
Accent conversion using discrete units with parallel data synthesized from
controllable accented TTS

Tuan-Nam Nguyen1, Ngoc-Quan Pham1, Alexander Waibel1

1 Karlsruhe Institute of Technology , Germany
tuan.nguyen@kit.edu, ngoc.pham@kit.edu, alexander.waibel@kit.edu

Abstract
The goal of accent conversion (AC) is to convert speech ac-

cents while preserving content and speaker identity. Previous
methods either required reference utterances during inference,
did not preserve speaker identity well, or used one-to-one sys-
tems that could only be trained for each non-native accent. This
paper presents a promising AC model that can convert many
accents into native to overcome these issues. Our approach uti-
lizes discrete units, derived from clustering self-supervised rep-
resentations of native speech, as an intermediary target for ac-
cent conversion. Leveraging multi-speaker text-to-speech syn-
thesis, it transforms these discrete representations back into na-
tive speech while retaining the speaker identity. Additionally,
we develop an efficient data augmentation method to train the
system without demanding a lot of non-native resources. Our
system is proved to improve non-native speaker fluency, sound
like a native accent, and preserve original speaker identity well.
Index Terms: Accent Conversion, Self-supervised representa-
tion, Speech Synthesis

1. Introduction
Accents or the struggle in understanding accents can be a lan-
guage barrier between different English speaking groups. Deep
learning models have the capability to address this issue by ef-
fectively converting accents while retaining the speakers’ iden-
tity.

Conventional accent conversion [1, 2]methods rely on ref-
erence utterances in the target accent during synthesis, which
restricts their applicability. Such limitation arises from the dif-
ficulty in obtaining reference utterances with identical linguis-
tic content yet in a different accent. Similar to the most re-
cent research in accent conversion, this research concentrates
on reference-free AC, which can convert accent without a ref-
erence utterance during inference. Approaches to reference-
free AC can be categorized into two main architectures: non-
autoregressive and autoregressive.

Non-autoregressive AC [3, 4] only entails non-parallel data
that comprise diverse but unpaired information and are widely
accessible. Making use of such data can require decompos-
ing speech into distinct independent features such as speaker
identity, content, prosody and accent. Although the method en-
ables synchronization between the input and output audios, non-
autoregressive models may encounter challenges due to the lack
of fluency in source non-native speakers. It handles accent con-
version without altering the duration of the input audio, hence
hardly improves the fluency quality [3].

In contrast, autoregressive accent conversion is primarily
based on seq2seq model and uses parallel data for training. Par-
allel data consist of utterances from the same speaker in differ-

ent accents, which can be challenging to obtain because of its
scarcity. To address the issue, one approach [5] employs data
augmentation techniques by utilizing voice conversion to gener-
ate parallel data with similar voices but different accents. Nev-
ertheless, the method was not experimented with unseen speak-
ers (zero-shot condition) and are one-to-one directed systems
that must be trained independently for each non-native accent.
Another approach is from [6, 7] which does not utilize any data
augmentation techniques. Instead, it trains a model to ”trans-
late” non-native bottleneck features derived from phonetic pos-
teriorgrams into equivalent native bottleneck ones. This method
effectively corrects pronunciation errors in non-native utter-
ances. Then they convert these native bottleneck features into
corresponding mel-spectrogram and eventually into waveform
audio using a neural vocoder. Their training data come from
accented speech recordings instead of synthesized speech data,
rendering difficulty in making use of the training data that rep-
resent the same text content in multiple accents.

Our research developed an autogressive, reference-free,
zero-shot, and many-to-one directional AC system that can be
trained in a low non-native resource condition and improve the
fluency for non-native speech. Additionally, how the capabil-
ity of generating diverse accented speech with the same text
content can help training parallel AC models is also investi-
gated, and this data augmentation strategy set our work apart
from other works. Figure 1 illustrates our method, which cas-
cades a seq2seq pronunciation corrector (PC) model and a na-
tive multi-speaker unit-to-speech (U2S) model. The PC model
converts plenty of non-native accented speech into discrete rep-
resentation units, which are obtained from the clustering of self-
supervised speech representations on native speech. With these
self-supervised discrete units [8] being able to separating the
content of speech from the speaker identity, converting these
discrete units back to speech can be done with the original
speaker identity. The second model, multi-speaker U2S, uti-
lizes the speaker embedding generated by speaker encoder for
this purpose. Within this study, the units derived from native
speech are even more easily convertible back to native speech.
Nevertheless, our evaluation is grounded in real data. The con-
tributions of this work are as follows:
• The proposed system can transform speech inputs of varied

accents into native while preserving the speaker’s voice and
content. Additionally, it can improve the fluency of non-
native speakers.

