers in the VCTK data sets during

fine-tuning. To assess how much the pretrained weights con-
tributes to our SYNTACC, we train the SYNTACC model
in 3 setups: (1) without pretrained weights; (2) freezing the
pretrained weights and fine-tuning only accent-dependent
weights; (3) using pretrained weights and fine-tuning all pa-
rameters. We use the CoquiAI framework [14] to implement
all our experiment models. All models are trained in around
10k steps using an NVIDIA A100 48GB with a batch size of
128.

3.2. Evaluation metrics

We evaluate all experiment models by two types of metrics,
objective and subjective, as described in the following sec-
tion. In the test set, we use 10 sentences, each of which is
synthesized in four accents. Sample evaluation audios are
available at 2.

3.2.1. Subjective tests

Accentedness, Speaker Similarity Mean Opinion Score
(Sim-MOS) and Mean Opinion Score (MOS). For each tar-
get accent, three kind of tests are conducted by 10 accented
participants who listen to the provided audios and evaluate
their overall quality on a 5-point scale: 1-bad, 2-poor, 3-fair,
4-good, 5-excellent. In the Accentedness test, the participants
give a score for the degree to which the synthesized audios
sound like a specific-accented speech. For the Sim-MOS
test, they rate the similarity between the voice identity of the

2https://accenttts.github.io/
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Models Accentedness Sim-MOS MOS
IND ES VN ZH AVG IND ES VN ZH AVG IND ES VN ZH AVG

YourTTS specific-accented 4.7 3.2 3.8 3.7 3.85 3.7 3.3 3.2 3.7 3.45 4.1 3.7 3.8 3.9 3.88
Baseline 3.2 2.3 2.8 2.9 2.8 4.0 3.9 4.0 3.9 3.95 4.15 4.1 3.9 3.8 3.99
SYNTACC

+ no pretrained weights _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
+ freeze shared weights 4.7 3.1 3.7 4.0 3.9 3.65 4.1 3.9 4.3 3.99 4.0 3.6 3.8 3.7 3.78
+ fine-tune all 4.8 3.5 3.8 3.9 4.0 3.9 4.2 3.6 4.0 3.925 3.8 3.75 4.2 3.9 3.91

Table 1. Subjective metrics

Models WER
IND ES VN ZH AVG

YourTTS specific-accented 2.4 3.5 3.7 3.9 3.4
Baseline 1.9 3.2 3.3 3.5 3.0
YourTTS _ _ _ _ 0.8
SYNTACC

+freeze shared weights 2.1 3.2 3.5 3.8 3.15
+fine-tune all 1.8 3.3 3.1 3.2 2.85

Table 2. Objective metrics

output audios and the original audios of target speakers on a
scale of 5 as above. By this metric, we want to verify if the
multi-speaker synthesis capability remains unimpaired after
being fine-tuned. Finally, the MOS test is scored for how
natural the output speech sound. In all metrics, the higher
rating is the better.

3.2.2. Objective tests

Word Error Rates (WER) We compute a WER for all test
audios by using our competitive ASR system [4]. We also
compute the WER for the audios generated by the original
YourTTS, hence WER can be used as an indicator to see how
much an accent influences the output audios. A better multi-
accent TTS model is expected to have a lower WER.

3.3. Results

Table 1 and Table 2 present subjective and objective eval-
uation metrics for Chinese(ZH), Indian (IND), Vietnamese
(VN), and Spanish (ES) accents respectively and also the av-
erage score (AVG) of all accents. Our SYNTACC is inca-
pable of synthesizing intelligible speech without pretrained
weights, meaning that the synthesized audios are not com-
prehensible. Therefore, we consider our SYNTACC with-
out pretrained weights to be the worst configuration. This
can be explained by data insufficiency to train a whole model
with accent-dependent components from scratch. As can be
seen from Table 1, the four single-accent YourTTS models
trained on specific accented data receive a high Accented-
ness test score but do not perform well on the Sim-MOS test.
The reason is that specific-accented YourTTS is fine-tuned on

a database of only 4 accented speakers, such limited num-
ber can impair multi-speaker synthesis capability. Our SYN-
TACC with pretrained weights outperform the baseline multi-
accent TTS using accent embedding in the Accentedness test
(3.9 and 4.0 vs 2.8 on average) while achieving equally good
Sim-MOS scores. It implies that our SYNTACC model us-
ing adaptive weights might have added more accented fea-
tures to the synthesized speech than the baseline. Thanks to
the advantage of using YourTTS backbone, all models under
different settings score well from 3.78 to 3.99 in the MOS
test. The average assessments of our SYNTACC with freez-
ing share weights and fine-tuning all parameters do not differ
significantly across all three subjective tests. The Accented-
ness test of Indian accent has significantly higher scores than
other accents. Since English is a popular language in India,
the pronunciation patterns of Indian speakers are more con-
sistent than those of other accented speakers, which enables
our SYNTACC model to learn better on how to speak with an
Indian accent. In terms of objective metrics, all experiment
models have higher WER than YourTTS. Among which, the
best one is SYNTACC with fine-tuning all parameters (2.85
WER). The Indian accented speech has better score than other
accent because the training data for speech recognition has
more audios from Indian speakers.

4. CONCLUSION

To conclude, this paper has demonstrated our SYNTACC
model with weights factorization method. Such kind of
method is truly promising thanks to its possibility to be im-
plemented in any TTS neural architecture. In addition, how
a YourTTS pretrained weights can help a SYNTACC model
to be trained in low-resource conditions is also described.
Though we conduct our experiment with a 4-accent TTS
model, the number of accents can be further increased simply
by enlarging the size of the accent-dependent components
before fine-tuning.

As a future perspective, we desire to investigate how to
perform accent conversion using a SYNTACC model. This
feature is motivated by the fact that YourTTS has been ca-
pable of processing both voice conversion and multi-speaker
TTS synthesis in a single model, while currently our pre-
sented SYNTACC can handle just the multi-accent TTS.
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