• A substantial amount of parallel training data may be re-
quired for a seq2seq PC. Therefore, we devised a data aug-
mentation technique to generate more training data under
a limited non-native resources condition. Parallel synthetic
training data is introduced to effectively train the Voice Con-
version (VC) system [9]. We believe it can also be used to



train any AC systems in a parallel fashion without an initial
demand for such kind of data.

• Our proposal is to pioneer the utilization of discrete units in
the training of a transformer-based model for AC. Inspired by
the success of self-supervised pretrained models on Speech
Recognition [10] and Speech-to-Speech Translation [11], we
show that pretrained encoder-decoder can also boost training
effectiveness more than random weight initialization.

Figure 1: The workflow of the proposed system

2. Methodology
Figure 2 illustrates the three steps to achieve the first unit-based
AC system. First, we train S2U and U2S using native speech
corpus. Then we train multi-speaker multi-accented TTS and
Monospeaker native TTS to create parallel training data. Fi-
nally, we use the synthesized paralel training data for training
the seq2seq PC.

2.1. Speech2Unit model and Multi-speaker Unit2Speech
model

Following the best setting in [8], we utilize a HuBERT
model [12] to encode native speech corpus into continuous rep-
resentations at every 20-ms frame, and to learn K-means with
K = 100 on these representations from the sixth layer 1. To
generate discrete unit sequences, we quantize these representa-
tions by mapping each one to its nearest cluster based on the
Euclidean distance. We remove consecutive duplicate units to
construct a reduced unit sequence representing native speech..

YourTTS [13] is a zero shot multi-speaker TTS that can
achieve good voice similarity for unseen speakers, hence we
decide to use YourTTS architecture for U2S. We treat the dis-
crete units extracted from native speech as text input, and train
YourTTS separately on a native corpus with a large number of
speakers. Finally, our U2S can convert native discrete units with
speaker embedding back to any original native speech.

2.2. Data augmentation using Multi-accented TTS and Na-
tive TTS

In order to train the discrete unit generative model, one can
question how we can provide enough data consisting of mul-
tiple accents. Here approach is to start with a good base TTS
model, and then enhance it with a multi-accented adaptation
step to control the TTS to generate into any accent. Following
the work in SYNTACC (SYNThesizing speech with multiple
ACCents) [14], with YourTTS as the base model, we employed
weight factorization [15] to achieve the multi-accented model.
Each weight matrix in the TTS model is factorized into a shared
component and an accent-specific component. While the for-
mer is initialized by the pretrained conventional multi-speaker

1Empirically the middle layer produces the codes with the best qual-
ity

TTS model, the latter is simplified as rank-1 matrices to not
only minimize the memory cost for each extra accent, but also
to encourage the shared component to hold as much informa-
tion as possible while each accent only needs a few parameters
to control.

This adaptation stage is effective in fine-tuning the SYN-
TACC in the absence of a large demand for non-native speech
data, while also retaining the ability to synthesize unseen voices
of the original multi-speaker TTS model. Finally, the SYN-
TACC model can synthesize speech in not only multiple voices,
but also varied accents.

We train YourTTS on the native speaker corpus to generate
output audios. The seq2seq PC model’s outputs are discrete
units, hence these training sequences should be consistent. To
ensure consistent voice, style, and accent in synthetic output,
we train YourTTS with audio from a single native speaker. Then
applying S2U on synthesized output audios to creates discrete
native unit sequences.

After training the Native YourTTS and SYNTACC models,
we use them to create training data for the PC. First, we re-
quire a large text corpus. Then, for each sentence in this text
corpus, we generate corresponding input and output audio. We
produce input audio for each sentence using SYNTACC with
a random speaker and accent. We can additionally modify the
synthesized audio by randomizing the duration noise scale and
the inference noise scale of SYNTACC to make the seq2seq PC
model more robust on a variety of input sounds. In contrast to
the SYNTACC model, we fix these noise scales when doing in-
ference native YourTTS, then use S2U to construct a sequence
of discrete native units for output audio. Finally, in the follow-
ing section, the input non-native audios and matching sequence
of discrete units can be utilized to train the seq2seq PC.

2.3. Training the pronunciation corrector

Our proposed PC is a Transformer based sequence-to-sequence
model with a speech encoder and a discrete unit decoder. In this
work, we explore both pretrained encoder and decoder.

2.3.1. Pretrained Encoder: Wav2vec 2.0 and HuBERT

The discrete units are derived from the representations of the
pretrained HuBERT, we regard this pre-trained model as a vi-
able choice for initializing encoder weights. Wav2vec 2.0 [16]
is also a self-supervised frameworks to learn speech represen-
tations from unlabeled audio data. They both use a multi-layer
convolution neural network to encode the audio followed by a
Transformer-based context encoder to build the contextualized
representations. In this work, we use Wav2vec 2.0 and HuBERT
with relative attention [17] for better performance.

2.3.2. Pretrained Decoder: MBart50

BART was originally proposed for denoising autoencoder over
text using Transformer. The network is tasked to reconstruct
a sentence at the decoder given a noisy version at the encoder
side. MBart50 [18] and its extension MBart50 took the BART
training scheme and applied to 50 languages. Our discrete units
were obtained from English data, therefore we can consider
these discrete units to be a new language that has some simi-
larities to English and can benefit from pretrained MBart50 de-
coder. In our case, we replace embedding layer of MBart50 and
treat the discrete units as text output and traing wav2vec-MBart
and HuBERT-MBart on our synthetic parallel data.



Figure 2: Three steps of training system

3. Experiments
3.1. Data and training description

Speech2Unit and Unit2Speech models are obtained from
LJSpeech corpus [19] and LibriTTS-R (the sound quality im-
proved version of the LibriTTS corpus [20, 21]corpus, which
has more than 2300 speakers) ,respectively. The LJSpeech cor-
pus contains 13,100 audio samples of a single native female
voice reading sentences. We follow the section 2.1 to learn S2U
for English speech. To obtain a multi-speaker U2S, we train
a multi-speaker YourTTS with discrete units from S2U associ-
ated with speaker embedding as input and target speech as out-
put. We use pretrained speaker encoder [22] to generate speaker
embedding.

We use audio data from the LJSpeech corpus and L2-Arctic
[23] to train the YourTTS and fine-tune the SYNTACC for data
augmentation respectively. L2-Arctic corpora include Hindi ac-
cent, Mandarin accent, Vietnamese accent, as well as Korean
accent, Spanish accent and Arabic accent. It has a total of 24
speakers, each of whom is featured in their own audio record-
ings of the same 1152 sentences. Totally, we get around 3 hours
of each non-native accent, which can be considered as a low-
resource condition. We fine-tune SYNTACC and train YourTTS
from scratch using the settings from the original papers. We
utilize CommonVoice corpus’s transcripts to generate parallel
training data as stated in Section 3.1. The Coqui-TTS 2 is used
for training all TTS and U2S models. To train S2U model, we
use the source code and setting from fairseq 3.

In our research, we also investigate how data augmenta-
tion can affect the performance of the PC. In details, we devise
two ways for synthesizing 1 million utterances. We can select
one million sentences from a text corpus and generate one non-
native audio recording of each sentence with a random accent

2https://github.com/coqui-ai/TTS
3https://github.com/facebookresearch/

fairseq/tree/main/examples/textless_nlp/gslm/
speech2unit

and speaker, which we call non-overlapped sentence strategy.
The second strategy involves selecting 166 thousand sentences
from a text corpus and creating non-native 6 audio files per sen-
tence, each sentence with all 6 accents and 6 random speakers,
which we call overlapped sentence strategy. In both circum-
stances, we generate one native audio per sentence as output
audio. The second way, we believe, could help PC learn how
to address varied accents more successfully. Before generat-
ing synthetic data, we divided the sentences into train and val-
idation sets in the ratio 1000:1. The test data is our in-house
data, which contains approximately 1000 sentences (3 hours)
recorded by Chinese, Indian, Arabic and Vietnamese speakers.
These speakers have not been recorded in training data, so we
can consider as zero-shot condition.

To train the PC, we utilized the wav2vec 2.0 and HuBERT
pretrained with the Large configuration and hidden size of 1024.
The MBart50 decoder employs the same hidden size. We em-
ployed an effective batch size of roughly 1 hour of audio with a
gradient accumulation technique for each update during training
with a linear decay learning rate schedule, starting from 0.001.
The model takes 20k updates to converge (about 5 to 6 hours
with a single GPU RTX A6000 with 48GB of RAM). We em-
ploy beam search with beam size 8 for inference. The Hugging
Face framework 4is used for training PC.

3.2. Evaluation metrics

Test Perplexity For the PC, we estimate the perplexity on our
in-house test data. Perplexity is a measure of how efficiently
a model predicts the next unit in a sequence of units. In our
case, it also indicates how well the PC learns the patterns of
native speech and decodes them in the discrete units. For each
sentence in test set, we use the native YourTTS to synthesize a
native audio with the same content, followed by Speech2Unit to
generate a ground-truth sequence of units. These ground-truth
sequences can be used to estimate the perplexity of the PC on

4https://github.com/huggingface



the test data. Furthermore, to assess how data augmentation
and pretrained encoder-decoder affect performance, we need
to compare different data augmentation strategies and differ-
ent weight initialization methods (with and without pretrained
model). Then the best PC with the lowest test perplexity is cho-
sen when evaluating the subjective metrics of the whole system.

Accentedness test, Fluency test, Speaker Similarity
Mean Opinion Score (Sim-MOS) and Mean Opinion Score
(MOS). To evaluate the performance of the whole system, we
use three subjective metrics. We pick 50 random sentences in
tets set for evaluation. For each test sentence, three kind of tests
are conducted by 20 American participants who listen to the
provided audios and evaluate their overall quality on a 5-point
scale: 1-bad, 2-poor, 3-fair, 4-good, 5-excellent. In the Accent-
edness test and Fluency test, the participants give a score for
the degree to which the synthesized audios sound like a native
speech and how much they speak fluently, respectively. For the
Sim-MOS test, they rate the similarity between the voice timbre
of the output audios and the original audios of target speakers
on a scale of 5 as above. Finally, we compute the mean with
95% confidence interval for all subjective metrics.

We have 3 most recent baseline systems. The first one
[6] is also the seq2seq-based system, they convert a non-native
speech to mel-spectrogram of native speech, then use an ex-
ternal vocoder to convert back to waveform. The next two
baselines [3],[4] are non-autoregressive systems with disentan-
glement network to disentangle accent attribute from original
speech. Due to the unavailability of the source codes, we com-
pared our system’s outputs to their best audio examples. Sample
evaluation audios are available at a github repository 5.

3.3. Results

Table 1 illustrates that the sentence overlapping setting signifi-
cantly outperforms the non-overlapping setting in terms of text
perplexity under all weight initialization conditions. It can in-
dicate that the data which has many accents, many speaker for
each sentence is very suitable for our AC problem, we believe it
can help the PC learn how to distinguish multiple accents better.
In term of weight initialization, the combination of Wav2vec
encoder and MBart Decoder has best PPL. Consequently, this
combination, along with the sentence overlapping setting, is se-
lected for the subjective test.

In the table 2, for the audio quality, our model outperform
Baseline-1 in all metrics. It can indicates that native discrete
units is better representation than mel-spectrogram in our AC
problem. To compare with other two baseline, our model is bet-
ter in term of accentedness and fluency, but slight worse than
the Baseline-3 in term of speaker similarity. Such observation
implies that the our model might have changed the audios to
a greater extent compared to the other baseline, which actu-
ally produces a more native output yet makes the participants
can find the speaker identity altered more. These two non-
autoregressive baseline can keep the duration of the input audio
while resulting in little change in fluency. They convert accent
without modifying the input audios’ duration, allowing the in-
put and output audios can be synchronized, making them ideal
for applications such as dubbing a video with accents. Our sys-
tem can significantly improve fluency, making it more suited
for language understanding applications. Our model performs
comparably well in both in-house and public test sets.

5https://accentconversion.github.io/

Models PPL
No pretrained

+ non-overlapped sentence 3.63
+ overlapped sentence 2.45

Wav2vec encoder + no pretrained decoder
+ non-overlapped sentence 3.21
+ overlapped sentence 2.25

HuBERT encoder + no pretrained decoder
+ non-overlapped sentence 3.28
+ overlapped sentence 2.32

Wav2vec encoder + MBart decoder
+ no sentence overlapped 3.11
+ sentence overlapped 2.16

HuBERT encoder + MBart decoder
+ non-overlapped sentence 3.23
+ overlapped sentence 2.24

Table 1: Test perplexity

Models Accentness Sim MOS Fluency
Input 2.12± 0.05 3.31± 0.03
Proposed

In-house test 4.46± 0.12 3.89± 0.09 4.55± 0.07
Public test 4.42± 0.11 3.95± 0.07 4.51± 0.06

Baseline-1 3.67± 0.11 3.61± 0.06 3.83± 0.08
Baseline-2 3.65± 0.09 3.92± 0.05 3.94± 0.09
Baseline-3 3.93± 0.10 4.23± 0.10 3.84± 0.10

Table 2: Subjective metrics

4. Conclusion
In this paper, we have shown that a decent controllable accented
TTS could provide a convenient way to generate huge amount
of parallel training data for AC. We also believe that this data
augmentation strategy can help generate effectively more ac-
cented training data for Speech Recognition and Translation. It
is also described how a pretrained encoder decoder with native
discrete units can contribute to the training of a many-to-one
directional AC system. Experimental results show that the pro-
posed method is able to convert unseen speakers’ utterances into
the native accent with better fluency and accent. Further study
will focus on improving the ability to keep speaker identity.
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